1
|
Zimmermann EJ, Das A, Huber A, Gawlitta N, Kuhn E, Schlager C, Gutmann B, Krebs T, Schnelle-Kreis J, Delaval MN, Zimmermann R. Toxicological effects of long-term continuous exposure to ambient air on human bronchial epithelial Calu-3 cells exposed at the air-liquid interface. ENVIRONMENTAL RESEARCH 2025; 269:120759. [PMID: 39755196 DOI: 10.1016/j.envres.2025.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/06/2025]
Abstract
Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure. The automated exposure system was adapted to enable long-term cell exposure. ALI human bronchial epithelial cells (Calu-3) were continuously exposed for 72 h to the ambient air from a European urban area (3 independent exposures). Experimental evaluation included comprehensive toxicological assessments coupled to physical and chemical characterization of the aerosol. Exposure to ambient air resulted in increased significant cytotoxicity and a non-significant decrease in cell viability. Differential gene expressions were indicated for genes related to inflammation (IL1B, IL6) and to xenobiotic metabolism (CYP1A1, CYP1B1) with possible correlations to the PM2.5 content. Common air pollutants were identified such as the carcinogenic benz[a]pyrene (≤3.4 ng m-3/24h) and PM2.5 (≤11.6 μg m-3/24h) with a maximum particle number mean of 4.4 × 10-3 m3/24h. For the first time, ALI human lung epithelial cells were exposed for 72 h to continuous airflow of ambient air. Despite direct exposure to ambient aerosols, only small decrease in cell viability and gene expression changes was observed. We propose this experimental set-up combining comprehensive aerosol characterization and long-term continuous ALI cell exposure for the identification of hazardous compounds or compound mixtures in ambient air.
Collapse
Affiliation(s)
- E J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - A Das
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - A Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - N Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - E Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - C Schlager
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - B Gutmann
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - T Krebs
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - J Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - M N Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany.
| | - R Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| |
Collapse
|
2
|
Chen L, Yousaf M, Xu J, Ma X. Ultrafine particles: Sources, toxicity, and deposition dynamics in the human respiratory tract -- experimental and computational approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124458. [PMID: 39946800 DOI: 10.1016/j.jenvman.2025.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Ultrafine particles (UFPs ≤ 100 nm) pose significant health risks, including respiratory and cardiovascular diseases, and cancer. This review consolidates main sources, toxicity, and exposure assessment approaches to elucidate the deposition dynamics of UFPswithin the human respiratory tract. Key factors influencing the deposition fraction (DF) are highlighted. Our findings indicate that the DF surpasses 50% for particles ≤50 nm and reaches up to 70% for particles ≤30 nm, impacting both adults and children. Vulnerable populations, such as children and individuals with pre-existing health conditions, are disproportionately affected, yet research focusing on these groups remains scarce. Methodological deficiencies, including high costs, simplifying assumptions, and computational constraints, challenge prediction accuracy. Experimental methods struggle to capture temporal fluctuations, while computational models fail to account for complex phenomena. Addressing these gaps is crucial for refining public health regulations and advancing nanomedicine. An improved understanding of UFPs dynamics will enhance protective measures and nanomedicine applications, particularly in targeted drug delivery and diagnostics. This review emphasizes the need for innovative experimental and computational methods to study UFPs deposition dynamics, ultimately advancing our understanding of UFPs' impact on human health.
Collapse
Affiliation(s)
- Longfei Chen
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China; Hangzhou International Innovation Institute, Beihang University, 166 Shuanghongqiao Street, Pingyao Town, Yuhang District, Hangzhou, 311115, China
| | - Muhammad Yousaf
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China; Hangzhou International Innovation Institute, Beihang University, 166 Shuanghongqiao Street, Pingyao Town, Yuhang District, Hangzhou, 311115, China
| | - Jingsha Xu
- Hangzhou International Innovation Institute, Beihang University, 166 Shuanghongqiao Street, Pingyao Town, Yuhang District, Hangzhou, 311115, China; Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China.
| | - Xiaoyan Ma
- Hangzhou International Innovation Institute, Beihang University, 166 Shuanghongqiao Street, Pingyao Town, Yuhang District, Hangzhou, 311115, China; Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China.
| |
Collapse
|
3
|
Qi Q, Xue Y, Madani NA, Tangang RT, Yu F, Nair A, Xue XR, Luo G, Brackett I, Thorncroft C, Lin S. Individual effects and interactions between ultrafine particles and extreme temperatures on hospital admissions of high burden diseases. ENVIRONMENT INTERNATIONAL 2025; 197:109348. [PMID: 40020633 DOI: 10.1016/j.envint.2025.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Health effects of ultrafine particles (UFPs) and their interactions with temperature are less studied. We investigated the risks of UFPs concentrations and extreme temperatures on hospitalizations for high-burden diseases (HBDs) in New York State (NYS). METHODS This case-crossover study included hospitalizations for HBDs that contain ischemic heart diseases, diabetes, stroke, kidney diseases, and depression using NYS Hospital Discharge Data (2013-2018). Daily pollutants and temperature data were obtained from a chemical transport model validated by multiple prior studies. UFP changes were measured using interquartile range increase, and extreme heat and cold were defined as temperatures >= 90th% and <=10th% respectively by month and location. Conditional logistic regression was applied controlling for criteria pollutants, relative humidity, and time-varying variables. RESULTS Among 1,308,518 cases, significant risk ratios (RR) were observed for UFPs (RRs ranged: 1.009-1.012) and extreme heat (RRs ranged: 1.024-1.028) on overall HBDs, but extreme cold had protective effects on HBDs. The adverse effect of UFPs had significant interactions with extreme cold and was higher in winter and fall. UFPs affected all HBD subtypes except kidney diseases, and extreme heat increased the risks of ischemic heart disease and kidney disease. There were disparities across demographics in exposures-HBDs associations although they were not statistically significant. Elevated UFP concentrations were associated with four clinical indicators (hospital stays, charges etc.). CONCLUSION We observe positive associations between elevated UFP concentrations or extreme heat and HBD hospitalizations, but negative associations with extreme cold. The UFPs' risks were higher in children and during cold seasons.
Collapse
Affiliation(s)
- Quan Qi
- Department of Economics, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Yukang Xue
- Department of Educational Psychology, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Najm Alsadat Madani
- Institute for Health and the Environment, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Randy T Tangang
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Fangqun Yu
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Arshad Nair
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xiaobo Romeiko Xue
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Gan Luo
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Isa Brackett
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Chris Thorncroft
- Atmosphere Science Research Center, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shao Lin
- Department of Environmental Health Science, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA.
| |
Collapse
|
4
|
Ricarte M, Portugal J, Amato F, Van Drooge BL, Jaén C, Pyambri M, Ridolfo S, Casado M, Bedia C, Elihn K, Olofsson U, Piña B. Toxicity assessment of airborne ultrafine particles: Role of transport emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178435. [PMID: 39827641 DOI: 10.1016/j.scitotenv.2025.178435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Airborne quasi-ultrafine particle samples were collected from different outdoor sites in Barcelona (NE Spain, 35 samples) and the Valencia subway (about 400 km south of Barcelona, 3 samples). Locations and schedules were designed to cover cold and warm seasons and to represent the impact of different types of transport (cars, trains, ships, and planes). Extracts from PTFE filters (methanol:dichloromethane 1:2) were used to test toxic effects in human cell lines (Induction of reactive oxygen species, inflammatory response) and in zebrafish embryos (expression of xenobiotic response-related genes, cyp1a1, gsa1 and hao1). We observed distinct toxic effects related to different forms of oxidative stress and to inflammatory response, the two types of negative outcomes more closely related to the known epidemiological impacts of air pollution. The highest toxicity values were detected in sites receiving car and/or ship emissions, with maximums during the cold season. Chemical analysis followed by correlation and source apportionment analyses identified PAHs, combustion engines, and biomass burning emissions as the main drivers of the observed toxic effects. Therefore, traffic restrictions, car emission limits, and reduction of combustion processes are necessary to eliminate or at least to limit airborne toxicity in urban environments.
Collapse
Affiliation(s)
- Marina Ricarte
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Barend L Van Drooge
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Clara Jaén
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Maryam Pyambri
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Sharon Ridolfo
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Carmen Bedia
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11419 Stockholm, Sweden
| | - Ulf Olofsson
- Department of Machine Design, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain.
| |
Collapse
|
5
|
Faruqui N, Orell S, Dondi C, Leni Z, Kalbermatter DM, Gefors L, Rissler J, Vasilatou K, Mudway IS, Kåredal M, Shaw M, Larsson-Callerfelt AK. Differential Cytotoxicity and Inflammatory Responses to Particulate Matter Components in Airway Structural Cells. Int J Mol Sci 2025; 26:830. [PMID: 39859544 PMCID: PMC11765832 DOI: 10.3390/ijms26020830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition. The objective of this study was to assess the relative hazardous effects of carbonaceous particles (soot), ammonium nitrate, ammonium sulfate, and copper oxide (CuO), which are standard components of ambient air, reflecting contributions from primary combustion, secondary inorganic constituents, and non-exhaust emissions (NEE) from vehicular traffic. Human epithelial cells representing bronchial (BEAS-2B) and alveolar locations (H441 and A549) in the airways, human lung fibroblasts (HFL-1), and rat precision-cut lung slices (PCLS) were exposed in submerged cultures to different concentrations of particles for 5-72 h. Following exposure, cell viability, metabolic activity, reactive oxygen species (ROS) formation, and inflammatory responses were analyzed. CuO and, to a lesser extent, soot reduced cell viability in a dose-dependent manner, increased ROS formation, and induced inflammatory responses. Ammonium nitrate and ammonium sulfate did not elicit any significant cytotoxic responses but induced immunomodulatory alterations at very high concentrations. Our findings demonstrate that secondary inorganic components of PM have a lower hazard cytotoxicity compared with combustion-derived and indicative NEE components, and alveolar epithelial cells are more sensitive to PM exposure. This information should help to inform which sources of PM to target and feed into improved, targeted air quality guidelines.
Collapse
Affiliation(s)
- Nilofar Faruqui
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Sofie Orell
- Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Camilla Dondi
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Zaira Leni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | - Lina Gefors
- Lund University Bioimaging Centre (LBIC), Lund University, 221 84 Lund, Sweden
| | - Jenny Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, 223 62 Lund, Sweden
| | | | - Ian S. Mudway
- MRC Centre for Environment and Health, Imperial College London, London W2 1PG, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London W2 1NY, UK
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 63 Lund, Sweden
| | - Michael Shaw
- Department of Chemical & Biological Services, National Physical Laboratory, Teddington TW11 0LW, UK
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
6
|
Bergmann ML, Taghavi Shahri SM, Tayebi S, Kerckhoffs J, Cole-Hunter T, Hoek G, Lim YH, Massling A, Vermeulen R, Loft S, Andersen ZJ, Amini H. Spatial and temporal variation of façade-level particle number concentrations using portable monitors in Copenhagen, Denmark. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125398. [PMID: 39603323 DOI: 10.1016/j.envpol.2024.125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Ultrafine particles (UFP), commonly expressed as particle number concentrations (PNC), have been associated with harm to human health yet are currently not regulated or routinely monitored in many places. This has limited the potential for studies of health effects of long-term exposure to UFP. The present study aims to understand the spatial and temporal variation in façade-level UFP exposures in Copenhagen, Denmark. We measured PNC at the façades of 27 residences across the city for approximately 72 h each in two campaigns and continuously at an urban background reference site for twelve consecutive months, using portable monitors (miniature diffusion size classifiers [DiSCminis]). We estimated annual means at the residential sites based on temporal adjustment using reference site data. Furthermore, we co-located the DiSCminis at a regulatory monitoring station on three occasions and compared daily means from our reference site to those from seven fixed-site monitoring stations throughout the city. Annual mean PNC at the reference site was 4715 (SD of hourly mean: 3001) pt/cm3, while annual means at 27 residences were slightly higher with a mean of 5201 pt/cm3 (SD: 807), ranging between 3735 and 6588 pt/cm3. The two individual adjusted campaign-specific means at 27 residential sites were weakly correlated (Spearman's correlation 0.11) and had an intra-class correlation coefficient of 0.06 (95%-confidence interval: -0.18, 0.28). Daily PNC at the reference site was highly correlated (R = 0.64-0.84) with PNC monitored at seven fixed-site stations throughout the city. We observed a seasonal trend at the reference site with the highest PNC in spring. Our measurement campaign revealed that façade-level PNC at residences in Copenhagen in 2021-2022 was relatively low with small spatial variability. The large variability in time suggests possibly longer and more frequent measurement campaigns to obtain more stable annual averages. Our study illustrates the challenges of UFP long-term exposure assessment.
