1
|
Zhao C, Chen J, Liu Z, Liang H, Chen X, Cheng L, Xie S, Lin Z, Wu R, Zhao Q, Xue Y, Lai X, Jin X, Xu JF, Su X. Activation of nicotinic acetylcholine receptor α7 subunit limits Zika viral infection via promoting autophagy and ferroptosis. Mol Ther 2024; 32:2641-2661. [PMID: 38822526 PMCID: PMC11405161 DOI: 10.1016/j.ymthe.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.
Collapse
Affiliation(s)
- Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China; Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100190, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhihua Liu
- University of Chinese Academy of Sciences, Beijing 100190, China; Vaccine Center, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huabin Liang
- University of Chinese Academy of Sciences, Beijing 100190, China; Vaccine Center, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyan Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lianping Cheng
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shitao Xie
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhekai Lin
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renlan Wu
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi Zhao
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yue Xue
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyun Lai
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xia Jin
- University of Chinese Academy of Sciences, Beijing 100190, China; Vaccine Center, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China.
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China; Vaccine Center, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Wang T, Li S, Hu X, Geng Y, Chen L, Liu W, Zhao J, Tian W, Wang C, Li Y, Li L. Heme oxygenase-1 is an equid alphaherpesvirus 8 replication restriction host protein and suppresses viral replication via the PKCβ/ERK1/ERK2 and NO/cGMP/PKG pathway. Microbiol Spectr 2024; 12:e0322023. [PMID: 38441979 PMCID: PMC10986571 DOI: 10.1128/spectrum.03220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Equid alphaherpesvirus 8 (EqHV-8) is one of the most economically important viruses that is known to cause severe respiratory disease, abortion, and neurological syndromes in equines. However, no effective vaccines or therapeutic agents are available to control EqHV-8 infection. Heme oxygenase-1 (HO-1) is an antioxidant defense enzyme that displays significant cytoprotective effects against different viral infections. However, the literature on the function of HO-1 during EqHV-8 infection is little. We explored the effects of HO-1 on EqHV-8 infection and revealed its potential mechanisms. Our results demonstrated that HO-1 induced by cobalt-protoporphyrin (CoPP) or HO-1 overexpression inhibited EqHV-8 replication in susceptible cells. In contrast, HO-1 inhibitor (zinc protoporphyria) or siRNA targeting HO-1 reversed the anti-EqHV-8 activity. Furthermore, biliverdin, a metabolic product of HO-1, mediated the anti-EqHV-8 effect of HO-1 via both the protein kinase C (PKC)β/extracellular signal-regulated kinase (ERK)1/ERK2 and nitric oxide (NO)-dependent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathways. In addition, CoPP protected the mice by reducing the EqHV-8 infection in the lungs. Altogether, these results indicated that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.IMPORTANCEEqHV-8 infections have threatened continuously donkey and horse industry worldwide, which induces huge economic losses every year. However, no effective vaccination strategies or drug against EqHV-8 infection until now. Our present study found that one host protien HO-1 restrict EqHV-8 replication in vitro and in vivo. Furthermore, we demonstrate that HO-1 and its metabolite biliverdin suppress EqHV-8 relication via the PKCβ/ERK1/ERK2 and NO/cGMP/PKG pathways. Hence, we believe that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Shuwen Li
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xinyao Hu
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Yiqing Geng
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Li Chen
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Juan Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenxia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
3
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
4
|
Barroso-Arévalo S, Díaz-Frutos M, Domínguez L, Sánchez-Vizcaíno JM. Importance of genomic surveillance of SARS-CoV-2 in cats during reverse zoonosis events: potential viral evolution may occur. Microbiol Spectr 2023; 11:e0068023. [PMID: 37565759 PMCID: PMC10581217 DOI: 10.1128/spectrum.00680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
The apparition of new variants of severe acute respiratory syndrome coronavirus 2 and lineages is constantly happening because of the high viral mutation rate. Since numerous reverse zoonosis events have been reported so far, genomic surveillance should be conducted in susceptible species to evaluate potential adaptations that may trigger the apparition of new variants. Here, we evaluate the evolution of the infection in a cat naturally infected in parallel with its owner, performing a comparative phylogenetic analysis. Sequencing analysis showed that both were infected with the Omicron BA.5/BF.1 lineage and revealed the presence of nucleotide substitution in the viral genome recovered from the cat with respect to the viral genome from the human sample. This nucleotide substitution (C11897A) produced the amino acid change Orf1a: Q3878K. Therefore, genomic surveillance in the case of reverse zoonosis events is still necessary in order to control possible adaptations of the virus to other susceptible species. IMPORTANCE Genomic surveillance of pets for severe acute respiratory syndrome coronavirus 2 is important to monitor the emergence of new variants of the virus associated with these animals. Pets can serve as a potential reservoir for the virus, and their close contact with humans increases the risk of transmission. By conducting genomic surveillance in pets, it is possible to detect and track new variants early on, allowing for more effective control measures to be put in place. This can help prevent the spread of these variants to human populations and potentially mitigate the impact of the pandemic. Furthermore, it may also provide insight into the evolution and spread of the virus within the animal population.
Collapse
Affiliation(s)
- Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Díaz-Frutos
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - José M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
6
|
Bastin A, Shiri H, Zanganeh S, Fooladi S, Momeni Moghaddam MA, Mehrabani M, Nematollahi MH. Iron Chelator or Iron Supplement Consumption in COVID-19? The Role of Iron with Severity Infection. Biol Trace Elem Res 2022; 200:4571-4581. [PMID: 34825316 PMCID: PMC8614629 DOI: 10.1007/s12011-021-03048-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Iron is a trace element that is used to replicate the virus and has a role in the vital functions of the body and the host's innate immune system. The mechanism of iron in COVID-19 severity is still not well understood. The aim of this study was to evaluate the association of the iron with COVID-19 severity. A case-control study was performed on 147 patients with a positive PCR test result and 39 normal individuals admitted to the Persian Gulf Martyrs Hospital in Bushehr, Iran. The iron profiles and related tests were measured along with hematological analytes. Hemoglobin (Hb), Fe, and saturated transferrin decreased in all the groups compared to the controls, but ferritin increased in the patient groups. After adjusting for age and sex, we found that increased ferritin levels augmented the odds ratio (OR) of the disease in the moderate (OR = 2.95, P = 0.007), severe (OR = 6.1, P < 0.001), and critical groups (OR = 8.34, P < 0.001). The decreased levels of Fe reduced the OR of the disease in the mild (OR = 0.96, P < 0.001), moderate (OR = 0.96, P < 0.001), severe (OR = 0.95, P < 0.001), and critical (OR = 0.98, P = 0.001) groups. Fe (AUC = 85.95, cutoff < 75.5 µg/dL, P < 0.001) and ferritin (AUC = 84.45, cutoff > 157.5 ng/dL, P < 0.001) have higher AUC for disease prognosis, but only ferritin (AUC = 74.89, cutoff > 261.5 ng/dL, P < 0.001) has higher AUC for disease severity assays. It could be concluded that the use of iron chelators to reduce iron intake can be considered a therapeutic goal. In addition, measuring Fe and ferritin is beneficial for the diagnosis of the disease and determining its severity.
Collapse
Affiliation(s)
- Alireza Bastin
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Shiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sareh Zanganeh
- Bacteriology & Virology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Fooladi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Momeni Moghaddam
- Department of Nutrition and Biochemistry, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
7
|
Ferroptosis in viral infection: the unexplored possibility. Acta Pharmacol Sin 2022; 43:1905-1915. [PMID: 34873317 PMCID: PMC8646346 DOI: 10.1038/s41401-021-00814-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication, places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatoy pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.
Collapse
|
8
|
Tatlidil D, Raza MA, Dege N, Agar AA, Farwa U, Rehman SU. Therapeutical Potential of Imines; Synthesis, Single Crystal Structure, Computational, Molecular Modeling, and ADMET Evaluation. ACS OMEGA 2022; 7:10568-10579. [PMID: 35382330 PMCID: PMC8973114 DOI: 10.1021/acsomega.2c00102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 05/15/2023]
Abstract
Imines are multipurpose pharmacophores, simply accessible compounds, and have a broad range of usage in several areas of chemistry especially in medicine. Two novel compound imines, (E)-4-methyl-2-((o-tolylimino)methyl)phenol (1) and (E)-2-(((4-methoxybenzyl)imino)methyl)-4-methylphenol (2), were synthesized with effective product via reported protocol in the literature. Single crystal X-ray diffraction (SCXRD) was employed for structural exposition, disclosing that both compounds are orthorhombic. To optimize the newly designed imines, a B3LYP functional with a basis set 6-31G(d,p) was mainly considered. DFT results were utilized to check correlation between the data recovered from SCXRD outcomes and also to measure the energy difference. Hirshfeld surface study was done to demonstrate the intermolecular contacts along the percentage of interaction in the overall crystalline compound. Molecular operating environment program was tested against AChE and BChE enzymes to perform a modeling study of the compounds. The docking score and binding affinity of the compounds revealed that 2 showed comparatively more inhibition than 1. In silico ADMET studies exposed the physiochemical nature of these novel compounds, and it also unveiled that both compounds behaved as drug-like candidates.
