1
|
Zaniewska M, Filip M, Przegalinski E. The Involvement of Norepinephrine in Behaviors Related to Psychostimulant Addiction. Curr Neuropharmacol 2016; 13:407-18. [PMID: 26411968 PMCID: PMC4812804 DOI: 10.2174/1570159x13666150121225659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is generally accepted that the abuse-related effects of
amphetamines and cocaine result from the activation of the brain dopaminergic
(DA) system, the psychostimulants also alter other neurotransmitter systems. In
particular, they increase extracellular levels of norepinephrine (NE) and
serotonin by inhibiting respective plasma membrane transporters and/or inducing
release. The present review will discuss the preclinical findings on the effects
of the NE system modulation (lesions, pharmacological and genetic approaches) on
behaviors (locomotor hyperactivity, behavioral sensitization, modification of
intracranial self-stimulation, conditioned place preference, drug
self-administration, extinction/reinstatement of drug seeking behavior) related
to the psychostimulant addiction.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | | | | |
Collapse
|
2
|
Synthesis and Pharmacological Evaluation of Novel 1-(1,4-Alkylaryldisubstituted-4,5-dihydro-1H-imidazo)-3-substituted Urea Derivatives. MOLECULES (BASEL, SWITZERLAND) 2016; 21:molecules21050582. [PMID: 27144554 PMCID: PMC6274338 DOI: 10.3390/molecules21050582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/03/2022]
Abstract
Novel 1-(1,4-alkylaryldisubstituted-4,5-dihydro-1H-imidazo)-3-substituted urea derivatives have been synthesized and evaluated for their central nervous system activity. Compounds 3a–m were prepared in the reaction between the respective 1-alkyl-4-aryl-4,5-dihydro-1H-imidazol-2-amines 1a–c and appropriate isocyanates 2 in dichloromethane. The compounds were subjected to in silico ADMET studies in order to select best candidates for in vivo experiments. The effects of the compounds on the spontaneous locomotor activity and amphetamine-evoked hyperactivity were estimated. Analgesic activity, without or in the presence of naloxone, was assessed in the writhing test. The tendency to change the HTR, evoked by l-5-HTP and the involvement in alteration in body temperature in mice was studied. Additionally, to check possible occurrence of drug-induced changes in the muscle relaxant activity of mice, which may have contributed to their behaviour in other tests, the rota-rod and chimney tests were performed. The new urea derivatives exerted significant activities in the performed pharmacological tests, although the presented results show a preliminary estimation, and thus, need to be extended for identification and understanding the complete pharmacological profile of the examined compounds.
Collapse
|
3
|
Lee I, Eriksson P, Fredriksson A, Buratovic S, Viberg H. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicol Appl Pharmacol 2015; 288:429-38. [DOI: 10.1016/j.taap.2015.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
4
|
Noradrenergic-Dopaminergic Interactions Due to DSP-4-MPTP Neurotoxin Treatments: Iron Connection. Curr Top Behav Neurosci 2015; 29:73-86. [PMID: 26718588 DOI: 10.1007/7854_2015_411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The investigations of noradrenergic lesions and dopaminergic lesions have established particular profiles of functional deficits and accompanying alterations of biomarkers in brain regions and circuits. In the present account, the focus of these lesions is directed toward the effects upon dopaminergic neurotransmission and expression that are associated with the movement disorders and psychosis-like behavior. In this context, it was established that noradrenergic denervation, through administration of the selective noradrenaline (NA) neurotoxin, DSP-4, should be performed prior to the depletion of dopamine (DA) with the selective neurotoxin, MPTP. Employing this regime, it was shown that (i) following DSP-4 (50 mg/kg) pretreatment of C57/Bl6 mice, both the functional and neurochemical (DA loss) effects of MPTP (2 × 20 and 2 × 40 mg/kg) were markedly exacerbated, and (ii) following postnatal iron (Fe(2+), 7.5 mg/kg, on postnatal days 19-12), pretreatment with DSP-4 followed by the lower 2 × 20 mg/kg MPTP dose induced even greater losses of motor behavior and striatal DA. As yet, the combination of NA-DA depletions, and even more so Fe(2+)-NA-DA depletion, has been considered to present a movement disorder aspect although studies exploring cognitive domains are lacking. With intrusion of iron overload into this formula, the likelihood of neuropsychiatric disorder, as well, unfolds.
Collapse
|
5
|
Archer T, Garcia D, Fredriksson A. Restoration of MPTP-induced deficits by exercise and Milmed(®) co-treatment. PeerJ 2014; 2:e531. [PMID: 25210657 PMCID: PMC4157294 DOI: 10.7717/peerj.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/31/2014] [Indexed: 11/23/2022] Open
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces permanent neurochemical and functional deficits. Following the administration of either two or four injections of the dopamine neurotoxin, MPTP, at a dose of 40 mg/kg, C57/BL6 mice were given access to running-wheels (30-min sessions, four times/week, Monday-Thursday) and treatment with the treated yeast, Milmed(®) (four times/week, Monday-Thursday), or simply running-wheel exercise by itself, over ten weeks. It was observed that the combination of physical exercise and Milmed(®) treatment, the MPTP + Exercise + Yeast (MC) group [MPTP + Exercise + Milmed(®) (MC)], restored spontaneous motor activity markedly by test day 10, restored completely subthreshold L-Dopa-induced activity, and dopamine concentration to 76% of control values, in the condition wherein two administrations of MPTP (2 × 40 mg/kg) were given prior to initiation of exercise and/or Milmed(®) treatment. Physical exercise by itself, MPTP + Exercise (MC) group, attenuated these deficits only partially. Administration of MPTP four times (i.e., 40 mg/kg, s.c., once weekly over four weeks for a total of 160 mg/kg, MPTP + Exercise + Yeast (MC) group [MPTP + Exercise + Milmed(®) (SC)] and MPTP + Exercise (SC), induced a lesioning effect that was far too severe for either exercise alone or the exercise + Milmed(®) combination to ameliorate. Nevertheless, these findings indicate a powerful effect of physical exercise reinforced by Milmed(®) treatment in restoring MPTP-induced deficits of motor function and dopamine neurochemistry in mice.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
- Network for Empowerment and Well-Being, Sweden
| | - Danilo Garcia
- Network for Empowerment and Well-Being, Sweden
- Institute of Neuroscience and Physiology, Centre for Ethics, Law and Mental Health (CELAM), University of Gothenburg, Gothenburg, Sweden
| | - Anders Fredriksson
- Department of Neuroscience Psychiatry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
The yeast product Milmed enhances the effect of physical exercise on motor performance and dopamine neurochemistry recovery in MPTP-lesioned mice. Neurotox Res 2013; 24:393-406. [PMID: 23893731 DOI: 10.1007/s12640-013-9405-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Both clinical and laboratory studies have demonstrated that different types of physical exercise may alleviate Parkinsonism yet evidence for complete restoration of motor function and biomarker integrity are difficult to identify. MPTP (1 × 30 mg/kg, s.c., 4 groups) or saline (vehicle 1 × 5 ml/kg, s.c., 1 group) were administered in a single dose regime over three consecutive weeks on Fridays. Three MPTP groups were given four 30-min periods/week (Mondays to Thursdays), of these two groups, MPTP + Exer + M(i) and MPTP + Exer + M(ii); the former were introduced to exercise and Milmed (oral injection) on the week following the 1st MPTP injection and the latter on the Monday prior to the 1st injection of MPTP onwards. One MPTP group, MPTP + Exer, was given access to exercise (running wheels) from the week following the 1st MPTP injection onwards. The fourth MPTP group, MPTP-NoEx, and the Vehicle group were only given access to exercise on a single day each week (Wednesdays, exercise test) from the week following the 1st MPTP injection onwards. The exercise/exercise + Milmed regime was maintained for a further 9 weeks. It was observed that exercise by itself ameliorated MPTP-induced deficits regarding motor function and dopamine loss only partially whereas in the groups combining exercise with twice weekly dosages of Milmed the MPTP-induced deficits were abolished by the 10th week of the intervention. The three main conclusions that were drawn from correlational analyses of individual mice were: (i) that DA integrity was observed to be a direct function of ability to express running exercise in a treadmill wheel-running arrangement, and (ii) that DA integrity was observed to be a direct function of the capacity for motor performance as measured by spontaneous motor activity and subthreshold L-Dopa (5 mg/kg) induced activity in the motor activity test chambers, and (iii) that the extent to which running exercise in a running wheel was predictive of later motor performance in the activity test chambers was highly convincing.
Collapse
|
7
|
Lin Y, Sarfraz Y, Jensen A, Dunn AJ, Stone EA. Participation of brainstem monoaminergic nuclei in behavioral depression. Pharmacol Biochem Behav 2011; 100:330-9. [PMID: 21893082 DOI: 10.1016/j.pbb.2011.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 01/15/2023]
Abstract
Several lines of research have now suggested the controversial hypothesis that the central noradrenergic system acts to exacerbate depression as opposed to having an antidepressant function. If correct, lesions of this system should increase resistance to depression, which has been partially but weakly supported by previous studies. The present study reexamined this question using two more recent methods to lesion noradrenergic neurons in mice: intraventricular (ivt) administration of either the noradrenergic neurotoxin, DSP4, or of a dopamine-β-hydroxylase-saporin immunotoxin (DBH-SAP ITX) prepared for mice. Both agents given 2 weeks prior were found to significantly increase resistance to depressive behavior in several tests including acute and repeated forced swims, tail suspension and endotoxin-induced anhedonia. Both agents also increased locomotor activity in the open field. Cell counts of brainstem monoaminergic neurons, however, showed that both methods produced only partial lesions of the locus coeruleus and also affected the dorsal raphe or ventral tegmental area. Both the cell damage and the antidepressant and hyperactive effects of ivt DSP4 were prevented by a prior i.p. injection of the NE uptake blocker, reboxetine. The results are seen to be consistent with recent pharmacological experiments showing that noradrenergic and serotonergic systems function to inhibit active behavior. Comparison with previous studies utilizing more complete and selective LC lesions suggest that mouse strain, lesion size or involvement of multiple neuronal systems are critical variables in the behavioral and affective effects of monoaminergic lesions and that antidepressant effects and hyperactivity may be more likely to occur if lesions are partial and/or involve multiple monoaminergic systems.