Collapse
Affiliation(s)
- Marie L Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Shali Tayebi
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Massling
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
7
|
Touri L, Tarantini A, Suehs C, Nogué E, Marie-Desvergne C, Dubosson M, Dauba A, Ravanat JL, Chamel V, Klerlein M, Artous S, Locatelli D, Jacquinot S, Chanez P, Vachier I, Molinari N. Occupational exposure to aerosols in two French airports: multi-year lung function changes. Ann Work Expo Health 2025; 69:17-33. [PMID: 39585315 DOI: 10.1093/annweh/wxae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
As differential exposure to airport-generated aerosols may affect employee lung function, the main objective of this study was to longitudinally evaluate spirometry measures among Air France employees. In addition, an exploratory exposure assessment to airport aerosol was performed in a small cohort of workers using personal monitoring devices. Change in lung function over a ~6.6-yr period was documented for office workers (n = 68) and mechanics (n = 83) at Paris-Roissy airport, France and terminal (n = 29), or apron (n = 35) workers at Marseille airport, France. Overall, an excessive decline in lung function was found for 24.75% of airport workers; excessive decline occurred more often for terminal workers (44.83%) as compared to mechanics (14.47%; P = 0.0056), with a similar tendency for apron workers (35.29%) as compared to mechanics (P = 0.0785). Statistically significant differences/tendencies were detected among the yearly rates of change for %-predicted values of forced expiratory volume in 1 s, forced vital capacity, peak expiratory flow, and from 25% to 75% forced expiratory flow. For the latter variables, the terminal and/or apron workers at Marseille generally had significantly faster lung function decline as compared to office workers and/or mechanics in Paris, although the latter were exposed to a higher level of elemental carbon. No relation between lung function decline and exposure to airport tarmac environments was evidenced. Multivariate exploration of individual variables representing sex, smoking, atopy, respiratory disease, residential PM2.5 pollution, the peak size of particles in lung exhalates or exhaled carbon monoxide at the time of follow-up failed to explain the observed differences. In conclusion, this study documents the first evidence of excessive lung function decline among certain airport workers in France, although the identification of emission sources (environmental factors, aircraft exhaust, etc) remains challenging.
Collapse
Affiliation(s)
- Léa Touri
- Air France Occupational Health Department, 45 rue de Paris, 95747 Roissy Charles De Gaulle, France
| | - Adeline Tarantini
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Carey Suehs
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, 39 avenue Charles Flahaut, 34295 Montpellier, France
| | - Erika Nogué
- Clinical Research and Epidemiology Unit, University of Montpellier, CHU Montpellier, 39 avenue Charles Flahaut, 34295 Montpellier, France
| | - Caroline Marie-Desvergne
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Muriel Dubosson
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Ambre Dauba
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Luc Ravanat
- University Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 17 avenue des Martyrs, 38000 Grenoble, France
| | - Véronique Chamel
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Michel Klerlein
- Air France Occupational Health Department, 45 rue de Paris, 95747 Roissy Charles De Gaulle, France
| | - Sébastien Artous
- University Grenoble Alpes, CEA, Liten, DTNM, 17 avenue des Martyrs, 38000 Grenoble, France
| | - Dominique Locatelli
- University Grenoble Alpes, CEA, Liten, DTNM, 17 avenue des Martyrs, 38000 Grenoble, France
| | - Sébastien Jacquinot
- University Grenoble Alpes, CEA, Liten, DTNM, 17 avenue des Martyrs, 38000 Grenoble, France
| | - Pascal Chanez
- Department of Respiratory diseases, AP-HM CIC Nord, INSERM, INRAE, C2VN, Aix Marseille University, 7 rue Scudery, 130007 Marseille, France
| | - Isabelle Vachier
- Medicine Biology Mediterranee, Department of Respiratory Diseases and Addictology, Arnaud de Villeneuve Hospital, CHRU Montpellier, France
| | - Nicolas Molinari
- IDESP, INSERM, Premedical, INRIA, University of Montpellier, CHU Montpellier, 39 avenue Charles Flahaut, 34295 Montpellier, France
| |
Collapse
|
8
|
Hassan M, Vinagolu-Baur J, Li V, Frasier K, Herrick G, Scotto T, Rankin E. E-cigarettes and arterial health: A review of the link between vaping and atherosclerosis progression. World J Cardiol 2024; 16:707-719. [PMID: 39734821 PMCID: PMC11669975 DOI: 10.4330/wjc.v16.i12.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024] Open
Abstract
Recent studies have suggested an evolving understanding of the association between vaping, specifically electronic cigarette (e-cigarette) use, and the progression of atherosclerosis, a significant contributor to cardiovascular disease. Despite the prevailing perception of vaping as a safer alternative to traditional tobacco smoking, accumulating evidence suggests that the aerosols emitted by e-cigarettes contain harmful constituents that may promote endothelial dysfunction, oxidative stress, inflammation, and dyslipidemia-key mechanisms implicated in atherosclerosis pathogenesis. While past research, including experimental studies and clinical investigations, has shed light on the potential cardiovascular risks associated with vaping, gaps in knowledge persist. Future research endeavors should focus on interpreting the long-term effects of vaping on atherosclerosis development and progression, exploring the impact of different e-cigarette formulations and user demographics, and identifying effective strategies for mitigating the cardiovascular consequences of vaping. By identifying and addressing these research gaps, we can enhance our understanding of the cardiovascular implications of vaping and inform evidence-based interventions and policies to safeguard public health.
Collapse
Affiliation(s)
- Muhammad Hassan
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States
| | - Julia Vinagolu-Baur
- Department of Medical Education, State University of New York, Upstate Medical University, Syracuse, NY 13210, United States
| | - Vivian Li
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States.
| | - Kelly Frasier
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States
| | - Grace Herrick
- Department of Medical Education, Alabama College of Osteopathic Medicine, Dothan, AL 36303, United States
| | - Tiffany Scotto
- Department of Medicine, University of Florida Health, Jacksonville, FL 32209, United States
| | - Erica Rankin
- Department of Medical Education, Nova Southeastern University Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL 33328, United States
| |
Collapse
|
9
|
Li D, Wu D, Gui X, Liao S, Zhu M, Yu F, Zheng J. Exploring ultrafine particle emission characteristics from in-use light-duty diesel trucks in China using a portable measurement system. ENVIRONMENTAL RESEARCH 2024; 263:120234. [PMID: 39461696 DOI: 10.1016/j.envres.2024.120234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Diesel vehicle exhaust is one of the major contributors to ultrafine particles (UFPs) in urban areas in China. However, there is still a lack of knowledge about UFPs emission characteristics from current in-use diesel vehicles. This study has carried out an on-road test of 10 in-use Light-duty Diesel Trucks (LDDTs) with different emission control standards in China using a self-established portable measurement system based on the Electronic Low-pressure Impactor (ELPI) and characterized the ultrafine particle number (PN) concentration, particle size distribution and metal element contents. The results revealed a significant reduction of 93.37% in the average PN0.1 emission factor of LDDTs from China III to China VI. Notably, LDDTs compliant with the China VI vehicle emission control standard exhibited the lowest PN0.1 and PM0.1 emission factors, measuring 4.991 × 1014 #/km and 0.627 g/km, respectively. By taking into account emissions under real driving conditions, we found that the PN emission rates grow with the increase of the Vehicle Specific Power (VSP). The cold-start phase had higher PN emissions than the hot-start phase, with 8590, 1890, 477, and 22 times higher than those of the ambient air (1.18 × 105 #/cm3), respectively. The installation of Diesel Particulate Filter (DPF) can decrease UFPs by more than 99.8%, while the PN emission factor during the DPF regeneration stage (1.85 × 1016 #/km) increased by 5 orders of magnitude that of the DPF normal works (7.51 × 1011 #/km). Metal element contents analysis shows that Fe, Ca, Al and Mg are the dominant elements in UFPs of LDDT exhaust gas, but the element of Ni is slightly increasing in a China VI, possibly due to the new automotive engine exhaust manifolds being made of Ni instead of cast iron for the purpose of having more high-temperature resistance. Our study demonstrates the importance of monitoring and routine maintenance of exhaust after-treatment systems.
Collapse
Affiliation(s)
- Dong Li
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Dongyang Wu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Xiaoliang Gui
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Songdi Liao
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Manni Zhu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Fei Yu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511436, China
| | - Junyu Zheng
- Sustainable Energy and Environmental Thrust, the Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
10
|
Lloyd M, Olaniyan T, Ganji A, Xu J, Venuta A, Simon L, Zhang M, Saeedi M, Yamanouchi S, Wang A, Schmidt A, Chen H, Villeneuve P, Apte J, Lavigne E, Burnett RT, Tjepkema M, Hatzopoulou M, Weichenthal S. Airborne Nanoparticle Concentrations Are Associated with Increased Mortality Risk in Canada's Two Largest Cities. Am J Respir Crit Care Med 2024; 210:1338-1347. [PMID: 38924496 PMCID: PMC11622438 DOI: 10.1164/rccm.202311-2013oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/26/2024] [Indexed: 06/28/2024] Open
Abstract
Rationale: Outdoor fine particulate air pollution (particulate matter with an aerodynamic diameter ⩽2.5 μm; PM2.5) contributes to millions of deaths around the world each year, but much less is known about the long-term health impacts of other particulate air pollutants, including ultrafine particles (a.k.a. nanoparticles), which are in the nanometer-size range (<100 nm), widespread in urban environments, and not currently regulated. Objectives: We sought to estimate the associations between long-term exposure to outdoor ultrafine particles and mortality. Methods: Outdoor air pollution levels were linked to the residential addresses of a large, population-based cohort from 2001 to 2016. Associations between long-term exposure to outdoor ultrafine particles and nonaccidental and cause-specific mortality were estimated using Cox proportional hazards models. Measurements and Main Results: An increase in long-term exposure to outdoor ultrafine particles was associated with an increased risk of nonaccidental mortality (hazard ratio = 1.073; 95% confidence interval = 1.061-1.085) and cause-specific mortality, the strongest of which was respiratory mortality (hazard ratio = 1.174; 95% confidence interval = 1.130-1.220). We estimated the mortality burden for outdoor ultrafine particles in Montreal and Toronto, Canada, to be approximately 1,100 additional nonaccidental deaths every year. Furthermore, we observed possible confounding by particle size, which suggests that previous studies may have underestimated or missed important health risks associated with ultrafine particles. Conclusions: As outdoor ultrafine particles are not currently regulated, there is great potential for future regulatory interventions to improve population health by targeting these common outdoor air pollutants.
Collapse
Affiliation(s)
- Marshall Lloyd
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | | | - Arman Ganji
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Junshi Xu
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alessya Venuta
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | - Leora Simon
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | - Mingqian Zhang
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milad Saeedi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shoma Yamanouchi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - An Wang
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Schmidt
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | - Hong Chen
- Health Canada, Ottawa, Ontario, Canada
| | - Paul Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Joshua Apte
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California; and
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| |
Collapse
|
11
|
Garcia-Marlès M, Lara R, Reche C, Pérez N, Tobías A, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Weidinger T, Hueglin C, Mihalopoulos N, Grivas G, Kalkavouras P, Ondracek J, Zikova N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Diapouli E, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Hoffmann B, Altug H, Petit JE, Acharja P, Favez O, Santos SMD, Putaud JP, Dinoi A, Contini D, Casans A, Casquero-Vera JA, Crumeyrolle S, Bourrianne E, Poppel MV, Dreesen FE, Harni S, Timonen H, Lampilahti J, Petäjä T, Pandolfi M, Hopke PK, Harrison RM, Alastuey A, Querol X. Source apportionment of ultrafine particles in urban Europe. ENVIRONMENT INTERNATIONAL 2024; 194:109149. [PMID: 39566442 DOI: 10.1016/j.envint.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method. Datasets evaluated include 14 urban background (UB), 5 traffic (TR), 4 suburban background (SUB), and 1 regional background (RB) sites, covering 18 European and 1 USA cities, over the period, when available, from 2009 to 2019. Ten factors were identified (4 road traffic factors, photonucleation, urban background, domestic heating, 2 regional factors and long-distance transport), with road traffic being the primary contributor at all UB and TR sites (56-95 %), and photonucleation being also significant in many cities. The trends analyses showed a notable decrease in traffic-related UFP ambient concentrations, with statistically significant decreasing trends for the total traffic-related factors of -5.40 and -2.15 % yr-1 for the TR and UB sites, respectively. This abatement is most probably due to the implementation of European emissions standards, particularly after the introduction of diesel particle filters (DPFs) in 2011. However, DPFs do not retain nucleated particles generated during the dilution of diesel exhaust semi-volatile organic compounds (SVOCs). Trends in photonucleation were more diverse, influenced by a reduction in the condensation sink potential facilitating new particle formation (NPF) or by a decrease in the emissions of UFP precursors. The decrease of primary PM emissions and precursors of UFP also contributed to the reduction of urban and regional background sources.