Collapse
Affiliation(s)
- Digdem Tatlidil
- Faculty
of Arts and Sciences, Department of Chemistry, Ondokuz Mayıs University, Samsun 55020, Turkey
| | - Muhammad Asam Raza
- Department
of Chemistry, Hafiz Hayat Campus, University
of Gujrat, Gujrat 54000, Pakistan
| | - Necmi Dege
- Faculty
of Arts and Sciences, Department of Physics, Ondokuz Mayıs University, Samsun 55200, Turkey
| | - Aysen Alaman Agar
- Faculty
of Arts and Sciences, Department of Chemistry, Ondokuz Mayıs University, Samsun 55020, Turkey
| | - Umme Farwa
- Department
of Chemistry, Hafiz Hayat Campus, University
of Gujrat, Gujrat 54000, Pakistan
| | - Shafiq Ur Rehman
- Department
of Chemistry, University of Central Punjab, Lahore 54590, Pakistan
| |
Collapse
|
9
|
Inomata S, Morihara D, Anan A, Yamauchi E, Yamauchi R, Takata K, Tanaka T, Yokoyama K, Takeyama Y, Irie M, Shakado S, Sohda T, Sakisaka S, Hirai F. Male-specific Association between Iron and Lipid Metabolism Changes and Erythroferrone after Hepatitis C Virus Eradication. Intern Med 2022; 61:461-467. [PMID: 34433710 PMCID: PMC8907759 DOI: 10.2169/internalmedicine.7172-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective Hepatitis C virus (HCV) eradication is associated with decreased serum ferritin and increased serum low-density lipoprotein-cholesterol (LDL-C) levels, although the mechanisms underlying these changes remain unclear. This study aimed to identify the mechanisms underlying the changes in iron and lipid metabolism after HCV eradication. Methods We retrospectively investigated iron and lipid metabolism changes in 22 patients with chronic hepatitis or compensated liver cirrhosis with HCV genotype 1b infection after HCV eradication. We measured the serum erythroferrone (ERFE) levels to assess the association with these metabolic changes. Patients were administered ledipasvir 90 mg and sofosbuvir 400 mg once daily for 12 weeks and were observed for 12 more weeks to evaluate the sustained virological response. Results Half of the patients were men. At baseline, the serum ferritin and ERFE levels were elevated, while the serum LDL-C levels were within the normal range. All patients achieved a sustained virological response at 24 weeks; furthermore, the serum ferritin and ERFE levels were significantly decreased, and the serum LDL-C levels were significantly increased at 24 weeks from baseline (p<0.001, all). In men, a decrease in serum ERFE levels was correlated with changes in the serum ferritin and LDL-C levels (r=0.78, p<0.01; r=-0.76, p<0.01, respectively). In addition, a decrease in the serum ferritin levels was correlated with an increase in the serum LDL-C levels (r=-0.89, p<0.001). These correlations were not observed in women. Conclusion Our results suggest a possible association between iron and lipid metabolism changes and the involvement of ERFE after HCV eradication in men as well as potential sex-related differences.
Collapse
Affiliation(s)
- Shinjiro Inomata
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- Meotoiwa Hospital, Japan
| | - Daisuke Morihara
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Akira Anan
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- Shiida Clinic, Japan
| | - Eri Yamauchi
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Ryo Yamauchi
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Kazuhide Takata
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Takashi Tanaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Keiji Yokoyama
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Yasuaki Takeyama
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Makoto Irie
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- Division of Gastroenterology, Fukuoka University Nishijin Hospital, Japan
| | - Satoshi Shakado
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Tetsuro Sohda
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- Department of Hepatology, Red Cross Fukuoka Hospital, Japan
| | - Shotaro Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Fumihito Hirai
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| |
Collapse
|
10
|
Khan H, Patel S, Majumdar A. Role of NRF2 and Sirtuin activators in COVID-19. Clin Immunol 2021; 233:108879. [PMID: 34798239 PMCID: PMC8592856 DOI: 10.1016/j.clim.2021.108879] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is a pandemic requiring immediate solution for treatment because of its complex pathophysiology. Exploration of novel targets and thus treatment will be life savers which is the need of the hour. 2 host factors- TMPRSS2 and ACE2 are responsible for the way the virus will enter and replicate in the host. Also NRF2 is an important protein responsible for its anti-inflammatory role by multiple mechanisms of action like inhibition of NF-kB, suppression of pro-inflammatory genes, etc. NRF2 is deacetylated by Sirtuins and therefore both have a direct association. Absence of SIRT indicates inhibition of NRF2 expression and thus no anti-oxidative and anti-inflammatory protection for the cell. Therefore, we propose that NRF2 activators and/or SIRT activators can be evaluated to check their efficacy in ameliorating the symptoms of COVID-19.
Collapse
Affiliation(s)
- Hasnat Khan
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai 400098, India
| | - Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai 400098, India.
| |
Collapse
|
11
|
Iron overload inhibits BMP/SMAD and IL-6/STAT3 signaling to hepcidin in cultured hepatocytes. PLoS One 2021; 16:e0253475. [PMID: 34161397 PMCID: PMC8221488 DOI: 10.1371/journal.pone.0253475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
Hepcidin is a peptide hormone that targets the iron exporter ferroportin, thereby limiting iron entry into the bloodstream. It is generated in hepatocytes mainly in response to increased body iron stores or inflammatory cues. Iron stimulates expression of bone morphogenetic protein 6 (BMP6) from liver sinusoidal endothelial cells, which in turn binds to BMP receptors on hepatocytes and induces the SMAD signaling cascade for transcriptional activation of the hepcidin-encoding HAMP mRNA. SMAD signaling is also essential for inflammatory HAMP mRNA induction by the IL-6/STAT3 pathway. Herein, we utilized human Huh7 hepatoma cells and primary murine hepatocytes to assess the effects of iron perturbations on signaling to hepcidin. Iron chelation appeared to slightly impair signaling to hepcidin. Subsequent iron supplementation not only failed to reverse these effects, but drastically reduced basal HAMP mRNA and inhibited HAMP mRNA induction by BMP6 and/or IL-6. Thus, treatment of cells with excess iron inhibited basal and BMP6-mediated SMAD5 phosphorylation and induction of HAMP, ID1 and SMAD7 mRNAs in a dose-dependent manner. Iron also inhibited IL-6-mediated STAT3 phosphorylation and induction of HAMP and SOCS3 mRNAs. These responses were accompanied by induction of GCLC and HMOX1 mRNAs, known markers of oxidative stress. We conclude that hepatocellular iron overload suppresses hepcidin by inhibiting the SMAD and STAT3 signaling pathways downstream of their respective ligands.
Collapse
|
12
|
Singh D, Wasan H, Reeta KH. Heme oxygenase-1 modulation: A potential therapeutic target for COVID-19 and associated complications. Free Radic Biol Med 2020; 161:263-271. [PMID: 33091573 PMCID: PMC7571447 DOI: 10.1016/j.freeradbiomed.2020.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to infect hundred thousands of people every day worldwide. Since it is a novel virus, research continues to update the possible therapeutic targets when new evidence regarding COVID-19 are gathered. This article presents an evidence-based hypothesis that activating the heme oxygenase-1 (HO-1) pathway is a potential target for COVID-19. Interferons (IFNs) have broad-spectrum antiviral activity including against SARS-CoV-2. Induction of HO-1 and increase in the heme catabolism end-product confer antiviral activity. IFN activation results in inhibition of viral replication in various viral infections. COVID-19 induced inflammation as well as acute respiratory distress syndrome (ARDS), and coagulopathies are now known major causes of mortality. A protective role of HO-1 induction in inflammation, inflammation-induced coagulation, and ARDS has been reported. Based on an association of HO-1 promoter polymorphisms and disease severity, we propose an evaluation of the status of these polymorphisms in COVID-19 patients who become severely ill. If an association is established, it might be helpful in identifying patients at high risk. Hence, we hypothesize that HO-1 pathway activation could be a therapeutic strategy against COVID-19 and associated complications.
Collapse
Affiliation(s)
- Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
14
|
Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, Garcia Yagüe AJ, Lastra D, Manda G, Rojo AI, Dinkova-Kostova AT. Can Activation of NRF2 Be a Strategy against COVID-19? Trends Pharmacol Sci 2020; 41:598-610. [PMID: 32711925 PMCID: PMC7359808 DOI: 10.1016/j.tips.2020.07.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus. The strategy provides robust cytoprotection by restoring redox and protein homeostasis, promoting resolution of inflammation, and facilitating repair. NRF2 activators such as sulforaphane and bardoxolone methyl are already in clinical trials. The safety and efficacy information of these modulators in humans, together with their well-documented cytoprotective and anti-inflammatory effects in preclinical models, highlight the potential of this armamentarium for deployment to the battlefield against COVID-19.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain; Department of Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.