Collapse
Affiliation(s)
- Yan Lin
- Department of Psychiatry, New York University Langone School of Medicine, 550 First Ave, New York, NY 10016, United States
| | | | | | | | | |
Collapse
|
8
|
Delayed Exercise-Induced Functional and Neurochemical Partial Restoration Following MPTP. Neurotox Res 2011; 21:210-21. [DOI: 10.1007/s12640-011-9261-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/12/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
9
|
Meitzen J, Luoma JI, Stern CM, Mermelstein PG. β1-Adrenergic receptors activate two distinct signaling pathways in striatal neurons. J Neurochem 2011; 116:984-95. [PMID: 21143600 DOI: 10.1111/j.1471-4159.2010.07137.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine (NE) and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP response element binding protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. NE-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which NE and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how NE and β1-adrenergic receptors may affect striatal physiology.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
10
|
Kõiv K, Zobel R, Raudkivi K, Kivastik T, Harro J. The effect of denervation of the locus coeruleus projections with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on cocaine-induced locomotion and place preference in rats. Behav Brain Res 2011; 216:172-9. [DOI: 10.1016/j.bbr.2010.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/17/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
|
11
|
Running wheel activity restores MPTP-induced functional deficits. J Neural Transm (Vienna) 2010; 118:407-20. [DOI: 10.1007/s00702-010-0474-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/23/2010] [Indexed: 01/07/2023]
|
12
|
Locomotor response to L-DOPA in reserpine-treated rats following central inhibition of aromatic L-amino acid decarboxylase: further evidence for non-dopaminergic actions of L-DOPA and its metabolites. Neurosci Res 2010; 68:44-50. [PMID: 20542064 DOI: 10.1016/j.neures.2010.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 11/22/2022]
Abstract
L-DOPA is the most widely used treatment for Parkinson's disease. The anti-parkinsonian and pro-dyskinetic actions of L-DOPA are widely attributed to its conversion, by the enzyme aromatic L-amino acid decarboxylase (AADC), to dopamine. We investigated the hypothesis that exogenous L-DOPA can induce behavioural effects without being converted to dopamine in the reserpine-treated rat-model of Parkinson's disease. A parkinsonian state was induced with reserpine (3 mg/kg s.c.). Eighteen hours later, the rats were administered L-DOPA plus the peripherally acting AADC inhibitor benserazide (25 mg/kg), with or without the centrally acting AADC inhibitor NSD1015 (100 mg/kg). L-DOPA/benserazide alone reversed reserpine-induced akinesia (4158+/-1125 activity counts/6 h, cf vehicle 1327+/-227). Addition of NSD1015 elicited hyperactive behaviour that was approximately 7-fold higher than L-DOPA/benserazide (35755+/-5226, P<0.001). The hyperactivity induced by L-DOPA and NSD1015 was reduced by the alpha(2C) antagonist rauwolscine (1 mg/kg) and the 5-HT(2C) agonist MK212 (5 mg/kg), but not by the D2 dopamine receptor antagonist remoxipride (3 mg/kg) or the D1 dopamine receptor antagonist SCH23390 (1 mg/kg). These data suggest that L-DOPA, or metabolites produced via routes not involving AADC, might be responsible for the generation of at least some L-DOPA actions in reserpine-treated rats.
Collapse
|
13
|
Physical exercise attenuates MPTP-induced deficits in mice. Neurotox Res 2010; 18:313-27. [PMID: 20300909 DOI: 10.1007/s12640-010-9168-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/27/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
Two experiments were performed to investigate the effects of physical exercise upon the hypokinesia induced by two different types of MPTP administration to C57/BL6 mice. In the first, mice were administered either the standard MPTP dose (2 × 20 or 2 × 40 mg/kg, 24-h interval) or vehicle (saline, 5 ml/kg); and over the following 3 weeks were given daily 30-min period of wheel running exercise over five consecutive days/week or placed in a cage in close proximity to the running wheels. Spontaneous motor activity testing in motor activity test chambers indicated that exercise attenuated the hypokinesic effects of both doses of MPTP upon spontaneous activity or subthreshold L: -Dopa-induced activity. In the second experiment, mice were either given wheel running activity on four consecutive days (30-min period) or placed in a cage nearby and on the fifth day, following motor activity testing over 60 min, injected with either MPTP (1 × 40 mg/kg) or vehicle. An identical procedure was maintained over the following 4 weeks with the exception that neither MPTP nor vehicle was injected after the fifth week. The animals were left alone (without either exercise or MPTP) and tested after 2- and 4-week intervals. Weekly exercise blocked, almost completely, the progressive development of severe hypokinesia in the MPTP mice and partially restored normal levels of activity after administration of subthreshold L: -Dopa, despite the total absence of exercise following the fifth week. In both experiments, MPTP-induced loss of dopamine was attenuated by the respective regime of physical exercise with dopamine integrity more effectively preserved in the first experiment. The present findings are discussed in the context of physical exercise influences upon general plasticity and neuroreparative propensities as well as those specific for the nigrostriatal pathway.
Collapse
|
14
|
Abstract
No pharmacotherapies are approved for stimulant use disorders, which are an important public health problem. Stimulants increase synaptic levels of the monoamines dopamine (DA), serotonin and norepinephrine (NE). Stimulant reward is attributable mostly to increased DA in the reward circuitry, although DA stimulation alone cannot explain the rewarding effects of stimulants. The noradrenergic system, which uses NE as the main chemical messenger, serves multiple brain functions including arousal, attention, mood, learning, memory and stress response. In pre-clinical models of addiction, NE is critically involved in mediating stimulant effects including sensitization, drug discrimination and reinstatement of drug seeking. In clinical studies, adrenergic blockers have shown promise as treatments for cocaine abuse and dependence, especially in patients experiencing severe withdrawal symptoms. Disulfiram, which blocks NE synthesis, increased the number of cocaine-negative urines in five randomized clinical trials. Lofexidine, an alpha(2)-adrenergic agonist, reduces the craving induced by stress and drug cues in drug users. In addition, the NE transporter (NET) inhibitor atomoxetine attenuates some of d-amphetamine's subjective and physiological effects in humans. These findings warrant further studies evaluating noradrenergic medications as treatments for stimulant addiction.
Collapse
Affiliation(s)
- Mehmet Sofuoglu
- Department of Psychiatry, School of Medicine, Yale University, USA and VA Connecticut Healthcare System, USA.
| | | |
Collapse
|
15
|
Pharmacological models of ADHD. J Neural Transm (Vienna) 2007; 115:287-98. [PMID: 17994186 DOI: 10.1007/s00702-007-0826-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 09/17/2007] [Indexed: 01/27/2023]
Abstract
For more than 50 years, heavy metal exposure during pre- or post-natal ontogeny has been known to produce long-lived hyperactivity in rodents. Global brain injury produced by neonatal hypoxia also produced hyperactivity, as did (mainly) hippocampal injury produced by ontogenetic exposure to X-rays, and (mainly) cerebellar injury produced by the ontogenetic treatments with the antimitotic agent methylazoxymethanol or with polychlorinated biphenyls (PCBs). More recently, ontogenetic exposure to nicotine has been implicated in childhood hyperactivity. Because attention deficits most often accompany the hyperactivity, all of the above treatments have been used as models of attention deficit hyperactivity disorder (ADHD). However, the causation of childhood hyperactivity remains unknown. Neonatal 6-OHDA-induced dopaminergic denervation of rodent forebrain also produces hyperactivity - and this model, or variations of it, remain the most widely-used animal model of ADHD. In all models, amphetamine (AMPH) and methylphenidate (MPH), standard treatments of childhood ADHD, typically attenuate the hyperactivity and/or attention deficit. On the basis of genetic models and the noted animal models, monoaminergic phenotypes appear to most-closely attend the behavioral dysfunctions, notably dopaminergic, noradrenergic and serotoninergic systems in forebrain (basal ganglia, nucleus accumbens, prefrontal cortex). This paper describes the various pharmacological models of ADHD and attempts to ascribe a neuronal phenotype with specific brain regions that may be associated with ADHD.
Collapse
|
16
|
Archer T, Fredriksson A. Functional consequences of iron overload in catecholaminergic interactions: the Youdim factor. Neurochem Res 2007; 32:1625-39. [PMID: 17694434 DOI: 10.1007/s11064-007-9358-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 04/13/2007] [Indexed: 01/06/2023]
Abstract
The influence of postnatal iron overload upon implications of the functional and interactive role of dopaminergic and noradrenergic pathways that contribute to the expressions of movement disorder and psychotic behaviours in mice was studied in a series of experiments. (1) Postnatal iron overload at doses of 7.5 mg/kg (administered on Days 10-12 post partum) and above, invariably induced a behavioural syndrome consisting of an initial (1st 20-40 min of a 60-min test session) hypoactivity followed by a later (final 20 min of a 60-min test session) hyperactivity, when the mice were tested at adult ages (age 60 days or more). (2) Following postnatal iron overload, subchronic treatment with the neuroleptic compounds, clozapine and haloperidol, dose-dependently reversed the initial hypoactivity and later hyperactivity induced by the metal. Furthermore, DA D(2) receptor supersensitivity (as assessed using the apomorphine-induced behaviour test) was directly and positively correlated with iron concentrations in the basal ganglia. (3) Brain noradrenaline (NA) denervation, using the selective NA neurotoxin, DSP4, prior to administration of the selective DA neurotoxin, MPTP, exacerbated both the functional (hypokinesia) and neurochemical (DA depletion) effects of the latter neurotoxin. Treatment with L-Dopa restored motor activity only in the animals that had not undergone NA denervation. These findings suggest an essential neonatal iron overload, termed "the Youdim factor", directing a DA-NA interactive component in co-morbid disorders of nigrostriatal-limbic brain regions.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Neuroscience & Psychiatry, Ulleråker, University of Uppsala, Uppsala, 750 17, Sweden.
| | | |
Collapse
|
17
|
Archer T, Fredriksson A. Behavioural supersensitivity following neonatal 6-hydroxydopamine: Attenuation by MK-801. Neurotox Res 2007; 12:113-24. [DOI: 10.1007/bf03033920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Fredriksson A, Archer T. Subchronic administration of haloperidol influences the functional deficits of postnatal iron administration in mice. Neurotox Res 2007; 10:123-9. [PMID: 17062374 DOI: 10.1007/bf03033241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C57/BL6 mice were administered either 7.5 mg Fe(2+) (II)/ kg or vehicle (saline) postnatally on Days 10-12 after birth. From 64 days of age onwards for 24 days, groups of mice were administered either haloperidol (0.25 or 1 or 2 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Postnatal Fe(2+)-treatment (7.5 mg/kg, postnatally) reduced motor activity parameters during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity, confirming previous observations. Subchronic administration of haloperidol, at the 1 and 2 mg/kg doses, and to a lesser extent the 0.25 mg/kg dose, increased the levels of activity in all three motor activity parameters in postnatal iron-treated mice: locomotion (1st and 2nd 20 min periods), rearing (1st and 2nd 20 min periods) and total activity (1st 20 min period). All three doses of haloperidol abolished the later hyperactivity in iron-treated mice, with the exception of the 0.25 mg/kg dose with regard to rearing behaviour. Apomorphine (1 mg/kg, s.c.)-induced activity was elevated by postnatal iron administration and by subchronic administration of apomorphine at the higher dose levels. In the context of these and other observations, it is suggested that subchronic administration of haloperidol interacting with postnatal iron induces different expressions of dopamine neuron comorbidity underlying movement disorder.
