1
|
Covatti C, Mizobuti DS, da Rocha GL, da Silva HNM, Minatel E. Photobiomodulation Therapy Effects at Different Stages of the Dystrophic Phenotype: A Histomorphometric Study. J Manipulative Physiol Ther 2024:S0161-4754(24)00064-2. [PMID: 39453299 DOI: 10.1016/j.jmpt.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effects of photobiomodulation therapy (PBMT) on the gastrocnemius muscle of X-linked muscular dystrophy (mdx) mice. METHODS The study used an experimental model of Duchenne muscular dystrophy, at 3 stages of degeneration/regeneration of muscle fibers: an acute stage (14-28 days old), acute and stabilized stages (14-42 days old), and a stabilized stage (28-42 days old). Photobiomodulation therapy (also known as low-level light therapy) at 0.6 J was applied 3 times per week to the dystrophic gastrocnemius muscle of mdx mice at ages 14 to 28, 14 to 42, and 28 to 42 days. After the treatment period, the gastrocnemius muscle was collected, and cryosections were prepared for histopathologic analysis. RESULTS In all 3 stages evaluated, a significant reduction was observed in immunoglobulin G uptake by muscle fibers, the inflammatory area, macrophage infiltration, the reactive dihydroethidium area, and the number of autofluorescent lipofuscin granules in the gastrocnemius muscle of mdx mice after PBMT. CONCLUSION The results demonstrated that low-level light therapy, when applied during or after the acute phase of the degeneration/regeneration muscle process, improves the pathological histomorphologic features in dystrophic muscle. Based on these results, PBMT appears to be a promising therapy for dystrophinopathies, warranting further research in humans to verify its efficacy.
Collapse
Affiliation(s)
- Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Tong H, Fan S, Hu W, Wang H, Guo G, Huang X, Zhao L, Li X, Zhang L, Jiang Z, Yu Q. Diarylpropionitrile-stimulated ERβ nuclear accumulation promotes MyoD-induced muscle regeneration in mdx mice by interacting with FOXO3A. Pharmacol Res 2024; 208:107376. [PMID: 39216837 DOI: 10.1016/j.phrs.2024.107376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive degenerative disease of skeletal muscle, characterized by intramuscular inflammation, muscle regeneration disorder and replacement of muscle with fibroadipose tissue. DMD is caused by the absence of normal dystrophy. Impaired self-renew ability and limited differentiation capacity of satellite cells are proved as main reasons for muscle regeneration failure. The deficiency of estrogen impedes the process of muscle regeneration. However, the role of estrogen receptor β (ERβ) in muscle regeneration is still unclear. This study aims to investigate the role and the pharmacological effect of ERβ activation on muscle regeneration in mdx mice. This study showed that mRNA levels of ERβ and myogenic-related genes both witnessed increasing trends in dystrophic context. Our results revealed that treatment with selective ERβ agonist (DPN, diarylpropionitrile) significantly increased myogenic differentiation 1 (MyoD-1) level and promoted muscle regeneration in mdx mice. Similarly, in mdx mice with muscle-specific estrogen receptor α (ERα) ablation, DPN treatment still promoted muscle regeneration. Moreover, we demonstrated that myoblasts differentiation was accompanied by raised nuclear accumulation of ERβ. DPN treatment augmented the nuclear accumulation of ERβ and, thus, contributed to myotubes formation. One important finding was that forkhead box O3A (FOXO3A), as a pivotal transcription factor in Myod-1 transcription, participated in the ERβ-promoted muscle regeneration. Overall, we offered an interesting explanation about the crucial role of ERβ during myogenesis.
Collapse
Affiliation(s)
- Haowei Tong
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shusheng Fan
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wanting Hu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Huna Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangyao Guo
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofei Huang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 200032, China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Neurology, Children's Hospital of Fudan University, Shanghai 200032, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinwei Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Charrier M, Leroux I, Pichon J, Schleder C, Larcher T, Hamel A, Magot A, Péréon Y, Lamirault G, Tremblay JP, Skuk D, Rouger K. Human MuStem cells are competent to fuse with nonhuman primate myofibers in a clinically relevant transplantation context: A proof-of-concept study. J Neuropathol Exp Neurol 2024; 83:684-694. [PMID: 38752570 DOI: 10.1093/jnen/nlae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.