| | - Marta Pajares
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Cristina Benito
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - José Jiménez-Villegas
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Maribel Escoll
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Angel J Garcia Yagüe
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Diego Lastra
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Gina Manda
- Department of Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Himoto T, Masaki T. Current Trends of Essential Trace Elements in Patients with Chronic Liver Diseases. Nutrients 2020; 12:nu12072084. [PMID: 32674425 PMCID: PMC7400835 DOI: 10.3390/nu12072084] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Essential trace elements play crucial roles in the maintenance of health, since they are involved in many metabolic pathways. A deficiency or an excess of some trace elements, including zinc, selenium, iron, and copper, frequently causes these metabolic disorders such as impaired glucose tolerance and dyslipidemia. The liver largely regulates most of the metabolism of trace elements, and accordingly, an impairment of liver functions can result in numerous metabolic disorders. The administration or depletion of these trace elements can improve such metabolic disorders and liver dysfunction. Recent advances in molecular biological techniques have helped to elucidate the putative mechanisms by which liver disorders evoke metabolic abnormalities that are due to deficiencies or excesses of these trace elements. A genome-wide association study revealed that a genetic polymorphism affected the metabolism of a specific trace element. Gut dysbiosis was also responsible for impairment of the metabolism of a trace element. This review focuses on the current trends of four trace elements in chronic liver diseases, including chronic hepatitis, liver cirrhosis, nonalcoholic fatty liver disease, and autoimmune liver diseases. The novel mechanisms by which the trace elements participated in the pathogenesis of the chronic liver diseases are also mentioned.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan
- Correspondence: ; Tel.: +81-87-870-1240; Fax: +81-87-870-1202
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0123, Japan;
| |
Collapse
|
16
|
Haberger V, Elgner F, Roos J, Bender D, Hildt E. Regulation of the Transferrin Receptor Recycling in Hepatitis C Virus-Replicating Cells. Front Cell Dev Biol 2020; 8:44. [PMID: 32117974 PMCID: PMC7026371 DOI: 10.3389/fcell.2020.00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
After binding of its ligand transferrin, the transferrin receptor (TfR) is internalized via early endosomes. Ligand and receptor can be recycled. α-Taxilin was identified as an essential factor for TfR recycling. Apart from its role for iron uptake, TfR is a coreceptor for hepatitis C virus (HCV) infection. In HCV-replicating cells, the amount of a-taxilin is decreased. This study aims to investigate the effect of decreased α-taxilin levels in HCV-replicating cells on recycling of TfR, its amount on the cell surface, on iron uptake, and the impact of a disturbed TfR recycling on HCV superinfection exclusion. TfR amount and localization were determined by CLSM and surface biotinylation. α-taxilin expression was modulated by CRISPR-Cas9 knockout, siRNA, and stable or transient overexpression. For analysis of HCV superinfection fluorophor-tagged reporter viruses were used. The amount of α-taxilin is decreased in HCV-infected cells. In accordance to this, the protein amount of TfR is significant lower in HCV-positve cells as compared to the control, while TfR expression is not affected. Due to the impaired recycling, internalized TfR is degraded by the endosomal/lysosomal system. The significant lower number of TfR molecules on the cell surface is reflected by reduced transferrin binding/internalization and strong reduction of intracellular iron level. Overexpression of α-taxilin in HCV-replicating cells rescues TfR recycling, augments TfR on the cell surface, and restores transferrin binding. The block of superinfection in HCV-replicating cells could be overcome by overexpression of α-taxilin. Taken together, the diminished level of α-taxilin in HCV-replicating cells prevents recycling of TfR leading to decreased transferrin binding and iron uptake. Disappearance of TfR from the cell surface could be a factor contributing to the exclusion of superinfection by HCV.
Collapse
Affiliation(s)
| | - Fabian Elgner
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Jessica Roos
- Division of Safety of Medical Products and Devices, Paul Ehrlich Institute, Langen, Germany
| | - Daniela Bender
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Eberhard Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
17
|
Wan Q, Liao Z, Rao Y, Yang C, Ji J, Chen X, Su J. Transferrin Receptor 1-Associated Iron Accumulation and Oxidative Stress Provides a Way for Grass Carp to Fight against Reovirus Infection. Int J Mol Sci 2019; 20:ijms20235857. [PMID: 31766619 PMCID: PMC6929055 DOI: 10.3390/ijms20235857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element, closely linked with host immune responses. Nevertheless, the relationship between iron metabolism and virus infection is still unclear in aquatic vertebrates. To address this issue, we employed grass carp (Ctenopharyngodon idella) and its lethal virus, grass carp reovirus (GCRV), a double-strand RNA virus, as models. Our results demonstrate that GCRV infection increases the iron content and alters the expression of iron metabolism-related genes both in vivo and in vitro. Of note, the expression of C. idella transferrin receptor 1 (CiTfR1) rather than transferrin is upregulated upon GCRV infection. To clarify the implications of CiTfR1 upregulation for antiviral immunity, we proved that CiTfR1 was not a helper for GCRV invasion, but instead, it inhibited GCRV infection and promoted cell proliferation by facilitating the accumulation of intracellular labile iron pool (LIP), which increases intracellular oxidative stress. Interestingly, we found that CiTfR1 overexpression inhibited the mRNA expression of C. idella interferon 1 (CiIFN1) and CiIFN3. The present study reveals a novel antiviral defense mechanism in teleost where TfR1 induces the accumulation of LIP, leading to the suppression of virus infection and the proliferation of host cells, indicating that iron can be used as a medicated feed additive for the control of animal viral disease.
Collapse
Affiliation(s)
- Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Z.L.); (Y.R.); (J.J.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Zhiwei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Z.L.); (Y.R.); (J.J.)
| | - Youliang Rao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Z.L.); (Y.R.); (J.J.)
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jianfei Ji
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Z.L.); (Y.R.); (J.J.)
| | - Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Z.L.); (Y.R.); (J.J.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence:
| |
Collapse
|
18
|
Zhu Y, Tong L, Nie K, Wiwatanaratanabutr I, Sun P, Li Q, Yu X, Wu P, Wu T, Yu C, Liu Q, Bian Z, Wang P, Cheng G. Host serum iron modulates dengue virus acquisition by mosquitoes. Nat Microbiol 2019; 4:2405-2415. [DOI: 10.1038/s41564-019-0555-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
|
19
|
Dang JW, Tiwari SK, Qin Y, Rana TM. Genome-wide Integrative Analysis of Zika-Virus-Infected Neuronal Stem Cells Reveals Roles for MicroRNAs in Cell Cycle and Stemness. Cell Rep 2019; 27:3618-3628.e5. [PMID: 31216479 PMCID: PMC6687627 DOI: 10.1016/j.celrep.2019.05.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 01/16/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) infection is implicated in severe fetal developmental disorders, including microcephaly. MicroRNAs (miRNAs) post-transcriptionally regulate numerous processes associated with viral infection and neurodegeneration, but their contribution to ZIKV pathogenesis is unclear. We analyzed the mRNA and miRNA transcriptomes of human neuronal stem cells (hNSCs) during infection with ZIKV MR766 and Paraiba strains. Integration of the miRNA and mRNA expression data into regulatory interaction networks showed that ZIKV infection resulted in miRNA-mediated repression of genes regulating the cell cycle, stem cell maintenance, and neurogenesis. Bioinformatics analysis of Argonaute-bound RNAs in ZIKV-infected hNSCs identified a number of miRNAs with predicted involvement in microcephaly, including miR-124-3p, which dysregulates NSC maintenance through repression of the transferrin receptor (TFRC). Consistent with this, ZIKV infection upregulated miR-124-3p and downregulated TFRC mRNA in ZIKV-infected hNSCs and mouse brain tissue. These data provide insights into the roles of miRNAs in ZIKV pathogenesis, particularly the microcephaly phenotype.
Collapse
Affiliation(s)
- Jason W Dang
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Division of Genetics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093, USA
| | - Shashi Kant Tiwari
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Division of Genetics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA
| | - Yue Qin
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Division of Genetics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology, University of California, San Diego, 9500 Gilman Drive, MC 0419, La Jolla, CA 92093, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Division of Genetics, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Program in Immunology, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, MC 0762, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Gupta S, Read SA, Shackel NA, Hebbard L, George J, Ahlenstiel G. The Role of Micronutrients in the Infection and Subsequent Response to Hepatitis C Virus. Cells 2019; 8:E603. [PMID: 31212984 PMCID: PMC6627053 DOI: 10.3390/cells8060603] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Micronutrient deficiencies develop for a variety of reasons, whether geographic, socioeconomic, nutritional, or as a result of disease pathologies such as chronic viral infection. As micronutrients are essential for a strong immune response, deficiencies can significantly dampen both the innate and the adaptive arms of antiviral immunity. The innate immune response in particular is crucial to protect against hepatitis C virus (HCV), a hepatotropic virus that maintains chronic infection in up to 80% of individuals if left untreated. While many micronutrients are required for HCV replication, an overlapping group of micronutrients are also necessary to enact a potent immune response. As the liver is responsible for the storage and metabolism of many micronutrients, HCV persistence can influence the micronutrients' steady state to benefit viral persistence both directly and by weakening the antiviral response. This review will focus on common micronutrients such as zinc, iron, copper, selenium, vitamin A, vitamin B12, vitamin D and vitamin E. We will explore their role in the pathogenesis of HCV infection and in the response to antiviral therapy. While chronic hepatitis C virus infection drives deficiencies in micronutrients such as zinc, selenium, vitamin A and B12, it also stimulates copper and iron excess; these micronutrients influence antioxidant, inflammatory and immune responses to HCV.
Collapse
Affiliation(s)
- Sunil Gupta
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia.
| | - Scott A Read
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia.
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, Australia.
| | - Nicholas A Shackel
- Department of Medicine, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, QLD 4814, Australia.
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, Australia.
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia.
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, Australia.