Collapse
Affiliation(s)
- A Fredriksson
- University of Uppsala, Department of Neuroscience and Psychiatry, Ulleraker, SE-750 17 Uppsala, Sweden
| | | |
Collapse
|
19
|
Fan X, Hess EJ. D2-like dopamine receptors mediate the response to amphetamine in a mouse model of ADHD. Neurobiol Dis 2006; 26:201-11. [PMID: 17291774 PMCID: PMC1876677 DOI: 10.1016/j.nbd.2006.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/05/2006] [Accepted: 12/20/2006] [Indexed: 11/16/2022] Open
Abstract
The mechanisms underlying the effects of psychostimulants in attention deficit hyperactivity disorder (ADHD) are not well understood, but indirect evidence implicates D2 dopamine receptors. Here we dissect the components of dopaminergic neurotransmission in the hyperactive mouse mutant coloboma to identify pre- and postsynaptic elements essential for the effects of amphetamine in these mice. Amphetamine treatment reduced locomotor activity in coloboma mice, but induced a robust increase in dopamine overflow suggesting that abnormal regulation of dopamine efflux does not account for the behavioral effect. However, the D2-like dopamine receptor antagonists haloperidol and raclopride, but not the D1-like dopamine receptor antagonist SCH23390, blocked the amphetamine-induced reduction in locomotor activity in coloboma mice, providing direct evidence that D2-like dopamine receptors mediate the effect of amphetamine in these mice. With the precedent established that it is possible to directly antagonize this response, this strategy should prove useful for identifying novel therapeutics in ADHD.
Collapse
Affiliation(s)
- Xueliang Fan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Ellen J. Hess
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
20
|
Alttoa A, Eller M, Herm L, Rinken A, Harro J. Amphetamine-induced locomotion, behavioral sensitization to amphetamine, and striatal D2 receptor function in rats with high or low spontaneous exploratory activity: differences in the role of locus coeruleus. Brain Res 2006; 1131:138-48. [PMID: 17156751 DOI: 10.1016/j.brainres.2006.10.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/19/2006] [Accepted: 10/31/2006] [Indexed: 11/19/2022]
Abstract
Individual differences in novelty-related behavior are associated with sensitivity to various neurochemical manipulations. In the present study the amphetamine-induced locomotor activity and behavioral sensitization to amphetamine (0.5 mg/kg) was investigated in rats with high or low spontaneous exploratory activity (HE- and LE-rats, respectively) after partial denervation of the locus coeruleus (LC) projections with a low dose of the selective neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine; 10 mg/kg). DSP-4 produced a partial depletion (about 30%) of noradrenaline in the frontal cortex of both HE- and LE-rats; additionally the levels of metabolites of dopamine and 5-HT were reduced in the frontal cortex and nucleus accumbens of the LE-rats. Amphetamine-stimulated locomotor activity was attenuated by the DSP-4 pretreatment only in the HE-rats and this effect persisted over repeated testing. Behavioral sensitization to repeated amphetamine was evident only in the LE-rats with intact LC projections. Repeated amphetamine treatment reduced D(2) receptor mediated stimulation of [(35)S]GTPgammaS-binding and dopamine-dependent change in GDP-binding affinity in the striatum, but only in HE-rats. The absence of amphetamine sensitization in HE-rats could thus be related to the downregulation by amphetamine of the G protein stimulation through D(2) receptors. Conclusively, acute and sensitized effects of amphetamine depend on the integrity of LC projections but are differently regulated in animals with high or low trait of exploratory activity. These findings have implications to the neurobiology of depression, drug addiction, and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Aet Alttoa
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, 50410 Tartu, Estonia
| | | | | | | | | |
Collapse
|
21
|
McKittrick CR, Abercrombie ED. Catecholamine mapping within nucleus accumbens: differences in basal and amphetamine-stimulated efflux of norepinephrine and dopamine in shell and core. J Neurochem 2006; 100:1247-56. [PMID: 17241132 DOI: 10.1111/j.1471-4159.2006.04300.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleus accumbens is believed to play a critical role in mediating the behavioral responses to rewarding stimuli. Although most studies of the accumbens focus on dopamine, it receives afferents from many other nuclei, including noradrenergic cell groups in the brainstem. We used in vivo microdialysis to measure extracellular levels of both norepinephrine and dopamine in the accumbens shell and core. Regional analysis of shell and core and border regions demonstrated that norepinephrine was high in shell and decreased from medial shell to lateral core, where baseline levels were low or undetectable. Conversely, extracellular dopamine in core was twice the level seen in shell. Both catecholamines increased following a single injection of amphetamine (2 mg/kg, i.p.). The norepinephrine response was greater and long-lasting in shell compared with core. The maximal dopamine response was higher in core than in shell, but the duration of the effect was comparable in both regions. The distinct neurochemical characteristics of shell and core are likely to contribute to the functional heterogeneity of the two subregions. Furthermore, norepinephrine may be involved in many of the functions generally attributed to the accumbens, either directly or indirectly via modulation of extracellular dopamine.
Collapse
Affiliation(s)
- Christina R McKittrick
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA.
| | | |
Collapse
|
22
|
Fredriksson A, Archer T. Postnatal iron overload destroys NA-DA functional interactions. J Neural Transm (Vienna) 2006; 114:195-203. [PMID: 16932993 DOI: 10.1007/s00702-006-0522-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 05/05/2006] [Indexed: 10/24/2022]
Abstract
C57/BL6 mice were administered either postnatal iron (Fe(2+) 7.5 mg/kg, on postnatal days 10-12) or vehicle, followed by administration of either DSP4 (50 mg/kg, s.c., 30 min after injection of zimeldine, 20 mg/kg, s.c.) or vehicle (saline) at 63 days of age. Three weeks later, iron/vehicle treated, DSP4/vehicle treated mice were injected with either a low dose of MPTP (2 x 20 mg/kg, with a 24-hr interval between injections) or vehicle. Behaviour testing took place a further three weeks (spontaneous behaviour and L-Dopa induced) and two weeks (clonidine-L-Dopa induced) later. Postnatal iron administration exacerbated the bradykinesia induced by MPTP and virtually abolished all spontaneous motor activity in NA-denervated mice that were MPTP-treated. Postnatal iron administration reduced markedly the restoration of motor activity by suprathreshold L-Dopa (20 mg/kg) following a 60-min habituation to the test chambers. Pretreatment with DSP4 effectively eliminated the restorative effect of L-Dopa in the MPTP mice. The synergistic effects of co-administration of clinidine (1 mg/kg) with a subthreshold dose of L-Dopa (5 mg/kg) in elevating the motor activity of MPTP mice were reduced markedly by postnatal iron administration, as well as by pretreatment with DSP4. NA-denervation by DSP4, after postnatal iron treatment, totally abolished the activity-elevating effects of the alpha-adrenoceptor agonist + DA-precursor combination in MPTP mice, and virtually eliminated these effects in saline (non-MPTP) mice. Postnatal iron administration caused enduring higher levels of total iron content in all the groups with an increased level in mice treated with DSP4 followed by MPTP. These divergent findings confirm the direct influence of NA innervation upon dopaminergic functional expression and indicate a permanent vulnerability both in the noradrenergic and dopaminergic pathways following the postnatal infliction of an iron overload.
Collapse
Affiliation(s)
- A Fredriksson
- Department of Neuroscience, Psychiatry Ulleråker, University of Uppsala, Uppsala, Sweden
| | | |
Collapse
|
23
|
Fredriksson A, Archer T. Subchronic administration of haloperidol influences the functional deficits of postnatal iron administration in mice. Neurotox Res 2006; 9:305-12. [PMID: 16782590 DOI: 10.1007/bf03033321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
C57/BL6 mice were administered either 7.5 mg Fe (II)/ kg or vehicle (saline) postnatally on Days 10-12 after birth. From 64 days of age onwards for 24 days, groups of mice were administered either haloperidol (0.25 or 1 or 2 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Postnatal Fe (II)-treatment (7.5 mg/kg, postnatally) reduced motor activity parameters during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity, confirming previous observations. Subchronic administration of haloperidol, at the 1 and 2 mg/kg doses, and to a lesser extent the 0.25 mg/kg dose, increased the levels of activity in all three motor activity parameters in postnatal iron-treated mice: locomotion (1st and 2nd 20 min periods), rearing (1st and 2nd 20 min periods) and total activity (1st 20 min period). All three doses of haloperidol abolished the later hyperactivity in iron-treated mice, with the exception of the 0.25 mg/kg dose with regard to rearing behaviour. Apomorphine (1 mg/kg, s.c.) -induced activity was elevated by postnatal iron administration and by subchronic administration of apomorphine at the higher dose levels. In the context of these and other observations, it is suggested that subchronic administration of haloperidol interacting with postnatal iron induces different expressions of dopamine neuron comorbidity underlying movement disorder.
