1
|
Boye A, Barku VA, Addo JK, Martey O, Asiamah EA, Essuman MA, Doe D. Zanthoxylum zanthoxyloides (Lam.) B. Zepernick & Timler alkaloidal extract exerts hepatoprotective effects in rats with a CCl 4/olive oil-induced hepatocellular carcinoma-like phenotype. J Taibah Univ Med Sci 2024; 19:753-765. [PMID: 39105209 PMCID: PMC11298919 DOI: 10.1016/j.jtumed.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Objective This study assessed the prophylactic anti-HCC effects of a combined stem and root alkaloidal extract of Zanthoxylum zanthoxyloides (Z. zanthoxyloides) (SRAEZZ) in rats with a CCl4/olive oil-induced HCC-like phenotype. Methods SRAEZZ was prepared from dried stems and roots of Z. zanthoxyloides in a 1:1 proportion and chemically characterized. A total of 30 healthy male Wistar rats (weighing 210-280 g) were randomly assigned to six groups (control, model, capecitabine, and SRAEZZ [50, 100, or 200 mg/kg]). All groups except the control received CCl4/olive oil (3 mL/kg, po) in the morning, whereas in the afternoon of the same dosing day, the model group received normal saline (5 mL/kg, po), the capecitabine group received capecitabine (50 mg/kg, po), and the SRAEZZ groups received SRAEZZ (50, 100, or 200 mg/kg, po, respectively) once per week for 36 days. Survival rate, serum α-fetoprotein (AFP), and C-reactive protein (CRP) were monitored. Gross liver anatomy, liver histology, liver enzymes (ALP, AST, and ALT), bilirubin, creatinine, urea, albumin, globulins, and hematological parameters were assessed. Results SRAEZZ yield was 0.58% from the initial stem and root sample (520 g). Quaternary phenanthridin alkaloids were detected in SRAEZZ. Control rats had a 100% survival rate compared with rats in the model group. SRAEZZ treatment improved the survival rate with respect to that in the model group. Serum AFP, CRP, and bilirubin levels were greater in the model group than the control group. SRAEZZ decreased serum AFP, CRP, and bilirubin below the levels observed in the model group. ALP, AST, and AST were higher in the model group, but lower in SRAEZZ-treated group, than the control group. Conclusion SRAEZZ demonstrated prophylactic anti-HCC effects against CCl4/olive oil-induced HCC-like phenotypes in rats. These findings highlight the potential of crude alkaloids from Z. zanthoxyloides as natural templates for semi-synthesis of anti-HCC pharmacotherapeutics.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Victor A. Barku
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice K. Addo
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Orleans Martey
- Department of Pharmacology, Center for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Ernest A. Asiamah
- Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Ghana
| | - Mainprice A. Essuman
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Doe
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
2
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Oruc M, Gedik ME, Uner M, Ulug E, Unal RN, Gunaydin G, Dogrul AB. Effectiveness of metformin for the reversal of cold-ischemia-induced damage in hepatosteatosis. Clin Res Hepatol Gastroenterol 2024; 48:102314. [PMID: 38467276 DOI: 10.1016/j.clinre.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Primary dysfunction and rejection are more common in donor liver tissues with steatosis. AMP-activated protein kinase (AMPK) assumes organ-protective functions during ischemia. Metformin was used for the activation of AMPK in hepatocytes. The aim of this study is to investigate the effectiveness of metformin administration for the reversal of cold-ischemia-induced damage in hepatosteatosis. MATERIAL AND METHODS Seven-week-old C7BL56 male-mice (n = 109) were separated into four groups depending on diet type and metformin use. A specific diet model was followed for 10 weeks to induce hepatosteatosis. A group of the animals was administered with metformin for the last four weeks via oral gavage. After resection, the liver tissues were perfused and kept for 0-6-12-24 h in the UW solution. Histopathological examinations were performed, and Western blot was utilized to analyze p-AMPK and AMPK expression levels. RESULTS Hepatosteatosis decreased significantly with metformin. The steatotic liver group had more prominent pericentral inflammation, necrosis as well as showing a decreased and more delayed AMPK response than the non-fat group. All these alterations could be corrected using metformin. CONCLUSION Metformin can increase the resistance of livers with hepatosteatosis to cold-ischemia-induced damage, which in turn may pave the way for successful transplantation of fatty living-donor livers.
Collapse
Affiliation(s)
- Mustafa Oruc
- Department of General Surgery, Faculty Of Medicine, School of Medicine, Hacettepe University, Floor B, 06230, Ankara, Altindag 06230, Turkey
| | - Mustafa Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Meral Uner
- Department of Pathology, Hacettepe University School of Medicine, Ankara 06230, Turkey
| | - Elif Ulug
- Department of Nutrition and Dietetics, Hacettepe University, Ankara 06230, Turkey
| | - Reyhan Nergiz Unal
- Department of Nutrition and Dietetics, Hacettepe University, Ankara 06230, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Ahmet Bulent Dogrul
- Department of General Surgery, Faculty Of Medicine, School of Medicine, Hacettepe University, Floor B, 06230, Ankara, Altindag 06230, Turkey.
| |
Collapse
|
4
|
Bejaoui M, Slim C, Peralta C, Ben Abdennebi H. Effect of PERLA®, a new cold-storage solution, on oxidative stress injury and early graft function in rat kidney transplantation model. BMC Nephrol 2024; 25:62. [PMID: 38389057 PMCID: PMC10882783 DOI: 10.1186/s12882-024-03488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The composition of organ preservation solutions is crucial for maintaining graft integrity and early graft function after transplantation. The aim of this study is to compare new organ preservation solution PERLA® with the gold standard preservation solution University of Wisconsin (UW) regarding oxidative stress and early graft injury. METHODS In order to assess oxidative stress after cold storage, kidney grafts have been preserved for 18 h at 4° C in either UW solution or PERLA® solution and then assessed for oxidative stress injury (protocol 1). To assess kidney injuries and oxidative stress after reperfusion, rat kidneys were harvested, stored in cold UW or in PERLA® solutions for 18 h at 4 °C and then transplanted heterotopically for 6 h (protocol 2). PERLA® is a high Na+/low K+ solution including PEG-35 (1 g/L), trimetazidine (1 µM), carvedilol (10 µM) and tacrolimus (5 µM). RESULTS Our results showed that preservation of kidneys in PERLA® solution significantly attenuates oxidative stress parameters after cold storage and reperfusion. We found a significant decrease in oxidative damage indicators (MDA, CD and CP) and a significant increase in antioxidant indicators (GPx, GSH, CAT, SOD and PSH). Moreover, PERLA® solution decreased kidney injury after reperfusion (creatinine, LDH and uric acid). CONCLUSION PERLA® solution was more effective than UW storage solution in preserving rat's kidney grafts.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Chérifa Slim
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
5
|
Ostróżka-Cieślik A. Modification of Preservative Fluids with Antioxidants in Terms of Their Efficacy in Liver Protection before Transplantation. Int J Mol Sci 2024; 25:1850. [PMID: 38339128 PMCID: PMC10855613 DOI: 10.3390/ijms25031850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transplantation is currently the only effective treatment for patients with end-stage liver failure. In recent years, many advanced studies have been conducted to improve the efficiency of organ preservation techniques. Modifying the composition of the preservation fluids currently used may improve graft function and increase the likelihood of transplantation success. The modified fluid is expected to extend the period of safe liver storage in the peri-transplantation period and to increase the pool of organs for transplantation with livers from marginal donors. This paper provides a literature review of the effects of antioxidants on the efficacy of liver preservation fluids. Medline (PubMed), Scopus, and Cochrane Library databases were searched using a combination of MeSH terms: "liver preservation", "transplantation", "preservation solution", "antioxidant", "cold storage", "mechanical perfusion", "oxidative stress", "ischemia-reperfusion injury". Studies published up to December 2023 were included in the analysis, with a focus on publications from the last 30 years. A total of 45 studies met the inclusion criteria. The chemical compounds analyzed showed mostly bioprotective effects on hepatocytes, including but not limited to multifactorial antioxidant and free radical protective effects. It should be noted that most of the information cited is from reports of studies conducted in animal models, most of them in rodents.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland
| |
Collapse
|
6
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
7
|
Missawi O, Jeddou IB, Venditti M, Zitouni N, Zaouali MA, Abdennebi HB, Messaoudi I, Reiter RJ, Minucci S, Banni M. Environmental microplastic accumulation exacerbates liver ischemia-reperfusion injury in rat: Protective effects of melatonin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160155. [PMID: 36436653 DOI: 10.1016/j.scitotenv.2022.160155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Ischemia-reperfusion (IR) injury is an inevitable complication of liver transplantation and partial hepatectomy. Although the hazards of environmental microplastics (EMPs) have been well explored, data underlying their impact on IR-induced hepatotoxicity and how to alleviate these damages remain largely undefined. In this study, the involvement of melatonin (MT) in modulating EMPs toxicity in the liver undergoing ischemia-reperfusion injury was investigated. Male Wistar rats were exposed to MPs for 7 days and then subjected to 1 h of partial warm ischemia (70 %) followed by 24 h of reperfusion. We analyzed some parameters as the oxidative stress, the stability of cytoskeleton as well as inflammation, and autophagy. Our data suggested that EMPs elicited liver injury in ischemic animals. Data revealed several histological alterations caused by EMP and IRI, including cellular disorientation, cell necrosis, and microvacuolar steatosis, as well as inflammatory cell infiltration. EMPs increased blood transaminase (AST and ALT) and oxidative stress levels in the ischemic liver. In addition, RT-qPCR, immunofluorescence, and western blot analyses highlighted an increased expression of α-tubulin, IL-18, NFkB, and LC3. However, the ability of MT to reduce MPs and IRI toxicity was consistent with a significant decrease in the evaluated markers. The combined data not only document that melatonin is an effective agent to protect against hepatic IRI but also reduces cellular dysfunction caused by EMPs.