Collapse
Affiliation(s)
- Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, 08028, Spain.
| | - Rosa Lara
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Manresa, 08242, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Weidinger
- Department of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Duebendorf, Switzerland
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Georgios Grivas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Panayiotis Kalkavouras
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Jakub Ondracek
- Research Group of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Nadezda Zikova
- Research Group of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Box 8136, 104 20 Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | | | | | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, German
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Prodip Acharja
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550 Verneuil-en-Halatte, France
| | | | | | - Adelaide Dinoi
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | - Suzanne Crumeyrolle
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Eric Bourrianne
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Martine Van Poppel
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Freja E Dreesen
- Flanders Environment Agency, Dokter De Moorstraat 24-26, 9300, Aalst, Belgium
| | - Sami Harni
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
12
|
Vachon J, Buteau S, Liu Y, Van Ryswyk K, Hatzopoulou M, Smargiassi A. Spatial and spatiotemporal modelling of intra-urban ultrafine particles: A comparison of linear, nonlinear, regularized, and machine learning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176523. [PMID: 39326743 DOI: 10.1016/j.scitotenv.2024.176523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Machine learning methods are proposed to improve the predictions of ambient air pollution, yet few studies have compared ultrafine particles (UFP) models across a broad range of statistical and machine learning approaches, and only one compared spatiotemporal models. Most reported marginal differences between methods. This limits our ability to draw conclusions about the best methods to model ambient UFPs. OBJECTIVE To compare the performance and predictions of statistical and machine learning methods used to model spatial and spatiotemporal ambient UFPs. METHODS Daily and annual models were developed from UFP measurements from a year-long mobile monitoring campaign in Quebec City, Canada, combined with 262 geospatial and six meteorological predictors. Various road segment lengths were considered (100/300/500 m) for UFP data aggregation. Four statistical methods included linear, non-linear, and regularized regressions, whereas eight machine learning regressions utilized tree-based, neural networks, support vector, and kernel ridge algorithms. Nested cross-validation was used for model training, hyperparameter tuning and performance evaluation. RESULTS Mean annual UFP concentrations was 13,335 particles/cm3. Machine learning outperformed statistical methods in predicting UFPs. Tree-based methods performed best across temporal scales and segment lengths, with XGBoost producing the overall best performing models (annual R2 = 0.78-0.86, RMSE = 2163-2169 particles/cm3; daily R2 = 0.47-0.48, RMSE = 8651-11,422 particles/cm3). With 100 m segments, other annual models performed similarly well, but their prediction surfaces of annual mean UFP concentrations showed signs of overfitting. Spatial aggregation of monitoring data significantly impacted model performance. Longer segments yielded lower RMSE in all daily models and for annual statistical models, but not for annual machine learning models. CONCLUSIONS The use of tree-based methods significantly improved spatiotemporal predictions of UFP concentrations, and to a lesser extent annual concentrations. Segment length and hyperparameter tuning had notable impacts on model performance and should be considered in future studies.
Collapse
Affiliation(s)
- Julien Vachon
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Canada; Center for Public Health Research (CReSP), University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada
| | - Stéphane Buteau
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Canada; Center for Public Health Research (CReSP), University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada
| | - Ying Liu
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Canada
| | - Keith Van Ryswyk
- Air Pollution Exposure Science Section, Water and Air Quality Bureau, Health Canada, Ottawa, Canada
| | | | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Canada; Center for Public Health Research (CReSP), University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada.
| |
Collapse
|
13
|
Balmes JR, Hansel NN. Tiny Particles, Big Health Impacts. Am J Respir Crit Care Med 2024; 210:1291-1292. [PMID: 39212654 PMCID: PMC11622430 DOI: 10.1164/rccm.202407-1476ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- John R Balmes
- Department of Medicine University of California, San Francisco San Francisco, California
- School of Public Health University of California, Berkeley Berkeley, California
| | - Nadia N Hansel
- Department of Medicine Johns Hopkins School of Medicine Baltimore, Maryland
| |
Collapse
|
14
|
Das A, Pantzke J, Jeong S, Hartner E, Zimmermann EJ, Gawlitta N, Offer S, Shukla D, Huber A, Rastak N, Meščeriakovas A, Ivleva NP, Kuhn E, Binder S, Gröger T, Oeder S, Delaval M, Czech H, Sippula O, Schnelle-Kreis J, Di Bucchianico S, Sklorz M, Zimmermann R. Generation, characterization, and toxicological assessment of reference ultrafine soot particles with different organic content for inhalation toxicological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175727. [PMID: 39181261 DOI: 10.1016/j.scitotenv.2024.175727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ultrafine particles (UFP) are the smallest atmospheric particulate matter linked to air pollution-related diseases. The extent to which UFP's physical and chemical properties contribute to its toxicity remains unclear. It is hypothesized that UFP act as carriers for chemicals that drive biological responses. This study explores robust methods for generating reference UFP to understand these mechanisms and perform toxicological tests. Two types of combustion-related UFP with similar elemental carbon cores and physical properties but different organic loads were generated and characterized. Human alveolar epithelial cells were exposed to these UFP at the air-liquid interface, and several toxicological endpoints were measured. UFP were generated using a miniCAST under fuel-rich conditions and immediately diluted to minimize agglomeration. A catalytic stripper and charcoal denuder removed volatile gases and semi-volatile particles from the surface. By adjusting the temperature of the catalytic stripper, UFP with high and low organic content was produced. These reference particles exhibited fractal structures with high reproducibility and stability over a year, maintaining similar mass and number concentrations (100 μg/m3, 2.0·105 #/cm3) and a mean particle diameter of about 40 nm. High organic content UFP had significant PAH levels, with benzo[a]pyrene at 0.2 % (m/m). Toxicological evaluations revealed that both UFP types similarly affected cytotoxicity and cell viability, regardless of organic load. Higher xenobiotic metabolism was noted for PAH-rich UFP, while reactive oxidation markers increased when semi-volatiles were stripped off. Both UFP types caused DNA strand breaks, but only the high organic content UFP induced DNA oxidation. This methodology allows modification of UFP's chemical properties while maintaining comparable physical properties, linking these variations to biological responses.
Collapse
Affiliation(s)
- Anusmita Das
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Deeksha Shukla
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Arūnas Meščeriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Natalia P Ivleva
- Chair of Analytical Chemistry and Water Chemistry, Institute of Water Chemistry, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mathilde Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| |
Collapse
|
15
|
Gerber LS, de Leijer DCA, Rujas Arranz A, Lehmann JMML, Verheul ME, Cassee FR, Westerink RHS. Comparison of the neurotoxic potency of different ultrafine particle fractions from diesel engine exhaust following direct and simulated inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175469. [PMID: 39153615 DOI: 10.1016/j.scitotenv.2024.175469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Exposure to traffic-related air pollution and ultrafine particles (<100 nm; UFP) is linked with neurodegeneration. However, the impact of the aromatic content in fuels and the contribution of different fractions of UFP, i.e., solid UFP vs SVOC UFP, on neuronal function is unknown. We therefore studied effects on neuronal activity and viability in rat primary cortical cells exposed for up to 120 h to copper oxide particles (CuO) or UFP (solid and SVOC) emitted from a heavy-duty diesel engine fueled with petroleum diesel (A20; 20 % aromatics) or Hydrotreated Vegetable Oil-type fuel (A0; 0.1 % aromatics), or solid UFP emitted from a non-road Kubota engine fueled with A20. Moreover, effects of UFP and CuO upon simulated inhalation exposure were studied by exposing an lung model (Calu-3 and THP-1 cells) for 48 h and subsequently exposing the cortical cells to the medium collected from the basal compartment of the lung model. Additionally, cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress were studied in the lung model after 48 h exposure to UFP and CuO. Compared to control, direct exposure to CuO and SVOC UFP decreased neuronal activity, which was partly associated with cytotoxicity. Effects on neuronal activity upon direct exposure to solid UFP were limited. A20-derived UFP (solid and SVOC) were more potent in altering neuronal function and viability than A0 counterparts. Effects on neuronal activity from simulated inhalation exposure were minor compared to direct exposures. In the lung model, CuO and A20-derived UFP increased cytokine release compared to control, whereas CuO and SVOC A20 altered gene expression indicative for oxidative stress. Our data indicate that SVOC UFP exhibit higher (neuro)toxic potency for altering neuronal activity in rat primary cortical cells than the solid fraction. Moreover, our data suggest that reducing the aromatic content in fuel decreases the (neuro)toxic potency of emitted UFP.
Collapse
Affiliation(s)
- Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dirk C A de Leijer
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrea Rujas Arranz
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jonas M M L Lehmann
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Meike E Verheul
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Flemming R Cassee
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Forastiere F, Orru H, Krzyzanowski M, Spadaro JV. The last decade of air pollution epidemiology and the challenges of quantitative risk assessment. Environ Health 2024; 23:98. [PMID: 39543692 PMCID: PMC11566658 DOI: 10.1186/s12940-024-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Epidemiologic research and quantitative risk assessment play a crucial role in transferring fundamental scientific knowledge to policymakers so they can take action to reduce the burden of ambient air pollution. This commentary addresses several challenges in quantitative risk assessment of air pollution that require close attention. The background to this discussion provides a summary of and conclusions from the epidemiological evidence on ambient air pollution and health outcomes accumulated since the 1990s. We focus on identifying relevant exposure-health outcome pairs, the associated concentration-response functions to be applied in a risk assessment, and several caveats in their application. We propose a structured and comprehensive framework for assessing the evidence levels associated with each exposure-health outcome pair within a health impact assessment context. Specific issues regarding the use of global or regional concentration-response functions, their shape, and the range of applicability are discussed.
Collapse
Affiliation(s)
- Francesco Forastiere
- National Research Council, IFT, Palermo, Italy.
- Environmental Research Group, Imperial College, London, UK.
| | - Hans Orru
- Unit of Sustainable Health, Umea University, Umea, Sweden
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | | | - Joseph V Spadaro
- Spadaro Environmental Research Consultants (SERC), Philadelphia, PA, USA
| |
Collapse
|
17
|
Lachowicz JI, Gać P. Short- and Long-Term Effects of Inhaled Ultrafine Particles on Blood Pressure: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:6802. [PMID: 39597946 PMCID: PMC11594296 DOI: 10.3390/jcm13226802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Air pollution contributes to up to 60% of premature mortality worldwide by worsening cardiovascular conditions. Ultrafine particles (UFPs) may negatively affect cardiovascular outcomes, and epidemiological studies have linked them to short- and long-term blood pressure (BP) imbalance. Methods: We conducted a systematic review and meta-analysis of the short- and long-term effects of UFP exposure on systolic (SBP) and diastolic (DBP) blood pressure. Eligibility criteria were established using the Population, Exposure, Comparator, Outcome, and Study Design (PECOS) model, and literature searches were conducted in Web of Science, PubMed, Embase, and Scopus for studies published between 1 January 2013 and 9 October 2024. Risk of Bias (RoB) was assessed following World Health Organization (WHO) instructions. Separate meta-analyses were performed for the short- and long-term effects of UFP exposure on SBP and DBP. Additionally, we analyzed SBP and DBP imbalances across different timespans following short-term exposure. Results: The results showed an increase in BP during short-term UFP exposure, which returned to baseline values after a few hours. Changes in SBP were greater than in DBP following both short- and long-term exposure. Prolonged exposure to UFPs is associated with increased SBP and concurrently low DBP values. Chronic exposure to UFPs may lead to a persistent increase in SBP, even without a concurrent increase in DBP. Conclusions: The findings presented here highlight that UFPs may contribute to worsening cardiovascular outcomes in vulnerable populations living in air-polluted areas.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Population Health, Division of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland;
| | | |
Collapse
|
18
|
Lei T, Xiang W, Zhao B, Hou C, Ge M, Wang W. Advances in analysis of atmospheric ultrafine particles and application in air quality, climate, and health research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175045. [PMID: 39067589 DOI: 10.1016/j.scitotenv.2024.175045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
There is growing interest in the contribution of ultrafine particles to air quality, climate, and human health. Ultrafine particles are of central significance for the influence of radiative forcing of climate change by involving in the formation of clouds and precipitation. Moreover, exposure to ultrafine particles can enhance the disease burden. The determination of those effects of ultrafine particles strongly depends on their chemical composition and physicochemical properties. This review focuses on the advanced techniques for the characterization of chemical composition and physicochemical properties of ultrafine particles in the past five years. The current analytical methodologies are broadly classified into electron and X-ray microscopy, optical spectroscopy and microscopy, electrical mobility, and mass spectrometry, and then described and discussed its operation principle, advantages, and limitations. Besides measurements, application of the state-of-the-art techniques is briefly reviewed to help us to promote a better understanding of atmospheric ultrafine particles relevant to air quality, climate, and health.
Collapse
Affiliation(s)
- Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Hou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Froeling F, Chen J, Meliefste K, Oldenwening M, Lenssen E, Vermeulen R, Gerlofs-Nijland M, van Triel J, Woutersen A, de Jonge D, Groenwold H, Bronsveld P, van Dinther D, Blom M, Hoek G. A co-created citizen science project on the short term effects of outdoor residential woodsmoke on the respiratory health of adults in the Netherlands. Environ Health 2024; 23:90. [PMID: 39443904 PMCID: PMC11515534 DOI: 10.1186/s12940-024-01124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIM Woodsmoke from household fireplaces contributes significantly to outdoor air pollution in the Netherlands. The current understanding of the respiratory health effects of exposure to smoke from residential wood burning is limited. This study investigated the association between short-term changes in outdoor woodsmoke exposure and lung function, respiratory symptoms, and medication use in adults in the Netherlands. METHODS This study was co-created with citizen scientists and other relevant stakeholders. A panel study was conducted with repeated observations in 46 adults between February and May 2021 in four Dutch towns. Participants recorded their symptoms and medication use in daily diaries, and conducted morning and evening home spirometry measurements. Woodsmoke exposure was characterized by measuring levoglucosan (most specific marker for woodsmoke exposure), black/brown carbon, fine and ultrafine particulate matter at central monitoring sites. Individual woodsmoke perception (smell) was recorded in daily diaries. Linear and logistic regression models were used to investigate the association between respiratory health and woodsmoke exposure. Models were adjusted for time-varying confounders and accounted for repeated observations within participants. RESULTS Consistent positive associations were found between levoglucosan and shortness of breath (SOB) during rest and extra respiratory medication use. Odds ratios for current day exposure to levoglucosan were 1.12 (95% CI: 0.97, 1.30) for SOB during rest and 1.19 (95% CI: 1.07, 1.33) for extra medication use, expressed per interquartile range of levoglucosan concentrations (69.16 ng/m3). Positive non-significant associations were found between levoglucosan and nasal symptoms, cough and waking up with SOB. No consistent association was found between levoglucosan and lung function. Associations found between woodsmoke markers, SOB during rest and extra medication use remained after the inclusion of PM2.5 and UFP in two-pollutant models. CONCLUSIONS Adults experienced more SOB during rest, nasal symptoms and used more medication to treat respiratory symptoms on days with higher levels of outdoor woodsmoke concentrations.