Collapse
Affiliation(s)
- Anders Fredriksson
- University of Uppsala, Department of Neuroscience AND Psychiatry, Ulleraker, SE-750 17 Uppsala, Sweden
| | | |
Collapse
|
24
|
Isaac G, Fredriksson A, Danielsson R, Eriksson P, Bergquist J. Brain lipid composition in postnatal iron-induced motor behavior alterations following chronic neuroleptic administration in mice. FEBS J 2006; 273:2232-43. [PMID: 16649999 DOI: 10.1111/j.1742-4658.2006.05236.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have shown that deficient uptake or excessive break down of membrane phospholipids may be associated with neurodegenerative and psychiatric disorders. The purpose of the present study was to examine the effects of postnatal iron administration in lipid composition and behavior and whether or not the established effects may be altered by subchronic administration of the neuroleptic compounds, clozapine and haloperidol. In addition to motor activities such as locomotion, rearing and activity, a targeted lipidomics approach has been used to investigated the brains of eight groups of mice (four vehicle groups and four iron groups) containing six individuals in each group treated with vehicle, low dose clozapine, high dose clozapine and haloperidol. Lipids were extracted by the Folch method and analyzed using reversed-phase capillary liquid chromatography coupled on-line to electrospray ionization mass spectrometry (LC/ESI/MS). Identification of phosphatidylcholine (PC) and sphingomyelin (SM) molecular species was based on their retention time, m/z ratio, head group specific up-front fragmentation and analysis of the product ions produced upon fragmentation. A comparison between the Ve-groups and Fe-groups showed that levels of PC and SM molecular species and motor activities were significantly lower in Fe-Ve compared to Ve-Ve. The effects of neuroleptic treatment with and without iron supplementation were studied. In conclusion our results support the hypothesis that an association between psychiatric disorders and lipid and behavior abnormalities in the brain exists.
Collapse
Affiliation(s)
- Giorgis Isaac
- Department of Analytical Chemistry, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
25
|
Archer T, Fredriksson A. Influence of noradrenaline denervation on MPTP-induced deficits in mice. J Neural Transm (Vienna) 2005; 113:1119-29. [PMID: 16362627 DOI: 10.1007/s00702-005-0402-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 10/09/2005] [Indexed: 10/25/2022]
Abstract
C57/BL6 mice were administered either DSP4 (50 mg/kg, s.c., 30 min after injection of zimeldine, 20 mg/kg, s.c.) or vehicle (saline) at 63 days of age. Three weeks later, one group (n = 10) of DSP4-treated and one group of vehicle-treated mice were administered MPTP (2 x 40 mg/kg, s.c., 24 hours between injections; the High dose groups), one group (n = 10) of DSP4-treated and one group of vehicle-treated mice were administered MPTP (2 x 20 mg/kg, s.c., 24 hours between injections; the Low dose groups), and one group (n = 10) of DSP4-treated and one group of vehicle-treated mice were administered vehicle. Three weeks later, all six groups were tested in motor activity test chambers, followed by injections of L-Dopa (20 mg/kg, s.c.), and then tested over a further 360 min in the activity test chambers. It was found that pretreatment with the selective NA neurotoxin, DSP4, deteriorated markedly the dose-dependent motor activity deficits observed in the vehicle pretreated MPTP treated mice. These 'ultra-deficits' in the spontaneous motor behaviour of MPTP-treated mice were observed over all three parameters: locomotion, rearing and total activity, and were restricted to the 1(st) and 2(nd) 20-min periods. Administration of L-Dopa (20 mg/kg) following the 60-min testing of spontaneous behaviour restored the motor activity of Vehicle + MPTP treated mice (neither the Vehicle + MPTP-Low nor the Vehicle + MPTP-High groups differed from the Vehicle-Vehicle group, here) but failed to do so in the DSP4 pretreated mice. Here, a dose-dependent deficit of L-Dopa-induced motor activity (over all three parameters) was obtained thereby offering further evidence of an 'ultra-deficit' of function due to previous denervation of the NA terminals. The present findings support the notion that severe damage to the locus coeruleus noradrenergic system, through systemic DSP4, disrupts the facilitatory influence on the nigrostriatal DA system, and interferes with the ability of the nigrostriatal pathway to compensate for or recover from marked injury, MPTP treatment.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Göteborg, Göteborg, Sweden.
| | | |
Collapse
|
26
|
Fredriksson A, Eriksson P, Archer T. Postnatal iron-induced motor behaviour alterations following chronic neuroleptic administration in mice. J Neural Transm (Vienna) 2005; 113:137-50. [PMID: 16082515 DOI: 10.1007/s00702-005-0307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2004] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
C57/BL6 mice were administered either 7.5 mg Fe(2+)/kg or vehicle (saline) postnatally on days 10-12 after birth. From 61 days of age onwards for 21 days, groups of mice were administered either clozapine (1 or 5 mg/kg, s.c.) or haloperidol (1 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Following this, each animal was removed, injected apomorphine (1 mg/kg, s.c.) and replaced in the same test chamber. It was found that postnatal administration of Fe(2+) at the 7.5 mg/kg dose level reduced activity during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hypoactivity in by postnatal Fe(2+) during the 1(st) two 20-min periods over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hyperactivity in by postnatal Fe(2+) during the 3(rd) and final 20-min period. Subchronic administration of haloperidol, without postnatal iron, increased the level of both locomotion (1(st) 20 min) and rearing (2(nd) 20 min) activity. Postnatal administration of Fe(2+) at the 7.5 mg/kg dose increased the levels of both locomotion and rearing, but not total activity, following administration of apomorphine (1 mg/kg). Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, reduced the increased locomotor activity caused by postnatal Fe(2+), whereas clozapine, 5 mg/kg, elevated further the postnatal Fe(2+)-induced increased in rearing. Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, and haloperidol, 1 mg/kg, increased the level of locomotor following administration of apomorphine (1 mg/kg) in mice treated postnatally with vehicle, whereas only clozapine increased the level of rearing. Correlational analyses indicated that both apomorphine-induced locomotion and rearing were highly correlated with the total iron content in the basal ganglia, thereby offering direct evidence of the linear relationship between iron content in the basal ganglia and the behavioural expression of DA D(2)-receptor supersensitivity in mice.
Collapse
Affiliation(s)
- A Fredriksson
- Department of Neuroscience and Psychiatry, University of Uppsala, Uppsala, Sweden
| | | | | |
Collapse
|
27
|
Juhila J, Honkanen A, Sallinen J, Haapalinna A, Korpi ER, Scheinin M. α2A-Adrenoceptors regulate d-amphetamine-induced hyperactivity and behavioural sensitization in mice. Eur J Pharmacol 2005; 517:74-83. [PMID: 15978573 DOI: 10.1016/j.ejphar.2005.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 05/10/2005] [Indexed: 11/30/2022]
Abstract
Stimulants, such as d-amphetamine, enhance the release of dopamine in the central nervous system (CNS) and induce locomotor activation in mice. When amphetamine is administered repeatedly, the locomotor activation is progressively increased. This behavioural sensitization may be associated with the development of drug craving, addiction and dependence. Also noradrenergic mechanisms participate in the mediation of the effects of psychostimulants. In this study we show that mice lacking the alpha(2)-adrenoceptor subtype A (alpha(2A)-AR knock-out (KO) on C57Bl/6J background) are supersensitive to the acute locomotor effects of d-amphetamine (5 mg/kg) in a novel environment compared to wild-type (WT) control mice. When both genotypes were treated repeatedly with d-amphetamine (2 mg/kg) they developed locomotor hyperactivation (sensitization), but its amplitude was lower in alpha(2A)-AR KO mice. Development of hyperactivation was reduced in both genotypes by pretreatment with the selective alpha(2)-adrenoceptor antagonist, atipamezole (1 mg/kg). Acute atipamezole also attenuated the expression of d-amphetamine-induced behavioural sensitization especially in WT mice. Interestingly, alpha(2A)-AR KO mice failed to exhibit persistent sensitization after 2 weeks of abstinence from repeated d-amphetamine. Rewarding properties of d-amphetamine, measured by conditioned place preference, were similar in both genotypes. These findings indicate that d-amphetamine-induced acute and sensitized locomotor effects are controlled by alpha(2)-adrenoceptors. Drugs antagonizing the alpha(2A)-adrenoceptor subtype may provide a novel approach for reducing drug sensitization and motor complications caused by dopaminergic agents.
Collapse
Affiliation(s)
- Juuso Juhila
- Department of Pharmacology and Clinical Pharmacology, University of Turku, FI-20520 Turku, Finland.
| | | | | | | | | | | |
Collapse
|
28
|
Kuteeva E, Hökfelt T, Ogren SO. Behavioural characterisation of young adult transgenic mice overexpressing galanin under the PDGF-B promoter. ACTA ACUST UNITED AC 2005; 125:67-78. [PMID: 15582716 DOI: 10.1016/j.regpep.2004.07.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 07/15/2004] [Accepted: 07/26/2004] [Indexed: 01/14/2023]
Abstract
The behavioural phenotype of transgenic mice (3- to 5-months old) overexpressing galanin (GalOE) under the platelet-derived growth factor B (PDGF-B) promoter was evaluated in a battery of tests, including open field, locomotor cages, light-dark exploration test, elevated plus-maze and the Porsolt forced swim test. Learning and memory were assessed in the passive avoidance and the Morris water maze tasks. No difference between genotypes was found in exploratory activity in the open field. GalOE mice showed a slight increase in spontaneous locomotor activity assessed in the locomotor cages, but the amphetamine-induced increase in locomotor activity was somewhat lower in GalOE mice. Anxiety-like behaviour in the three different tests including open field, light-dark exploration and elevated plus-maze did not differ between genotypes. In the Porsolt forced swim test, GalOE mice displayed an increased time of immobility, indicative of increased learned helplessness possibly reflecting increased stress-susceptibility and/or depression-like behaviour. GalOE mice showed normal learning and memory retention in the passive avoidance and the Morris water maze tasks. These data support the hypothesis that galanin may have a role in functions related to mood states including affective disorders.
Collapse
Affiliation(s)
- Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm S-171 77, Sweden
| | | | | |
Collapse
|
29
|
Alttoa A, Kõiv K, Eller M, Uustare A, Rinken A, Harro J. Effects of low dose N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine administration on exploratory and amphetamine-induced behavior and dopamine D2 receptor function in rats with high or low exploratory activity. Neuroscience 2005; 132:979-90. [PMID: 15857703 DOI: 10.1016/j.neuroscience.2005.01.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/16/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Individual differences in behavioral traits are associated with sensitivity to various neurochemical and psychopharmacological manipulations. In this study exploratory and amphetamine-induced behavior in rats with persistently high or low exploratory activity (HE and LE, respectively) was examined before and after a partial denervation of the locus coeruleus (LC) projections with the selective neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine; 10 mg/kg). Partial LC denervation prevented the increase in exploratory activity over repeated test sessions in the LE animals, but had no effect in HE-rats. Amphetamine- (0.5 mg/kg) induced locomotor activity was attenuated by DSP-4 pretreatment only in HE-rats. These results suggest differential involvement of LC noradrenergic transmission in novelty- and amphetamine-induced behavior in animals with persistent differences in novelty-related behavior. In addition to partial noradrenaline depletion in the frontal cortex and hippocampus, which occurred in both HE- and LE-rats, DSP-4 treatment also decreased the content of dopamine and its metabolites in the nucleus accumbens, and the metabolite levels in striatum, but only in the LE-animals. 5-HIAA levels were also reduced in the nucleus accumbens and striatum in LE-rats by the neurotoxin. D(2) receptor function, as determined by dopamine-stimulated [(35)S]GTPgammaS binding, was increased by DSP-4 treatment in the striatum of LE-rats, but reduced in HE-rats. No effect of partial LC denervation was found on dopamine-stimulated [(35)S]GTPgammaS binding in the nucleus accumbens. Together these findings suggest that LC noradrenergic neurotransmission is differently involved in dopaminergic mechanisms which mediate novelty-related vs amphetamine-induced behavior.