Collapse
Affiliation(s)
- Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| | - Ikram Ben Jeddou
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Massimo Venditti
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| | - Mohamed Amin Zaouali
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and multifactorial Diseases (LR12ES07), Faculty of Pharmacie of Monastisr, Monastir University, Tunisia
| | - Imed Messaoudi
- LR11ES41, Higher Institute of Biotechnology, Monastir University, 5000 Monastir, Tunisia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Sergio Minucci
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia.
| |
Collapse
|
8
|
A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation. Cells 2022; 11:cells11172763. [PMID: 36078175 PMCID: PMC9455584 DOI: 10.3390/cells11172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The pathophysiological process of ischemia and reperfusion injury (IRI), an inevitable step in organ transplantation, causes important biochemical and structural changes that can result in serious organ damage. IRI is relevant for early graft dysfunction and graft survival. Today, in a global context of organ shortages, most organs come from extended criteria donors (ECDs), which are more sensitive to IRI. The main objective of organ preservation solutions is to protect against IRI through the application of specific, nonphysiological components, under conditions of no blood or oxygen, and then under conditions of metabolic reduction by hypothermia. The composition of hypothermic solutions includes osmotic and oncotic buffering components, and they are intracellular (rich in potassium) or extracellular (rich in sodium). However, above all, they all contain the same type of components intended to protect against IRI, such as glutathione, adenosine and allopurinol. These components have not changed for more than 30 years, even though our knowledge of IRI, and much of the relevant literature, questions their stability or efficacy. In addition, several pharmacological molecules have been the subjects of preclinical studies to optimize this protection. Among them, trimetazidine, tacrolimus and carvedilol have shown the most benefits. In fact, these drugs are already in clinical use, and it is a question of repositioning them for this novel use, without additional risk. This new strategy of including them would allow us to shift from cold storage solutions to cold preservation solutions including multitarget pharmacological components, offering protection against IRI and thus protecting today's more vulnerable organs.
Collapse
|
9
|
Bardallo RG, da Silva RT, Carbonell T, Palmeira C, Folch-Puy E, Roselló-Catafau J, Adam R, Panisello-Rosello A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int J Mol Sci 2022; 23:5742. [PMID: 35628554 PMCID: PMC9143961 DOI: 10.3390/ijms23105742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Rui T. da Silva
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| |
Collapse
|
10
|
Akdemir O, Tatar BE, Gökhan A, Şirin C, Çavuşoğlu T, Erbaş O, Uyanıkgil Y, Çetin EÖ, Zhang F, Lineaweaver W. Preventive effect of trimetazidine against ischemia-reperfusion injury in rat epigastric island flaps: an experimental study. EUROPEAN JOURNAL OF PLASTIC SURGERY 2021; 44:177-188. [DOI: 10.1007/s00238-020-01757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
|
11
|
Neri AA, Dontas IA, Iliopoulos DC, Karatzas T. Pathophysiological Changes During Ischemia-reperfusion Injury in Rodent Hepatic Steatosis. In Vivo 2021; 34:953-964. [PMID: 32354880 DOI: 10.21873/invivo.11863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Ischemia and reperfusion injuries may produce deleterious effects on hepatic tissue after liver surgery and transplantation. The impact of ischemia-reperfusion injury (IRI) on the liver depends on its substrate, the percentage of liver ischemic tissue subjected to IRI and the ischemia time. The consequences of IRI are more evident in pathologic liver substrates, such as steatotic livers. This review is the result of an extended bibliographic PubMed search focused on the last 20 years. It highlights basic differences encountered during IRI in lean and steatotic livers based on studies using rodent experimental models. CONCLUSION The main difference in cell death between lean and steatotic livers is the prevalence of apoptosis in the former and necrosis in the latter. There are also major changes in the effect of intracellular mediators, such as TNFα and IL-1β. Further experimental studies are needed in order to increase current knowledge of IRI effects and relevant mechanisms in both lean and steatotic livers, so that new preventive and therapeutic strategies maybe developed.
Collapse
Affiliation(s)
- Anna-Aikaterini Neri
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Theodore Karatzas
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece.,2 Department of Propedeutic Surgery, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Panisello Rosello A, Teixeira da Silva R, Castro C, G. Bardallo R, Calvo M, Folch-Puy E, Carbonell T, Palmeira C, Roselló Catafau J, Adam R. Polyethylene Glycol 35 as a Perfusate Additive for Mitochondrial and Glycocalyx Protection in HOPE Liver Preservation. Int J Mol Sci 2020; 21:E5703. [PMID: 32784882 PMCID: PMC7461048 DOI: 10.3390/ijms21165703] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
Organ transplantation is a multifactorial process in which proper graft preservation is a mandatory step for the success of the transplantation. Hypothermic preservation of abdominal organs is mostly based on the use of several commercial solutions, including UW, Celsior, HTK and IGL-1. The presence of the oncotic agents HES (in UW) and PEG35 (in IGL-1) characterize both solution compositions, while HTK and Celsior do not contain any type of oncotic agent. Polyethylene glycols (PEGs) are non-immunogenic, non-toxic and water-soluble polymers, which present a combination of properties of particular interest in the clinical context of ischemia-reperfusion injury (IRI): they limit edema and nitric oxide induction and modulate immunogenicity. Besides static cold storage (SCS), there are other strategies to preserve the organ, such as the use of machine perfusion (MP) in dynamic preservation strategies, which increase graft function and survival as compared to the conventional static hypothermic preservation. Here we report some considerations about using PEG35 as a component of perfusates for MP strategies (such as hypothermic oxygenated perfusion, HOPE) and its benefits for liver graft preservation. Improved liver preservation is closely related to mitochondria integrity, making this organelle a good target to increase graft viability, especially in marginal organs (e.g., steatotic livers). The final goal is to increase the pool of suitable organs, and thereby shorten patient waiting lists, a crucial problem in liver transplantation.
Collapse
Affiliation(s)
- Arnau Panisello Rosello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (A.P.R.); (R.T.d.S.); (E.F.-P.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France; (C.C.); (R.A.)
| | - Rui Teixeira da Silva
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (A.P.R.); (R.T.d.S.); (E.F.-P.)
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal;
| | - Carlos Castro
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France; (C.C.); (R.A.)
| | - Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Maria Calvo
- Serveis Cientifico Tècnics, 08036-Campus Hospital Clínic, Universitat de Barcelona, 08919 Barcelona, Catalonia, Spain;
| | - Emma Folch-Puy
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (A.P.R.); (R.T.d.S.); (E.F.-P.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal;
| | - Joan Roselló Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (A.P.R.); (R.T.d.S.); (E.F.-P.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France; (C.C.); (R.A.)
| |
Collapse
|
13
|
Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Med Hypotheses 2018; 118:151-162. [PMID: 30037605 DOI: 10.1016/j.mehy.2018.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by an accelerated aging phenotype that typically leads to death via stroke or myocardial infarction at approximately 14.6 years of age. Most cases of HGPS have been linked to the extensive use of a cryptic splice donor site located in the LMNA gene due to a de novo mutation, generating a truncated and toxic protein known as progerin. Progerin accumulation in the nuclear membrane and within the nucleus distorts the nuclear architecture and negatively effects nuclear processes including DNA replication and repair, leading to accelerated cellular aging and premature senescence. The serine-arginine rich splicing factor SRSF1 (also known as ASF/SF2) has recently been shown to modulate alternative splicing of the LMNA gene, with SRSF1 inhibition significantly reducing progerin at both the mRNA and protein levels. In 2014, we hypothesized for the first time that compounds including metformin that induce activation of AMP-activated protein kinase (AMPK), a master metabolic regulator activated by cellular stress (e.g. increases in intracellular calcium, reactive oxygen species, and/or an AMP(ADP)/ATP ratio increase, etc.), will beneficially alter gene splicing in progeria cells by inhibiting SRSF1, thus lowering progerin levels and altering the LMNA pre-mRNA splicing ratio. Recent evidence has substantiated this hypothesis, with metformin significantly reducing the mRNA and protein levels of both SRSF1 and progerin, activating AMPK, and alleviating pathological defects in HGPS cells. Metformin has also recently been shown to beneficially alter gene splicing in normal humans. Interestingly, several chemically distinct compounds, including rapamycin, methylene blue, all-trans retinoic acid, MG132, 1α,25-dihydroxyvitamin D3, sulforaphane, and oltipraz have each been shown to alleviate accelerated aging defects in patient-derived HGPS cells. Each of these compounds has also been independently shown to induce AMPK activation. Because these compounds improve accelerated aging defects in HGPS cells either by enhancing mitochondrial functionality, increasing Nrf2 activity, inducing autophagy, or by altering gene splicing and because AMPK activation beneficially modulates each of the aforementioned processes, it is our hypothesis that cellular stress-induced AMPK activation represents an indirect yet common mechanism of action linking such chemically diverse compounds with the beneficial effects of those compounds observed in HGPS cells. As normal humans also produce progerin at much lower levels through a similar mechanism, compounds that safely induce AMPK activation may have wide-ranging implications for both normal and pathological aging.
Collapse
|
14
|
Trimetazidine Protects Cardiomyocytes Against Hypoxia/Reoxygenation Injury by Promoting AMP-activated Protein Kinase-dependent Autophagic Flux. J Cardiovasc Pharmacol 2018; 69:389-397. [PMID: 28581448 DOI: 10.1097/fjc.0000000000000487] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Trimetazidine (TMZ), a metabolic agent, may protect against myocardial ischemia/reperfusion injury. Because of the critical role of autophagy in cardioprotection, we aimed to evaluate whether autophagy was involved in TMZ-induced protection during hypoxia/reoxygenation (H/R). Neonatal rat cardiomyocytes were subjected to H/R injury, and they were divided into 7 groups: control, control+TMZ, control+chloroquine (Cq)/compound C (com C), H/R, H/R+TMZ, H/R+Cq/com C, and H/R+TMZ+Cq/com C. Autophagic flux was primarily assessed by Western blot and tandem fluorescent mRFP-GFP-LC3. Assays for MTS, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and lactate dehydrogenase release were performed to assess cell injury. Our results showed that TMZ pretreatment had a cardioprotective effect against H/R injury. The H/R+TMZ group had an increased ratio of LC3-II to LC3-I and increased autophagic flux (degradation of p62 and increases in autophagosomes and autolysosomes). TMZ also reduced apoptosis and enhanced cell survival while inducing autophagy. Correspondingly, autophagy inhibition with Cq blocked this protective effect. Furthermore, TMZ-induced enhancement of autophagy could be related to increased AMP-activated protein kinase (AMPK) phosphorylation and decreased Mammalian target of rapamycin (mTOR) phosphorylation, which was abolished by an AMPK-specific inhibitor (com C). Our data provide evidence that TMZ pretreatment protects against H/R injury by promoting autophagic flux through the AMPK signaling pathway.