- Department of Medicine, Blacktown Hospital, Blacktown, NSW 2148, Australia.
| |
Collapse
|
21
|
Czaja AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications. Aliment Pharmacol Ther 2019; 49:681-701. [PMID: 30761559 DOI: 10.1111/apt.15173] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disturbances in iron regulation have been described in diverse chronic liver diseases other than hereditary haemochromatosis, and iron toxicity may worsen liver injury and outcome. AIMS To describe manifestations and consequences of iron dysregulation in chronic liver diseases apart from hereditary haemochromatosis and to encourage investigations that clarify pathogenic mechanisms, define risk thresholds for iron toxicity, and direct management METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS Hyperferritinemia is present in 4%-65% of patients with non-alcoholic fatty liver disease, autoimmune hepatitis, chronic viral hepatitis, or alcoholic liver disease, and hepatic iron content is increased in 11%-52%. Heterozygosity for the C282Y mutation is present in 17%-48%, but this has not uniformly distinguished patients with adverse outcomes. An inappropriately low serum hepcidin level has characterised most chronic liver diseases with the exception of non-alcoholic fatty liver disease, and the finding has been associated mainly with suppression of transcriptional activity of the hepcidin gene. Iron overload has been associated with oxidative stress, advanced fibrosis and decreased survival, and promising therapies beyond phlebotomy and oral iron chelation have included hepcidin agonists. CONCLUSIONS Iron dysregulation is common in chronic liver diseases other than hereditary haemochromatosis, and has been associated with liver toxicity and poor prognosis. Further evaluation of iron overload as a co-morbid factor should identify the key pathogenic disturbances, establish the risk threshold for iron toxicity, and promote molecular interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
22
|
Abstract
Objective: The aim of this study was to summarize the interactions between hepatitis C virus (HCV) infection and iron overload, and to understand the mechanisms of iron overload in chronic hepatitis C (CHC) and the role iron plays in HCV life cycle. Data Sources: This review was based on data in articles published in the PubMed databases up to January 28, 2017, with the keywords “hepatitis C virus”, “iron overload”, “iron metabolism”, “hepcidin”, “translation”, and “replication”. Study Selection: Articles related to iron metabolism, iron overload in patients with CHC, or the effects of iron on HCV life cycle were selected for the review. Results: Iron overload is common in patients with CHC. The mechanisms involve decreased hepcidin levels caused by HCV through signal transducer and activator of transcription 3, mitogen-activated protein kinase, or bone morphogenetic protein/SMAD signaling pathways, and the altered expression of other iron-metabolism-related genes. Some studies found that iron increases HCV replication, while other studies found the opposite result. Most of the studies suggest the positive role of iron on HCV translation, the mechanisms of which involve increased expression levels of factors associated with HCV internal ribosome entry site-dependent translation, such as eukaryotic initiation factor 3 and La protein. Conclusion: The growing literature demonstrates that CHC leads to iron overload, and iron affects the HCV life cycle in turn. Further research should be conducted to clarify the mechanism involved in the complicated interaction between iron and HCV.
Collapse
Affiliation(s)
- Dong-Mei Zou
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wan-Ling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
23
|
Wróblewska A, Bernat A, Woziwodzka A, Markiewicz J, Romanowski T, Bielawski KP, Smiatacz T, Sikorska K. Interferon lambda polymorphisms associate with body iron indices and hepatic expression of interferon-responsive long non-coding RNA in chronic hepatitis C. Clin Exp Med 2017; 17:225-232. [PMID: 27125837 PMCID: PMC5403869 DOI: 10.1007/s10238-016-0423-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) within DNA region containing interferon lambda 3 (IFNL3) and IFNL4 genes are prognostic factors of treatment response in chronic hepatitis C (CHC). Iron overload, frequently diagnosed in CHC, is associated with unfavorable disease course and a risk of carcinogenesis. Its etiology and relationship with the immune response in CHC are not fully explained. Our aim was to determine whether IFNL polymorphisms in CHC patients associate with body iron indices, and whether they are linked with hepatic expression of genes involved in iron homeostasis and IFN signaling. For 192 CHC patients, four SNPs within IFNL3-IFNL4 region (rs12979860, rs368234815, rs8099917, rs12980275) were genotyped. In 185 liver biopsies, histopathological analyses were performed. Expression of five mRNAs and three long non-coding RNAs (lncRNAs) was determined with qRT-PCR in 105 liver samples. Rs12979860 TT or rs8099917 GG genotypes as well as markers of serum and hepatocyte iron overload associated with higher activity of gamma-glutamyl transpeptidase and liver steatosis. The presence of two minor alleles in any of the tested SNPs predisposed to abnormally high serum iron concentration and correlated with higher hepatic expression of lncRNA NRIR. On the other hand, homozygosity in any major allele associated with higher viral load. Patients bearing rs12979860 CC genotype had lower hepatic expression of hepcidin (HAMP; P = 0.03). HAMP mRNA level positively correlated with serum iron indices and degree of hepatocyte iron deposits. IFNL polymorphisms influence regulatory pathways of cellular response to IFN and affect body iron balance in chronic hepatitis C virus infection.
Collapse
Affiliation(s)
- Anna Wróblewska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology UG and MUG, Abrahama 58, 80-307, Gdańsk, Poland
| | - Agnieszka Bernat
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology UG and MUG, Abrahama 58, 80-307, Gdańsk, Poland
| | - Anna Woziwodzka
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology UG and MUG, Abrahama 58, 80-307, Gdańsk, Poland
| | - Joanna Markiewicz
- Department of Infectious Diseases, Pomeranian Center of Infectious Diseases, Smoluchowskiego 18, 80-214, Gdańsk, Poland
| | - Tomasz Romanowski
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology UG and MUG, Abrahama 58, 80-307, Gdańsk, Poland
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology UG and MUG, Abrahama 58, 80-307, Gdańsk, Poland
| | - Tomasz Smiatacz
- Department of Infectious Diseases, Medical University of Gdansk, Smoluchowskiego 18, 80-214, Gdańsk, Poland
| | - Katarzyna Sikorska
- Department of Infectious Diseases, Medical University of Gdansk, Smoluchowskiego 18, 80-214, Gdańsk, Poland.
- Department of Tropical Medicine and Epidemiology, Medical University of Gdansk, Powstania Styczniowego 9b, 81-519, Gdynia, Poland.
| |
Collapse
|
24
|
Sikorska K, Bernat A, Wroblewska A. Molecular pathogenesis and clinical consequences of iron overload in liver cirrhosis. Hepatobiliary Pancreat Dis Int 2016; 15:461-479. [PMID: 27733315 DOI: 10.1016/s1499-3872(16)60135-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The liver, as the main iron storage compartment and the place of hepcidin synthesis, is the central organ involved in maintaining iron homeostasis in the body. Excessive accumulation of iron is an important risk factor in liver disease progression to cirrhosis and hepatocellular carcinoma. Here, we review the literature on the molecular pathogenesis of iron overload and its clinical consequences in chronic liver diseases. DATA SOURCES PubMed was searched for English-language articles on molecular genesis of primary and secondary iron overload, as well as on their association with liver disease progression. We have also included literature on adjuvant therapeutic interventions aiming to alleviate detrimental effects of excessive body iron load in liver cirrhosis. RESULTS Excess of free, unbound iron induces oxidative stress, increases cell sensitivity to other detrimental factors, and can directly affect cellular signaling pathways, resulting in accelerated liver disease progression. Diagnosis of liver cirrhosis is, in turn, often associated with the identification of a pathological accumulation of iron, even in the absence of genetic background of hereditary hemochromatosis. Iron depletion and adjuvant therapy with antioxidants are shown to cause significant improvement of liver functions in patients with iron overload. Phlebotomy can have beneficial effects on liver histology in patients with excessive iron accumulation combined with compensated liver cirrhosis of different etiology. CONCLUSION Excessive accumulation of body iron in liver cirrhosis is an important predictor of liver failure and available data suggest that it can be considered as target for adjuvant therapy in this condition.
Collapse
Affiliation(s)
- Katarzyna Sikorska
- Department of Tropical Medicine and Epidemiology, Medical University of Gdansk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland.
| | | | | |
Collapse
|
25
|
Foka P, Dimitriadis A, Karamichali E, Kyratzopoulou E, Giannimaras D, Koskinas J, Varaklioti A, Mamalaki A, Georgopoulou U. Alterations in the iron homeostasis network: A driving force for macrophage-mediated hepatitis C virus persistency. Virulence 2016; 7:679-90. [PMID: 27058404 PMCID: PMC4991317 DOI: 10.1080/21505594.2016.1175700] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/09/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
Mechanisms that favor Hepatitis C virus (HCV) persistence over clearance are unclear, but involve defective innate immunity. Chronic infection is characterized by hepatic iron overload, hyperferraemia and hyperferittinaemia. Hepcidin modulates iron egress via ferroportin and its storage in ferritin. Chronic HCV patients have decreased hepcidin, while HCV replication is modified by HAMP silencing. We aimed to investigate interactions between HCV and hepcidin, during acute and chronic disease, and putative alterations in cellular iron homeostasis that enhance HCV propagation and promote viral persistence. Thus, we used HCV JFH-1-infected co-cultures of Huh7.5 hepatoma and THP-1 macrophage cells, HCV patients' sera and Huh7 hepcidin-expressing cells transfected with HCV replicons. Hepcidin levels were elevated in acutely infected patients, but correlated with viral load in chronic patients. HAMP expression was up-regulated early in HCV infection in vitro, with corresponding changes in ferritin and FPN. Hepcidin overexpression enhanced both viral translation and replication. In HCV-infected co-cultures, we observed increased hepcidin, reduced hepatoma ferritin and a concurrent rise in macrophaghic ferritin over time. Altered iron levels complemented amplified replication in hepatoma cells and one replication round in macrophages. Iron-loading of macrophages led to enhancement of hepatic HCV replication through reversed ferritin "flow." Viral transmissibility from infected macrophages to naïve hepatoma cells was induced by iron. We propose that HCV control over iron occurs both by intracellular iron sequestration, through hepcidin, and intercellular iron mobilisation via ferritin, as means toward enhanced replication. Persistence could be achieved through HCV-induced changes in macrophagic iron that enhances viral replication in these cells.