Collapse
Affiliation(s)
- A Alttoa
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
30
|
Fredriksson A, Archer T, Alm H, Gordh T, Eriksson P. Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res 2004; 153:367-76. [PMID: 15265631 DOI: 10.1016/j.bbr.2003.12.026] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 12/15/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
The early postnatal brain development, when many potentially sensitive processes occur, has been shown to be vulnerable to different pharmacological and environmental compounds. In the present investigation, four groups of neonatal NMRI male mice were administered the glutamate NMDA receptor antagonist ketamine (50 mg/kg, s.c.), or the GABA(A) receptor agonist diazepam (5 mg/kg, s.c.), or co-administered ketamine (50 mg/kg, s.c.) and diazepam (5 mg/kg, s.c.), or vehicle (0.9% saline, s.c.) on day 10 after birth. On day 11, mice from each treatment group were sacrificed and brains were taken for analysis of neuronal cell degeneration, using Fluoro-Jade staining technique. Ketamine, but not diazepam, induced a severe degeneration of cells in the parietal cortex. The opposite was observed for diazepam in the laterodorsal thalamus. The most pronounced cell degeneration was seen in parietal cortex of mice exposed to both ketamine and diazepam. At 2 months of age each treatment group was tested for motor activity and learning performance. Ketamine and ketamine + diazepam treated mice displayed severe deficits of habituation to the test chamber in the spontaneous motor activity test, marked deficits of acquisition learning and retention memory in the radial arm maze-learning task and less shift learning in the circular swim maze-learning task. This study indicates that the observed functional deficits can be related to cell degeneration induced during a critical stage of neonatal brain development. The potentiated apoptosis induced by ketamine and diazepam may have implications for the selection of drugs used in neonatal paediatric anaesthesia.
Collapse
Affiliation(s)
- Anders Fredriksson
- Department of Neuroscience, Psychiatry Ulleråker, Uppsala University, SE-750 17 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
31
|
Edsbagge J, Zhu S, Xiao MY, Wigström H, Mohammed AH, Semb H. Expression of dominant negative cadherin in the adult mouse brain modifies rearing behavior. Mol Cell Neurosci 2004; 25:524-35. [PMID: 15033180 DOI: 10.1016/j.mcn.2003.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Revised: 11/19/2003] [Accepted: 12/08/2003] [Indexed: 11/19/2022] Open
Abstract
The cadherin superfamily of cell-cell adhesion molecules (CAM) are crucial regulators of morphogenesis and axonal guidance during development of the nervous system and have been suggested to play important roles in neural plasticity of the brain. To study the latter, we created a mouse model that expressed a dominant negative classical cadherin in the brain of adult mice. The mice were tested for spontaneous motor activity and exploratory behavior in the open field, anxiety in the plus-maze, and spatial learning and memory in the water-T maze. Mice expressing the dominant negative cadherin displayed reduced rearing behavior, but no change in motor activity, in the open field, indicating deficits in exploratory behavior. In the water maze, animals expressing the mutant cadherin showed normal escape latencies and were indistinguishable from control littermates. Similarly, LTP in hippocampal slices of cadherin mutant and control mice were indistinguishable. These findings demonstrate intact spatial learning in mice expressing a dominant negative cadherin but altered rearing behavior, suggesting the involvement of classical cadherins in mechanisms mediating rearing behavior.
Collapse
Affiliation(s)
- Josefina Edsbagge
- Department of Medical Biochemistry, Göteborg University, S-405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Carlsson C, Fredriksson A, Brandt I. 2,6-dichlorophenyl methylsulphone induced behavioural impairments in rats and mice in relation to olfactory mucosal metaplasia. ACTA ACUST UNITED AC 2004; 93:156-68. [PMID: 14629739 DOI: 10.1034/j.1600-0773.2003.930402.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
2,6-Dichlorophenyl methylsulphone (2,6-diClPh-MeSO2) induces persistent olfactory mucosal metaplasia and a strong glial fibrillary acidic protein increase in the olfactory bulb of mice. Furthermore, 2,6-diClPh-MeSO2 gives rise to a long-lasting hyperactivity along with an impaired radial arm maze performance. To study cause-effect relationships, olfactory mucosal histopathology, glial fibrillary acidic protein induction and neurobehavioural deficits were re-examined in mice and rats of both sexes given a single intraperitoneal dose of 2,6-diClPh-MeSO2 (16 and 65 mg/kg). There was a clear difference in the character of the olfactory mucosal lesions in the two species. In mice, an extensive metaplasia characterised by severe fibrosis, cartilage and bone formation accompanied with large polyps filling the nasal lumen was confirmed. In rats, a dose-dependent weak metaplasia with patchy loss of olfactory epithelium was observed three weeks after dosing, preferentially at the dorsal meatus, nasal septum, and the tips of the middle ethmoturbinates. Large areas of intact olfactory epithelium remained in all animals, particularly in the low dose rats. In both species, 2,6-diClPh-MeSO2 gave rise to significantly increased motor-activities, impaired performance in the radial arm maze, and glial fibrillary acidic protein-induction. Only rats showed hyperactivity at the low dose. Performance in the Morris water maze was unaffected in rats of both sexes indicating that a general impairment in spatial learning could not be supported. We propose that the observed hyperactivity and radial arm maze acquisition deficits originated from a direct effect of 2,6-diClPh-MeSO2 in the brain rather than being a consequence of the olfactory mucosal lesion.
Collapse
Affiliation(s)
- Carina Carlsson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36, Sweden.
| | | | | |
Collapse
|
33
|
Brus R, Nowak P, Szkilnik R, Mikolajun U, Kostrzewa RM. Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. Neurotox Res 2004; 6:317-25. [PMID: 15545015 DOI: 10.1007/bf03033442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hyperactivity is thought to be associated with an alteration of dopamine (DA) neurochemistry in brain. This conventional view became solidified on the basis of observed hyperactivity in DA-lesioned animals and effectiveness of the dopaminomimetics such amphetamine (AMP) in abating hyperactivity in humans and in animal models of hyperactivity. However, because AMP releases serotonin (5-HT) as well as DA, we investigated the potential role of 5-HT in an animal model of hyperactivity. We found that a greater intensity of hyperactivity was produced in rats when both DA and 5-HT neurons were damaged at appropriate times in ontogeny. Therefore, previously we proposed this as an animal model of attention deficit hyperactivity disorder (ADHD) - induced by destruction of dopaminergic neurons with 6-hydroxydopamine (6-OHDA) (neonatally) and serotoninergic neurons with 5,7-dihydroxytryptamine (5,7-DHT) (in adulthood). In this model effects similar to that of AMP (attenuation of hyperlocomotion) were produced by m-chlorophenylpiperazine (m-CPP) but not by 1-phenylbiguanide (1-PG), respective 5-HT2 and 5-HT3 agonists. The effect of m-CPP was shown to be replicated by desipramine, and was largely attenuated by the 5-HT2 antagonist mianserin. These findings implicate 5-HT neurochemistry as potentially important therapeutic targets for treating human hyperactivity and possibly childhood ADHD.
Collapse
Affiliation(s)
- Ryszard Brus
- Department of Pharmacology, Medical University of Silesia, 41-808 Zabrze, Poland
| | | | | | | | | |
Collapse
|
34
|
Fredriksson A, Archer T. Neurobehavioural deficits associated with apoptotic neurodegeneration and vulnerability for ADHD. Neurotox Res 2004; 6:435-56. [PMID: 15639778 DOI: 10.1007/bf03033280] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several studies involving postnatal administration of the N-methyl-D-aspartate (NMDA) antagonists, dizocilpine (MK-801; 3 x 0.5 mg/kg, at 08.00, 16.00 and 24.00 h) on Postnatal day 11, or Ketamine (1 x 50 mg/kg) or Ethanol (1 x 2.5 g/kg, Ethanol-Low, or 2 x 2.5 g/kg, 2-h interval, Ethanol-High) on Postnatal day 10, are described. Some mice from each treatment/vehicle group were sacrificed 24 h after NMDA antagonist treatment and brain regions were taken for fluoro-jade staining analysis. Functional analysis was initiated at 60 days of age. All three treatments inducing an antagonistic action at NMDA receptors, MK-801, Ketamine and Ethanol-High induced a similar pattern of initial hypoactivity followed by marked and lasting hyperactivity in the motor activity test chambers. In each case, the basal hyperactivity level was abolished by acute treatment with a low dose of D-amphetamine (0.25 mg/kg). All three treatments, MK-801, Ketamine and Ethanol-High, induced a deficit in acquisitive performance in the radial arm maze test of instrumental learning. The deficit induced by postnatal MK-801 was abolished by acute treatment with the low dose of D-amphetamine. All three treatments, MK-801, Ketamine and Ethanol-High, resulted in normal acquisitive performance during the first three test days in the circular swim with the submerged platform maintained in a constant position, but on the fourth test day, with the platform position shifted to a different "quadrant", induced marked deficits. Fluoro-jade staining analyses indicated a devastating cell degeneration in several brain regions of mice administered NMDA antagonists postnatally, including the hippocampus, frontal cortex, parietal cortex, and cerebellum. Severe cell degeneration in the laterodorsal thalamus due to Ethanol or diazepam (5 mg/kg) appeared not to affect the different aspects of function. The pattern of dysfunctional outcome and apoptotic cell loss following postnatal NMDA antagonist treatment offers a plausible similarity to the major aspects of 'syndromatic continuity' in ADHD, hyperactivity, inattention and impulsivity, thereby providing an interesting animal model of the disorder.