Collapse
Affiliation(s)
- Frederique Froeling
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Marieke Oldenwening
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Esther Lenssen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Miriam Gerlofs-Nijland
- National Institute for Public Health and the Environment, RIVM, 3721 MA, Bilthoven, The Netherlands
| | - Jos van Triel
- National Institute for Public Health and the Environment, RIVM, 3721 MA, Bilthoven, The Netherlands
| | - Amber Woutersen
- National Institute for Public Health and the Environment, RIVM, 3721 MA, Bilthoven, The Netherlands
| | - Dave de Jonge
- Public Health Service of Amsterdam, GGD Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Henke Groenwold
- Public Health Service of Amsterdam, GGD Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Paula Bronsveld
- Institute for Applied Scientific Research (Netherlands), TNO, 1755, Petten, The Netherlands
| | - Danielle van Dinther
- Institute for Applied Scientific Research (Netherlands), TNO, 1755, Petten, The Netherlands
| | - Marcus Blom
- Institute for Applied Scientific Research (Netherlands), TNO, 1755, Petten, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
20
|
Zhai J, Shao S, Yang X, Zeng Y, Fu TM, Zhu L, Shen H, Ye J, Wang C, Tao S. Chemically Resolved Respiratory Deposition of Ultrafine Particles Characterized by Number Concentration in the Urban Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16507-16516. [PMID: 39223479 DOI: 10.1021/acs.est.4c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ultrafine particles (UFPs) dominate the atmospheric particles in number concentration, impacting human health and climate change. However, existing studies primarily rely on mass-based approaches, leading to a restricted understanding of the number-based and chemically resolved health effects of atmospheric UFPs. In this study, we utilized a high-mass-resolution single-particle aerosol mass spectrometer to investigate the online chemical composition and number size distribution of ultrafine, fine, and coarse particles during the summertime in urban Shenzhen, China. Human respiratory deposition dose assessments of particles with varying chemical compositions were further conducted by a respiratory deposition model. The results showed that during our observation, particles containing elemental carbon (EC) were the dominant components in UFPs (0.05-0.1 μm). Compared to fine and coarse particles, UFPs can deposit more deeply into the respiratory tract with a daily dose of ∼2.08 ± 0.67 billion particles. Among the deposited UFPs, EC-cluster particles constituted ∼85.7% in number fraction, accounting for a daily number dose of ∼1.78 billion particles, which poses a greater impact on human health. Simultaneously, we found discrepancies in the chemically resolved particle depositions among number-, surface area-, and mass-based approaches, emphasizing the importance of an appropriate metric for particle health-risk evaluation.
Collapse
Affiliation(s)
- Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Shi Shao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Shu Tao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| |
Collapse
|
21
|
Benam KH. Multidisciplinary approaches in electronic nicotine delivery systems pulmonary toxicology: emergence of living and non-living bioinspired engineered systems. COMMUNICATIONS ENGINEERING 2024; 3:123. [PMID: 39227652 PMCID: PMC11372223 DOI: 10.1038/s44172-024-00276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Technology-based platforms offer crucial support for regulatory agencies in overseeing tobacco products to enhance public health protection. The use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes, has surged exponentially over the past decade. However, the understanding of the impact of ENDS on lung health remains incomplete due to scarcity of physiologically relevant technologies for evaluating their toxicity. This review examines the societal and public health impacts of ENDS, prevalent preclinical approaches in pulmonary space, and the application of emerging Organ-on-Chip technologies and bioinspired robotics for assessing ENDS respiratory toxicity. It highlights challenges in ENDS inhalation toxicology and the value of multidisciplinary bioengineering approaches for generating reliable, human-relevant regulatory data at an accelerated pace.
Collapse
Affiliation(s)
- Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Portugal J, Bedia C, Amato F, Juárez-Facio AT, Stamatiou R, Lazou A, Campiglio CE, Elihn K, Piña B. Toxicity of airborne nanoparticles: Facts and challenges. ENVIRONMENT INTERNATIONAL 2024; 190:108889. [PMID: 39042967 DOI: 10.1016/j.envint.2024.108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Air pollution is one of the most severe environmental healthhazards, and airborne nanoparticles (diameter <100 nm) are considered particularly hazardous to human health. They are produced by various sources such as internal combustion engines, wood and biomass burning, and fuel and natural gas combustion, and their origin, among other parameters, determines their intrinsic toxicity for reasons that are not yet fully understood. Many constituents of the nanoparticles are considered toxic or at least hazardous, including polycyclic aromatic hydrocarbons (PAHs) and heavy metal compounds, in addition to gaseous pollutants present in the aerosol fraction, such as NOx, SO2, and ozone. All these compounds can cause oxidative stress, mitochondrial damage, inflammation in the lungs and other tissues, and cellular organelles. Epidemiological investigations concluded that airborne pollution may affect the respiratory, cardiovascular, and nervous systems. Moreover, particulate matter has been linked to an increased risk of lung cancer, a carcinogenic effect not related to DNA damage, but to the cellular inflammatory response to the pollutants, in which the release of cytokines promotes the proliferation of pre-existing mutated cancer cells. The mechanisms behind toxicity can be investigated experimentally using cell cultures or animal models. Methods for gathering particulate matter have been explored, but standardized protocols are needed to ensure that the samples accurately represent chemical mixtures in the environment. Toxic constituents of nanoparticles can be studied in animal and cellular models, but designing realistic exposure settings is challenging. The air-liquid interface (ALI) system directly exposes cells, mimicking particle inhalation into the lungs. Continuous research and monitoring of nanoparticles and other airborne pollutants is essential for understanding their effects and developing active strategies to mitigate their risks to human and environmental health.
Collapse
Affiliation(s)
- José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain.
| | - Carmen Bedia
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain
| | - Ana T Juárez-Facio
- Department of Environmental Science, Stockholm University, 11419 Stockholm, Sweden
| | - Rodopi Stamatiou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chiara E Campiglio
- Department of Management, Information and Production Engineering, University of Bergamo, 24044 Dalmine, BG, Italy
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11419 Stockholm, Sweden
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034 Barcelona, Spain.
| |
Collapse
|
23
|
Vohl S, Kristl M, Stergar J. Harnessing Magnetic Nanoparticles for the Effective Removal of Micro- and Nanoplastics: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1179. [PMID: 39057856 PMCID: PMC11279442 DOI: 10.3390/nano14141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The spread of micro- (MPs) and nanoplastics (NPs) in the environment has become a significant environmental concern, necessitating effective removal strategies. In this comprehensive scientific review, we examine the use of magnetic nanoparticles (MNPs) as a promising technology for the removal of MPs and NPs from water. We first describe the issues of MPs and NPs and their impact on the environment and human health. Then, the fundamental principles of using MNPs for the removal of these pollutants will be presented, emphasizing that MNPs enable the selective binding and separation of MPs and NPs from water sources. Furthermore, we provide a short summary of various types of MNPs that have proven effective in the removal of MPs and NPs. These include ferromagnetic nanoparticles and MNPs coated with organic polymers, as well as nanocomposites and magnetic nanostructures. We also review their properties, such as magnetic saturation, size, shape, surface functionalization, and stability, and their influence on removal efficiency. Next, we describe different methods of utilizing MNPs for the removal of MPs and NPs. We discuss their advantages, limitations, and potential for further development in detail. In the final part of the review, we provide an overview of the existing studies and results demonstrating the effectiveness of using MNPs for the removal of MPs and NPs from water. We also address the challenges that need to be overcome, such as nanoparticle optimization, process scalability, and the removal and recycling of nanoparticles after the completion of the process. This comprehensive scientific review offers extensive insights into the use of MNPs for the removal of MPs and NPs from water. With improved understanding and the development of advanced materials and methods, this technology can play a crucial role in addressing the issues of MPs and NPs and preserving a clean and healthy environment. The novelty of this review article is the emphasis on MNPs for the removal of MPs and NPs from water and a detailed review of the advantages and disadvantages of various MNPs for the mentioned application. Additionally, a review of a large number of publications in this field is provided.
Collapse
Affiliation(s)
| | | | - Janja Stergar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (S.V.); (M.K.)
| |
Collapse
|
24
|
Miller MR, Landrigan PJ, Arora M, Newby DE, Münzel T, Kovacic JC. Environmentally Not So Friendly: Global Warming, Air Pollution, and Wildfires: JACC Focus Seminar, Part 1. J Am Coll Cardiol 2024; 83:2291-2307. [PMID: 38839204 DOI: 10.1016/j.jacc.2024.03.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 06/07/2024]
Abstract
Environmental stresses are increasingly recognized as significant risk factors for adverse health outcomes. In particular, various forms of pollution and climate change are playing a growing role in promoting noncommunicable diseases, especially cardiovascular disease. Given recent trends, global warming and air pollution are now associated with substantial cardiovascular morbidity and mortality. As a vicious cycle, global warming increases the occurrence, size, and severity of wildfires, which are significant sources of airborne particulate matter. Exposure to wildfire smoke is associated with cardiovascular disease, and these effects are underpinned by mechanisms that include oxidative stress, inflammation, impaired cardiac function, and proatherosclerotic effects in the circulation. In the first part of a 2-part series on pollution and cardiovascular disease, this review provides an overview of the impact of global warming and air pollution, and because of recent events and emerging trends specific attention is paid to air pollution caused by wildfires.
Collapse
Affiliation(s)
- Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, Massachusetts, USA; Scientific Center of Monaco, Monaco
| | - Manish Arora
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; School of Human Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
25
|
Teixeira J, Sousa G, Azevedo R, Almeida A, Delerue-Matos C, Wang X, Santos-Silva A, Rodrigues F, Oliveira M. Characterization of Wildland Firefighters' Exposure to Coarse, Fine, and Ultrafine Particles; Polycyclic Aromatic Hydrocarbons; and Metal(loid)s, and Estimation of Associated Health Risks. TOXICS 2024; 12:422. [PMID: 38922102 PMCID: PMC11209316 DOI: 10.3390/toxics12060422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Firefighters' occupational activity causes cancer, and the characterization of exposure during firefighting activities remains limited. This work characterizes, for the first time, firefighters' exposure to (coarse/fine/ultrafine) particulate matter (PM) bound polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s during prescribed fires, Fire 1 and Fire 2 (210 min). An impactor collected 14 PM fractions, the PM levels were determined by gravimetry, and the PM-bound PAHs and metal(loid)s were determined by chromatographic and spectroscopic methodologies, respectively. Firefighters were exposed to a total PM level of 1408.3 and 342.5 µg/m3 in Fire 1 and Fire 2, respectively; fine/ultrafine PM represented more than 90% of total PM. Total PM-bound PAHs (3260.2 ng/m3 in Fire 1; 412.1 ng/m3 in Fire 2) and metal(loid)s (660.8 ng/m3 versus 262.2 ng/m3), distributed between fine/ultrafine PM, contained 4.57-24.5% and 11.7-12.6% of (possible/probable) carcinogenic PAHs and metal(loid)s, respectively. Firefighters' exposure to PM, PAHs, and metal(loid)s were below available occupational limits. The estimated carcinogenic risks associated with the inhalation of PM-bound PAHs (3.78 × 10-9 - 1.74 × 10-6) and metal(loid)s (1.50 × 10-2 - 2.37 × 10-2) were, respectively, below and 150-237 times higher than the acceptable risk level defined by the USEPA during 210 min of firefighting activity and assuming a 40-year career as a firefighter. Additional studies need to (1) explore exposure to (coarse/fine/ultrafine) PM, (2) assess health risks, (3) identify intervention needs, and (4) support regulatory agencies recommending mitigation procedures to reduce the impact of fire effluents on firefighters.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
- REQUIMTE/UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Gabriel Sousa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Rui Azevedo
- REQUIMTE/LAQV, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Agostinho Almeida
- REQUIMTE/LAQV, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Alice Santos-Silva
- REQUIMTE/UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| |
Collapse
|
26
|
Qi Q, Yu F, Nair AA, Lau SSS, Luo G, Mithu I, Zhang W, Li S, Lin S. Hidden danger: The long-term effect of ultrafine particles on mortality and its sociodemographic disparities in New York State. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134317. [PMID: 38636229 DOI: 10.1016/j.jhazmat.2024.134317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Although previous studies have shown increased health risks of particulate matters, few have evaluated the long-term health impacts of ultrafine particles (UFPs or PM0.1, ≤ 0.1 µm in diameter). This study assessed the association between long-term exposure to UFPs and mortality in New York State (NYS), including total non-accidental and cause-specific mortalities, sociodemographic disparities and seasonal trends. Collecting data from a comprehensive chemical transport model and NYS Vital Records, we used the interquartile range (IQR) and high-level UFPs (≥75 % percentile) as indicators to link with mortalities. Our modified difference-in-difference model controlled for other pollutants, meteorological factors, spatial and temporal confounders. The findings indicate that long-term UFPs exposure significantly increases the risk of non-accidental mortality (RR=1.10, 95 % CI: 1.05, 1.17), cardiovascular mortality (RR=1.11, 95 % CI: 1.05, 1.18) particularly for cerebrovascular (RR=1.21, 95 % CI: 1.10, 1.35) and pulmonary heart diseases (RR=1.33, 95 % CI: 1.13, 1.57), and respiratory mortality (borderline significance, RR=1.09, 95 % CI: 1.00, 1.18). Hispanics (RR=1.13, 95 % CI: 1.00, 1.29) and non-Hispanic Blacks (RR=1.40, 95 % CI: 1.16, 1.68) experienced significantly higher mortality risk after exposure to UFPs, compared to non-Hispanic Whites. Children under five, older adults, non-NYC residents, and winter seasons are more susceptible to UFPs' effects.