Collapse
Affiliation(s)
- Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Alexios Dimitriadis
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Eleni Kyratzopoulou
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Dionyssios Giannimaras
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - John Koskinas
- Second Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - Agoritsa Varaklioti
- Blood Center and National Center for Congenital Bleeding Disorders, Laiko General Hospital, Athens, Greece
| | - Avgi Mamalaki
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
26
|
Sikorska K. The iron homeostasis network and hepatitis C virus - a new challenge in the era of directly acting antivirals. Virulence 2016; 7:620-2. [PMID: 27196953 DOI: 10.1080/21505594.2016.1191739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Katarzyna Sikorska
- a Department of Tropical Medicine and Epidemiology , Medical University of Gdańsk , Gdynia , Poland.,b Department of Infectious Diseases , Medical University of Gdańsk , Gdańsk , Poland
| |
Collapse
|
27
|
Yu LN, Lv JJ, Zhu YZ, Dai H, Dong XQ, Duan LP, Yang G, Liu WY, Ma LQ. Liver hepcidin expression is down-regulated in patients with chronic hepatitis B or hepatitis C. Shijie Huaren Xiaohua Zazhi 2015; 23:3366-3373. [DOI: 10.11569/wcjd.v23.i21.3366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the mechanism underlying the interaction between inflammatory reaction and iron metabolism regulation in patients with chronic hepatitis B (CHB) or chronic hepatitis C (CHC).
METHODS: Forty-five patients with CHB, 45 patient with CHC, and 90 healthy volunteers were included. Serum levels of hepcidin, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) were measured by ELISA. Serum levels of alanine transaminase (ALT), aspartate aminotransferases (AST), and iron (Fe) were also measured. Liver and duodenum specimens were taken from 15 CHC patients, 12 CHB patients, and 12 normal controls to detect the expression of hepcidin and ferroportin by immunohistochemistry and liver iron by iron blue staining.
RESULTS: Serum and hepatic hepcidin levels in the CHC and CHB groups were significantly lower than those of the control group (P < 0.05). Compared with the control group, ferroportin expression in the duodenum was significantly increased (P < 0.05) and the positive rate of liver iron blue staining was significantly higher in the CHC and CHB groups (P < 0.05), especially in the CHC group. There was a negative correlation between ferroportin expression in the duodenum and hepatic (r = -0.638, P < 0.05; r = -0.538, P < 0.05) and serum levels of hepcidin (r = -0.407, P < 0.05; r = -0.519, P < 0.05) in CHC and CHB patients. There was a positive correlation between ferroportin expression in the duodenum and serum iron (r = 0.611, P < 0.05; r = 0.637, P < 0.05) in CHC and CHB patients, between serum hepcidin and IL-6 and TNF-α in CHB patients (r = -0.510, P < 0.05; r = -0.450, P < 0.05), and between serum hepcidin and IL-6 in CHB patients (r = -0.620, P < 0.05). There was a positive correlation between serum hepcidin and TNF-α in CHB patients (r = 0.243, P < 0.05).
CONCLUSION: In CHC and CHB patients, lowered hepcidin level and increased ferroportin expression may cause an increase in serum and liver iron accumulation. Hepatic iron accumulation is more obvious in CHC patients.
Collapse
|
28
|
Nahon P, Sutton A, Ziol M, Zucman-Rossi J, Trinchet JC, Ganne-Carrié N. Genetic risk markers for hepatocellular carcinoma in patients with alcoholic liver disease. Hepat Oncol 2015; 2:63-78. [PMID: 30190987 DOI: 10.2217/hep.14.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Various single nucleotide polymorphisms have been reported to be associated with a higher risk of hepatocellular carcinoma in alcoholic cirrhotic patients. Until now, only common variants conferring a small increase in liver cancer risk have been identified. These inherited factors are able to modulate several biological pathways involved in alcohol-induced hepatocarcinogenesis, such as ethanol metabolism, inflammation, oxidative stress, or iron and lipid homeostasis. How the combination of these variants might collectively define an individual genomic risk prediction is currently being investigated. The other challenge in clinical practice lies in defining how to integrate this genetic information with other clinical parameters so as to refine selection of alcoholic cirrhotic patients according to various classes of hepatocellular carcinoma risk.
Collapse
Affiliation(s)
- Pierre Nahon
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France
| | - Angela Sutton
- Service de Biochimie, Hôpital Jean Verdier, AP-HP, Bondy, France.,INSERM U1148, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,Service de Biochimie, Hôpital Jean Verdier, AP-HP, Bondy, France.,INSERM U1148, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France
| | - Marianne Ziol
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,Service d'Anatomo-Pathologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Centre de Ressources biologiques GH PSSD, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,Service d'Anatomo-Pathologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Centre de Ressources biologiques GH PSSD, Bondy, France
| | - Jessica Zucman-Rossi
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Université Paris Diderot, F-75013, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hopital Europeen Georges Pompidou, F-75015 Paris, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Université Paris Diderot, F-75013, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hopital Europeen Georges Pompidou, F-75015 Paris, France
| | - Jean-Claude Trinchet
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Centre de Ressources biologiques GH PSSD, Bondy, France.,Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Centre de Ressources biologiques GH PSSD, Bondy, France
| | - Nathalie Ganne-Carrié
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France
| |
Collapse
|
29
|
Montaldo C, Mattei S, Baiocchini A, Rotiroti N, Del Nonno F, Pucillo LP, Cozzolino AM, Battistelli C, Amicone L, Ippolito G, van Noort V, Conigliaro A, Alonzi T, Tripodi M, Mancone C. Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload. Proteomics 2014; 14:1107-15. [PMID: 24616218 DOI: 10.1002/pmic.201300422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 01/06/2023]
Abstract
Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload.
Collapse
Affiliation(s)
- Claudia Montaldo
- Department of Cellular Biotechnologies and Haematology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; "L. Spallanzani" National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Structure-activity relationships of novel salicylaldehyde isonicotinoyl hydrazone (SIH) analogs: iron chelation, anti-oxidant and cytotoxic properties. PLoS One 2014; 9:e112059. [PMID: 25393531 PMCID: PMC4231169 DOI: 10.1371/journal.pone.0112059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/11/2014] [Indexed: 01/08/2023] Open
Abstract
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.
Collapse
|
31
|
Sikorska K, Romanowski T, Stalke P, Izycka Swieszewska E, Bielawski KP. Association of hepcidin mRNA expression with hepatocyte iron accumulation and effects of antiviral therapy in chronic hepatitis C infection. HEPATITIS MONTHLY 2014; 14:e21184. [PMID: 25598789 PMCID: PMC4286710 DOI: 10.5812/hepatmon.21184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/18/2014] [Accepted: 09/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Iron overload is frequently observed in patients with chronic hepatitis C (CHC) and is associated with the increased risk of liver fibrosis and carcinogenesis. Hepcidin is a regulator of iron homeostasis and a component of innate immunity. Based on experimental studies, iron overload might be a result of low hepcidin synthesis in CHC. OBJECTIVES The aim of this case-control study was to assess hepcidin mRNA expression in liver tissue of patients with CHC in terms of iron metabolism parameters, hemochromatosis (HFE) gene mutations, disease activity, and efficacy of antiviral treatment with pegylated interferon and ribavirin. PATIENTS AND METHODS A total of 31 patients with CHC, who were qualified for antiviral therapy, were compared with 19 patients with chronic hepatitis B (CHB). In both groups, liver function tests and serum iron parameters were assayed and hepcidin mRNA expression was measured in liver specimens using real time PCR with normalization to reference genes mRNA of stable expression. RESULTS Patients with CHC had lower hepcidin mRNA expression and more frequently iron deposits in hepatocytes than subjects with CHB did. In CHC group, hepcidin mRNA expression was positively correlated with alanine aminotransferase activity and serum iron concentration. Low expression of hepcidin had no correlation with tissue iron overload in those with CHC. In univariate analysis, HCV viral load and efficacy of antiviral treatment were not significantly associated with hepcidin mRNA expression. CONCLUSIONS Further studies on the role of hepcidin in pathogenesis of CHC are needed to assess the potency of its use in antiviral treatment.
Collapse
Affiliation(s)
- Katarzyna Sikorska
- Department of Infectious Diseases, Medical University of
Gdansk, Gdansk, Poland
- Corresponding Author: Katarzyna Sikorska, Department
of Infectious Diseases, Medical University of Gdansk, Gdansk, Poland. Tel: +48-583412887,
Fax: +48-5834128287, E-mail:
| | - Tomasz Romanowski
- Department of Biotechnology, Intercollegiate Faculty of
Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stalke
- Department of Infectious Diseases, Medical University of
Gdansk, Gdansk, Poland
| | - Ewa Izycka Swieszewska
- Department of Pathology and Neuropathology, Medical
University of Gdansk, Gdansk, Poland
| | - Krzysztof Piotr Bielawski
- Department of Biotechnology, Intercollegiate Faculty of
Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
32
|
Duodenal ferroportin is up-regulated in patients with chronic hepatitis C. PLoS One 2014; 9:e110658. [PMID: 25330009 PMCID: PMC4203811 DOI: 10.1371/journal.pone.0110658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver-related mortality. Chronic hepatitis C (CHC) is frequently associated with disturbances in iron homeostasis, with serum iron and hepatic iron stores being elevated. Accumulating evidence indicates that chronic HCV infection suppresses expression of hepatic hepcidin, a key mediator of iron homeostasis, leading to iron overload conditions. Since hepcidin mediates degradation of ferroportin, a basolateral transporter involved in the release of iron from cells, diminished hepcidin expression probably leads to up-regulation of ferroportin-1 (Fpn1) in patients with CHC. In this study, we determined the protein levels of duodenal Fpn1, and found that its expression was significantly up-regulated in patients with CHC. The expression of duodenal Fpn1 is negatively correlated with mRNA levels of hepcidin, and positively correlated with serum iron parameters. Although iron is a critical factor for growth of a variety of pathogenic bacteria, our results suggest that iron overload in blood does not increase the infection rate of bacteria in patients with CHC.