Collapse
Affiliation(s)
- Marine Charrier
- Oniris, INRAE, PAnTher, Nantes, France
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- Nantes Université, Nantes, France
| | | | | | | | | | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | | | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | - Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | | |
Collapse
|
4
|
Madigan LA, Jaime D, Chen I, Fallon JR. MuSK-BMP signaling in adult muscle stem cells maintains quiescence and regulates myofiber size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541238. [PMID: 37292636 PMCID: PMC10245747 DOI: 10.1101/2023.05.17.541238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A central question in adult stem cell biology is elucidating the signaling pathways regulating their dynamics and function in diverse physiological and age-related contexts. Muscle stem cells in adults (Satellite Cells; SCs) are generally quiescent but can activate and contribute to muscle repair and growth. Here we tested the role of the MuSK-BMP pathway in regulating adult SC quiescence by deletion of the BMP-binding MuSK Ig3 domain ('ΔIg3-MuSK'). At 3 months of age SC and myonuclei numbers and myofiber size were comparable to WT. However, at 5 months of age SC density was decreased while myofiber size, myonuclear number and grip strength were increased - indicating that SCs had activated and productively fused into the myofibers over this interval. Transcriptomic analysis showed that SCs from uninjured ΔIg3-MuSK mice exhibit signatures of activation. Regeneration experiments showed that ΔIg3-MuSK SCs maintain full stem cell function. Expression of ΔIg3-MuSK in adult SCs was sufficient to break quiescence and increase myofiber size. We conclude that the MuSK-BMP pathway regulates SC quiescence and myofiber size in a cell autonomous, age-dependent manner. Targeting MuSK-BMP signaling in muscle stem cells thus emerges a therapeutic strategy for promoting muscle growth and function in the settings of injury, disease, and aging. Highlights MuSK, in its role as a BMP co-receptor, regulates adult muscle stem cell quiescenceThe MuSK-BMP pathway acts cell autonomouslyIncreased muscle size and function with preservation of myonuclear density and stemness in mice with attenuated MuSK-BMP signaling.
Collapse
|
5
|
Yu W, Zhang X, Gu M, Wang J, Zhang Y, Zhang W, Yuan WE. Bioactive Nanofiber-Hydrogel Composite Regulates Regenerative Microenvironment for Skeletal Muscle Regeneration after Volumetric Muscle Loss. Adv Healthc Mater 2024; 13:e2304087. [PMID: 38531346 DOI: 10.1002/adhm.202304087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Volumetric muscle loss (VML) is a severe form of muscle trauma that exceeds the regenerative capacity of skeletal muscle tissue, leading to substantial functional impairment. The abnormal immune response and excessive reactive oxygen species (ROS) accumulation hinder muscle regeneration following VML. Here, an interfacial cross-linked hydrogel-poly(ε-caprolactone) nanofiber composite, that incorporates both biophysical and biochemical cues to modulate the immune and ROS microenvironment for enhanced VML repair, is engineered. The interfacial cross-linking is achieved through a Michael addition between catechol and thiol groups. The resultant composite exhibits enhanced mechanical strength without sacrificing porosity. Moreover, it mitigates oxidative stress and promotes macrophage polarization toward a pro-regenerative phenotype, both in vitro and in a mouse VML model. 4 weeks post-implantation, mice implanted with the composite show improved grip strength and walking performance, along with increased muscle fiber diameter, enhanced angiogenesis, and more nerve innervation compared to control mice. Collectively, these results suggest that the interfacial cross-linked nanofiber-hydrogel composite could serve as a cell-free and drug-free strategy for augmenting muscle regeneration by modulating the oxidative stress and immune microenvironment at the VML site.
Collapse
Affiliation(s)
- Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Muge Gu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Jiayu Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| |
Collapse
|
6
|
Tan RL, Sciandra F, Hübner W, Bozzi M, Reimann J, Schoch S, Brancaccio A, Blaess S. The missense mutation C667F in murine β-dystroglycan causes embryonic lethality, myopathy and blood-brain barrier destabilization. Dis Model Mech 2024; 17:dmm050594. [PMID: 38616731 PMCID: PMC11212641 DOI: 10.1242/dmm.050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a β-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in β-DG causes muscle-eye-brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant β-DG is altered in the glial perivascular end-feet, resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and β-DG protein levels are significantly reduced in muscle and brain of mutant mice. Owing to the partially penetrant developmental phenotype of the C669F β-DG mice, they represent a novel and highly valuable mouse model with which to study the molecular effects of β-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.