Collapse
Affiliation(s)
- Anders Fredriksson
- Department of Neuroscience and Psychiatry, University of Uppsala, Ulleraker, SE-750 17 Uppsala, Sweden
| | | |
Collapse
|
35
|
Stone EA, Lin Y, Ahsan R, Quartermain D. Role of locus coeruleus ?1-adrenoceptors in motor activity in rats. Synapse 2004; 54:164-72. [PMID: 15452865 DOI: 10.1002/syn.20074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The question of whether or not the locus coeruleus (LC) participates in the control of motor activity has been controversial due to difficulties in demonstrating permanent motor deficits after neurotoxic lesions of this nucleus or of the dorsal noradrenergic bundle (DNB). In the present experiments it was shown in rats that acute local blockade (with terazosin) or stimulation (with phenylephrine) of LC alpha(1)-adrenoceptors respectively blocked or stimulated exploratory behavior in a novel cage and the home cage. Moreover, previous lesion of the DNB by i.p. DSP4 abolished the behavioral changes to local LC alpha(1)-receptor manipulation but did not affect motor activity in the novel or home cage by itself. These findings are consistent with the hypothesis that the intact LC does contribute to motor activity control, exerted in part by its alpha(1)-receptors; however, the permanent loss of this nucleus is compensated for by remaining CNS motor structures.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
36
|
Muñoz A, Lopez-Real A, Labandeira-Garcia JL, Guerra MJ. Interaction between the noradrenergic and serotonergic systems in locomotor hyperactivity and striatal expression of Fos induced by amphetamine in rats. Exp Brain Res 2003; 153:92-9. [PMID: 12955385 DOI: 10.1007/s00221-003-1582-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 06/25/2003] [Indexed: 12/24/2022]
Abstract
It is classically considered that Amphetamine acts by increasing extracellular dopamine levels. However, some data suggest a relevant role of other neurochemical systems. The striatum is of particular interest to the study of this question. We have investigated the involvement of the noradrenergic and serotonergic systems and their possible interaction in the striatal responses to Amphetamine using a double behavioral and immunohistochemical approach (i.e., changes in locomotor activity and striatal expression of Fos). In normal rats, Amphetamine induced locomotor hyperactivity and striatal expression of Fos. Pretreatment with the alpha1-adrenergic-receptor antagonist Prazosin or lesion of the serotonergic system significantly reduced the locomotor hyperactivity and striatal Fos expression induced by Amphetamine. Administration of Prazosin to rats with serotonergic denervation did not produce any further reduction in the Amphetamine-induced locomotor hyperactivity or striatal Fos expression compared with that observed in rats with serotonergic denervation only. Amphetamine did not induce a detectable increase in Fos expression in dopamine-denervated striata, and elicited intense rotation towards the dopamine-denervated side. This suggests that striatal dopamine release is essential in the Amphetamine-induced effects on striatal neurons. However, the noradrenergic system plays an important role, and the serotonergic system is necessary for mediating the effects of the Amphetamine-induced noradrenergic stimulation. Concurrent stimulation of dopaminergic and serotonergic receptors appears necessary to regulate Amphetamine-induced responses in the striatal neurons.
Collapse
Affiliation(s)
- A Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
37
|
Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 2003. [PMID: 12867514 DOI: 10.1523/jneurosci.23-15-06295.2003] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Convergent evidence suggests that amphetamine (AMPH) exerts its rewarding and locomotor stimulating effects via release of dopamine in the nucleus accumbens. However, there is no consensus as to the relative contributions of core and medial shell subregions to these effects. Moreover, the literature is based primarily on intracranial administration, which cannot fully mimic the drug distribution achieved by systemic administration. In the present study, the effects of bilateral 6-hydroxydopamine lesions of the accumbens core or medial shell on rewarding and locomotor stimulating effects of systemically administered amphetamine (0.75 mg/kg, i.p.) were examined in a conditioned place preference (CPP) procedure relying solely on tactile cues (floor texture). Residual dopamine innervation was quantified by [125I]-RTI-55 binding to the dopamine transporter. When lesions were performed before the conditioning phase, AMPH-induced locomotor stimulation and CPP magnitude were positively correlated with residual dopamine transporter binding in core and medial shell, respectively. Medial shell lesions did not affect morphine CPP, arguing that a sensory or mnemonic deficit was not responsible for the lesion-induced reduction in AMPH CPP. Medial shell lesions performed between the conditioning phase and the test day reduced the expression of amphetamine CPP. These results suggest that after systemic amphetamine administration, rewarding and locomotor stimulating effects of the drug are anatomically dissociated within the nucleus accumbens: the medial shell contributes to rewarding effects, whereas the core contributes to behavioral activation.
Collapse
|
38
|
Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 2003. [PMID: 12629192 DOI: 10.1523/jneurosci.23-05-01879.2003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence points to a major involvement of cortical areas in addictive mechanisms. Noradrenergic transmission in the medial prefrontal cortex (mpFC) has been shown to affect the motor effects of amphetamine, although there is no evidence of its involvement in the rewarding effects of this psychostimulant. The present experiments were aimed at investigating the possibility of a selective involvement of prefrontal cortical norepinephrine (NE) in the rewarding-reinforcing effects of amphetamine. To do so, we evaluated the effects of mpFC NE selective depletion in mice of C57BL/6J inbred strain, a background commonly used in molecular approaches that is known to be highly susceptible to the rewarding effects of the psychostimulant. In a first set of experiments, we demonstrated the absence of amphetamine-induced conditioned place preference in mice bearing prefrontal NE depletion. In a second series of experiments, we demonstrated that the same lesion dramatically reduced amphetamine-induced mesoaccumbens dopamine release as measured by intracerebral microdialysis. These results indicate that noradrenergic prefrontal transmission, by allowing increased dopamine release in the nucleus accumbens induced by amphetamine, is a critical factor for the rewarding-reinforcing effects of this drug.
Collapse
|
39
|
Fredriksson A, Archer T. Effect of postnatal iron administration on MPTP-induced behavioral deficits and neurotoxicity: behavioral enhancement by L-Dopa-MK-801 co-administration. Behav Brain Res 2003; 139:31-46. [PMID: 12642174 DOI: 10.1016/s0166-4328(02)00035-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two experiments were performed to investigate the interactive effects of postnatal iron administration and adult MPTP treatment upon the function of C57 Bl/6 mice tested at adult age and to ascertain the possible ameliatory effects of a subthreshold dose of L-Dopa co-administered with different doses of the uncompetitive glutamate antagonist, MK-801. Experiment I indicated that postnatal iron induced marked deficits (hypoactivity), initially, in all three parameters of motor activity at the 5.0 and 7.5 mg/kg doses, and to a lesser extent at the 2.5 mg/kg dose. Later combination with MPTP (2x40 mg/kg) potentiated severely these deficits. During the final period of testing a marked hyperactivity was obtained for the two higher dose groups; this effect was abolished in mice administered MPTP. Experiment II indicated that the deficits in motor activity parameters induced by postnatal iron at 7.5 mg/kg were alleviated in a dose-related manner by the co-administration of the uncompetitive glutamate antagonist, MK-801, with a subthreshold dose of L-Dopa. Postnatal iron (7.5 mg/kg) administration followed by low doses of MPTP (2x20 mg/kg) 3 months later virtually abolished all motor activity. The combination of these compounds increased also the motor activity of mice treated with MPTP (2x20 mg/kg) or mice treated with the combination of postnatal iron and MPTP. The combination of MK-801 with L-Dopa increased locomotor (0.3 mg/kg), rearing (0.1 and 0.3 mg/kg) and total activity (0.3 mg/kg) of iron-treated mice during the initial, hypoactive 30-min period of testing. Locomotor activity (0.1 mg/kg) of MPTP-treated mice was increased too during this period. During the final 30-min period of testing all three parameters of activity (locomotion, 0.3 mg/kg; rearing and total activity, 0.1 and 0.3 mg/kg) were enhanced in the iron-treated mice, locomotion (0.1 mg/kg) and rearing (0.1 mg/kg) in the iron plus MPTP treated mice and only locomotion (0.1 mg/kg) in the MPTP-treated mice. In control mice (vehicle+saline), the higher doses of MK-801 (0.1 and 0.3 mg/kg) enhanced both locomotor and total activity. Analyses of total iron concentration in the frontal cortex and basal ganglia of Fe(2+) and vehicle treated mice indicated that marked elevations basal ganglia iron levels of the 5.0 and 7.5 mg/kg groups, later injected either saline or MPTP, were obtained (Experiment I). In Experiment II, iron concentrations in the basal ganglia were elevated in both the Fe(2+)-sal and Fe(2+)-MPTP groups to 170 and 177% of Veh.-sal values, respectively. There was a significant increase in the frontal cortex of iron-treated mice later administered either saline or MPTP (2x40 mg/kg) in Experiment I as well as in those given iron followed by MPTP (2x20mg/kg) in Experiment II. The implications of iron overload in parkinsonism seem confirmed by the interactive effects of postnatal administration of the metal followed by adult MPTP treatment upon motor activity and the activity-enhancing effects of co-administration of L-Dopa with MK-801.
Collapse
Affiliation(s)
- Anders Fredriksson
- Department of Neuroscience and Psychiatry, University of Uppsala, Ulleråker, SE-750 17, Uppsala, Sweden
| | | |
Collapse
|
40
|
Muñoz A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Host brain regulation of dopaminergic grafts function: role of the serotonergic and noradrenergic systems in amphetamine-induced responses. Synapse 2003; 47:66-76. [PMID: 12422375 DOI: 10.1002/syn.10152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The indirect dopaminergic (DA) agonist amphetamine has frequently been used to study functional responses of DA grafted neurons. However, it is not known if striatal responses, primarily related to DA release by the grafted neurons, are modulated by the host striatal afferents. We investigated the changes in amphetamine-induced rotational behavior and striatal expression of Fos in DA-denervated and grafted rats subjected to serotonergic denervation and/or treatment with the alpha(1)-adrenergic receptor antagonist Prazosin. Acute serotonergic lesions with p-chlorophenylalanine suppressed the expression of Fos induced by 1 mg/kg of amphetamine in both the grafted and the contralateral striatum. Chronic serotonergic denervation with 5,7-dihydroxytryptamine induced a significant reduction in Fos expression in both the grafted and nongrafted striata and a nonsignificant reduction in the contraversive rotation. In DA-innervated striata, Prazosin significantly reduced the expression of Fos but only in the presence of serotonergic innervation. However, Prazosin did not decrease the expression of Fos induced by grafts located in striata not subjected to serotonergic denervation. The present results suggest functional integration of transplanted DA neurons and major host striatal afferent systems, particularly the serotonergic system, in modulating responses of the host striatal neurons. However, indirect effects exerted by the noradrenergic system on the normal striatum were not observed in the DA-denervated and grafted striata.