Collapse
|
33
|
Sikorska K, Bernat A. Iron homeostasis and its regulators over the course of chronic hepatitis C. Future Virol 2014. [DOI: 10.2217/fvl.14.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Chronic infection with HCV has been diagnosed in approximately 170 million people worldwide. It is an important cause of chronic, progressive liver fibrosis. Late consequences of chronic HCV infection, including liver cirrhosis and hepatocellular carcinoma, have become the major indications for liver transplantation in developed countries. Particular attention is being paid to iron accumulation in chronic hepatitis C and its relation to the current antiviral therapy's efficacy and safety, risk of exacerbation of oxidative stress, development of metabolic disorders and hepatocarcinogenesis. HCV infection disrupts the synthesis of hepcidin, which regulates extracellular iron content. This article discusses the impact of iron on HCV multiplication and the involvement of impaired iron homeostasis in chronic hepatitis C in terms of the pathogenesis of insulin resistance, fatty liver and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Katarzyna Sikorska
- Department of Infectious Diseases, Medical University of Gdansk. 80-214 Gdansk, Smoluchowskiego 18, Poland
| | - Agnieszka Bernat
- Intercollegiate Faculty of Biotechnology, University of Gdansk & Medical University of Gdansk. 80-822 Gdansk, Kladki 24, Poland
| |
Collapse
|
34
|
Sebastiani G, Gkouvatsos K, Pantopoulos K. Chronic hepatitis C and liver fibrosis. World J Gastroenterol 2014; 20:11033-11053. [PMID: 25170193 PMCID: PMC4145747 DOI: 10.3748/wjg.v20.i32.11033] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/14/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide and predisposes to liver fibrosis and end-stage liver complications. Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, and is considered as a wound healing response to chronic liver injury. Its staging is critical for the management and prognosis of chronic hepatitis C (CHC) patients, whose number is expected to rise over the next decades, posing a major health care challenge. This review provides a brief update on HCV epidemiology, summarizes basic mechanistic concepts of HCV-dependent liver fibrogenesis, and discusses methods for assessment of liver fibrosis that are routinely used in clinical practice. Liver biopsy was until recently considered as the gold standard to diagnose and stage liver fibrosis. However, its invasiveness and drawbacks led to the development of non-invasive methods, which include serum biomarkers, transient elastography and combination algorithms. Clinical studies with CHC patients demonstrated that non-invasive methods are in most cases accurate for diagnosis and for monitoring liver disease complications. Moreover, they have a high prognostic value and are cost-effective. Non-invasive methods for assessment of liver fibrosis are gradually being incorporated into new guidelines and are becoming standard of care, which significantly reduces the need for liver biopsy.
Collapse
|
35
|
Jabłonowska E, Wójcik K, Szymańska B, Omulecka A, Cwiklińska H, Piekarska A. Hepatic HMOX1 expression positively correlates with Bach-1 and miR-122 in patients with HCV mono and HIV/HCV coinfection. PLoS One 2014; 9:e95564. [PMID: 24752012 PMCID: PMC3994072 DOI: 10.1371/journal.pone.0095564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/28/2014] [Indexed: 12/23/2022] Open
Abstract
Aim To analyze the expression of HMOX1 and miR-122 in liver biopsy samples obtained from HCV mono-and HIV/HCV co-infected patients in relation to selected clinical parameters, histological examination and IL-28B polymorphism as well as to determine whether HMOX1 expression is dependent on Bach-1. Materials and Methods The study group consisted of 90 patients with CHC: 69 with HCV mono and 21 with HIV/HCV co-infection. RT-PCR was used in the analysis of HMOX1, Bach-1 and miR-122 expression in liver biopsy samples and in the assessment of IL-28B single-nucleotide polymorphism C/T (rs12979860) in the blood. Moreover in liver biopsy samples an analysis of HO-1 and Bach-1 protein level by Western Blot was performed. Results HCV mono-infected patients, with lower grading score (G<2) and higher HCV viral load (>600000 IU/mL) demonstrated higher expression of HMOX1. In patients with HIV/HCV co-infection, the expression of HMOX1 was lower in patients with lower lymphocyte CD4 count and higher HIV viral load. IL28B polymorphism did not affect the expression of either HMOX1 or miR-122. Higher HMOX1 expression correlated with higher expression of Bach-1 (Spearman’s ρ = 0.586, p = 0.000001) and miR-122 (Spearman’s ρ = 0.270, p = 0.014059). Conclusions HMOX1 and miR-122 play an important role in the pathogenesis of CHC in HCV mono-and HIV/HCV co-infected patients. Reduced expression of HMOX1 in patients with HIV/HCV co-infection may indicate a worse prognosis in this group. Our results do not support the importance of Bach-1 in repression of HMOX1 in patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Łódź, Poland
| | - Kamila Wójcik
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Łódź, Poland
| | | | - Aleksandra Omulecka
- Department of Pathology, Biegański Provincial Specialistic Hospital, Łódź, Poland
| | - Hanna Cwiklińska
- Laboratory of Neuroimmunology, Department of Neurology, Medical University of Łódź, Poland
| | - Anna Piekarska
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
36
|
Chan SW. Establishment of chronic hepatitis C virus infection: Translational evasion of oxidative defence. World J Gastroenterol 2014; 20:2785-2800. [PMID: 24659872 PMCID: PMC3961964 DOI: 10.3748/wjg.v20.i11.2785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a clinically important disease affecting 3% of the world population. HCV is a single-stranded, positive-sense RNA virus belonging to the genus Hepacivirus within the Flaviviridae family. The virus establishes a chronic infection in the face of an active host oxidative defence, thus adaptation to oxidative stress is key to virus survival. Being a small RNA virus with a limited genomic capacity, we speculate that HCV deploys a different strategy to evade host oxidative defence. Instead of counteracting oxidative stress, it utilizes oxidative stress to facilitate its own survival. Translation is the first step in the replication of a plus strand RNA virus so it would make sense if the virus can exploit the host oxidative defence in facilitating this very first step. This is particularly true when HCV utilizes an internal ribosome entry site element in translation, which is distinctive from that of cap-dependent translation of the vast majority of cellular genes, thus allowing selective translation of genes under conditions when global protein synthesis is compromised. Indeed, we were the first to show that HCV translation was stimulated by an important pro-oxidant-hydrogen peroxide in hepatocytes, suggesting that HCV is able to adapt to and utilize the host anti-viral response to facilitate its own translation thus allowing the virus to thrive under oxidative stress condition to establish chronicity. Understanding how HCV translation is regulated under oxidative stress condition will advance our knowledge on how HCV establishes chronicity. As chronicity is the initiator step in disease progression this will eventually lead to a better understanding of pathogenicity, which is particularly relevant to the development of anti-virals and improved treatments of HCV patients using anti-oxidants.
Collapse
|
37
|
Georgopoulou U, Dimitriadis A, Foka P, Karamichali E, Mamalaki A. Hepcidin and the iron enigma in HCV infection. Virulence 2014; 5:465-76. [PMID: 24626108 PMCID: PMC4063809 DOI: 10.4161/viru.28508] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An estimated 30-40% of patients with chronic hepatitis C have elevated serum iron, transferrin saturation, and ferritin levels. Clinical data suggest that iron is a co-morbidity factor for disease progression following HCV infection. Iron is essential for a number of fundamental metabolic processes in cells and organisms. Mammalian iron homeostasis is tightly regulated and this is maintained through the coordinated action of sensory and regulatory networks that modulate the expression of iron-related proteins at the transcriptional and/or posttranscriptional levels. Disturbances of iron homeostasis have been implicated in infectious disease pathogenesis. Viruses, similarly to other pathogens, can escape recognition by the immune system, but they need iron from their host to grow and spread. Hepcidin is a 25-aa peptide, present in human serum and urine and represents the key peptide hormone, which modulates iron homeostasis in the body. It is synthesized predominantly by hepatocytes and its mature form is released in circulation. In this review, we discuss recent advances in the exciting crosstalk of molecular mechanisms and cell signaling pathways by which iron and hepcidin production influences HCV-induced liver disease.