Collapse
|
15
|
Zhang B, Lakshmanan J, Du Y, Smith JW, Harbrecht BG. Cell-specific regulation of iNOS by AMP-activated protein kinase in primary rat hepatocytes. J Surg Res 2017; 221:104-112. [PMID: 29229115 DOI: 10.1016/j.jss.2017.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) regulates several metabolic pathways in hepatocytes that are critical to the hepatic response to sepsis and shock. Induction of nitric oxide synthesis is an important response to sepsis, inflammation and shock and many of the stimuli that upregulate inducible nitric oxide synthase (iNOS) also activate AMPK. AMPK inhibits nitric oxide (NO) production in skeletal and cardiac muscle cells, but the role of AMPK in regulating iNOS expression in hepatocytes has not been determined. MATERIALS AND METHODS Primary cultured rat hepatocytes were preincubated with an AMPK inhibitor, AMPK activators, or transfected with AMPK siRNA before being treated with the proinflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFNγ). The hepatocyte cell lysate and culture supernatants were collected for Western blot analysis and Griess assay. RESULTS IL-1β and IFNγ markedly upregulated iNOS expression and AMPK phosphorylation. IL-1β + IFNγ-induced NO production and iNOS expression were significantly decreased in hepatocytes treated with the AMPK inhibitor compound C and AMPK knockdown by AMPK siRNA. Cytokine-induced iNOS expression was increased by AMPK activators 1-oxo-2-(2H-pyrrolium-1-yl)-1H-inden-3-olate, AMPK signaling activator III and AICA-riboside. Compound C upregulated Akt and c-Jun N-terminal kinase phosphorylation but decreased IκBα phosphorylation. AICA-riboside exerted opposite effects on these signaling pathways in hepatocytes. CONCLUSIONS In contrast to other cell types, AMPK increased IL-1β + IFNγ-induced NO production and iNOS expression through the Akt, c-Jun N-terminal kinase, and NF-κΒ signaling pathways in primary hepatocytes. These data suggest that AMPK-altering medications used clinically may have subsequent effects on iNOS expression and proinflammatory signaling pathways.
Collapse
Affiliation(s)
- Baochun Zhang
- Department of Surgery and Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky.
| | - Jaganathan Lakshmanan
- Department of Surgery and Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
| | - Yibo Du
- Department of Surgery and Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
| | - Jason W Smith
- Department of Surgery and Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
| | - Brian G Harbrecht
- Department of Surgery and Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
| |
Collapse
|
16
|
An Oxygenated and Transportable Machine Perfusion System Fully Rescues Liver Grafts Exposed to Lethal Ischemic Damage in a Pig Model of DCD Liver Transplantation. Transplantation 2017; 101:e205-e213. [PMID: 28403128 DOI: 10.1097/tp.0000000000001764] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Control of warm ischemia (WI) lesions that occur with donation after circulatory death (DCD) would significantly increase the donor pool for liver transplantation. We aimed to determine whether a novel, oxygenated and hypothermic machine perfusion device (HMP Airdrive system) improves the quality of livers derived from DCDs using a large animal model. METHODS Cardiac arrest was induced in female large white pigs by intravenous injection of potassium chloride. After 60 minutes of WI, livers were flushed in situ with histidine-tryptophan-ketoglutarate and subsequently preserved either by simple cold storage (WI-SCS group) or HMP (WI-HMP group) using Belzer-MPS solution. Liver grafts procured from heart-beating donors and preserved by SCS served as controls. After 4 hours of preservation, all livers were transplanted. RESULTS All recipients in WI-SCS group died within 6 hours after transplantation. In contrast, the HMP device fully protected the liver against lethal ischemia/reperfusion injury, allowing 100% survival rate. A postreperfusion syndrome was observed in all animals of the WI-SCS group but none of the control or WI-HMP groups. After reperfusion, HMP-preserved livers functioned better and showed less hepatocellular and endothelial cell injury, in agreement with better-preserved liver histology relative to WI-SCS group. In addition to improved energy metabolism, this protective effect was associated with an attenuation of inflammatory response, oxidative load, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. CONCLUSIONS This study demonstrates for the first time the efficacy of the HMP Airdrive system to protect liver grafts from lethal ischemic damage before transplantation in a clinically relevant DCD model.
Collapse
|
17
|
Cherif-Sayadi A, Hadj Ayed-Tka K, Zaouali MA, Bejaoui M, Hadj-Abdallah N, Bouhlel A, Ben Abdennebi H. Nitrite enhances liver graft protection against cold ischemia reperfusion injury through a NOS independent pathway. Libyan J Med 2017; 12:1308780. [PMID: 28357909 PMCID: PMC5418943 DOI: 10.1080/19932820.2017.1308780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Introduction: Nitrite has been found to protect liver graft from cold preservation injury. However, the cell signaling pathway involved in this protection remains unclear. Here, we attempt to clarify if the NOS pathway by using the NOS inhibitor, L-NAME (L-NG-Nitroarginine methyl ester). Animals and methods: Rat livers were conserved for 24 h at 4°C in (IGL-1) solution enriched or not with nitrite at 50 nM. In a third group, rats were pretreated with 50 mg/kg of L-NAME before their liver procurement and preservation in IGL-1 supplemented with nitrite (50 nM) and L-NAME (1 mM). After 24 h of cold storage, rat livers were ex-vivo perfused at 37°C during 2 h. Control livers were perfused without cold storage. Results: Nitrite effectively protected the rat liver grafts from the onset of cold I/R injury. L-NAME treatment did not abolish the beneficial effects of nitrite. Liver damage, protein oxidation and lipid peroxidation remained at low levels in both nitrite-treated groups when compared to IGL-1 group. Antioxidant enzyme activities and functional parameters were unchanged after NOS inhibition. Conclusion: Despite NOS inhibition by L-NAME, nitrite can still provide hepatic protection during cold I/R preservation. This suggests that nitrite acts through a NOS-independent pathway.
Collapse
Affiliation(s)
- Amani Cherif-Sayadi
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Kaouther Hadj Ayed-Tka
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Mohamed Amine Zaouali
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia.,b High Institute of Biotechnology of Monastir , University of Monastir , Monastir , Tunisia
| | - Mohamed Bejaoui
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Najet Hadj-Abdallah
- b High Institute of Biotechnology of Monastir , University of Monastir , Monastir , Tunisia
| | - Ahlem Bouhlel
- b High Institute of Biotechnology of Monastir , University of Monastir , Monastir , Tunisia
| | - Hassen Ben Abdennebi
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| |
Collapse
|
18
|
Zaouali MA, Panisello A, Lopez A, Castro C, Folch E, Carbonell T, Rolo A, Palmeira CM, Garcia-Gil A, Adam R, Roselló-Catafau J. GSK3β and VDAC Involvement in ER Stress and Apoptosis Modulation during Orthotopic Liver Transplantation. Int J Mol Sci 2017; 18:ijms18030591. [PMID: 28282906 PMCID: PMC5372607 DOI: 10.3390/ijms18030591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the involvement of glycogen synthase kinase-3β (GSK3β) and the voltage-dependent anion channel (VDAC) in livers subjected to cold ischemia-reperfusion injury (I/R) associated with orthotopic liver transplantation (OLT). Rat livers were preserved in University of Wisconsin (UW) and Institute Georges Lopez (IGL-1) solution, the latter enriched or not with trimetazidine, and then subjected to OLT. Transaminase (ALT) and HMGB1 protein levels, glutamate dehydrogenase (GLDH), and oxidative stress (MDA) were measured. The AKT protein kinase and its direct substrates, GSK3β and VDAC, as well as caspases 3, 9, and cytochrome C and reticulum endoplasmic stress-related proteins (GRP78, pPERK, ATF4, and CHOP), were determined by Western blot. IGL-1+TMZ significantly reduced liver injury. We also observed a significant phosphorylation of AKT, which in turn induced the phosphorylation and inhibition of GSK3β. In addition, TMZ protected the mitochondria since, in comparison with IGL-1 alone, we found reductions in VDAC phosphorylation, apoptosis, and GLDH release. All these results were correlated with decreased ER stress. Addition of TMZ to IGL-1 solution increased the tolerance of the liver graft to I/R injury through inhibition of GSK3β and VDAC, contributing to ER stress reduction and cell death prevention.
Collapse
Affiliation(s)
- Mohamed Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
- Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia.
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Arnau Panisello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| | - Alexandre Lopez
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Carlos Castro
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Emma Folch
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain.
| | - Anabela Rolo
- Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Carlos Marques Palmeira
- Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | | | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Joan Roselló-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| |
Collapse
|
19
|
Ateyya H, Yosef H, Nader MA. Ameliorative effect of trimetazidine on cisplatin-induced hepatotoxicity in rats. Can J Physiol Pharmacol 2016; 94:225-230. [DOI: 10.1139/cjpp-2015-0304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to evaluate the protective effects of trimetazidine (TMZ) against cisplatin (CP) induced liver damage in rats. Animals were distributed among 4 groups as follows: control group; TMZ group (20 mg/kg body mass, per oral), which was treated for 10 days; CP group (6 mg/kg, by intraperitoneal injection), which received a single injection; and the CP + TMZ group (20 mg/kg, per oral), which received TMZ 4 days before and 6 days after CP injection. The extent of hepatic damage was studied by assessing biochemical parameters and histopathological evaluation of the extracted liver tissue. The results revealed that liver enzymes were markedly elevated after injection of CP, as evident from significant increases in the serum levels of alanine transaminase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (γ-GT), and lactate dehydrogenase (LDH), as well as marked changes to the liver architecture, with a significant decrease in serum levels of albumin. There were also marked changes to the antioxidant defense system, as indicated by significant decreases in total antioxidants and hepatic levels of reduced glutathione (GSH) and superoxide dismutase (SOD), together with a significant increase in lipid peroxidation. However, there was a significant increase in the activity of hepatic nuclear factor kappa B (NF-κB) as well as hepatic Bax protein expression. We conclude that TMZ protects against CP-induced liver damage through scavenging free radicals and anti-inflammatory and antiapoptotic effects, as well as through reducing NF-κB activation.