Collapse
Affiliation(s)
- Quan Qi
- Department of Economics, University at Albany, State University of New York, Albany, NY, USA
| | - Fangqun Yu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Arshad A Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Sam S S Lau
- Research Centre for Environment and Human Health & College of International Education, School of Continuing Education, Hong Kong Baptist University, Hong Kong, China; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong, China
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Imran Mithu
- Community, Environment and Policy Division, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sean Li
- Rausser College of Natural Resources, University of California, Berkeley, CA, USA
| | - Shao Lin
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA.
| |
Collapse
|
27
|
Jiang Y, Zhu X, Shen Y, He Y, Fan H, Xu X, Zhou L, Zhu Y, Xue X, Zhang Q, Du X, Zhang L, Zhang Y, Liu C, Niu Y, Cai J, Kan H, Chen R. Mechanistic insights into cardiovascular effects of ultrafine particle exposure: A longitudinal panel study. ENVIRONMENT INTERNATIONAL 2024; 187:108714. [PMID: 38718674 DOI: 10.1016/j.envint.2024.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Ultrafine particle (UFP) has been linked with higher risks of cardiovascular diseases; however, the biological mechanisms remain to be fully elucidated. OBJECTIVES This study aims to investigate the cardiovascular responses to short-term UFP exposure and the biological pathways involved. METHODS A longitudinal panel study was conducted among 32 healthy, non-smoking young adults in Shanghai, China, who were engaged in five rounds of follow-ups between December 2020 and November 2021. Individual exposures were calculated based on the indoor and outdoor real-time measurements. Blood pressure, arterial stiffness, targeted biomarkers, and untargeted proteomics and metabolomics were examined during each follow-up. Linear mixed-effect models were applied to analyze the exposure and health data. The differential proteins and metabolites were used for pathway enrichment analyses. RESULTS Short-term UFP exposure was associated with significant increases in blood pressure and arterial stiffness. For example, systolic blood pressure increased by 2.10 % (95 % confidence interval: 0.63 %, 3.59 %) corresponding to each interquartile increase in UFP concentrations at lag 0-3 h, while pulse wave velocity increased by 2.26 % (95 % confidence interval: 0.52 %, 4.04 %) at lag 7-12 h. In addition, dozens of molecular biomarkers altered significantly. These effects were generally present within 24 h after UFP exposure, and were robust to the adjustment of co-pollutants. Molecular changes detected in proteomics and metabolomics analyses were mainly involved in systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and disturbance in lipid transport and metabolism. DISCUSSION This study provides novel and compelling evidence on the detrimental subclinical cardiovascular effects in response to short-term UFP exposure. The multi-omics profiling further offers holistic insights into the underlying biological pathways.
Collapse
Affiliation(s)
- Yixuan Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xinlei Zhu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yu He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Hao Fan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xueyi Xu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Lu Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yixiang Zhu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xiaowei Xue
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Qingli Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xihao Du
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Lina Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yue Niu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Jing Cai
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Renjie Chen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
28
|
Frampton MW. Do Ultrafine Particles Carry Any Weight When It Comes to Progression of Pulmonary Fibrosis? Am J Respir Crit Care Med 2024; 209:1050-1051. [PMID: 38306659 PMCID: PMC11092945 DOI: 10.1164/rccm.202312-2368ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024] Open
Affiliation(s)
- Mark W Frampton
- Department of Medicine University of Rochester Medical Center Rochester, New York
| |
Collapse
|
29
|
Ridolfo S, Amato F, Querol X. Particle number size distributions and concentrations in transportation environments: a review. ENVIRONMENT INTERNATIONAL 2024; 187:108696. [PMID: 38678934 DOI: 10.1016/j.envint.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Ambient air ultrafine particles (UFP, particles with a diameter <100 nm) have gained significant attention in World Health Organization (WHO) air quality guidelines and European legislation. This review explores UFP concentrations and particle number size distributions (PNC-PNSD) in various transportation hotspots, including road traffic, airports, harbors, trains, and urban commuting modes (walking, cycling, bus, tram, and subway). The results highlight the lack of information on personal exposure at harbors and railway stations, inside airplanes and trains, and during various other commuting modes. The different lower particle size limits of the reviewed measurements complicate direct comparisons between them. Emphasizing the use of instruments with detection limits ≤10 nm, this review underscores the necessity of following standardized UFP measurement protocols. Road traffic sites are shown to exhibit the highest PNC within cities, with PNC and PNSD in commuting modes driven by the proximity to road traffic and weather conditions. In closed environments, such as cars, buses, and trams, increased external air infiltration for ventilation correlates with elevated PNC and a shift in PNSD toward smaller diameters. Airports exhibit particularly elevated PNCs near runways, raising potential concerns about occupational exposure. Recommendations from this study include maintaining a substantial distance between road traffic and other commuting modes, integrating air filtration into ventilation systems, implementing low-emission zones, and advocating for a general reduction in road traffic to minimize daily UFP exposure. Our findings provide important insights for policy assessments and underscore the need for additional research to address current knowledge gaps.
Collapse
Affiliation(s)
- S Ridolfo
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - F Amato
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
30
|
Abrahamsson C, Rissler J, Kåredal M, Hedmer M, Suchorzewski J, Prieto M, Chaudhari OA, Gudmundsson A, Isaxon C. Characterization of airborne dust emissions from three types of crushed multi-walled carbon nanotube-enhanced concretes. NANOIMPACT 2024; 34:100500. [PMID: 38382676 DOI: 10.1016/j.impact.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
Dispersing Multi-Walled Carbon Nanotubes (MWCNTs) into concrete at low (<1 wt% in cement) concentrations may improve concrete performance and properties and provide enhanced functionalities. When MWCNT-enhanced concrete is fragmented during remodelling or demolition, the stiff, fibrous and carcinogenic MWCNTs will, however, also be part of the respirable particulate matter released in the process. Consequently, systematic aerosolizing of crushed MWCNT-enhanced concretes in a controlled environment and measuring the properties of this aerosol can give valuable insights into the characteristics of the emissions such as concentrations, size range and morphology. These properties impact to which extent the emissions can be inhaled as well as where they are expected to deposit in the lung, which is critical to assess whether these materials might constitute a future health risk for construction and demolition workers. In this work, the impact from MWCNTs on aerosol characteristics was assessed for samples of three concrete types with various amounts of MWCNT, using a novel methodology based on the continuous drop method. MWCNT-enhanced concretes were crushed, aerosolized and the emitted particles were characterized with online and offline techniques. For light-weight porous concrete, the addition of MWCNT significantly reduced the respirable mass fraction (RESP) and particle number concentrations (PNC) across all size ranges (7 nm - 20 μm), indicating that MWCNTs dampened the fragmentation process by possibly reinforcing the microstructure of brittle concrete. For normal concrete, the opposite could be seen, where MWCNTs resulted in drastic increases in RESP and PNC, suggesting that the MWCNTs may be acting as defects in the concrete matrix, thus enhancing the fragmentation process. For the high strength concrete, the fragmentation decreased at the lowest MWCNT concentration, but increased again for the highest MWCNT concentration. All tested concrete types emitted <100 nm particles, regardless of CNT content. SEM imaging displayed CNTs protruding from concrete fragments, but no free fibres were detected.
Collapse
Affiliation(s)
- Camilla Abrahamsson
- Division of Ergonomics and Aerosol Technology, Lund University, Lund 221 00, Sweden; NanoLund, Lund University, Box 118, Lund 221 00, Sweden.
| | - Jenny Rissler
- Division of Ergonomics and Aerosol Technology, Lund University, Lund 221 00, Sweden; NanoLund, Lund University, Box 118, Lund 221 00, Sweden; Research Institutes of Sweden, Lund 223 63, Sweden
| | - Monica Kåredal
- NanoLund, Lund University, Box 118, Lund 221 00, Sweden; Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 221 00, Sweden; Department of Occupational and Environmental Medicine, Region Skåne, Lund 223 81, Sweden
| | - Maria Hedmer
- NanoLund, Lund University, Box 118, Lund 221 00, Sweden; Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 221 00, Sweden; Department of Occupational and Environmental Medicine, Region Skåne, Lund 223 81, Sweden
| | - Jan Suchorzewski
- Research Institutes of Sweden, Infrastructure and Concrete Technology, Material Design, Borås 501 15, Sweden
| | - Miguel Prieto
- Research Institutes of Sweden, Infrastructure and Concrete Technology, Material Design, Borås 501 15, Sweden
| | - Ojas Arun Chaudhari
- Research Institutes of Sweden, Infrastructure and Concrete Technology, Material Design, Borås 501 15, Sweden
| | - Anders Gudmundsson
- Division of Ergonomics and Aerosol Technology, Lund University, Lund 221 00, Sweden; NanoLund, Lund University, Box 118, Lund 221 00, Sweden
| | - Christina Isaxon
- Division of Ergonomics and Aerosol Technology, Lund University, Lund 221 00, Sweden; NanoLund, Lund University, Box 118, Lund 221 00, Sweden
| |
Collapse
|
31
|
Amini H, Bergmann ML, Taghavi Shahri SM, Tayebi S, Cole-Hunter T, Kerckhoffs J, Khan J, Meliefste K, Lim YH, Mortensen LH, Hertel O, Reeh R, Gaarde Nielsen C, Loft S, Vermeulen R, Andersen ZJ, Schwartz J. Harnessing AI to unmask Copenhagen's invisible air pollutants: A study on three ultrafine particle metrics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123664. [PMID: 38431246 DOI: 10.1016/j.envpol.2024.123664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Ultrafine particles (UFPs) are airborne particles with a diameter of less than 100 nm. They are emitted from various sources, such as traffic, combustion, and industrial processes, and can have adverse effects on human health. Long-term mean ambient average particle size (APS) in the UFP range varies over space within cities, with locations near UFP sources having typically smaller APS. Spatial models for lung deposited surface area (LDSA) within urban areas are limited and currently there is no model for APS in any European city. We collected particle number concentration (PNC), LDSA, and APS data over one-year monitoring campaign from May 2021 to May 2022 across 27 locations and estimated annual mean in Copenhagen, Denmark, and obtained additionally annual mean PNC data from 6 state-owned continuous monitors. We developed 94 predictor variables, and machine learning models (random forest and bagged tree) were developed for PNC, LDSA, and APS. The annual mean PNC, LDSA, and APS were, respectively, 5523 pt/cm3, 12.0 μm2/cm3, and 46.1 nm. The final R2 values by random forest (RF) model were 0.93 for PNC, 0.88 for LDSA, and 0.85 for APS. The 10-fold, repeated 10-times cross-validation R2 values were 0.65, 0.67, and 0.60 for PNC, LDSA, and APS, respectively. The root mean square error for final RF models were 296 pt/cm3, 0.48 μm2/cm3, and 1.60 nm for PNC, LDSA, and APS, respectively. Traffic-related variables, such as length of major roads within buffers 100-150 m and distance to streets with various speed limits were amongst the highly-ranked predictors for our models. Overall, our ML models achieved high R2 values and low errors, providing insights into UFP exposure in a European city where average PNC is quite low. These hyperlocal predictions can be used to study health effects of UFPs in the Danish Capital.
Collapse
Affiliation(s)
- Heresh Amini
- Department of Environmental Medicine and Public Health, Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States.
| | - Marie L Bergmann
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Shali Tayebi
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Cole-Hunter
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Kees Meliefste
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Youn-Hee Lim
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Statistics Denmark, Copenhagen, Denmark
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Denmark
| | | | | | - Steffen Loft
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
32
|
Rodríguez-Maroto JJ, García-Alonso S, Rojas E, Sanz D, Ibarra I, Pérez-Pastor R, Pujadas M, Hormigo D, Sánchez J, Moreno PM, Sánchez M, Kılıc D, Williams PI. Characterization of PAHs bound to ambient ultrafine particles around runways at an international airport. CHEMOSPHERE 2024; 352:141440. [PMID: 38368961 DOI: 10.1016/j.chemosphere.2024.141440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The impact of airport activities on air quality, is not sufficiently documented. In order to better understand the magnitude and properly assess the sources of emissions in the sector, it is necessary to establish databases with real data on those pollutants that could have the greatest impact on both health and the environment. Particulate matter (PM), especially ultrafine particles, are a research priority, not only because of its physical properties, but also because of its ability to bind highly toxic compounds such as polycyclic aromatic hydrocarbons (PAHs). Samples of PM were collected in the ambient air around the runways at Barajas International Airport (Madrid, Spain) during October, November and December 2021. Samples were gathered using three different sampling systems and analysed to determine the concentration of PAHs bound to PM. A high-volume air sampler, a Berner low-pressure impactor, and an automated off-line sampler developed in-house were used. The agreement between the samplers was statistically verified from the PM and PAH results. The highest concentration of PM measured was 31 μg m-3, while the concentration of total PAH was 3 ng m-3, both comparable to those recorded in a semi-urban area of Madrid. The PAHs showed a similar profile to the particle size distribution, with a maximum in the 0.27-0.54 μm size range, being preferentially found in the submicron size fractions, with more than 84% and around 15-20% associated to UFPs. It was found that the ratio [PAHs(m)/PM(m)] was around 10-4 in the warmer period (October), whereas it more than doubled in the colder months (November-December). It is significant the shift in the relative distribution of compounds within these two periods, with a notable increase in the 5 and 6 ring proportions in the colder period. This increase was probably due to the additional contribution of other external sources, possibly thermal and related to combustion processes, as supported by the PAH diagnostic ratios.