Collapse
Affiliation(s)
- Ana Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
41
|
Archer T, Palomo T, McArthur R, Fredriksson A. Effects of acute administration of DA agonists on locomotor activity: MPTP versus neonatal intracerebroventricular 6-OHDA treatment. Neurotox Res 2003; 5:95-110. [PMID: 12832225 DOI: 10.1007/bf03033375] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The effects of several dopamine (DA) receptor agonists upon locomotor activity on adult MPTP-treated mice and postnatal 6-hydroxydopamine- (6-OHDA-) treated rats were assessed in ten experiments. C57 BL/6 mice were administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 2 x 40 mg/kg, s.c., 24-hr interval between injections) at 5-months-age, while 1-day-old male Wistar rat pups were given intracisternal 6-OHDA (50 mg, once following desipramine, 25 mg/kg). MPTP-treated mice were tested 4-5 weeks following MPTP injections whereas neonatal 6-OHDA rats were tested at 3-months-age. Locomotor activity was measured in respective activity test chambers following acute administration of DA receptor agonists. In MPTP-treated mice, apomorphine failed to elevate locomotor activity but instead further exacerbated (1.0 and 3.0 mg/kg, s.c.) the hypokinesia of these animals while inducing marked increases in control mice. Cabergoline (0.3 mg/kg, s.c.) and bromocriptine (3.0 mg/kg, s.c.) caused dose-specific elevations of locomotion in MPTP and control mice but suppressed activity at the highest doses. Quinpirole (0.2 mg/kg) and 7-hydroxydipropylaminotetralin (7-OH-DPAT; 300 nmole/kg) increased locomotion in hypokinesic MPTP-treated mice; in control mice, activity was elevated by quinpirole (0.2 and 0.7 mg/kg) and 7-OH-DPAT (100 and 300 nmole/kg), while higher doses suppressed activity. Neither SKF 38393 (1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol) nor FCE 23884 [4-(9,10-didehydro-6-methylergolin-8 beta-yl) methyl-piperazine-2,6-dione] affected locomotor activity. Apomorphine (0.3, 1.0 and 2.0 mg/kg), bromocriptine (3.0 mg/kg) and cabergoline (1.0 mg/kg) stimulated locomotion in sham-operated rats, and to a greater extent in the 6-OHDA-treated rats. Higher dose cabergoline (3.0 mg/kg) induced increased activity of similar extent in sham controls and 6-OHDA treated rats. Activity-enhancing effects of quinpirole (0.2, 0.7 and 2.1 mg/kg) in sham rats were attenuated in 6-OHDA treated rats. Both SKF 38393 (10 mg/kg) and FCE 23884 (0.3 and 1.0 mg/kg) induced locomotor activity increases in 6-OHDA, but not sham, rats. Finally, 7-OH-DPAT (1200 mg/kg) enhanced activity in 6-OHDA rats vs. shams. The effects of the DA agonists are discussed with regard to the putative antihypokinesic effects in MPTP mice and DA-receptor supersensitivity effects in neonatal 6-OHDA rats, pertaining to their more-or-less selective subreceptor profiles.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, P.O. Box 500, University of Göteborg, Göteborg SE-405 30, Sweden
| | | | | | | |
Collapse
|
42
|
Fredriksson A, Schröder N, Archer T. Neurobehavioural deficits following postnatal iron overload: I spontaneous motor activity. Neurotox Res 2003; 5:53-76. [PMID: 14628856 DOI: 10.1007/bf03033373] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Fredriksson A, Archer T. Hyperactivity following postnatal NMDA antagonist treatment: reversal by D-amphetamine. Neurotox Res 2003; 5:549-64. [PMID: 14715439 DOI: 10.1007/bf03033165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three experiments were performed to study the effects of neonatal administration of glutamate receptor antagonists, on either Day 11 (dizocilpine = MK-801, 3 x 0.5 mg/kg, s.c., injected at 0800, 1600 and 2400 h) or Day 10 (Ketamine, 1 x 50 mg/kg, s.c., or Ethanol-Low, 1 x 2.5 mg/kg, or, Ethanol-High, 2 x 2.5 mg/kg, s.c., with 2-h interval) to male mice pups, on spontaneous motor behavior, habituation to a novel situation and D-amphetamine-induced activity in the adult animals. Mice administered MK-801 showed initial hypoactivity followed by hyperactivity over the later (20-40 and 40-60 min) periods of testing. Mice administered Ketamine and Ethanol-High similarly displayed an initial hypoactivity followed by hyperactivity over the later time (20-60 min) of testing. Habituation to the novel activity test chambers was reduced drastically in the MK-801 mice compared with vehicle-treated mice. Similarly, mice administered Ketamine and Ethanol-High displayed too drastically reduced habituation behavior. The low dose of D-amphetamine (0.25 mg/kg) reduced the hyperactivity of neonatal MK-801-treated mice, particularly from 30-60 min onwards, and elevated the activity level of the vehicle-treated mice. Similarly, the low dose of D-amphetamine (0.25 mg/kg) reduced the hyperactivity of neonatally Ketamine-treated and Ethanol-High-treated mice, particularly from 30-60 min onwards, and elevated the activity level of the respective vehicle-treated mice. Fluoro-jade staining per mm(2) regional brain tissue of MK-801 mice pups expressed as percent of vehicle mice pups showed also that the extensiveness of staining was markedly greater in the parietal cortex, hippocampus, frontal cortex, and lesser so in the laterodorsal thalamus. Ketamine-treated mice showed cell degeneration mainly in the parietal cortex, whereas the Ethanol-High mice showed marked cell degeneration in both the parietal and laterodorsal cortex. The present findings that encompass a pattern of regional neuronal degeneration, disruptions of spontaneous motor activity, habituation deficits and reversal of hyperactivity by a low dose of D-amphetamine suggest a model of Attention Deficit Hyperactivity Disorder that underlines the intimate role of N-methyl-D-aspartate (NMDA) receptors in the developing brain.
Collapse
Affiliation(s)
- Anders Fredriksson
- University of Uppsala, Department of Neuroscience and Psychiatry, Ulleråker, SE-750 17 Uppsala, Sweden
| | | |
Collapse
|
44
|
Archer T, Palomo T, Fredriksson A. Functional deficits following neonatal dopamine depletion and isolation housing: circular water maze acquisition under pre-exposure conditions and motor activity. Neurotox Res 2002; 4:503-522. [PMID: 12754163 DOI: 10.1080/1029842021000022098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Seven experiments and several behavioural tests were performed to study the effects of housing condition and experimental test conditions upon the behavioural responses and performance of adult rats neonatally treated with 6-hydroxydopamine (6-OHDA, 100 ug intracisternally, i.c.) or with vehicle. Postnatal 6-OHDA induced locomotor and total activity hyperactivity and deficits in navigational learning in a circular swim maze that were blocked by pretreatment with a dopamine (DA) reuptake inhibitor but not a noradrenaline (NA) reuptake inhibitor. Isolation-housing induced deficits in maze learning performance. Grouped housing improved the maze learning performance of 6-OHDA treated rats whereas vehicle treated rats that were isolation housed performed better following latent learning (LL) pre-exposure trials. 6-OHDA treated rats that received both Grouped housing and latent learning trials performed better on the spatial navigation task than those that received Grouped housing but no latent learning or Isolation housing and latent learning. Analysis of habituation quotients indicated marked deficits by 6-OHDA-treated rats suggesting inability to acquire this simple, nonassociative form of learning. Methylphenidate increased all three parameters of motor activity: locomotion, rearing and total activity, in both Isolation-housed and Group-housed rats from 60- to 90- or 120-min post-injection. NDO 008 induced variable and parameter-dependent effects: locomotion was elevated initially in both Isolated and Grouped rats by the compound and then reduced in the Isolated rats only whereas total activity was only elevated initially in the Isolated rats and unaffected in the Grouped rats. Rearing behaviour was reduced markedly, directly post-injection, in the Isolation-housed rats. DA, DOPAC and HVA concentrations in the striatum, nucleus accumbens, olfactory tubercle and midbrain were reduced but most markedly in the striatum. 5-Hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) concentrations were elevated in the striatum, nucleus accumbens (not 5-HIAA) and olfactory tubercle.
Collapse
Affiliation(s)
- Trevor Archer
- University of Göteborg, Department of Psychology, Box 500, SE-40530 Göteborg, Sweden
| | | | | |
Collapse
|
45
|
Archer T, Palomo T, Fredriksson A. Neonatal 6-hydroxydopamine-induced hypo/hyperactivity: blockade by dopamine reuptake inhibitors and effect of acute D-amphetamine. Neurotox Res 2002; 4:247-66. [PMID: 12829405 DOI: 10.1080/10298420290023972] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Five experiments were performed to assess the changes in motor activity resulting from neonatal administration of 6-hydroxydopamine (6-OHDA) on Days 1 or 2 postnatal, at doses of either 75 or 100 micro g in a volume of 10 micro l vehicle, following pretreatment with either GBR 12909 (40 mg/kg, s.c.) or amphonelic acid (4.0 mg/kg, s.c.) or saline. Motor activity was measured either over 60-min test periods on five consecutive days of testing or at 12-min intervals within a single 60-min test session. The initial extent of locomotor hyperactivity was dependent upon the neonatal dose of 6-OHDA: the 100 micro g, but not 75 micro g, dose induced marked hyperactivity from test day 1 onwards whereas the 75 micro g dose did so from test day 3 onwards. The initial hypoactivity for rearing behaviour was observed for both doses of 6-OHDA: this hypoactivity was altered over successive test days so that by test day 5 an hyperactivity by the 75 micro g, but not 100 micro g, was observed. Pretreatment with either GBR 12909 or amphonelic acid abolished the effects of both doses of 6-OHDA. In the within-60-min test session procedure, 6-OHDA treated rats (both 75 and 100 micro g) showed initial hyperactivity for locomotion that intensified, in relation to the other groups, over each 12-min interval and initial hypoactivity for rearing that developed into hyperactivity over each 12-min interval. Pretreatment with either GBR 12909 or amphonelic acid again abolished the effects of both doses of 6-OHDA. Habituation quotients derived in each case for both procedures indicated severe habituation deficits by 6-OHDA (75 and 100 micro g) rats, compared to the control groups in all four experiments. In Experiment V, a low dose of D-amphetamine abolished the hyperactivity of 6-OHDA (75 micro g) treated rats whereas a higher dose did so only transiently. Pretreatment with GBR 12909 abolished these effects. These findings underline the neuropharmacological utility of the neonatal 6-OHDA treatment for studying brain receptor system adaptive changes underlying the respective functional alterations and as a possible laboratory model for clinical disorders.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Göteborg, Box 500, SE-40530 Göteborg, Sweden.