Collapse
Affiliation(s)
- Hayam Ateyya
- College of Pharmacy, Taibah University, Universities Road, El-Madinah El-Munawarah, KSA
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala Yosef
- College of Medicine, Taibah University, Universities Road, El-Madinah El-Munawarah, KSA
| | - Manar A. Nader
- College of Pharmacy, Taibah University, Universities Road, El-Madinah El-Munawarah, KSA
- Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| |
Collapse
|
20
|
Bejaoui M, Pantazi E, De Luca V, Panisello A, Folch-Puy E, Hotter G, Capasso C, T. Supuran C, Rosselló-Catafau J. Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage. PLoS One 2015. [PMID: 26225852 PMCID: PMC4520486 DOI: 10.1371/journal.pone.0134499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. CAs are involved in numerous physiological and pathological processes, including acid-base homeostasis, electrolyte balance, oxygen delivery to tissues and nitric oxide generation. Given that these processes are found to be dysregulated during ischemia reperfusion injury (IRI), and taking into account the high vulnerability of steatotic livers to preservation injury, we hypothesized a new role for CA as a pharmacological agent able to protect against ischemic damage. Two different aspects of the role of CA II in fatty liver grafts preservation were evaluated: 1) the effect of its addition to Institut Georges Lopez (IGL-1) storage solution after cold ischemia; 2) and after 24h of cold storage followed by two hours of normothermic ex-vivo perfusion. In all cases, liver injury, CA II protein concentration, CA II mRNA levels and CA II activity were determined. In case of the ex-vivo perfusion, we further assessed liver function (bile production, bromosulfophthalein clearance) and Western blot analysis of phosphorylated adenosine monophosphate activated protein kinase (AMPK), mitogen activated protein kinases family (MAPKs) and endoplasmic reticulum stress (ERS) parameters (GRP78, PERK, IRE, eIF2α and ATF6). We found that CA II was downregulated after cold ischemia. The addition of bovine CA II to IGL-1 preservation solution efficiently protected steatotic liver against cold IRI. In the case of reperfusion, CA II protection was associated with better function, AMPK activation and the prevention of ERS and MAPKs activation. Interestingly, CA II supplementation was not associated with enhanced CO2 hydration. The results suggest that CA II modulation may be a promising target for fatty liver graft preservation.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Eirini Pantazi
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Viviana De Luca
- Institute of Bioscience and Bioresources (IBBR), National Research Council, Napoli, Italy
| | - Arnau Panisello
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Emma Folch-Puy
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Clemente Capasso
- Institute of Bioscience and Bioresources (IBBR), National Research Council, Napoli, Italy
| | | | - Joan Rosselló-Catafau
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
21
|
Romero F, Shah D, Duong M, Stafstrom W, Hoek JB, Kallen CB, Lang CH, Summer R. Chronic alcohol ingestion in rats alters lung metabolism, promotes lipid accumulation, and impairs alveolar macrophage functions. Am J Respir Cell Mol Biol 2014; 51:840-9. [PMID: 24940828 PMCID: PMC4291549 DOI: 10.1165/rcmb.2014-0127oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022] Open
Abstract
Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and/or treating alcohol-related pulmonary disorders.
Collapse
Affiliation(s)
| | | | | | | | - Jan B. Hoek
- Department of Pathology, Anatomy, and Cell Biology, and
| | - Caleb B. Kallen
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Charles H. Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
22
|
Zaouali MA, Bejaoui M, Calvo M, Folch-Puy E, Pantazi E, Pasut G, Rimola A, Ben Abdennebi H, Adam R, Roselló-Catafau J. Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury. World J Gastroenterol 2014; 20:16203-16214. [PMID: 25473175 PMCID: PMC4239509 DOI: 10.3748/wjg.v20.i43.16203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/02/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts.
METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer’s lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1).
RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI.
CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI.
Collapse
|
23
|
Routh D, Naidu S, Sharma S, Ranjan P, Godara R. Changing pattern of donor selection criteria in deceased donor liver transplant: a review of literature. J Clin Exp Hepatol 2013; 3:337-46. [PMID: 25755521 PMCID: PMC3940395 DOI: 10.1016/j.jceh.2013.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
During the last couple of decades, with standardization and progress in surgical techniques, immunosuppression and post liver transplantation patient care, the outcome of liver transplantation has been optimized. However, the principal limitation of transplantation remains access to an allograft. The number of patients who could derive benefit from liver transplantation markedly exceeds the number of available deceased donors. The large gap between the growing list of patients waiting for liver transplantation and the scarcity of donor organs has fueled efforts to maximize existing donor pool and identify new avenues. This article reviews the changing pattern of donor for liver transplantation using grafts from extended criteria donors (elderly donors, steatotic donors, donors with malignancies, donors with viral hepatitis), donation after cardiac death, use of partial grafts (split liver grafts) and other suboptimal donors (hypernatremia, infections, hypotension and inotropic support).
Collapse
Key Words
- CIT, cold ischemia time
- DCD, donation after cardiac death
- DGF, delayed graft function
- ECD, extended criteria donor
- ECMO, extra corporeal membrane oxygenation
- HBIg, hepatitis B immune globulin
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HIV, human immunodeficiency virus
- HTLV, human T-lymphotropic virus
- LDLT, living donor liver transplantation
- LT, liver transplantation
- MELD, Model for End-Stage Liver Disease
- NRP, normothermic regional perfusion
- PNF, primary nonfunction
- SLT, split liver transplantation
- SOFT, survival outcomes following liver transplantation
- SRTR, Scientific Registry of Transplant Recipients
- donor pool
- extended criteria donor
- liver transplantation
- mTOR, mammalian target of rapamycin inhibitors
Collapse
Affiliation(s)
- Dronacharya Routh
- Department of GI Surgery and Liver Transplantation, Army Hospital (R&R), New Delhi 110010, India
| | - Sudeep Naidu
- Department of GI Surgery and Liver Transplantation, Army Hospital (R&R), New Delhi 110010, India,Address for correspondence: Sudeep Naidu, Professor and Head, Department of GI Surgery and Liver Transplantation, Army Hospital (R&R), New Delhi 110010, India. Tel.: +91 (0) 9999454052.
| | - Sanjay Sharma
- Department of GI Surgery and Liver Transplantation, Army Hospital (R&R), New Delhi 110010, India
| | - Priya Ranjan
- Department of GI Surgery and Liver Transplantation, Army Hospital (R&R), New Delhi 110010, India
| | - Rajesh Godara
- Department of Surgery, Post Graduate Institute of Medical Sciences, Rhotak, Haryana, India
| |
Collapse
|
24
|
Bejaoui M, Zaouali MA, Folch-Puy E, Pantazi E, Bardag-Gorce F, Carbonell T, Oliva J, Rimola A, Abdennebi HB, Roselló-Catafau J. Bortezomib enhances fatty liver preservation in Institut George Lopez-1 solution through adenosine monophosphate activated protein kinase and Akt/mTOR pathways. ACTA ACUST UNITED AC 2013; 66:62-72. [PMID: 24127984 DOI: 10.1111/jphp.12154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 09/05/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the protective mechanisms induced by bortezomib added to Institut George Lopez (IGL)-1 preservation solution to protect steatotic livers against cold ischaemia reperfusion injury and to examine whether these mechanisms occur through the activation of adenosine monophosphate activated protein kinase (AMPK), Akt/mTOR pathways. METHODS Steatotic livers from obese rats were preserved for 24 h (at 4 °C) in IGL-1 solution with or without bortezomib (100 nM) or pretreated with AMPK inhibitor adenine 9-α-D-arabinofuranoside and preserved in IGL-1 + bortezomib. Livers were then perfused for 2 h at 37 °C. Liver injury (alanine aminotransferase/aspartate aminotransferase) and function (bile production and vascular resistance) were measured. Also, Akt/mTOR, phosphorylated AMPK (pAMPK) and apoptosis were determined by Western blot analyses. KEY FINDINGS Bortezomib addition to IGL-1 solution significantly reduced steatotic liver injury, improved graft function and decreased liver apoptosis. These benefits were diminished by the pretreatment of obese rats with AMPK inhibitor Ara. Western blot analyses showed a significant increase in pAMPK after ischaemia and reperfusion. We also observed a significant phosphorylation of Akt in IGL-1 +bortezomib group that, in turn, induced the phosphorylation of mTOR and glycogen synthase kinase 3β. CONCLUSIONS Bortezomib, at low and non toxic concentration, is a promising additive to IGL-1 solution for steatotic liver preservation. Its protective effect is due to the activation of AMPK and Akt/mTOR pathways.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, IIBB-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), IDIBAPS, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu Q, Izamis ML, Xu H, Berendsen T, Yarmush M, Uygun K. Strategies to rescue steatotic livers before transplantation in clinical and experimental studies. World J Gastroenterol 2013; 19:4638-4650. [PMID: 23922462 PMCID: PMC3732837 DOI: 10.3748/wjg.v19.i29.4638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/07/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023] Open
Abstract
The shortage of donor livers has led to an increased use of organs from expanded criteria donors. Included are livers with steatosis, a metabolic abnormality that increases the likelihood of graft complications post-transplantation. After a brief introduction on the etiology, pathophysiology, categories and experimental models of hepatic steatosis, we herein review the methods to rescue steatotic donor livers before transplantation applied in clinical and experimental studies. The methods span the spectrum of encouraging donor weight loss, employing drug therapy, heat shock preconditioning, ischemia preconditioning and selective anesthesia on donors, and the treatment on isolated grafts during preservation. These methods work at different stages of transplantation process, although share similar molecular mechanisms including lipid metabolism stimulation through enzymes or nuclear receptor e.g., peroxisomal proliferator-activated receptor, or anti-inflammation through suppressing cytokines e.g., tumor necrosis factor-α, or antioxidant therapies to alleviate oxidative stress. This similarity of molecular mechanisms implies possible future attempts to reinforce each approach by repeating the same treatment approach at several stages of procurement and preservation, as well as utilizing these alternative approaches in tandem.