Collapse
Affiliation(s)
- J J Rodríguez-Maroto
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain.
| | - S García-Alonso
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
| | - E Rojas
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
| | - D Sanz
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
| | - I Ibarra
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
| | - R Pérez-Pastor
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
| | - M Pujadas
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
| | - D Hormigo
- Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz, 28850, Spain
| | - J Sánchez
- Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz, 28850, Spain
| | - P M Moreno
- Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz, 28850, Spain
| | - M Sánchez
- Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz, 28850, Spain
| | - D Kılıc
- DEES and University of Manchester, Manchester, M13 9PL, UK
| | - P I Williams
- DEES and University of Manchester, Manchester, M13 9PL, UK; NCAS, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
33
|
Jiřík V, Římanová V, Janulková T, Siemiatkowski G, Osrodka L, Krajny E. Lifetime losses due to cardiovascular and respiratory diseases attributable to air pollution in polluted and unpolluted areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1525-1539. [PMID: 37356040 DOI: 10.1080/09603123.2023.2225426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
The article assesses differences in lifetime losses caused by premature deaths from cardiopulmonary disease in populations living in areas with different environmental burdens. The results provide different perspectives on data on total years lost and lifetime losses attributable to air pollution. Such lifetime losses in the industrial area related to cardiovascular causes of death are 7.6 or 5.1 years per male or female deceased, representing an average lifetime loss of 0.01907 years (i.e. 7 days) per 1 male or 0.01273 years (i.e. 4.6 days) per 1 female in the entire population. Losses related to cerebrovascular or respiratory causes of death are about 5.4 or 5.9 years per 1 deceased male or 3.9 or 5 years per 1 deceased female, respectively, which represents a loss of 0.00481 (1.8 days), or 0.00148 years (0.5 days) per 1 male or 0.00466 (1.7 days), or 0.00058 years (0.2 days) per 1 female.
Collapse
Affiliation(s)
- Vítězslav Jiřík
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Veronika Římanová
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Janulková
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | - Leszek Osrodka
- Centrum Badań i Rozwoju, Institute of Meteorology and Water Management National Research Institute, Warsaw, Poland
| | - Ewa Krajny
- Centrum Badań i Rozwoju, Institute of Meteorology and Water Management National Research Institute, Warsaw, Poland
| |
Collapse
|
34
|
Garcia-Marlès M, Lara R, Reche C, Pérez N, Tobías A, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Weidinger T, Hueglin C, Mihalopoulos N, Grivas G, Kalkavouras P, Ondráček J, Zíková N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Hoffmann B, Altug H, Petit JE, Favez O, Dos Santos SM, Putaud JP, Dinoi A, Contini D, Timonen H, Lampilahti J, Petäjä T, Pandolfi M, Hopke PK, Harrison RM, Alastuey A, Querol X. Inter-annual trends of ultrafine particles in urban Europe. ENVIRONMENT INTERNATIONAL 2024; 185:108510. [PMID: 38460241 DOI: 10.1016/j.envint.2024.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25-100 nm) and the Accumulation (100-800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.
Collapse
Affiliation(s)
- Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, 08028, Spain.
| | - Rosa Lara
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Manresa 08242, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Weidinger
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Duebendorf, Switzerland
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Georgios Grivas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Panayiotis Kalkavouras
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Jakub Ondráček
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i, Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Nadĕžda Zíková
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i, Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Box 8136, 104 20 Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | | | | | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, German
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550 Verneuil-en-Halatte, France
| | | | | | - Adelaide Dinoi
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
35
|
Pan H, Jarvis D, Potts J, Casas L, Nowak D, Heinrich J, Aymerich JG, Urrutia I, Martinez-Moratalla J, Gullón JA, Pereira-Vega A, Raherison C, Chanoine S, Demoly P, Leynaert B, Gislason T, Probst N, Abramson MJ, Jõgi R, Norbäck D, Sigsgaard T, Olivieri M, Svanes C, Fuertes E. Gas cooking indoors and respiratory symptoms in the ECRHS cohort. Int J Hyg Environ Health 2024; 256:114310. [PMID: 38183794 DOI: 10.1016/j.ijheh.2023.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Gas cooking is an important source of indoor air pollutants, and there is some limited evidence that it might adversely be associated with respiratory health. Using repeated cross-sectional data from the multi-centre international European Community Respiratory Health Survey, we assessed whether adults using gas cookers have increased risk of respiratory symptoms compared to those using electric cookers and tested whether there was effect modification by a priori selected factors. METHODS Data on respiratory symptoms and gas cooking were collected from participants at 26-55 and 38-67 years (median time between examinations 11.4 years) from interviewer-led questionnaires. Repeated associations between gas cooking (versus electric) and respiratory symptoms were estimated using multivariable mixed-effects logistic regression models adjusted for age, sex, study arm, smoking status, education level, and included random intercepts for participants within study centres. Analyses were repeated using a 3-level variable for type of cooker and gas source. Effect modification by ventilation habits, cooking duration, sex, age atopy, asthma, and study arm were examined. RESULTS The sample included 4337 adults (43.7% males) from 19 centres in 9 countries. Gas cooking increased the risk of "shortness of breath whilst at rest" (OR = 1.38; 95%CI: 1.06-1.79) and "wheeze with breathlessness" (1.32; 1.00-1.74). For several other symptoms, effect estimates were larger in those who used both gas hobs and ovens, had a bottled gas source and cooked for over 60 min per day. Stratifying results by sex and age found stronger associations in females and younger adults. CONCLUSION This multi-centre international study, using repeat data, suggested using gas cookers in the home was more strongly associated than electric cookers with certain respiratory symptoms in adults. As gas cooking is common, these results may play an important role in population respiratory health.
Collapse
Affiliation(s)
- Holly Pan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Debbie Jarvis
- National Heart and Lung Institute, Imperial College London, London, UK; MRC Centre for Environment & Health, London, UK
| | - James Potts
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lidia Casas
- Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Germany
| | - Judith Garcia Aymerich
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Isabel Urrutia
- Respiratory Department, Galdakao Hospital, OSI Barrualde-Galdakao, Biscay, Spain
| | - Jesus Martinez-Moratalla
- Servicio de Neumología del Complejo Hospitalario Universitario de Albacete. (CHUA) Albacete, Spain; Servicio de Salud de Castilla - La Mancha (SESCAM), Spain; Facultad de Medicina de Albacete. Universidad de Castilla - La Mancha, Albacete, Spain
| | | | | | | | | | - Pascal Demoly
- University Hospital of Montpellier, IDESP, Univ Montpellier - Inserm, Montpellier, France
| | - Bénédicte Leynaert
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Center for Epidemiology and Population Health (CESP), Integrative Respiratory Epidemiology Team, 94807, Villejuif, France; Landspitali University Hospital, Department of Sleep, Reykjavik Iceland
| | - Thorarinn Gislason
- University of Iceland, Medical Faculty, Reykjavik, Iceland; Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Rain Jõgi
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Dan Norbäck
- Occupational and Environmental Medicine, Department of Medical Science, University Hospital, Uppsala University, 75237, Uppsala, Sweden
| | - Torben Sigsgaard
- Department of Public Health, Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Mario Olivieri
- Unit of Occupational Medicine, Department of Diagnostics and Public Health, Policlinico "G. Rossi", Verona, Italy; Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, UK; MRC Centre for Environment & Health, London, UK.
| |
Collapse
|
36
|
Su WC, Lee J, Afshar M, Zhang K, Han I. Assessing community health risks from exposure to ultrafine particles containing transition metals in the Greater Houston Area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169067. [PMID: 38049001 PMCID: PMC11215817 DOI: 10.1016/j.scitotenv.2023.169067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Ultrafine particles (UFPs) in urban air environments have been an essential public health concern. The inhalation of UFPs can introduce transition metals contained in the UFP into the human airways, leading to adverse health effects. Therefore, it is crucial to investigate urban air UFP exposure and health risks induced by transition metals. This research carried out a series of field measurements to study urban air UFP exposure in the Greater Houston Area. Three sampling sites in the Greater Houston Area representing varying levels of UFP exposures were selected. The newly developed Mobile Aerosol Lung Deposition Apparatus (MALDA) which consists of a complete set of human airway replicas and a pair of UFP particle sizers was deployed in the sampling sites during three sampling timeframes (morning rush hours, noon, and afternoon rush hours) to obtain on-site UFP respiratory deposition data. UFP samples were collected at the sampling sites for metal composition analysis. The acquired UFP respiratory deposition data and UFP composition data were then used to calculate the respiratory deposited mass of transition metals and estimate the associated health risks for individuals living near sampling sites. Our results showed that transition metal-induced non-cancer risks caused by exposure to urban UFPs were within acceptable limits. The estimated lifetime excess cancer risks were generally <10-6, indicating an overall acceptable level of transition metal-induced cancer risk.
Collapse
Affiliation(s)
- Wei-Chung Su
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA; Southwest Center for Occupational and Environmental Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Jinho Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Masoud Afshar
- Southwest Center for Occupational and Environmental Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Inkyu Han
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, USA
| |
Collapse
|
37
|
Tariq M, Iqbal B, Khan I, Khan AR, Jho EH, Salam A, Zhou H, Zhao X, Li G, Du D. Microplastic contamination in the agricultural soil-mitigation strategies, heavy metals contamination, and impact on human health: a review. PLANT CELL REPORTS 2024; 43:65. [PMID: 38341396 DOI: 10.1007/s00299-024-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.
Collapse
Affiliation(s)
- Muhammad Tariq
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Ismail Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huan Zhou
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Zhenjiang New District Environmental Monitoring Station Co. Ltd, Zhenjiang, 212132, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
38
|
Badami MM, Tohidi R, Sioutas C. Los Angeles Basin's air quality transformation: a long-term investigation on the impacts of PM regulations on the trends of ultrafine particles and co-pollutants. JOURNAL OF AEROSOL SCIENCE 2024; 176:106316. [PMID: 38223364 PMCID: PMC10783618 DOI: 10.1016/j.jaerosci.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigates the long-term trends of ambient ultrafine particles (UFPs) and associated airborne pollutants in the Los Angeles Basin from 2007 to 2022, focusing on the indirect effects of regulations on UFP levels. The particle number concentration (PNC) of UFPs was compiled from previous studies in the area, and associated co-pollutant data, including nitrogen oxides (NOx), carbon monoxide (CO), elemental carbon (EC), organic carbon (OC), and ozone (O3), were obtained from the chemical speciation network (CSN) database. Over the study period, a general decrease was noted in the PNC of UFPs, NOx, EC, and OC, except for CO, the concentration trends of which did not exhibit a consistent pattern. UFPs, NOx, EC, and OC were positively correlated, while O3 had a negative correlation, especially with NOx. Our analysis discerned two distinct subperiods in pollutant trends: 2007-2015 and 2016-2022. For example, there was an overall decrease in the PNC of UFPs at an annual rate of -850.09 particles/cm3/year. This rate was more pronounced during the first sub-period (2007-2015) at -1814.9 particles/cm3/year and then slowed to -227.21 particles/cm3/year in the second sub-period (2016-2023). The first sub-period (2007-2015) significantly influenced pollutant level changes, exhibiting more pronounced and statistically significant changes than the second sub-period (2016-2022). Since 2016, almost all primary pollutants have stabilized, indicating a reduced impact of current regulations, and emphasizing the need for stricter standards. In addition, the study included an analysis of Vehicle Miles Traveled (VMT) trends from 2007 to 2022 within the Los Angeles Basin. Despite the general increase in VMT, current regulations and cleaner technologies seem to have successfully mitigated the potential increase in increase in PNC. Overall, while a decline in UFPs and co-pollutant levels was observed, the apparent stabilization of these levels underscores the need for more stringent regulatory measures and advanced emission standards.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
39
|
Hoffmann B, Ogurtsova K. Adding Pieces to the Puzzle: Ultrafine Particles and Lung Cancer. Am J Respir Crit Care Med 2024; 209:241-242. [PMID: 38113404 PMCID: PMC10840775 DOI: 10.1164/rccm.202311-2098ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Barbara Hoffmann
- Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | | |
Collapse
|
40
|
Al-Abadleh HA. Iron content in aerosol particles and its impact on atmospheric chemistry. Chem Commun (Camb) 2024. [PMID: 38268472 DOI: 10.1039/d3cc04614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Atmospheric aerosol effects on ecological and human health remain uncertain due to their highly complex and evolving nature when suspended in air. Atmospheric chemistry, global climate/oceanic and health exposure models need to incorporate more realistic representations of aerosol particles, especially their bulk and surface chemistry, to account for the evolution in aerosol physicochemical properties with time. (Photo)chemistry driven by iron (Fe) in atmospheric aerosol particles from natural and anthropogenic sources remains limited in these models, particularly under aerosol liquid water conditions. In this feature article, recent advances from our work on Fe (photo)reactivity in multicomponent aerosol systems are highlighted. More specifically, reactions of soluble Fe with aqueous extracts of biomass burning organic aerosols and proxies of humic like substances leading to brown carbon formation are presented. Some of these reactions produced nitrogen-containing gaseous and condensed phase products. For comparison, results from these bulk aqueous phase chemical studies were compared to those from heterogeneous reactions simulating atmospheric aging of Fe-containing reference materials. These materials include Arizona test dust (AZTD) and combustion fly ash particles. Also, dissolution of Fe and other trace elements is presented from simulated human exposure experiments to highlight the impact of aerosol aging on levels of trace metals. The impacts of these chemical reactions on aerosol optical, hygroscopic and morphological properties are also emphasized in light of their importance to aerosol-radiation and aerosol-cloud interactions, in addition to biogeochemical processes at the sea/ocean surface microlayer upon deposition. Future directions for laboratory studies on Fe-driven multiphase chemistry are proposed to advance knowledge and encourage collaborations for efficient utilization of expertise and resources among climate, ocean and health scientific communities.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
41
|
Wang L, Liu B, Shi L, Yan J, Tan W, Li C, Jia B, Wen W, Zhu K, Bai Z, Zhang W, Morawska L, Chen J, Wang J. Diverse Metabolic Effects of Cooking Oil Fume from Four Edible Oils on Human BEAS-2B Cells: Implications for Health Guidelines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1462-1472. [PMID: 38155590 DOI: 10.1021/acs.est.3c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The 2021 WHO guidelines stress the importance of measuring ultrafine particles using particle number concentration (PNC) for health assessments. However, commonly used particle metrics such as aerodynamic diameter and number concentrations do not fully capture the diverse chemical makeup of complex particles. To address this issue, our study used high-throughput mass spectrometry to analyze the properties of cooking oil fumes (COFs) in real time and evaluate their impact on BEAS-2B cell metabolism. Results showed insignificant differences in COF number size distributions between soybean oil and olive oil (peak concentrations of 5.20 × 105/cm3), as well as between corn oil and peanut oil (peak concentrations of 4.35 × 105/cm3). Despite the similar major chemical components among the four COFs, variations in metabolic damage were observed, indicating that the relatively small amount of chemical components of COFs can also influence particle behavior within the respiratory system, thereby impacting biological responses. Additionally, interactions between accompanying gaseous COFs and particles may alter their chemical composition through various mechanisms, introducing additional chemicals and modifying existing proportions. Hence, the chemical composition and gaseous components of COFs hold equal importance to the particle number concentration (PNC) when assessing their impact on human health. The absence of these considerations in the current guidelines underscores a research gap. It is imperative to acknowledge that for a more comprehensive approach to safeguarding public health, guidelines must be regularly updated to reflect new scientific findings and robust epidemiological evidence.