| | | | | |
Collapse
|
46
|
Jones MD, Williams ME, Hess EJ. Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:114-21. [PMID: 11731016 DOI: 10.1016/s0169-328x(01)00281-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The SNAP-25 deficient mouse mutant coloboma (Cm/+) is an animal model for investigating the biochemical basis of locomotor hyperactivity. The spontaneous hyperactivity exhibited by coloboma is three times greater than control mice and is a direct result of the SNAP-25 deletion. SNAP-25 is a presynaptic protein that regulates exocytotic neurotransmitter release; coloboma mice express only 50% of normal protein concentrations. Previous research has determined that there is an increase in the concentration of norepinephrine but a decrease in dopamine utilization in the striatum and nucleus accumbens of coloboma mice. In situ hybridization analysis revealed that there were corresponding increases in tyrosine hydroxylase (TH) mRNA expression in noradrenergic cell bodies of the locus coeruleus of Cm/+ mice. In contrast, TH mRNA expression in substantia nigra appeared normal in the mutant mouse. alpha(2)-Adrenergic receptors are important modulators of central noradrenergic function and dopamine release. In situ hybridization data revealed that alpha(2A)-adrenergic receptor mRNA expression is upregulated in Cm/+ mice. These results suggest an underlying abnormality in noradrenergic regulation in this hyperactive mouse mutant.
Collapse
Affiliation(s)
- M D Jones
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
47
|
Archer T, Fredriksson A. Effects of alpha-adrenoceptor agonists in chronic morphine administered DSP4-treated rats: evidence for functional cross-sensitization. Neurotox Res 2001; 3:411-32. [PMID: 14715456 DOI: 10.1007/bf03033201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five experiments were performed to study the effects of the Alpha-adrenoceptor agonists, clonidine and guanfacine, upon spontaneous motor activity in chronically morphine administered DSP4-treated and control rats. DSP4 (2 x 50 mg/kg, with a 10-day interval between injections) and vehicle (distilled water) were injected i.p., on each occasion 30 min after zimeldine (20 mg/kg). Morphine dosages were raised incrementally from 5 mg/kg (Days 1-3), through 10 mg/kg (Days 4-7) and 20 mg/kg (Days 8-14), to 30 mg/kg (Days 15-20). Motor activity testing occurred on Day 21, Day 22 as well as in Experiments II-V, (from 1st morphine injection). DSP4 pretreatment and chronic morphine injections each reduced motor activity during the first 30 min of testing; combined DSP4 and morphine treatment potentiated the hypoactivity. Habituation quotients indicated deficits in habituation to the novel test environment by the Vehicle-morphine (Quoteint2 only) and DSP4-morphine groups. Acute clonidine treatment (0.04 mg/kg s.c.) reduced motor activity during the first 30 min of testing but attenuated or blocked the morphine-induced hypoactivity in DSP4-treated and control rats. During the 60-90 min test period, clonidine, but not guanfacine (0.08 mg/kg), potentiated morphine-induced hyperactivity in control rats; acute clonidine enhanced this effect, whereas acute guanfacine reduced it, in the DSP4-treated rats. The enhanced hyperactivity of morphine-clonidine suggest a cross-sensitivity effect. Naloxone (0.1 mg/kg s.c.), injected after the 1st 30-min of testing, potentiated markely the clonidine-induced elevations of motor activity in morphine-administered control rats; in the DSP4-treated rats, these effects were dramatically potentiated, underlining the cross-sensitivity effect. Acute guanfacine treatment reduced motor activity during the first 30 min of testing but did not attenuate reliably morphine-induced hypoactivity in control or DSP4 rats. Naloxone did not potentiate the guanfacine-induced hyperactivity of morphine-administered control rats but induced a marked enhancement in the DSP4-treated rats, a specific case of cross-reactivity. The major findings pertain to a cross-sensitization effect of morphine upon clonidine-induced motor activity in both DSP4-treated and control rats, and to a lesser extent between morphine and guanfacine in NA-denervated rats only. The results may offer interactive implications for noradrenergic-opiate system functioning that may be of influence under neuropathological conditions.
Collapse
Affiliation(s)
- T Archer
- University of Göteborg, Department of Psychology, Sweden.
| | | |
Collapse
|
48
|
Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T. Neonatal iron potentiates adult MPTP-induced neurodegenerative and functional deficits. Parkinsonism Relat Disord 2001; 7:97-105. [PMID: 11248590 DOI: 10.1016/s1353-8020(00)00028-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The interactive effects of neonatal iron and adult MPTP treatment groups of C57 Bl/6 mice were studied through adminustration of iron (Fe(2+)) 7.5mg/kg b.w., p.o. or vehicle (saline) on days 10-12 post partum, followed at 3months of age by administration of either MPTP (2x20 or 2x40mg/kg, s.c.) or saline. Neonatal iron administration to mice-induced hypoactivity during the first 20-min period of testing and hyperactivity during the 3rd and final 20-min period for all three parameters of motor activity tested at 4months of age. MPTP treatment caused a dose-related hypokinesia throughout the 3x20-min test periods; in the mice that received both neonatal iron and MPTP severe deficits of motor activity (akinesia) were obtained. Iron treatment impaired the ability of mice to habituate to the novel testing environment and later administration of MPTP potentiated the impairment markedly. Neurochemical analyses of striatal and frontal cortical dopamine (DA) and DA metabolites demonstrated that the depletions were potentiated under conditions of combined neonatal iron and adult MPTP. The analysis of total iron content (µg/g) in brain regions indicated notably elevated levels in the basal ganglia, but not in the frontal cortex, of mice administered Fe(2+). Iron-overload combined with MPTP treatment induced functional and neurochemical deficits with interactive consequences beyond a mere additive effect that may have implications for the neurodegenerative process in parkinsonism.
Collapse
Affiliation(s)
- A Fredriksson
- Department of Neuroscience, Psychiatry Ulleråker, Univerity Hospital, University of Uppsala, SE-750 17, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
49
|
Fredriksson A, Palomo T, Archer T. Effects of MAO inhibitors upon MPTP mice chronically treated with suprathreshold doses of L-dopa. Behav Pharmacol 2000; 11:571-81. [PMID: 11198128 DOI: 10.1097/00008877-200011000-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Groups of mice were administered either saline or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (2 X 40 mg / kg, s.c., separated by a 24-hour interval) 4-6 weeks prior to behavioural testing. At testing, all the MPTP-injected mice were repeatedly administered L-dopa (20 mg / kg, s.c., five times each week, Monday-Friday), by applying a procedure that induced a severe reduction of motor activity parameters from Day 1 to Day 25. Control (uninjected mice) received only saline and were retained only for neurochemical analysis. In each of three experiments, following the reduction of the activity-stimulating effects of L-dopa by repeated administration, a restorative effect of different monoamine oxidase (MAO) inhibitors was tested by co-administration of the test compounds (irreversible MAO-B inhibitor, reversible MAO-A inhibitors, or irreversible MAO-A / mixed MAO inhibitors) with L-dopa (20 mg / kg). In each case the MAO inhibitor was injected 60 min prior to L-dopa. L-Deprenyl (3 or 10 mg / kg, s.c.), in combination with L-dopa, reinstated locomotion and total activity, but not rearing, dose-dependently, in L-dopa-tolerant mice. The reversible MAO-A inhibitors, amiflamine and alpha-ethyltryptamine, in combination with L-dopa, reinstated locomotion and total activity, leaving rearing unaffected; Ro 41-1049 (3 mg / kg, s.c.) restored all three parameters of activity; locomotor activity was restored by all three doses (1, 3, and 10 mg / kg, s.c.). On the other hand, neither the irreversible MAO-A inhibitor, clorgyline, nor the mixed MAO inhibitor, phenelzine, produced any directly effective restorative increments. Neurochemical analysis confirmed the severe striatal dopamine depletion of MPTP-treated mice. These results demonstrate a synergistic and restorative action of combining certain MAO inhibitors, namely the reversible MAO-A inhibitors, with the suprathreshold dose of L-dopa in MPTP-treated, L-dopa-tolerant mice.
Collapse
Affiliation(s)
- A Fredriksson
- Department of Psychiatry, University of Uppsala, Sweden
| | | | | |
Collapse
|
50
|
Fredriksson A, Eriksson P, Ankarberg E, Palomo T, Archer T. Neonatal nicotine administration influences ethanol-induced behaviors. Alcohol 2000; 21:107-15. [PMID: 10963933 DOI: 10.1016/s0741-8329(00)00085-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neonatal mice were administered nicotine (66 microg (-)-nicotine base/kg body weight (bw) s.c. twice daily at 0800 and 1700 h on postnatal days 10 and 14) and control mice received saline (10 ml 0. 9% NaCl/kg bw s.c.) on the same occasions. Behavioral testing was initiated 3 months after birth. In Experiment 1, neonatal nicotine administration did not affect spontaneous motor activity but altered the peak dose stimulatory effect of ethanol upon locomotion and rearing activity from 3.0 mg/kg, in the control mice, to 1.5 mg/kg. Administration of the nicotine antagonist, mecamylamine (MEC, 2.0 mg/kg), had no effect upon the peak dose stimulatory effect (i.e., 1. 5 mg/kg) evidenced in the nicotine-treated mice, but attenuated the stimulatory effect of the 3.0 mg/kg dose of ethanol in the control mice. In Experiment 2, the effects of neonatal nicotine administration upon ethanol intake and preference were assessed. In the single fluid access (one-bottle) test, nicotine-treated mice consumed both more ethanol (2%, 4%, or 6% concentrations) and more tap water than control mice. In the two-bottle ethanol preference test, nicotine-treated mice consumed more ethanol and tap water. Further analysis of the high-preferring (HP) ethanol mice indicated higher ethanol intake and preference in the nicotine-treated mice but no differences in tap water or total fluid intake. The present findings are considered together with prevailing notions of nicotine receptor alterations and possible cross-sensitization effects modulating substance abuse.
Collapse
Affiliation(s)
- A Fredriksson
- Department of Neuroscience and Psychiatry, Ulleråker, Uppsala, University, S-750 17 Uppsala, Sweden
| | | | | | | | | |
Collapse
|