Collapse
|
26
|
Zaouali MA, Boncompagni E, Reiter RJ, Bejaoui M, Freitas I, Pantazi E, Folch-Puy E, Abdennebi HB, Garcia-Gil FA, Roselló-Catafau J. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J Pineal Res 2013; 55:65-78. [PMID: 23551302 DOI: 10.1111/jpi.12051] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/22/2013] [Indexed: 12/11/2022]
Abstract
Ischemia/reperfusion injury (IRI) associated with liver transplantation plays an important role in the induction of graft injury. Prolonged cold storage remains a risk factor for liver graft outcome, especially when steatosis is present. Steatotic livers exhibit exacerbated endoplasmic reticulum (ER) stress that occurs in response to cold IRI. In addition, a defective liver autophagy correlates well with liver damage. Here, we evaluated the combined effect of melatonin and trimetazidine as additives to IGL-1 solution in the modulation of ER stress and autophagy in steatotic liver grafts through activation of AMPK. Steatotic livers were preserved for 24 hr (4°C) in UW or IGL-1 solutions with or without MEL + TMZ and subjected to 2-hr reperfusion (37°C). We assessed hepatic injury (ALT and AST) and function (bile production). We evaluated ER stress (GRP78, PERK, and CHOP) and autophagy (beclin-1, ATG7, LC3B, and P62). Steatotic livers preserved in IGL-1 + MEL + TMZ showed lower injury and better function as compared to those preserved in IGL-1 alone. IGL-1 + MEL + TMZ induced a significant decrease in GRP78, pPERK, and CHOP activation after reperfusion. This was consistent with a major activation of autophagic parameters (beclin-1, ATG7, and LC3B) and AMPK phosphorylation. The inhibition of AMPK induced an increase in ER stress and a significant reduction in autophagy. These data confirm the close relationship between AMPK activation and ER stress and autophagy after cold IRI. The addition of melatonin and TMZ to IGL-1 solution improved steatotic liver graft preservation through AMPK activation, which reduces ER stress and increases autophagy.
Collapse
Affiliation(s)
- Mohamed Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas, IDIBAPS-Ciberehd, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury. Exp Mol Pathol 2013; 94:352-9. [PMID: 23305864 DOI: 10.1016/j.yexmp.2012.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND The dramatic shortage of organs leads to consider the steatotic livers for transplantation although their poor tolerance against ischemia reperfusion injury (IRI). Ubiquitin proteasome system (UPS) inhibition during hypothermia prolongs myocardial graft preservation. The role of UPS in the liver IRI is not fully understood. Bortezomib (BRZ) treatment at non-toxic doses of rats fed alcohol chronically has shown protective effects by increasing liver antioxidant enzymes. We evaluated and compared both proteasome inhibitors BRZ and MG132 in addition to University of Wisconsin preservation solution (UW) at low and non-toxic dose for fatty liver graft protection against cold IRI. EXPERIMENTAL Steatotic and non-steatotic livers have been stored in UW enriched with BRZ (100 nM) or MG132 (25 μM), for 24h at 4°C and then subjected to 2-h normothermic reperfusion (37 °C). Liver injury (AST/ALT), hepatic function (bile output; vascular resistance), mitochondrial damage (GLDH), oxidative stress (MDA), nitric oxide (NO) (e-NOS activity; nitrates/nitrites), proteasome chymotrypsin-like activity (ChT), and UPS (19S and 20S5 beta) protein levels have been measured. RESULTS ChT was inhibited when BRZ and MG132 were added to UW. Both inhibitors prevented liver injury (AST/ALT), when compared to UW alone. BRZ increased bile production more efficiently than MG132. Only BRZ decreased vascular resistance in fatty livers, which correlated with an increase in NO generation (through e-NOS activation) and AMPK phosphorylation. GLDH and MDA were also prevented by BRZ. In addition, BRZ inhibited adiponectin, IL-1, and TNF alpha, only in steatotic livers. CONCLUSION MG132 and BRZ, administrated at low and non toxic doses, are very efficient to protect fatty liver grafts against cold IRI. The benefits of BRZ are more effective than those of MG132. This evidenced for the first time the potential use of UPS inhibitors for the preservation of marginal liver grafts and for future applications in the prevention of IRI.
Collapse
|
28
|
Kireev R, Bitoun S, Cuesta S, Tejerina A, Ibarrola C, Moreno E, Vara E, Tresguerres JAF. Melatonin treatment protects liver of Zucker rats after ischemia/reperfusion by diminishing oxidative stress and apoptosis. Eur J Pharmacol 2012; 701:185-93. [PMID: 23220161 DOI: 10.1016/j.ejphar.2012.11.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022]
Abstract
Fatty livers occur in up to 20% of potential liver donors and increase cellular injury during the ischemia/reperfusion phase, so any intervention that could enable a better outcome of grafts for liver transplantation would be very useful. The effect of melatonin on liver ischemia/reperfusion injury in a rat model of obesity and hepatic steatosis has been investigated. Forty fa/fa Zucker rats were divided in 4 groups. 3 groups were subjected to 35 min of warm hepatic ischemia and 36 h of reperfusion. One experimental group remained untreated and 2 were given 10mg/kg melatonin intraperitoneally or orally. Another group was sham-operated. Plasma ALT, AST and hepatic content of ATP, MDA, hydroxyalkenals, NOx metabolites, antioxidant enzyme activity, caspase-9 and DNA fragmentation were determined in the liver. The expression of iNOS, eNOS, Bcl2, Bax, Bad and AIF were determined by RT-PCR Melatonin was effective at decreasing liver injury by both ways as assessed by liver transaminases, markers of apoptosis, of oxidative stress and improved liver ATP content. Melatonin administration decreased the activities or levels of most of the parameters measured in a beneficial way, and our study identified also some of the mechanisms of protection. We conclude that administration of melatonin improved liver function, as well as markers of pro/antioxidant status and apoptosis following ischemia/reperfusion in obese rats with fatty liver. These data suggest that this substance could improve outcome in patients undergoing liver transplantation who receive a fatty liver implant and suggest the need of clinical trials with it in liver transplantation.
Collapse
Affiliation(s)
- Roman Kireev
- Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ben Mosbah I, Mouchel Y, Pajaud J, Ribault C, Lucas C, Laurent A, Boudjema K, Morel F, Corlu A, Compagnon P. Pretreatment with mangafodipir improves liver graft tolerance to ischemia/reperfusion injury in rat. PLoS One 2012; 7:e50235. [PMID: 23226251 PMCID: PMC3511495 DOI: 10.1371/journal.pone.0050235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/22/2012] [Indexed: 01/17/2023] Open
Abstract
Ischemia/reperfusion injury occurring during liver transplantation is mainly due to the generation of reactive oxygen species (ROS) upon revascularization. Thus, delivery of antioxidant enzymes might reduce the deleterious effects of ROS and improve liver graft initial function. Mangafodipir trisodium (MnDPDP), a contrast agent currently used in magnetic resonance imaging of the liver, has been shown to be endowed with powerful antioxidant properties. We hypothesized that MnDPDP could have a protective effect against liver ischemia reperfusion injury when administrated to the donor prior to harvesting. Livers from Sprague Dawley rats pretreated or not with MnDPDP were harvested and subsequently preserved for 24 h in Celsior® solution at 4°C. Organs were then perfused ex vivo for 120 min at 37°C with Krebs Henseleit solution. In MnDPDP (5 µmol/kg) group, we observed that ATP content was significantly higher at the end of the cold preservation period relative to untreated group. After reperfusion, livers from MnDPDP-treated rats showed better tissue integrity, less hepatocellular and endothelial cell injury. This was accompanied by larger amounts of bile production and higher ATP recovery as compared to untreated livers. The protective effect of MnDPDP was associated with a significant decrease of lipid peroxidation, mitochondrial damage, and apoptosis. Interestingly, MnDPDP-pretreated livers exhibited activation of Nfr2 and HIF-1α pathways resulting in a higher catalase and HO-1 activities. MnDPDP also increased total nitric oxide (NO) production which derived from higher expression of constitutive NO synthase and lower expression of inducible NO synthase. In conclusion, our results show that donor pretreatment with MnDPDP protects the rat liver graft from cold ischemia/reperfusion injury and demonstrate for the first time the potential interest of this molecule in the field of organ preservation. Since MnDPDP is safely used in liver imaging, this preservation strategy holds great promise for translation to clinical liver transplantation.
Collapse
Affiliation(s)
- Ismail Ben Mosbah
- Inserm, UMR991, “Foie, Métabolismes et Cancer,” CHU Pontchaillou, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Yann Mouchel
- Inserm, UMR991, “Foie, Métabolismes et Cancer,” CHU Pontchaillou, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Julie Pajaud
- Inserm, UMR991, “Foie, Métabolismes et Cancer,” CHU Pontchaillou, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Catherine Ribault
- Inserm, UMR991, “Foie, Métabolismes et Cancer,” CHU Pontchaillou, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Catherine Lucas
- Laboratoire de Biochimie Générale et Enzymologie, CHU Pontchaillou, Rennes, France
| | - Alexis Laurent
- Service de Chirurgie Digestive et Hépatobiliaire-Transplantation hépatique, CHU Henri Mondor, AP-HP, Créteil, France
- Inserm, UMR955,- IMRB Université Paris Est, Créteil, France
| | - Karim Boudjema
- Inserm, UMR991, “Foie, Métabolismes et Cancer,” CHU Pontchaillou, Rennes, France
- Université de Rennes 1, Rennes, France
- Service de Chirurgie Hépatobiliaire et Digestive, Hôpital Pontchaillou, Rennes, France
| | - Fabrice Morel
- Inserm, UMR991, “Foie, Métabolismes et Cancer,” CHU Pontchaillou, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Anne Corlu
- Inserm, UMR991, “Foie, Métabolismes et Cancer,” CHU Pontchaillou, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Philippe Compagnon
- Inserm, UMR991, “Foie, Métabolismes et Cancer,” CHU Pontchaillou, Rennes, France
- Service de Chirurgie Hépatobiliaire et Digestive, Hôpital Pontchaillou, Rennes, France
- * E-mail:
| |
Collapse
|
30
|
Abu-Amara M, Yang SY, Seifalian A, Davidson B, Fuller B. The nitric oxide pathway--evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int 2012; 32:531-43. [PMID: 22316165 DOI: 10.1111/j.1478-3231.2012.02755.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/29/2011] [Indexed: 02/13/2023]
Abstract
Ischaemia reperfusion (IR) injury is a clinical entity with a major contribution to the morbidity and mortality of liver surgery and transplantation. A central pathway of protection against IR injury utilizes nitric oxide (NO). Nitric oxide synthase (NOS) enzymes manufacture NO from L-arginine. NO generated by the endothelial NOS (eNOS) isoform protects against liver IR injury, whereas inducible NOS (iNOS)-derived NO may have either a protective or a deleterious effect during the early phase of IR injury, depending on the length of ischaemia, length of reperfusion and experimental model. In late phase hepatic IR injury, iNOS-derived NO plays a protective role. In addition to NOS consumption of L-arginine during NO synthesis, this amino acid may also be metabolized by arginase, an enzyme whose release is increased during prolonged ischaemia, and therefore diverts L-arginine away from NOS metabolism leading to a drop in the rate of NO synthesis. NO most commonly acts through the soluble guanylyl cyclase-cyclic GMP- protein kinase G pathway to ameliorate hepatic IR injury. Both endogenously generated and exogenously administered NO donors protect against liver IR injury. The beneficial effects of NO on liver IR are not, however, universal, and certain conditions, such as steatosis, may influence the protective effects of NO. In this review, the evidence for, and mechanisms of these protective actions of NO are discussed, and areas in need of further research are highlighted.