Collapse
Affiliation(s)
- Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bailiang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Longbo Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Wen Tan
- TOFWERK, Nanjing 211800, China
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Wen Wen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhe Bai
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaxi Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
42
|
Morantes G, Jones B, Molina C, Sherman MH. Harm from Residential Indoor Air Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:242-257. [PMID: 38150532 PMCID: PMC10785761 DOI: 10.1021/acs.est.3c07374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
This study presents a health-centered approach to quantify and compare the chronic harm caused by indoor air contaminants using disability-adjusted life-year (DALY). The aim is to understand the chronic harm caused by airborne contaminants in dwellings and identify the most harmful. Epidemiological and toxicological evidence of population morbidity and mortality is used to determine harm intensities, a metric of chronic harm per unit of contaminant concentration. Uncertainty is evaluated in the concentrations of 45 indoor air contaminants commonly found in dwellings. Chronic harm is estimated from the harm intensities and the concentrations. The most harmful contaminants in dwellings are PM2.5, PM10-2.5, NO2, formaldehyde, radon, and O3, accounting for over 99% of total median harm of 2200 DALYs/105 person/year. The chronic harm caused by all airborne contaminants in dwellings accounts for 7% of the total global burden from all diseases.
Collapse
Affiliation(s)
- Giobertti Morantes
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Benjamin Jones
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Constanza Molina
- Escuela
de Construcción Civil, Pontificia
Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Max H. Sherman
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
43
|
Blanco MN, Shaffer RM, Li G, Adar SD, Carone M, Szpiro AA, Kaufman JD, Larson TV, Hajat A, Larson EB, Crane PK, Sheppard L. Traffic-related air pollution and dementia incidence in the Adult Changes in Thought Study. ENVIRONMENT INTERNATIONAL 2024; 183:108418. [PMID: 38185046 PMCID: PMC10873482 DOI: 10.1016/j.envint.2024.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND While epidemiologic evidence links higher levels of exposure to fine particulate matter (PM2.5) to decreased cognitive function, fewer studies have investigated links with traffic-related air pollution (TRAP), and none have examined ultrafine particles (UFP, ≤100 nm) and late-life dementia incidence. OBJECTIVE To evaluate associations between TRAP exposures (UFP, black carbon [BC], and nitrogen dioxide [NO2]) and late-life dementia incidence. METHODS We ascertained dementia incidence in the Seattle-based Adult Changes in Thought (ACT) prospective cohort study (beginning in 1994) and assessed ten-year average TRAP exposures for each participant based on prediction models derived from an extensive mobile monitoring campaign. We applied Cox proportional hazards models to investigate TRAP exposure and dementia incidence using age as the time axis and further adjusting for sex, self-reported race, calendar year, education, socioeconomic status, PM2.5, and APOE genotype. We ran sensitivity analyses where we did not adjust for PM2.5 and other sensitivity and secondary analyses where we adjusted for multiple pollutants, applied alternative exposure models (including total and size-specific UFP), modified the adjustment covariates, used calendar year as the time axis, assessed different exposure periods, dementia subtypes, and others. RESULTS We identified 1,041 incident all-cause dementia cases in 4,283 participants over 37,102 person-years of follow-up. We did not find evidence of a greater hazard of late-life dementia incidence with elevated levels of long-term TRAP exposures. The estimated hazard ratio of all-cause dementia was 0.98 (95 % CI: 0.92-1.05) for every 2000 pt/cm3 increment in UFP, 0.95 (0.89-1.01) for every 100 ng/m3 increment in BC, and 0.96 (0.91-1.02) for every 2 ppb increment in NO2. These findings were consistent across sensitivity and secondary analyses. DISCUSSION We did not find evidence of a greater hazard of late-life dementia risk with elevated long-term TRAP exposures in this population-based prospective cohort study.
Collapse
Affiliation(s)
- Magali N Blanco
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Rachel M Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ge Li
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, Virginia Puget Sound Health Care System, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center, Virginia Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Sara D Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy V Larson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Anjum Hajat
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
44
|
Yan R, Ying S, Jiang Y, Duan Y, Chen R, Kan H, Fu Q, Gu Y. Associations between ultrafine particle pollution and daily outpatient visits for respiratory diseases in Shanghai, China: a time-series analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3004-3013. [PMID: 38072886 PMCID: PMC10791965 DOI: 10.1007/s11356-023-31248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Previous epidemiological studies have linked short-term exposure to particulate matter with outpatient visits for respiratory diseases. However, evidence on ultrafine particle (UFP) is still scarce in China. To investigate the association between short-term UFP exposure and outpatient visits for respiratory diseases as well as the corresponding lag patterns, information on outpatient visits for main respiratory diseases during January 1, 2017, to December 31, 2019 was collected from electronic medical records of two large tertiary hospitals in Shanghai, China. Generalized additive models employing a Quasi-Poisson distribution were employed to investigate the relationships between UFP and respiratory diseases. We computed the percentage change and its corresponding 95% confidence interval (CI) for outpatient visits related to respiratory diseases per interquartile range (IQR) increase in UFP concentrations. Based on a total of 1,034,394 hospital visits for respiratory diseases in Shanghai, China, we found that the strongest associations of total UFP with acute upper respiratory tract infection (AURTI), bronchitis, chronic obstructive pulmonary disease (COPD), and pneumonia occurred at lag 03, 03, 0, and 03 days, respectively. Each IQR increase in the total UFP concentrations was associated with increments of 9.02% (95% CI: 8.64-9.40%), 3.94% (95% CI: 2.84-5.06%), 4.10% (95% CI: 3.01-5.20%), and 10.15% (95% CI: 9.32-10.99%) for AURTI, bronchitis, COPD, and pneumonia, respectively. Almost linear concentration-response relationship curves without apparent thresholds were observed between total UFP and outpatient-department visits for four respiratory diseases. Stratified analyses illustrated significantly stronger associations of total UFP with AURTI, bronchitis, and pneumonia among female patients, while that with COPD was stronger among male patients. After adjustment of criteria air pollutants, these associations all remained robust. This time-series study indicates that short-term exposure to UFP was associated with increased risk of hospital visits for respiratory diseases, underscoring the importance of reducing ambient UFP concentrations for respiratory diseases control and prevention.
Collapse
Affiliation(s)
- Ran Yan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Shengjie Ying
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Yiqin Gu
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China.
- Shanghai Minhang Dental Disease Prevention and Treatment Institute, Shanghai, 201103, China.
| |
Collapse
|
45
|
Navarro-Barboza H, Pandolfi M, Guevara M, Enciso S, Tena C, Via M, Yus-Díez J, Reche C, Pérez N, Alastuey A, Querol X, Jorba O. Uncertainties in source allocation of carbonaceous aerosols in a Mediterranean region. ENVIRONMENT INTERNATIONAL 2024; 183:108252. [PMID: 38157608 DOI: 10.1016/j.envint.2023.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024]
Abstract
Understanding the atmospheric processes involving carbonaceous aerosols (CAs) is crucial for assessing air pollution impacts on human health and climate. The sources and formation mechanisms of CAs are not well understood, making it challenging to quantify impacts in models. Studies suggest residential wood combustion (RWC) and traffic significantly contribute to CAs in Europe's urban and rural areas. Here, we used an atmospheric chemistry model (MONARCH) and three different emission inventories (two versions of the European-scale emission inventory CAMS-REG_v4 and the HERMESv3 detailed national inventory for Spain) to assess the uncertainties in CAs simulation and source allocation (from traffic, RWC, shipping, fires and others) in Northeast Spain. For this, black carbon (BC) and organic aerosol (OA) measurements performed at three supersites representing different environments (urban, regional and remote) were used. Our findings show the importance of model resolution and detailed emission input data in accurately reproducing BC/OA observations. Even though emissions of total particulate matter are rather consistent between inventories in Spain, we found discrepancies between them mainly related to the spatiotemporal disaggregation (particularly relevant for traffic and RWC) and the treatment of the condensable fraction of CAs in RWC (changes in the speciation of elemental/organic carbon). The main source contribution to BC concentrations in the urban site is traffic, accounting for 71.1%/65.2% (January/July) in close agreement with the fossil contribution derived from observations (78.8%/84.2%), followed by RWC (12.8%/3%) and shipping emissions (5.4%/13.8%). An over-representation of RWC (winter) and shipping (summer) is obtained with CAMS-REG_v4. Noteworthy uncertainties arise in OA results due to condensables in emissions and a limited secondary aerosol production in the model. These findings offer insights into MONARCH's effectiveness in simulating CAs concentrations and source contribution in Northeast Spain. The study highlights the benefits of combining new datasets and modeling techniques to refine emission inventories and better understand and mitigate air pollution impacts.
Collapse
Affiliation(s)
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research, c/Jordi-Girona 18-26, Barcelona 08034, Spain
| | - Marc Guevara
- Barcelona Supercomputing Center, Plaça Eusebi Güell 1-3, Barcelona 08034, Spain
| | - Santiago Enciso
- Barcelona Supercomputing Center, Plaça Eusebi Güell 1-3, Barcelona 08034, Spain
| | - Carles Tena
- Barcelona Supercomputing Center, Plaça Eusebi Güell 1-3, Barcelona 08034, Spain
| | - Marta Via
- Institute of Environmental Assessment and Water Research, c/Jordi-Girona 18-26, Barcelona 08034, Spain
| | - Jesus Yus-Díez
- Institute of Environmental Assessment and Water Research, c/Jordi-Girona 18-26, Barcelona 08034, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, c/Jordi-Girona 18-26, Barcelona 08034, Spain
| | - Noemi Pérez
- Institute of Environmental Assessment and Water Research, c/Jordi-Girona 18-26, Barcelona 08034, Spain
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research, c/Jordi-Girona 18-26, Barcelona 08034, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, c/Jordi-Girona 18-26, Barcelona 08034, Spain
| | - Oriol Jorba
- Barcelona Supercomputing Center, Plaça Eusebi Güell 1-3, Barcelona 08034, Spain
| |
Collapse
|
46
|
Charchar FJ, Prestes PR, Mills C, Ching SM, Neupane D, Marques FZ, Sharman JE, Vogt L, Burrell LM, Korostovtseva L, Zec M, Patil M, Schultz MG, Wallen MP, Renna NF, Islam SMS, Hiremath S, Gyeltshen T, Chia YC, Gupta A, Schutte AE, Klein B, Borghi C, Browning CJ, Czesnikiewicz-Guzik M, Lee HY, Itoh H, Miura K, Brunström M, Campbell NR, Akinnibossun OA, Veerabhadrappa P, Wainford RD, Kruger R, Thomas SA, Komori T, Ralapanawa U, Cornelissen VA, Kapil V, Li Y, Zhang Y, Jafar TH, Khan N, Williams B, Stergiou G, Tomaszewski M. Lifestyle management of hypertension: International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension. J Hypertens 2024; 42:23-49. [PMID: 37712135 PMCID: PMC10713007 DOI: 10.1097/hjh.0000000000003563] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools.