Collapse
Affiliation(s)
- Urania Georgopoulou
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Pelagia Foka
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece; Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Eirini Karamichali
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| |
Collapse
|
38
|
Inhibition of replication of porcine reproductive and respiratory syndrome virus by hemin is highly dependent on heme oxygenase-1, but independent of iron in MARC-145 cells. Antiviral Res 2014; 105:39-46. [PMID: 24583029 DOI: 10.1016/j.antiviral.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/19/2014] [Accepted: 02/13/2014] [Indexed: 11/22/2022]
Abstract
Current vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) have failed to provide sustainable disease control, and development of new antiviral strategies is of great importance. The present study investigated the mechanism of the antiviral effect of hemin during PRRSV infection in MARC-145 cells. Hemin, a commercial preparation of heme, is used as an iron donor or heme oxygenase 1 (HO-1) inducer, and has been shown to provide antiviral activity in many studies. In the current study, the anti-PRRSV activity of hemin was identified through suppressing PRRSV propagation. The 50% inhibitory concentration (IC50) of hemin antiviral activity was estimated to be 32μM, and the 50% cytotoxic concentration (CC50) of hemin was found to be higher than 125μM. Further study showed that the antiviral activity of hemin is independent of iron. In addition, after treatment with Protoporphyrin IX zinc (II) (ZnPP) or Sn (IV) Protoporphyrin IX dichloride (SnPP), inhibitors of HO-1, the inhibition of viral replication by hemin was partially reversed. Additionally, it was confirmed that hemin and N-acetyl cysteine were able to significantly reduce reactive oxygen species (ROS) in MARC-145 cells infected with virus. N-acetyl-L-cysteine (NAC), however, did not produce a reduction in viral load or promote expression of HO-1. Taken together, these data indicate that the effect of hemin on the inhibition of PRRSV propagation via HO-1 induction, as well as the antiviral mechanism of HO-1, is not dependent on decreased levels of ROS. In conclusion, these data demonstrate that hemin had antiviral activity against PRRSV and may serve as a useful antiviral agent inhibiting PRRSV replication.
Collapse
|
39
|
Fillebeen C, Pantopoulos K. Hepatitis C virus infection causes iron deficiency in Huh7.5.1 cells. PLoS One 2013; 8:e83307. [PMID: 24349485 PMCID: PMC3862679 DOI: 10.1371/journal.pone.0083307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023] Open
Abstract
Patients with chronic hepatitis C virus (HCV) infection frequently develop systemic iron overload, which exacerbates morbidity. Nevertheless, iron inhibits HCV replication in cell culture models and thereby exerts antiviral activity. We hypothesized that the cellular iron status is crucial for the establishment of HCV infection. We show that HCV infection of permissive Huh7.5.1 hepatoma cells promotes an iron deficient phenotype. Thus, HCV leads to increased iron regulatory protein (IRP) activity, accumulation of IRP2 and suppression of transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) in the host. These data suggest that HCV regulates cellular iron levels to bypass iron-mediated inhibition in viral replication.
Collapse
Affiliation(s)
- Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
40
|
Obeid S, Alen J, Nguyen VH, Pham VC, Meuleman P, Pannecouque C, Le TN, Neyts J, Dehaen W, Paeshuyse J. Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS One 2013; 8:e81783. [PMID: 24349127 PMCID: PMC3859510 DOI: 10.1371/journal.pone.0081783] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/16/2013] [Indexed: 01/06/2023] Open
Abstract
We reported previously that Artemisinin (ART), a widely used anti-malarial drug, is an inhibitor of in vitro HCV subgenomic replicon replication. We here demonstrate that ART exerts its antiviral activity also in hepatoma cells infected with full length infectious HCV JFH-1. We identified a number of ART analogues that are up to 10-fold more potent and selective as in vitro inhibitors of HCV replication than ART. The iron donor Hemin only marginally potentiates the anti-HCV activity of ART in HCV-infected cultures. Carbon-centered radicals have been shown to be critical for the anti-malarial activity of ART. We demonstrate that carbon-centered radicals-trapping (the so-called TEMPO) compounds only marginally affect the anti-HCV activity of ART. This provides evidence that carbon-centered radicals are not the main effectors of the anti-HCV activity of the Artemisinin. ART and analogues may possibly exert their anti-HCV activity by the induction of reactive oxygen species (ROS). The combined anti-HCV activity of ART or its analogues with L-N-Acetylcysteine (L-NAC) [a molecule that inhibits ROS generation] was studied. L-NAC significantly reduced the in vitro anti-HCV activity of ART and derivatives. Taken together, the in vitro anti-HCV activity of ART and analogues can, at least in part, be explained by the induction of ROS; carbon-centered radicals may not be important in the anti-HCV effect of these molecules.
Collapse
Affiliation(s)
- Susan Obeid
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Alen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Van Hung Nguyen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, University Ghent, Ghent, Belgium
| | | | - Thanh Nguyen Le
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jan Paeshuyse
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Ivanov AV, Bartosch B, Smirnova OA, Isaguliants MG, Kochetkov SN. HCV and oxidative stress in the liver. Viruses 2013; 5:439-69. [PMID: 23358390 PMCID: PMC3640510 DOI: 10.3390/v5020439] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/26/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is the etiological agent accounting for chronic liver disease in approximately 2-3% of the population worldwide. HCV infection often leads to liver fibrosis and cirrhosis, various metabolic alterations including steatosis, insulin and interferon resistance or iron overload, and development of hepatocellular carcinoma or non-Hodgkin lymphoma. Multiple molecular mechanisms that trigger the emergence and development of each of these pathogenic processes have been identified so far. One of these involves marked induction of a reactive oxygen species (ROS) in infected cells leading to oxidative stress. To date, markers of oxidative stress were observed both in chronic hepatitis C patients and in various in vitro systems, including replicons or stable cell lines expressing viral proteins. The search for ROS sources in HCV-infected cells revealed several mechanisms of ROS production and thus a number of cellular proteins have become targets for future studies. Furthermore, during last several years it has been shown that HCV modifies antioxidant defense mechanisms. The aim of this review is to summarize the present state of art in the field and to try to predict directions for future studies.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| | - Birke Bartosch
- CRCL, INSERM U1052, CNRS 5286, Université de Lyon, 151, Cours A Thomas 69424 Lyon Cedex France; E-Mail:
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| | - Maria G. Isaguliants
- Department of Molecular Biology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16 17177 Stockholm, Sweden; E-Mail:
- D.I. Ivanovsky Institute of Virology, Gamaleya Str. 16, 123098 Moscow, Russia; E-Mail:
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| |
Collapse
|
42
|
Chao CT, Lai CF, Huang JW. Risk factors for herpes zoster reactivation in maintenance hemodialysis patients. Eur J Intern Med 2012; 23:711-5. [PMID: 22958951 DOI: 10.1016/j.ejim.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/27/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Herpes zoster (HZ) reactivation is common in immunocompromised patients. Advanced renal failure is also reportedly associated with impairment of cellular immunity. There is not any study yet assessing risk factors of HZ reactivation in hemodialysis patients. METHODS All patients undergoing maintenance hemodialysis for more than 3 months and who developed HZ between 2000/01/01 and 2009/12/31 in a tertiary referral medical center were identified, and matched 1:1 to hemodialysis patients without HZ by age and gender. Multivariate-adjusted conditional logistic regression model was constructed to determine possible risk factors. RESULTS Out of a total of 126 maintenance hemodialysis patients (65.3% female), 63 belonged to the HZ reactivation group and 63 to the age/sex matched control patients. Conditional logistic regression model linked corticosteroid use with heightened risk (odds ratio [OR] 20.2, 95% confidence interval [CI] 3.5-125.6; p=0.002), while iron therapy and 1α-hydroxylated vitamin D were associated with significantly lower likelihood of developing HZ (OR 0.12, 95%CI 0.0-0.6; p=0.01, and OR 0.06, 95% CI 0.0-0.4; p=0.005 respectively). CONCLUSIONS Use of iron preparations and 1α-hydroxylated vitamin D is potentially associated with less risk of developing HZ reactivation in maintenance hemodialysis patients.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
43
|
Chen MH, Lee MY, Chuang JJ, Li YZ, Ning ST, Chen JC, Liu YW. Curcumin inhibits HCV replication by induction of heme oxygenase-1 and suppression of AKT. Int J Mol Med 2012; 30:1021-8. [PMID: 22922731 PMCID: PMC3573749 DOI: 10.3892/ijmm.2012.1096] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/30/2012] [Indexed: 12/17/2022] Open
Abstract
Although hepatitis C virus (HCV) affects approximately 130–170 million people worldwide, no vaccines are available. HCV is an important cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma, leading to the need for liver transplantation. In this study, curcumin, a constituent used in traditional Chinese medicine, has been evaluated for its anti-HCV activity and mechanism, using a human hepatoma cell line containing the HCV genotype 1b subgenomic replicon. Below the concentration of 20% cytotoxicity, curcumin dose-dependently inhibited HCV replication by luciferase reporter gene assay, HCV RNA detection and HCV protein analysis. Under the same conditions, curcumin also dose-dependently induced heme oxygenase-1 with the highest induction at 24 h. Hemin, a heme oxygenase-1 inducer, also inhibited HCV protein expression in a dose-dependent manner. The knockdown of heme oxygenase-1 partially reversed the curcumin-inhibited HCV protein expression. In addition to the heme oxygenase-1 induction, signaling molecule activities of AKT, extracellular signal-regulated kinases (ERK) and nuclear factor-κB (NF-κB) were inhibited by curcumin. Using specific inhibitors of PI3K-AKT, MEK-ERK and NF-κB, the results suggested that only PI3K-AKT inhibition is positively involved in curcumin-inhibited HCV replication. Inhibition of ERK and NF-κB was likely to promote HCV protein expression. In summary, curcumin inhibited HCV replication by heme oxygenase-1 induction and AKT pathway inhibition. Although curcumin also inhibits ERK and NF-κB activities, it slightly increased the HCV protein expression. This result may provide information when curcumin is used as an adjuvant in anti-HCV therapy.