Collapse
Affiliation(s)
- Mahmoud Abu-Amara
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, London, UK
| | | | | | | | | |
Collapse
|
31
|
Mosbah IB, Zaouali MA, Martel C, Bjaoui M, Abdennebi HB, Hotter G, Brenner C, Roselló-Catafau J. IGL-1 solution reduces endoplasmic reticulum stress and apoptosis in rat liver transplantation. Cell Death Dis 2012; 3:e279. [PMID: 22402603 PMCID: PMC3317344 DOI: 10.1038/cddis.2012.12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Injury due to cold ischemia reperfusion (I/R) is a major cause of primary graft non-function following liver transplantation. We postulated that I/R-induced cellular damage during liver transplantation might affect the secretory pathway, particularly at the endoplasmic reticulum (ER). We examined the involvement of ER stress in organ preservation, and compared cold storage in University of Wisconsin (UW) solution and in Institute Georges Lopez-1 (IGL-1) solution. In one group of rats, livers were preserved in UW solution for 8 h at 4 °C, and then orthotopic liver transplantation was performed according to Kamada's cuff technique. In another group, livers were preserved in IGL-1 solution. The effect of each preservation solution on the induction of ER stress, hepatic injury, mitochondrial damage and cell death was evaluated. As expected, we found increased ER stress after liver transplantation. IGL-1 solution significantly attenuated ER damage by reducing the activation of three pathways of unfolded protein response and their effector molecules caspase-12, C/EBP homologous protein-10, X-box-binding protein 1, tumor necrosis factor-associated factor 2 and eukaryotic translation initiation factor 2. This attenuation of ER stress was associated with a reduction in hepatic injury and cell death. Our results show that IGL-1 solution may be a useful means to circumvent excessive ER stress reactions associated with liver transplantation, and may optimize graft quality.
Collapse
Affiliation(s)
- I B Mosbah
- Experimental Hepatic Ischemia-Reperfusion Unit, IIBB-CSIC Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Russo L, Gracia-Sancho J, García-Calderó H, Marrone G, García-Pagán JC, García-Cardeña G, Bosch J. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology 2012; 55:921-30. [PMID: 22031447 DOI: 10.1002/hep.24755] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/29/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED Pathophysiological alterations in the endothelial phenotype result in endothelial dysfunction. Flow cessation, occurring during organ procurement for transplantation, triggers the endothelial dysfunction characteristic of ischemia/reperfusion injury, partly due to a reduction in the expression of the vasoprotective transcription factor Kruppel-like Factor 2 (KLF2). We aimed at (1) characterizing the effects of flow cessation and cold storage on hepatic endothelial phenotype, and (2) ascertaining if the consequences of cold stasis on the hepatic endothelium can be pharmacologically modulated, improving liver graft function. Expression of KLF2 and its vasoprotective programs was determined in (i) hepatic endothelial cells (HEC) incubated under cold storage conditions with or without the KLF2-inducer simvastatin, and (ii) rat livers not cold stored or preserved in cold University of Wisconsin solution (UWS) supplemented with simvastatin or its vehicle. In addition, upon warm reperfusion hepatic vascular resistance, endothelial function, nitric oxide vasodilator pathway, apoptosis, inflammation, and liver injury were evaluated in not cold stored livers or livers preserved in cold UWS supplemented with simvastatin or vehicle. Expression of KLF2 and its vasoprotective programs decrease in HEC incubated under cold storage conditions. Cold-stored rat livers exhibit a time-dependent decrease in KLF2 and its target genes, liver injury, increased hepatic vascular resistance, and endothelial dysfunction. The addition of simvastatin to the storage solution, maintained KLF2-dependent vasoprotective programs, prevented liver damage, inflammation, and oxidative stress and improved endothelial dysfunction. CONCLUSION Our results provide a rationale to evaluate the beneficial effects of a vasoprotective preservation solution on human liver procurement for transplantation.
Collapse
Affiliation(s)
- Lucia Russo
- Hepatic Hemodynamic Lab, Liver Unit, IMDIM, Hospital Clínic de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Erythropoietin as Additive of HTK Preservation Solution in Cold Ischemia/Reperfusion Injury of Steatotic Livers. J Surg Res 2012; 173:171-9. [DOI: 10.1016/j.jss.2010.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 09/07/2010] [Indexed: 12/12/2022]
|
34
|
Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K, Miled AH, Saidane-Mosbahi D, Rosello-Catafau J, Ben Abdennebi H. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1α in ischemic kidney: the role of nitric oxide. J Biomed Sci 2012; 19:7. [PMID: 22252226 PMCID: PMC3398272 DOI: 10.1186/1423-0127-19-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/17/2012] [Indexed: 11/23/2022] Open
Abstract
Background Although recent studies indicate that renal ischemic preconditioning (IPC) protects the kidney from ischemia-reperfusion (I/R) injury, the precise protective mechanism remains unclear. In the current study, we investigated whether early IPC could upregulate hypoxia inducible transcription factor-1α (HIF-1α) expression and could reduce endoplasmic reticulum (ER) stress after renal I/R and whether pharmacological inhibition of nitric oxide (NO) production would abolish these protective effects. Methods Kidneys of Wistar rats were subjected to 60 min of warm ischemia followed by 120 min of reperfusion (I/R group), or to 2 preceding cycles of 5 min ischemia and 5 min reperfusion (IPC group), or to intravenously injection of NG-nitro-L-arginine methylester (L-NAME, 5 mg/kg) 5 min before IPC (L-NAME+IPC group). The results of these experimental groups were compared to those of a sham-operated group. Sodium reabsorption rate, creatinine clearance, plasma lactate dehydrogenase (LDH) activity, tissues concentrations of malonedialdehyde (MDA), HIF-1α and nitrite/nitrate were determined. In addition, Western blot analyses were performed to identify the amounts of Akt, endothelial nitric oxide synthase (eNOS) and ER stress parameters. Results IPC decreased cytolysis, lipid peroxidation and improved renal function. Parallely, IPC enhanced Akt phosphorylation, eNOS, nitrite/nitrate and HIF-1α levels as compared to I/R group. Moreover, our results showed that IPC increased the relative amounts of glucose-regulated protein 78 (GRP78) and decreased those of RNA activated protein kinase (PKR)-like ER kinase (PERK), activating transcription factor 4 (ATF4) and TNF-receptor-associated factor 2 (TRAF2) as judged to I/R group. However, pre treatment with L-NAME abolished these beneficial effects of IPC against renal I/R insults. Conclusion These findings suggest that early IPC protects kidney against renal I/R injury via reducing oxidative and ER stresses. These effects are associated with phosphorylation of Akt, eNOS activation and NO production contributing thus to HIF-1α stabilization. The beneficial impact of IPC was abolished when NO production is inhibited before IPC application.
Collapse
|
35
|
Abdennebi HB, Zaoualí MA, Alfany-Fernandez I, Tabka D, Roselló-Catafau J. How to protect liver graft with nitric oxide. World J Gastroenterol 2011; 17:2879-89. [PMID: 21734799 PMCID: PMC3129502 DOI: 10.3748/wjg.v17.i24.2879] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 02/06/2023] Open
Abstract
Organ preservation and ischemia reperfusion injury associated with liver transplantation play an important role in the induction of graft injury. One of the earliest events associated with the reperfusion injury is endothelial cell dysfunction. It is generally accepted that endothelial nitric oxide synthase (e-NOS) is cell-protective by mediating vasodilatation, whereas inducible nitric oxide synthase mediates liver graft injury after transplantation. We conducted a critical review of the literature evaluating the potential applications of regulating and promoting e-NOS activity in liver preservation and transplantation, showing the most current evidence to support the concept that enhanced bioavailability of NO derived from e-NOS is detrimental to ameliorate graft liver preservation, as well as preventing subsequent graft reperfusion injury. This review deals mainly with the beneficial effects of promoting “endogenous” pathways for NO generation, via e-NOS inducer drugs in cold preservation solution, surgical strategies such as ischemic preconditioning, and alternative “exogenous” pathways that focus on the enrichment of cold storage liquid with NO donors. Finally, we also provide a basic bench-to-bed side summary of the liver physiology and cell signalling mechanisms that account for explaining the e-NOS protective effects in liver preservation and transplantation.
Collapse
|
36
|
Zaouali MA, Ben Mosbah I, Padrissa-Altés S, Calvo M, Ben Abdennebi H, Saidane-Mosbahi D, Bjaoui M, Garcia-Gil FA, Panisello A, Roselló-Catafau J. Relevance of epidermal growth factor to improve steatotic liver preservation in IGL-1 solution. Transplant Proc 2011; 42:3070-5. [PMID: 20970612 DOI: 10.1016/j.transproceed.2010.07.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIM Static preservation solution is critical for liver graft outcomes, especially when steatosis is present. Institut Georges Lopez (IGL)-1 solution protects fatty livers effectively against cold ischemia reperfusion injury. Its benefits are mediated by nitric oxide and prevention of oxidative stress. The supplementation of IGL-1 with epidermal growth factor (EGF) enhances steatotic graft preservation by increasing adenosine triphosphate content, thereby mitigating oxidative stress and mitochondrial damage. METHODS After steatotic livers were preserved for 24 hours in IGL-1 solution with or without EGF supplements, they were perfused ex vivo for 2 hours at 37°C. The benefits of EGF were assessed by evidences of hepatic damage and function--transaminases, bile production, and flow rate--as well as by other factors presumably associated with the poor tolerance of fatty livers toward cold ischemia-reperfusion injury (IRI)--energy metabolism, mitochondrial damage, oxidative stress, eNOS activity and proinflammatory interleukin (IL) beta content. RESULTS Steatotic livers preserved in IGL-1 solutions supplemented with EGF (10 μg/L) showed lower transaminase levels, greater bile production, and ameliorated flow rates when compared to IGL-1 alone. In addition, energy metabolism deterioration, mitochondrial damage, oxidative stress, and cytokine IL-1 beta release were prevented. CONCLUSION EGF addition to IGL-1 increased fatty liver graft preservation, thereby reducing steatotic liver damage against cold IRI.