Collapse
Affiliation(s)
- Fadi J. Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Physiology, University of Melbourne, Melbourne, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Priscilla R. Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Charlotte Mills
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Siew Mooi Ching
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
- Department of Medical Sciences, School of Medical and Live Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Dinesh Neupane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne
| | - James E. Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Liffert Vogt
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Louise M. Burrell
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Lyudmila Korostovtseva
- Department of Hypertension, Almazov National Medical Research Centre, St Petersburg, Russia
| | - Manja Zec
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Mansi Patil
- Department of Nutrition and Dietetics, Asha Kiran JHC Hospital, Chinchwad
- Hypertension and Nutrition, Core Group of IAPEN India, India
| | - Martin G. Schultz
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | | | - Nicolás F. Renna
- Unit of Hypertension, Hospital Español de Mendoza, School of Medicine, National University of Cuyo, IMBECU-CONICET, Mendoza, Argentina
| | | | - Swapnil Hiremath
- Department of Medicine, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
| | - Tshewang Gyeltshen
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Yook-Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abhinav Gupta
- Department of Medicine, Acharya Shri Chander College of Medical Sciences and Hospital, Jammu, India
| | - Aletta E. Schutte
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, New South Wales, Australia
- Hypertension in Africa Research Team, SAMRC Unit for Hypertension and Cardiovascular Disease, North-West University
- SAMRC Developmental Pathways for Health Research Unit, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Britt Klein
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Bologna, Bologna, Italy
| | - Colette J. Browning
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Marta Czesnikiewicz-Guzik
- School of Medicine, Dentistry and Nursing-Dental School, University of Glasgow, UK
- Department of Periodontology, Prophylaxis and Oral Medicine; Jagiellonian University, Krakow, Poland
| | - Hae-Young Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hiroshi Itoh
- Department of Internal Medicine (Nephrology, Endocrinology and Metabolism), Keio University, Tokyo
| | - Katsuyuki Miura
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Mattias Brunström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Norm R.C. Campbell
- Libin Cardiovascular Institute, Department of Medicine, University of Calgary, Calgary, Canada
| | | | - Praveen Veerabhadrappa
- Kinesiology, Division of Science, The Pennsylvania State University, Reading, Pennsylvania
| | - Richard D. Wainford
- Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston
- Division of Cardiology, Emory University, Atlanta, USA
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Shane A. Thomas
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Takahiro Komori
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Udaya Ralapanawa
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Vikas Kapil
- William Harvey Research Institute, Centre for Cardiovascular Medicine and Devices, NIHR Barts Biomedical Research Centre, BRC, Faculty of Medicine and Dentistry, Queen Mary University London
- Barts BP Centre of Excellence, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai
| | - Yuqing Zhang
- Department of Cardiology, Fu Wai Hospital, Chinese Academy of Medical Sciences, Chinese Hypertension League, Beijing, China
| | - Tazeen H. Jafar
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Nadia Khan
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bryan Williams
- University College London (UCL), Institute of Cardiovascular Science, National Institute for Health Research (NIHR), UCL Hospitals Biomedical Research Centre, London, UK
| | - George Stergiou
- Hypertension Centre STRIDE-7, School of Medicine, Third Department of Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester
- Manchester Academic Health Science Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
47
|
Audignon-Durand S, Ramalho O, Mandin C, Roudil A, Le Bihan O, Delva F, Lacourt A. Indoor exposure to ultrafine particles related to domestic activities: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166947. [PMID: 37690752 DOI: 10.1016/j.scitotenv.2023.166947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Ultrafine particles (< 100 nm) are of increasing concern because of their toxicological potential. Emission processes suggest their presence in all environments, including at home, where particularly at-risk populations may be exposed. However, knowledge of their impact on health is still limited, due to difficulties in properly assessing exposure in epidemiological studies. In this context, the objective of this study was to provide a complete summary of indoor exposure to ultrafine particles in highly industrialised countries by examining the domestic activities that influence such exposure. We conducted a systematic review, according to PRISMA guidelines using PubMed, Web of Science and Scopus up to and including 2021. We carried out a qualitative and quantitative analysis of the selected studies with a standardised template. Exposure circumstances, measurement methods, and results were analysed. Finally, a meta-analysis of the measured concentrations was performed to study exposure levels during domestic activities. The review included 69 studies resulting in the analysis of 346 exposure situations. Nine main groups of activities were identified: cooking, which was the most studied, smoking, the use of air-fresheners, cleaning, heating, personal care, printing, do-it-yourself activities, and others. Over 50 different processes were involved in these activities. Based on available particle number concentrations, the highest average of mean concentrations was associated with grilling (14,400 × 103 cm-3), and the lowest with wood stove (18 × 103 cm-3). The highest average of peak concentrations was that for the use of hair dryers (695 × 103 cm-3), and the lowest for the use of air cleaners (11 × 103 cm-3). A hierarchy of domestic activities and related processes leading to ultrafine particle exposure is provided, along with average exposure concentrations at home. However, more extensive measurement campaigns are needed under real-life conditions to improve assessments of indoor exposure to ultrafine particles.
Collapse
Affiliation(s)
- Sabyne Audignon-Durand
- University of Bordeaux, INSERM, BPH, UMR1219, EPICENE Team, Bordeaux 33000, France; Bordeaux University Hospital, Environmental and Occupational Health Department, Bordeaux 33000, France.
| | - Olivier Ramalho
- Scientific and Technical Center for Building, Marne-La-Vallée 77447, France
| | - Corinne Mandin
- Scientific and Technical Center for Building, Marne-La-Vallée 77447, France
| | - Audrey Roudil
- Bordeaux University Hospital, Environmental and Occupational Health Department, Bordeaux 33000, France
| | - Olivier Le Bihan
- Air Breizh, Association for Ambient Air Quality, Rennes 35 200, France
| | - Fleur Delva
- University of Bordeaux, INSERM, BPH, UMR1219, EPICENE Team, Bordeaux 33000, France; Bordeaux University Hospital, Environmental and Occupational Health Department, Bordeaux 33000, France
| | - Aude Lacourt
- University of Bordeaux, INSERM, BPH, UMR1219, EPICENE Team, Bordeaux 33000, France
| |
Collapse
|
48
|
Nair AA, Lin S, Luo G, Ryan I, Qi Q, Deng X, Yu F. Environmental exposure disparities in ultrafine particles and PM 2.5 by urbanicity and socio-demographics in New York state, 2013-2020. ENVIRONMENTAL RESEARCH 2023; 239:117246. [PMID: 37806474 DOI: 10.1016/j.envres.2023.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The spatiotemporal and demographic disparities in exposure to ultrafine particles (UFP; number concentrations of particulate matter (PM) with diameter ≤0.1 μm), a key subcomponent of fine aerosols (PM2.5; mass concentrations of PM ≤ 2.5 μm), have not been well studied. OBJECTIVE To quantify and compare the aerosol pollutant exposure disparities for UFP and PM2.5 by socio-demographic factors in New York State (NYS). METHODS Ambient atmospheric UFP and PM2.5 were quantified using a global three-dimensional model of chemical transport with state-of-the-science aerosol microphysical processes validated extensively with observations. We matched these to U.S. census demographic data for varied spatial scales (state, county, county subdivision) and derived population-weighted aerosol exposure estimates. Aerosol exposure disparities for each demographic and socioeconomic (SES) indicator, with a focus on race-ethnicity and income, were quantified for the period 2013-2020. RESULTS The average NYS resident was exposed to 4451 #·cm-3 UFP and 7.87 μg·m-3 PM2.5 in 2013-2020, but minority race-ethnicity groups were invariably exposed to greater daily aerosol pollution (UFP: +75.0% & PM2.5: +16.2%). UFP has increased since 2017 and is temporally and seasonally out-of-phase with PM2.5. Race-ethnicity exposure disparities for PM2.5 have declined over time; by -6% from 2013 to 2017 and plateaued thereafter despite its decreasing concentrations. In contrast, these disparities have increased (+12.5-13.5%) for UFP. The aerosol pollution exposure disparities were the highest for low-income minorities and were more amplified for UFP than PM2.5. DISCUSSION: We identified large disparities in aerosol pollution exposure by urbanization level and socio-demographics in NYS residents. Jurisdictions with higher proportions of race-ethnicity minorities, low-income residents, and greater urbanization were disproportionately exposed to higher concentrations of UFP and PM2.5 than other NYS residents. These race-ethnicity exposure disparities were much larger, more disproportionate, and unabating over time for UFP compared to PM2.5 across various income strata and levels of urbanicity.
Collapse
Affiliation(s)
- Arshad Arjunan Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA.
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA
| | - Ian Ryan
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Quan Qi
- Department of Economics, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xinlei Deng
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Fangqun Yu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA.
| |
Collapse
|
49
|
Jeong SG, Wallace L, Rim D. Size-resolved emission rates of episodic indoor sources and ultrafine particle dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122680. [PMID: 37821040 DOI: 10.1016/j.envpol.2023.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/17/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Indoor airborne ultrafine particles (UFPs) are mainly originated from occupant activities, such as candle burning and cooking. Elevated exposure to UFPs has been found to increase oxidative stress and cause DNA damage. UFPs originating from indoor sources undergo dynamic aerosol transformation mechanisms. This study investigates the dynamics of UFPs following episodic indoor releases of the six distinct emission sources: 1) candle, 2) gas stove, 3) clothes dryer, 4) tea & toast, 5) broiled fish, and 6) incense. Based on the analytical model of aerosol dynamic processes, this study reports size-resolved source emission rates along with relative contributions of coagulation, deposition, and ventilation to the particle size distribution dynamics. The study findings indicate a significant variation in the geometric mean diameter (GMD) and size-resolved number concentration over time for the sources that emit a substantial amount of UFPs smaller than 10 nm. As the emission progresses, the UFP number concentrations increase in a log-normal distribution, while the GMD shows a tendency to increase over time. The observed result suggests that coagulation can have a considerable impact on UFP number concentration and size, even during the indoor UFP emission. The estimated emission rates of the six indoor sources appear to follow a log-normal distribution while the emission rate ranges from 107 min-1 to 1012 min-1. The indoor UFP concentration and size distribution dynamics are substantially affected by the interplay of the three aerosol loss mechanisms that compete with each other, and this impact varies according to the source type and the indoor environmental conditions. Ultimately, using the aerosol transformation mechanisms examined in this study, researchers can refine exposure assessment for epidemiological studies on indoor ultrafine particles.
Collapse
Affiliation(s)
- Su-Gwang Jeong
- Department of Architectural Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | | | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
50
|
Lelieveld J, Haines A, Burnett R, Tonne C, Klingmüller K, Münzel T, Pozzer A. Air pollution deaths attributable to fossil fuels: observational and modelling study. BMJ 2023; 383:e077784. [PMID: 38030155 PMCID: PMC10686100 DOI: 10.1136/bmj-2023-077784] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES To estimate all cause and cause specific deaths that are attributable to fossil fuel related air pollution and to assess potential health benefits from policies that replace fossil fuels with clean, renewable energy sources. DESIGN Observational and modelling study. METHODS An updated atmospheric composition model, a newly developed relative risk model, and satellite based data were used to determine exposure to ambient air pollution, estimate all cause and disease specific mortality, and attribute them to emission categories. DATA SOURCES Data from the global burden of disease 2019 study, observational fine particulate matter and population data from National Aeronautics and Space Administration (NASA) satellites, and atmospheric chemistry, aerosol, and relative risk modelling for 2019. RESULTS Globally, all cause excess deaths due to fine particulate and ozone air pollution are estimated at 8.34 million (95% confidence interval 5.63 to 11.19) deaths per year. Most (52%) of the mortality burden is related to cardiometabolic conditions, particularly ischaemic heart disease (30%). Stroke and chronic obstructive pulmonary disease both account for 16% of mortality burden. About 20% of all cause mortality is undefined, with arterial hypertension and neurodegenerative diseases possibly implicated. An estimated 5.13 million (3.63 to 6.32) excess deaths per year globally are attributable to ambient air pollution from fossil fuel use and therefore could potentially be avoided by phasing out fossil fuels. This figure corresponds to 82% of the maximum number of air pollution deaths that could be averted by controlling all anthropogenic emissions. Smaller reductions, rather than a complete phase-out, indicate that the responses are not strongly non-linear. Reductions in emission related to fossil fuels at all levels of air pollution can decrease the number of attributable deaths substantially. Estimates of avoidable excess deaths are markedly higher in this study than most previous studies for these reasons: the new relative risk model has implications for high income (largely fossil fuel intensive) countries and for low and middle income countries where the use of fossil fuels is increasing; this study accounts for all cause mortality in addition to disease specific mortality; and the large reduction in air pollution from a fossil fuel phase-out can greatly reduce exposure. CONCLUSION Phasing out fossil fuels is deemed to be an effective intervention to improve health and save lives as part the United Nations' goal of climate neutrality by 2050. Ambient air pollution would no longer be a leading, environmental health risk factor if the use of fossil fuels were superseded by equitable access to clean sources of renewable energy.
Collapse
Affiliation(s)
- Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Climate and Atmosphere Research Center, Cyprus Institute, Nicosia, Cyprus
| | - Andy Haines
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Richard Burnett
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Cathryn Tonne
- Barcelona Institute for Global Health and Pompeu Fabra University, Barcelona, Spain
- Center for Biomedical Research in Epidemiology and Public Health Network, Madrid, Spain
| | - Klaus Klingmüller
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Andrea Pozzer
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Climate and Atmosphere Research Center, Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|