Collapse
Affiliation(s)
- Rui Lois Tan
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Francesca Sciandra
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Manuela Bozzi
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie. Sezione di Biochimica. Università Cattolica del Sacro Cuore di Roma, 00168 Rome, Italy
| | - Jens Reimann
- Department of Neurology, Neuromuscular Diseases Section, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Synaptic Neuroscience Team, Institute of Neuropathology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Andrea Brancaccio
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
- School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
7
|
de Jong JCBC, Caspers MPM, Worms N, Keijzer N, Kleemann R, Menke AL, Nieuwenhuizen AG, Keijer J, Verschuren L, van den Hoek AM. Translatability of mouse muscle-aging for humans: the role of sex. GeroScience 2024; 46:3341-3360. [PMID: 38265577 PMCID: PMC11009184 DOI: 10.1007/s11357-024-01082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Muscle-aging drives sarcopenia and is a major public health issue. Mice are frequently used as a model for human muscle-aging, however, research investigating their translational value is limited. In addition, mechanisms underlying muscle-aging may have sex-specific features in humans, but it is not yet assessed whether these are recapitulated in mice. Here, we studied the effects of aging on a functional, histological and transcriptional level at multiple timepoints in male and female mice (4, 17, 21 and 25 months), with particular emphasis on sex-differences. The effects of natural aging on the transcriptome of quadriceps muscle were compared to humans on pathway level. Significant loss of muscle mass occurred late, at 25 months, in both male (-17%, quadriceps) and female mice (-10%, quadriceps) compared to young control mice. Concomitantly, we found in female, but not male mice, a slower movement speed in the aged groups compared to the young mice (P < 0.001). Consistently, weighted gene co-expression network analysis revealed a stronger association between the aging-related reduction of movement and aging-related changes in muscle transcriptome of female compared to male mice (P < 0.001). In male, but not female mice, major distinctive aging-related changes occurred in the last age group (25 months), which highlights the necessity for careful selection of age using mice as a muscle-aging model. Furthermore, contrasting to humans, more aging-related changes were found in the muscle transcriptome of male mice compared to female mice (4090 vs. 2285 differentially expressed genes at 25 months, respectively). Subsequently, male mice recapitulated more muscle-aging related pathways characteristic for both male and female humans. In conclusion, our data show that sex has a critical effect on the mouse muscle-aging trajectory, although these do not necessarily reflect sex differences observed in the human muscle-aging trajectory.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands.
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
8
|
Bellissimo CA, Gandhi S, Castellani LN, Murugathasan M, Delfinis LJ, Thuhan A, Garibotti MC, Seo Y, Rebalka IA, Hsu HH, Sweeney G, Hawke TJ, Abdul-Sater AA, Perry CGR. The slow-release adiponectin analog ALY688-SR modifies early-stage disease development in the D2. mdx mouse model of Duchenne muscular dystrophy. Am J Physiol Cell Physiol 2024; 326:C1011-C1026. [PMID: 38145301 DOI: 10.1152/ajpcell.00638.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Fibrosis is associated with respiratory and limb muscle atrophy in Duchenne muscular dystrophy (DMD). Current standard of care partially delays the progression of this myopathy but there remains an unmet need to develop additional therapies. Adiponectin receptor agonism has emerged as a possible therapeutic target to lower inflammation and improve metabolism in mdx mouse models of DMD but the degree to which fibrosis and atrophy are prevented remain unknown. Here, we demonstrate that the recently developed slow-release peptidomimetic adiponectin analog, ALY688-SR, remodels the diaphragm of murine model of DMD on DBA background (D2.mdx) mice treated from days 7-28 of age during early stages of disease. ALY688-SR also lowered interleukin-6 (IL-6) mRNA but increased IL-6 and transforming growth factor-β1 (TGF-β1) protein contents in diaphragm, suggesting dynamic inflammatory remodeling. ALY688-SR alleviated mitochondrial redox stress by decreasing complex I-stimulated H2O2 emission. Treatment also attenuated fibrosis, fiber type-specific atrophy, and in vitro diaphragm force production in diaphragm suggesting a complex relationship between adiponectin receptor activity, muscle remodeling, and force-generating properties during the very early stages of disease progression in murine model of DMD on DBA background (D2.mdx) mice. In tibialis anterior, the modest fibrosis at this young age was not altered by treatment, and atrophy was not apparent at this young