Collapse
Affiliation(s)
- M A Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zaoualí MA, Reiter RJ, Padrissa-Altés S, Boncompagni E, García JJ, Ben Abnennebi H, Freitas I, García-Gil FA, Rosello-Catafau J. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. J Pineal Res 2011; 50:213-21. [PMID: 21108657 DOI: 10.1111/j.1600-079x.2010.00831.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic organ-donor shortage has required the acceptance of steatotic livers for transplantation purposes despite the higher risk of graft dysfunction or nonfunction associated with the cold ischemia-reperfusion injury. This study evaluated the use of melatonin as an additive to Institute Georges Lopez (IGL-1) solution for protecting nonsteatotic and steatotic liver grafts against cold ischemia-reperfusion injury. In the current investigation, we used an ex vivo isolated perfused rat liver model. Steatotic and nonsteatotic livers were preserved for 24 hr (4°C) in University of Wisconsin or IGL-1 solutions with or without melatonin, as well as in University of Wisconsin solution alone. Thereafter, livers were subjected to 2-hr reperfusion (37°C). We assessed hepatic injury (transaminases) and function [bile production and sulfobromophthalein (BSP) clearance, vascular resistance], as well as other factors potentially implicated in the high vulnerability of steatotic livers against ischemia-reperfusion injury (oxidative stress and related inflammatory mediators including nitric oxide and cytokines). We also evaluated well-known cytoprotective factors as hemeoxygenase 1 (HO-1). Fatty livers preserved in IGL-1 solution enriched with melatonin showed lower transaminase levels and higher bile production and BSP clearance when compared to those obtained for livers maintained in IGL-1 solution alone. A significant diminution of vascular resistance was also observed when melatonin was added to the IGL-1 solution. The melatonin benefits correlated with the generation of nitric oxide (through constitutive e-NOS activation) and the prevention of oxidative stress and inflammatory cytokine release including tumor necrosis factor and adiponectin, respectively. The addition of melatonin to IGL-1 solution improved nonsteatotic and steatotic liver graft preservation, limiting their risk against cold ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Mohamed Amine Zaoualí
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
AMP-Activated Protein Kinase as a Target for Preconditioning in Transplantation Medicine. Transplantation 2010; 90:1241; author reply 1242. [PMID: 21119505 DOI: 10.1097/tp.0b013e3181f9963e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Authors' Reply: AMP-Activated Protein Kinase as a Target for Preconditioning in Transplantation Medicine. Transplantation 2010. [DOI: 10.1097/tp.0b013e3181f99656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Zaouali MA, Padrissa-Altés S, Ben Mosbah I, Ben Abdennebi H, Boillot O, Rimola A, Saidane-Mosbahi D, Roselló-Catafau J. Insulin like growth factor-1 increases fatty liver preservation in IGL-1 solution. World J Gastroenterol 2010; 16:5693-700. [PMID: 21128318 PMCID: PMC2997984 DOI: 10.3748/wjg.v16.i45.5693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the benefits of insulin like growth factor-1 (IGF-1) supplementation to serum-free institut georges lopez-1 (IGL-1)® solution to protect fatty liver against cold ischemia reperfusion injury.
METHODS: Steatotic livers were preserved for 24 h in IGL-1® solution supplemented with or without IGF-1 and then perfused “ex vivo” for 2 h at 37°C. We examined the effects of IGF-1 on hepatic damage and function (transaminases, percentage of sulfobromophthalein clearance in bile and vascular resistance). We also studied other factors associated with the poor tolerance of fatty livers to cold ischemia reperfusion injury such as mitochondrial damage, oxidative stress, nitric oxide, tumor necrosis factor-α (TNF-α) and mitogen-activated protein kinases.
RESULTS: Steatotic livers preserved in IGL-1® solution supplemented with IGF-1 showed lower transaminase levels, increased bile clearance and a reduction in vascular resistance when compared to those preserved in IGL-1® solution alone. These benefits are mediated by activation of AKT and constitutive endothelial nitric oxide synthase (eNOS), as well as the inhibition of inflammatory cytokines such as TNF-α. Mitochondrial damage and oxidative stress were also prevented.
CONCLUSION: IGL-1® enrichment with IGF-1 increased fatty liver graft preservation through AKT and eNOS activation, and prevented TNF-α release during normothermic reperfusion.
Collapse
|
41
|
Zaouali MA, Padrissa-Altés S, Ben Mosbah I, Alfany-Fernandez I, Massip-Salcedo M, Casillas-Ramirez A, Bintanel-Morcillo M, Boillot O, Serafin A, Rimola A, Rodés J, Roselló-Catafau J, Peralta C. Improved rat steatotic and nonsteatotic liver preservation by the addition of epidermal growth factor and insulin-like growth factor-I to University of Wisconsin solution. Liver Transpl 2010; 16:1098-111. [PMID: 20818748 DOI: 10.1002/lt.22126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study examined the effects of epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) supplementation to University of Wisconsin solution (UW) in steatotic and nonsteatotic livers during cold storage. Hepatic injury and function were evaluated in livers preserved for 24 hours at 4 degrees C in UW and in UW with EGF and IGF-I (separately or in combination) and then perfused ex vivo for 2 hours at 37 degrees C. AKT was inhibited pharmacologically. In addition, hepatic injury and survival were evaluated in recipients who underwent transplantation with steatotic and nonsteatotic livers preserved for 6 hours in UW and UW with EGF and IGF-I (separately or in combination). The results, based on isolated perfused liver, indicated that the addition of EGF and IGF-I (separately or in combination) to UW reduced hepatic injury and improved function in both liver types. A combination of EGF and IGF-I resulted in hepatic injury and function parameters in both liver types similar to those obtained by EGF and IGF-I separately. EGF increased IGF-I, and both additives up-regulated AKT in both liver types. This was associated with glycogen synthase kinase-3beta (GSK3(beta)) inhibition in nonsteatotic livers and PPAR gamma overexpression in steatotic livers. When AKT was inhibited, the effects of EGF and IGF-I on GSK3(beta), PPAR gamma, hepatic injury and function disappeared. The benefits of EGF and IGF-I as additives in UW solution were also clearly seen in the liver transplantation model, because the presence of EGF and IGF-I (separately or in combination) in UW solution reduced hepatic injury and improved survival in recipients who underwent transplantation with steatotic and nonsteatotic liver grafts. In conclusion, EGF and IGF-I may constitute new additives to UW solution in steatotic and nonsteatotic liver preservation, whereas a combination of both seems unnecessary.
Collapse
Affiliation(s)
- M Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zaouali MA, Mosbah IB, Boncompagni E, Abdennebi HB, Mitjavila MT, Bartrons R, Freitas I, Rimola A, Roselló-Catafau J. Hypoxia inducible factor-1α accumulation in steatotic liver preservation: Role of nitric oxide. World J Gastroenterol 2010; 16:3499-509. [PMID: 20653058 PMCID: PMC2909549 DOI: 10.3748/wjg.v16.i28.3499] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the relevance of hypoxia inducible factor (HIF-1) and nitric oxide (NO) on the preservation of fatty liver against cold ischemia-reperfusion injury (IRI).
METHODS: We used an isolated perfused rat liver model and we evaluated HIF-1α in steatotic and non-steatotic livers preserved for 24 h at 4°C in University of Wisconsin and IGL-1 solutions, and then subjected to 2 h of normothermic reperfusion. After normoxic reperfusion, liver enzymes, bile production, bromosulfophthalein clearance, as well as HIF-1α and NO [endothelial NO synthase (eNOS) activity and nitrites/nitrates] were also measured. Other factors associated with the higher susceptibility of steatotic livers to IRI, such as mitochondrial damage and vascular resistance were evaluated.
RESULTS: A significant increase in HIF-1α was found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage. Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters. These benefits were enhanced by the addition of trimetazidine (an anti-ischemic drug), which induces NO and eNOS activation, to IGL-1 solution. In normoxic reperfusion, the presence of NO favors HIF-1α accumulation, promoting also the activation of other cytoprotective genes, such as heme-oxygenase-1.
CONCLUSION: We found evidence for the role of the HIF-1α/NO system in fatty liver preservation, especially when IGL-1 solution is used.
Collapse
|
43
|
Ben Mosbah I, Alfany-Fernández I, Martel C, Zaouali MA, Bintanel-Morcillo M, Rimola A, Rodés J, Brenner C, Roselló-Catafau J, Peralta C. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis 2010; 1:e52. [PMID: 21364657 PMCID: PMC3032561 DOI: 10.1038/cddis.2010.29] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During partial hepatectomy, ischemia–reperfusion (I/R) is commonly applied in clinical practice to reduce blood flow. Steatotic livers show impaired regenerative response and reduced tolerance to hepatic injury. We examined the effects of tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA) in steatotic and non-steatotic livers during partial hepatectomy under I/R (PH+I/R). Their effects on the induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were also evaluated. We report that PBA, and especially TUDCA, reduced inflammation, apoptosis and necrosis, and improved liver regeneration in both liver types. Both compounds, especially TUDCA, protected both liver types against ER damage, as they reduced the activation of two of the three pathways of UPR (namely inositol-requiring enzyme and PKR-like ER kinase) and their target molecules caspase 12, c-Jun N-terminal kinase and C/EBP homologous protein-10. Only TUDCA, possibly mediated by extracellular signal-regulated kinase upregulation, inactivated glycogen synthase kinase-3β. This is turn, inactivated mitochondrial voltage-dependent anion channel, reduced cytochrome c release from the mitochondria and caspase 9 activation and protected both liver types against mitochondrial damage. These findings indicate that chemical chaperones, especially TUDCA, could protect steatotic and non-steatotic livers against injury and regeneration failure after PH+I/R.