Collapse
Affiliation(s)
- Ming-Ho Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
44
|
Ryan JD, Altamura S, Devitt E, Mullins S, Lawless MW, Muckenthaler MU, Crowe J. Pegylated interferon-α induced hypoferremia is associated with the immediate response to treatment in hepatitis C. Hepatology 2012; 56:492-500. [PMID: 22334511 DOI: 10.1002/hep.25666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 02/09/2012] [Indexed: 12/27/2022]
Abstract
UNLABELLED Pegylated interferon-α (PEG-IFN-α) forms an integral part of the current treatment for hepatitis C virus (HCV) infection. PEG-IFN-α suppresses HCV production by augmenting the innate antiviral immune response. Recent studies have reported the induction of hepcidin, the iron regulatory hormone, by IFN-α in vitro. As hepcidin plays an important role in innate immunity, we hypothesized that this finding may be of clinical relevance to HCV and investigated the changes in iron homeostasis during the first 24 hours of treatment. Blood samples were obtained from HCV patients immediately prior to and 6, 12, and 24 hours following the first dose of PEG-IFN-α/ribavirin (RBV). Samples were analyzed for hepcidin, cytokine, iron levels, and HCV viral load, and hepcidin messenger RNA (mRNA) expression was quantified in peripheral blood mononuclear cells. Hepcidin induction by IFN-α was further analyzed in cell culture. In HCV patients a single dose of PEG-IFN-α/RBV resulted in a significant increase in serum hepcidin, peaking at 12 hours, coinciding with a 50% reduction in serum iron and transferrin saturation over the 24-hour period. Patients with a ≥ 2 log decline in HCV viral load over the first 24 hours had significantly lower SI and TS levels at 12 and 24 hours. Moreover, 24-hour SI levels were an independent predictor of the immediate HCV viral decline, an indicator of ultimate treatment outcome. In cell culture, a direct induction of hepcidin by IFN-α was seen, controlled by the STAT3 transcription factor. CONCLUSION Hepcidin induction occurs following the initiation of PEG-IFN-α treatment for HCV, and is mediated by way of STAT3 signaling. The subsequent hypoferremia was greatest in those with the most significant decline in viral load, identifying systemic iron withdrawal as a marker of immediate interferon-α efficacy in HCV patients.
Collapse
Affiliation(s)
- John D Ryan
- Centre for Liver Disease, Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Macková E, Hrušková K, Bendová P, Vávrová A, Jansová H, Hašková P, Kovaříková P, Vávrová K, Šimůnek T. Methyl and ethyl ketone analogs of salicylaldehyde isonicotinoyl hydrazone: Novel iron chelators with selective antiproliferative action. Chem Biol Interact 2012; 197:69-79. [DOI: 10.1016/j.cbi.2012.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/13/2012] [Accepted: 03/30/2012] [Indexed: 01/06/2023]
|
46
|
Sebastiani G, Tempesta D, Alberti A. Hepatic iron overload is common in chronic hepatitis B and is more severe in patients coinfected with hepatitis D virus. J Viral Hepat 2012; 19:e170-6. [PMID: 22239515 DOI: 10.1111/j.1365-2893.2011.01508.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic iron overload has been described in chronic hepatitis C as a cofactor affecting fibrosis progression. Data in patients with chronic hepatitis B infection are scarce. We investigated hepatic iron deposits and serum iron indices in 205 consecutive patients with hepatitis B and compensated liver disease. Mean age of the patients was 42.4 ± 12.4 years and 72.5% were males. Coinfection with hepatitis delta virus (HDV) was present in 8.8%. At least one of the serum iron indices was elevated in 41.5% of cases. Hepatic iron deposits were detected in 35.1% of patients, most of them being minimal (grade I) (59.7%) or mild (grade II) (27.8%). Variables significantly associated with hepatic iron deposits were male gender (P = 0.001), serum ferritin (P = 0.008), γGT (P = 0.05) and alkaline phosphatase (P = 0.05) levels. By multivariate analysis hepatic iron deposits correlated with serum ferritin [odds ratio (OR) 1.2, 95% confidence interval (CI) 1.05-1.4, P = 0.002]. Presence of mild-moderate (grades II and III) hepatic iron deposits could be excluded with high negative predictive value (90%) when serum ferritin was within normal values. A significant correlation between coinfection with HDV and hepatic iron deposits was also found (OR 4.23, 95% CI 1.52-11.82, P = 0.003). When compared to monoinfected cases, HDV positive patients had more elevated γGT (P = 0.03), more advanced fibrosis and more severe iron deposits (P < 0.0001). In conclusion, in well-compensated chronic hepatitis B infection, hepatic iron deposits and elevation of serum iron indices are common, especially in male gender and in patients coinfected with HDV. As HBV/HDV liver disease is generally more rapidly progressive than that caused by HBV monoinfection, we speculate that iron overload may be one of the factors contributing to the severity of liver disease.
Collapse
Affiliation(s)
- G Sebastiani
- Digestive Diseases, Hepatology and Clinical Nutrition Department, Dell'Angelo Hospital, Venice, Italy.
| | | | | |
Collapse
|
47
|
Nahon P, Sutton A, Rufat P, Charnaux N, Mansouri A, Moreau R, Ganne-Carrié N, Grando-Lemaire V, N'Kontchou G, Trinchet JC, Pessayre D, Beaugrand M. A variant in myeloperoxidase promoter hastens the emergence of hepatocellular carcinoma in patients with HCV-related cirrhosis. J Hepatol 2012; 56:426-32. [PMID: 21907168 DOI: 10.1016/j.jhep.2011.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/11/2011] [Accepted: 08/14/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Genetic dimorphisms modulate the activities of several pro- or antioxidant enzymes, including myeloperoxidase (MPO), catalase (CAT), manganese superoxide dismutase (SOD2), and glutathione peroxidase 1 (GPx1). We assessed the role of the G(-463)A-MPO, T(-262)C-CAT, Ala16Val-SOD2, and Pro198Leu-GPx1 variants in modulating HCC development in patients with HCV-induced cirrhosis. METHODS Two hundred and five patients with HCV-induced, biopsy-proven cirrhosis but without detectable HCC at inclusion were prospectively followed-up for HCC development. The influence of various genotypes on HCC occurrence was assessed with the Kaplan-Meier method. RESULTS During follow-up (103.2±3.4 months), 84 patients (41%) developed HCC, and 66 died. Whereas the Ala16Val-SOD2 or Pro198Leu-GPx1 dimorphisms did not modulate the risk, HCC occurrence was increased in patients with either the homozygous GG-MPO genotype (HR=2.8 [1.7-4.4]; first quartile time to HCC occurrence: 45 vs. 96 months; LogRank <0.0001) or the homozygous CC-CAT genotype (HR=1.74 [1.06-2.82]; first quartile time to HCC occurrence: 55 vs. 96 months; LogRank=0.02). Compared to patients with neither of these two at risk factors, patients with only the CC-CAT genotype had a HR of 2.05 [0.9-4.6] (p=0.08) and patients with only the GG-MPO genotype had a HR of 3.8 [1.5-9.1] (p=0.002), while patients with both risk factors had an HR of 4.8 [2.2-10.4] (p<0.0001). However, only the GG-MPO genotype was independently associated with the HCC risk in multivariate Cox analysis. CONCLUSIONS The high activity-associated GG-MPO genotype increases the rate of HCC occurrence in patients with HCV-induced cirrhosis.
Collapse
Affiliation(s)
- Pierre Nahon
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sikorska K, Stalke P, Bielawski KP. Is there any association between HCV multiplication and iron induced liver injury in chronic hepatitis C? J Hepatol 2011; 55:235-6: author reply 236-7. [PMID: 21236307 DOI: 10.1016/j.jhep.2010.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/12/2010] [Indexed: 02/05/2023]
|
49
|
Ryan JD, Crowe J. Hepatocyte iron accumulation: a new string to ribavirin's antiviral bow? J Hepatol 2011; 55:237-8; author reply 238. [PMID: 21349299 DOI: 10.1016/j.jhep.2011.01.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/28/2011] [Indexed: 02/05/2023]
|
50
|
Abstract
BACKGROUND Increased liver iron stores may contribute to the progression of liver injury and fibrosis, and are associated with a higher risk of hepatocellular carcinoma development. Pre-transplant symptoms of iron overload in patients with liver cirrhosis are associated with higher risk of infectious and malignant complications in liver transplant recipients. HFE gene mutations may be involved in the pathogenesis of liver iron overload and influence the progression of chronic liver diseases of different origins. This study was designed to determine the prevalence of iron overload in relation to HFE gene mutations among Polish patients with liver cirrhosis. METHODS Sixty-one patients with liver cirrhosis included in the study were compared with a control group of 42 consecutive patients subjected to liver biopsy because of chronic liver diseases. Liver function tests and serum iron markers were assessed in both groups. All patients were screened for HFE mutations (C282Y, H63D, S65C). Thirty-six of 61 patients from the study group and all controls had liver biopsy performed with semiquantitative assessment of iron deposits in hepatocytes. RESULTS The biochemical markers of iron overload and iron deposits in the liver were detected with a higher frequency (70% and 47% respectively) in patients with liver cirrhosis. There were no differences in the prevalence of all HFE mutations in both groups. In patients with a diagnosis of hepatocellular carcinoma, no significant associations with iron disorders and HFE gene mutations were found. CONCLUSIONS Iron disorders were detected in patients with liver cirrhosis frequently but without significant association with HFE gene mutations. Only the homozygous C282Y mutation seems to occur more frequently in the selected population of patients with liver cirrhosis. As elevated biochemical iron indices accompanied liver iron deposits more frequently in liver cirrhosis compared to controls with chronic liver disease, there is a need for more extensive studies searching for the possible influence of non-HFE iron homeostasis regulators and their modulation on the course of chronic liver disease and liver cirrhosis.
Collapse
|