age. These results demonstrate that short-term treatment of ALY688-SR in young D2.mdx mice partially prevents fibrosis and fiber type-specific atrophy and lowers force production in the more disease-apparent diaphragm in relation to lower mitochondrial redox stress and heterogeneous responses in certain inflammatory markers. These diverse muscle responses to adiponectin receptor agonism in early stages of DMD serve as a foundation for further mechanistic investigations.NEW & NOTEWORTHY There are limited therapies for the treatment of Duchenne muscular dystrophy. As fibrosis involves an accumulation of collagen that replaces muscle fibers, antifibrotics may help preserve muscle function. We report that the novel adiponectin receptor agonist ALY688-SR prevents fibrosis in the diaphragm of D2.mdx mice with short-term treatment early in disease progression. These responses were related to altered inflammation and mitochondrial functions and serve as a foundation for the development of this class of therapy.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Adiponectin/genetics
- Disease Models, Animal
- Interleukin-6/metabolism
- Mice, Inbred C57BL
- Hydrogen Peroxide/metabolism
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Mice, Inbred DBA
- Muscle, Skeletal/metabolism
- Diaphragm/metabolism
- Fibrosis
- Inflammation/metabolism
- Disease Progression
- Atrophy/metabolism
- Atrophy/pathology
Collapse
Affiliation(s)
- Catherine A Bellissimo
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Shivam Gandhi
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Laura N Castellani
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mayoorey Murugathasan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Luca J Delfinis
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Arshdeep Thuhan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Madison C Garibotti
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Yeji Seo
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Henry H Hsu
- Allysta Pharmaceuticals Inc, Bellevue, Washington, United States
| | - Gary Sweeney
- Department of Biology, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Hermes TDA, Fratini P, Nascimento BG, Ferreira LL, Petri G, Fonseca FLA, Carvalho AADS, Feder D. Trilobatin contributes to the improvement of myopathy in a mouse model of Duchenne muscular dystrophy. Int J Exp Pathol 2024; 105:75-85. [PMID: 38477495 PMCID: PMC10951423 DOI: 10.1111/iep.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to a deficiency in dystrophin production and consequent progressive degeneration of skeletal muscle fibres, through oxidative stress and an exacerbated inflammatory process. The flavonoid trilobatin (TLB) demonstrates antioxidant and anti-inflammatory potential. Its high safety profile and effective action make it a potent therapy for the process of dystrophic muscle myonecrosis. Thus, we sought to investigate the action of TLB on damage in a DMD model, the mdx mouse. Eight-week-old male animals were treated with 160 mg/kg/day of trilobatin for 8 weeks. Control animals were treated with saline. Following treatment, muscle strength, serum creatine kinase (CK) levels, histopathology (necrotic myofibres, regenerated fibres/central nuclei, Feret's diameter and inflammatory area) and the levels of catalase and NF-κB (western blotting) of the quadriceps (QUA), diaphragm (DIA) and tibialis anterior (TA) muscles were measured. TLB was able to significantly increase muscle strength and reduce serum CK levels in dystrophic animals. The QUA of mdx mice showed a reduction in catalase and the number of fibres with a centralized nucleus after treatment with TLB. In the DIA of dystrophic animals, TLB reduced the necrotic myofibres, inflammatory area and NF-κB and increased the number of regenerated fibres and the total fibre diameter. In TA, TLB increased the number of regenerated fibres and reduced catalase levels in these animals. It is concluded that in the mdx experimental model, treatment with TLB was beneficial in the treatment of DMD.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Anatomy, ICBFederal University of Alfenas (UNIFAL‐MG)AlfenasMinas GeraisBrazil
| | - Paula Fratini
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| | | | - Laís Leite Ferreira
- Department of Anatomy, ICBFederal University of Alfenas (UNIFAL‐MG)AlfenasMinas GeraisBrazil
| | - Giuliana Petri
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| | | | | | - David Feder
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| |
Collapse
|
10
|
da Silva HNM, Fernandes EM, Pereira VA, Mizobuti DS, Covatti C, da Rocha GL, Minatel E. LEDT and Idebenone treatment modulate autophagy and improve regenerative capacity in the dystrophic muscle through an AMPK-pathway. PLoS One 2024; 19:e0300006. [PMID: 38498472 PMCID: PMC10947673 DOI: 10.1371/journal.pone.0300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06μM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-β). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.