Collapse
Affiliation(s)
- I Ben Mosbah
- Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW This review gives a broad overview of the key factors of ischemic injury to the liver and presents the current modifications of preservation solutions and the few strategies of biological modulation in clinical use today. RECENT FINDINGS Protective effects in human-liver transplantation were shown by methylprednisolone treatment in decreased donors, and by inhalation of a nontoxic dose of nitric oxide in recipients. In addition, recent results showed rescue of pig livers, donated after cardiac death by application of a cocktail of substances addressing several previously identified mechanisms of ischemia-reperfusion injury. SUMMARY The future of a pharmacological approach attenuating or preventing ischemia-reperfusion injury lies in a combination of drugs acting simultaneously on several steps of the injury cascades. Applying these substances during flush, before, and during implantation appears as an attractive strategy to protect extended criteria liver grafts.
Collapse
|
45
|
Zaouali MA, Ben Abdennebi H, Padrissa-Altés S, Mahfoudh-Boussaid A, Roselló-Catafau J. Pharmacological strategies against cold ischemia reperfusion injury. Expert Opin Pharmacother 2010; 11:537-55. [PMID: 20163266 DOI: 10.1517/14656560903547836] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD Good organ preservation is a determinant of graft outcome after revascularization. The necessity of increasing the quality of organ preservation, as well as of extending cold storage time, has made it necessary to consider the use of pharmacological additives. AREAS COVERED IN THIS REVIEW The complex physiopathology of cold-ischemia-reperfusion (I/R) injury--and in particular cell death, mitochondrial injury and endoplasmic reticulum stress--are reviewed. Basic principles of the formulation of the different preservation solutions are discussed. WHAT THE READER WILL GAIN Current strategies and new trends in static organ preservation using additives such as trimetazidine, polyethylene glycols, melatonin, trophic factors and endothelin antagonists in solution are presented and discussed. The benefits and mechanisms responsible for enhancing organ protection against I/R injury are also discussed. Graft preservation was substantially improved when additives were added to the preservation solutions. TAKE HOME MESSAGE Enrichment of preservation solutions by additives is clinically useful only for short periods. For longer periods of cold ischemia, the use of such additives becomes insufficient because graft function deteriorates as a result of ischemia. In such conditions, the preservation strategy should be changed by the use of machine perfusion in normothermic conditions.
Collapse
Affiliation(s)
- Mohamed Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, C/Rosselló 161, 7th floor, E-08036-Barcelona, Spain.
| | | | | | | | | |
Collapse
|
46
|
Ben Mosbah I, Roselló-Catafau J, Alfany-Fernandez I, Rimola A, Parellada PP, Mitjavila MT, Lojek A, Ben Abdennebi H, Boillot O, Rodés J, Peralta C. Addition of carvedilol to University Wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transpl 2010; 16:163-71. [PMID: 20104484 DOI: 10.1002/lt.21968] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we examine the effect of adding carvedilol (CVD) to University of Wisconsin (UW) solution on the preservation of steatotic and nonsteatotic livers during cold ischemia and after normothermic reperfusion. We used an isolated perfused rat liver model. The following protocols were evaluated. Protocol 1 concerned the effect of CVD after cold ischemia. Steatotic and nonsteatotic livers were preserved for 24 hours in UW solution alone or with CVD. Livers without cold ischemia were used as controls. Transaminases were evaluated in the flushing effluent. Protocol 2 involved the effect of CVD after reperfusion. Both liver types were preserved for 24 hours in UW solution alone or with CVD and then perfused ex vivo for 2 hours at 37 degrees C. Livers flushed and perfused without ischemia were used as controls. Hepatic injury and functionality [transaminases, bile production, and hepatic clearance of sulfobromophthalein (BSP)] were evaluated after reperfusion. In addition, factors potentially involved in hepatic ischemia-reperfusion injury, including oxidative stress (malondialdehyde and superoxide anion levels), mitochondrial damage (glutamate dehydrogenase activity), microcirculatory disorders (flow rate and vascular resistance), and adenosine triphosphate (ATP) depletion, were evaluated after reperfusion. After cold ischemia, steatotic livers preserved in UW solution showed higher transaminase levels than nonsteatotic livers. After reperfusion, steatotic livers preserved in UW solution showed higher transaminase levels and lower bile production and BSP clearance than nonsteatotic livers. Alterations in the perfusion flow rate and vascular resistance, mitochondrial damage, and reduced ATP content were more evident in steatotic livers preserved in UW solution. The addition of CVD to UW solution reduced hepatic injury, obstructed its mechanisms, and improved hepatic functionality in both liver types. We conclude that CVD is a useful additive for UW solution that improves the preservation of steatotic and nonsteatotic livers subjected to prolonged cold ischemia.
Collapse
Affiliation(s)
- Ismail Ben Mosbah
- Department of Experimental Pathology Department, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kuriyama N, Isaji S, Hamada T, Kishiwada M, Ohsawa I, Usui M, Sakurai H, Tabata M, Hayashi T, Suzuki K. The cytoprotective effects of addition of activated protein C into preservation solution on small-for-size grafts in rats. Liver Transpl 2010; 16:1-11. [PMID: 20035525 DOI: 10.1002/lt.21923] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small-for-size liver grafts are a serious obstacle for partial orthotopic liver transplantation. Activated protein C (APC), a potent anticoagulant serine protease, is known to have cell-protective properties due to its anti-inflammatory and antiapoptotic activities. This study was designed to examine the cytoprotective effects of a preservation solution containing APC on small-for-size liver grafts, with special attention paid to ischemia-reperfusion injury and shear stress in rats. APC exerted cytoprotective effects, as evidenced by (1) increased 7-day graft survival; (2) decreased initial portal pressure and improved hepatic microcirculation; (3) decreased levels of aminotransferase and improved histological features of hepatic ischemia-reperfusion injury; (4) suppressed infiltration of neutrophils and monocytes/macrophages; (5) reduced hepatic expression of tumor necrosis factor alpha and interleukin 6; (6) decreased serum levels of hyaluronic acid, which indicated attenuation of sinusoidal endothelial cell injury; (7) increased hepatic levels of nitric oxide via up-regulated hepatic endothelial nitric oxide synthesis expression together with down-regulated hepatic inducible nitric oxide synthase expression; (8) decreased hepatic levels of endothelin 1; and (9) reduced hepatocellular apoptosis by down-regulated caspase-8 and caspase-3 activities. These results suggest that a preservation solution containing APC is a potential novel and safe product for small-for-size liver transplantation, alleviating graft injury via anti-inflammatory and antiapoptotic effects and vasorelaxing conditions.
Collapse
Affiliation(s)
- Naohisa Kuriyama
- Department of Hepatobiliary Pancreatic Surgery, Mie University Graduate School of Medicine, Mie, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de Rougemont O, Lehmann K, Clavien PA. Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver. Liver Transpl 2009; 15:1172-82. [PMID: 19790166 DOI: 10.1002/lt.21876] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ischemia and reperfusion lead to injury of the liver. Ischemia-reperfusion injury is inevitable in liver transplantation and trauma and, to a great extent, in liver resection. This article gives an overview of the mechanisms involved in this type of injury and summarizes protective and treatment strategies in clinical use today. Intervention is possible at different time points: during harvesting, during the period of preservation, and during implantation. Liver preconditioning and postconditioning can be applied in the transplant setting and for liver resection. Graft optimization is merely possible in the period between the harvest and the implantation. Given that there are 3 stages in which a surgeon can intervene against ischemia-reperfusion injury, we have structured the review as follows. The first section reviews the approaches using surgical interventions, such as ischemic preconditioning, as well as pharmacological applications. In the second section, static organ preservation and machine perfusion are addressed. Finally, the possibility of treating the recipient or postconditioning is discussed.
Collapse
Affiliation(s)
- Olivier de Rougemont
- Swiss Hepato-Pancreatico-Biliary Center, Department of Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
49
|
Durand F, Renz JF, Alkofer B, Burra P, Clavien PA, Porte RJ, Freeman RB, Belghiti J. Report of the Paris consensus meeting on expanded criteria donors in liver transplantation. Liver Transpl 2008; 14:1694-707. [PMID: 19025925 DOI: 10.1002/lt.21668] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Because of organ shortage and a constant imbalance between available organs and candidates for liver transplantation, expanded criteria donors are needed. Experience shows that there are wide variations in the definitions, selection criteria, and use of expanded criteria donors according to different geographic areas and different centers. Overall, selection criteria for donors have tended to be relaxed in recent years. Consensus recommendations are needed. This article reports the conclusions of a consensus meeting held in Paris in March 2007 with the contribution of experts from Europe, the United States, and Asia. Definitions of expanded criteria donors with respect to donor variables (including age, liver function tests, steatosis, infections, malignancies, and heart-beating versus non-heart-beating, among others) are proposed. It is emphasized that donor quality represents a continuum of risk rather than "good or bad." A distinction is made between donor factors that generate increased risk of graft failure and factors independent of graft function, such as transmissible infectious disease or donor-derived malignancy, that may preclude a good outcome. Updated data concerning the risks associated with different donor variables in different recipient populations are given. Recommendations on how to safely expand donor selection criteria are proposed.
Collapse
Affiliation(s)
- François Durand
- Hepatology and Liver Intensive Care, Hospital Beaujon, University Paris 7, Clichy, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To provide an update on recent developments in liver preservation through a comprehensive review of the literature. RECENT FINDINGS Comparisons of the available preservation solutions for liver transplantation based on recent trials suggest clinical equivalence. The debate continues regarding risk of biliary-tract complications. Development of new preservation solutions and agents that target specific mechanisms of steatotic and donors after cardiac death pathophysiology is showing promise in a variety of preclinical and clinical studies. Early clinical results of ischemic preconditioning are conflicting and so there is the need for additional clinical studies. The most important developments have been in the machine perfusion of the liver. New portable perfusion systems have shown promise in preclinical studies and may allow rapid evolution of clinical liver machine perfusion. The first human clinical trial is well underway with results showing safety and improved efficacy of preservation of transplanted human liver allografts. SUMMARY Liver preservation is in a period of rapid advance. In the future, a multifaceted liver-preservation strategy that integrates pharmacologic agents and hypothermic machine perfusion is likely to minimize organ injury and maximize patient outcomes. An ongoing challenge is to increase the number of innovations entering prospective and randomized clinical trials.
Collapse
|