Collapse
Affiliation(s)
| | - Evelyn Mendes Fernandes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
11
|
LeMaster MN, Ha M, Dunshea FR, Chauhan S, D'Souza D, Warner RD. Impact of cooking temperature on pork longissimus, and muscle fibre type, on quality traits and protein denaturation of four pork muscles. Meat Sci 2024; 209:109395. [PMID: 38141536 DOI: 10.1016/j.meatsci.2023.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
Variations in pork quality impact consumer acceptance, and fibre type differences between muscles contribute to this variation. The aim was to investigate the influence of variations in muscle fibre types and protein denaturation peaks across four pork muscles and the influence of ageing and cooking temperature on longissimus quality traits. The longissimus, masseter, cutaneous trunci, and psoas major from 13 carcases were removed 1-day postmortem and subjected to 0- or 14-days ageing (d0, d14). Quality traits, protein denaturation peak temperature (DSC), fibre diameter and fibre type proportions were measured. Cook loss for longissimus was similar on d0 and d14, but was higher on d14 for masseter, cutaneous trunci, and psoas major. Warner-Bratzler shear force was highest, and ultimate pH was lowest, for longissimus, and similar among cutaneous trunci, masseter, and psoas major. Masseter had lowest L* and highest a* and longissimus and cutaneous trunci had highest L* and lowest a*. The DSC temperature peaks for longissimus occurred at lower temperatures relative to the other muscles. Fibre diameter was largest for type-IIb fibres relative to type-IIa and type-I. Longissimus and cutaneous trunci had predominantly type-IIb glycolytic (71%, 51% respectively), masseter had predominantly type-IIa intermediate (50%) and psoas major had predominantly type-I oxidative (48%) fibres. The glycolytic longissimus had the lowest DSC temperature peaks and the lowest quality meat. Masseter had the highest proportion of type-I fibres but was generally similar in quality traits to psoas major, and also similar to cutaneous trunci which had more glycolytic fibres than masseter.
Collapse
Affiliation(s)
- Michelle N LeMaster
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Minh Ha
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Surinder Chauhan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Robyn D Warner
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
12
|
Bencze M, Periou B, Punzón I, Barthélémy I, Taglietti V, Hou C, Zaidan L, Kefi K, Blot S, Agbulut O, Gervais M, Derumeaux G, Authier F, Tiret L, Relaix F. Receptor interacting protein kinase-3 mediates both myopathy and cardiomyopathy in preclinical animal models of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2023; 14:2520-2531. [PMID: 37909859 PMCID: PMC10751447 DOI: 10.1002/jcsm.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder, culminating in a complete loss of ambulation, hypertrophic cardiomyopathy and a fatal cardiorespiratory failure. Necroptosis is the form of necrosis that is dependent upon the receptor-interacting protein kinase (RIPK) 3; it is involved in several inflammatory and neurodegenerative conditions. We previously identified RIPK3 as a key player in the acute myonecrosis affecting the hindlimb muscles of the mdx dystrophic mouse model. Whether necroptosis also mediates respiratory and heart disorders in DMD is currently unknown. METHODS Evidence of activation of the necroptotic axis was examined in dystrophic tissues from Golden retriever muscular dystrophy (GRMD) dogs and R-DMDdel52 rats. A functional assessment of the involvement of necroptosis in dystrophic animals was performed on mdx mice that were genetically depleted for RIPK3. Dystrophic mice aged from 12 to 18 months were analysed by histology and molecular biology to compare the phenotype of muscles from mdxRipk3+/+ and mdxRipk3-/- mice. Heart function was also examined by echocardiography in 40-week-old mice. RESULTS RIPK3 expression in sartorius and biceps femoris muscles from GRMD dogs positively correlated to myonecrosis levels (r = 0.81; P = 0.0076). RIPK3 was also found elevated in the diaphragm (P ≤ 0.05). In the slow-progressing heart phenotype of GRMD dogs, the phosphorylated form of RIPK1 at the Serine 161 site was dramatically increased in cardiomyocytes. A similar p-RIPK1 upregulation characterized the cardiomyocytes of the severe DMDdel52 rat model, associated with a marked overexpression of Ripk1 (P = 0.007) and Ripk3 (P = 0.008), indicating primed activation of the necroptotic pathway in the dystrophic heart. MdxRipk3-/- mice displayed decreased compensatory hypertrophy of the heart (P = 0.014), and echocardiography showed a 19% increase in the relative wall thickness (P < 0.05) and 29% reduction in the left ventricle mass (P = 0.0144). Besides, mdxRipk3-/- mice presented no evidence of a regenerative default or sarcopenia in skeletal muscles, moreover around 50% less affected by fibrosis (P < 0.05). CONCLUSIONS Our data highlight molecular and histological evidence that the necroptotic pathway is activated in degenerative tissues from dystrophic animal models, including the diaphragm and the heart. We also provide the genetic proof of concept that selective inhibition of necroptosis in dystrophic condition improves both histological features of muscles and cardiac function, suggesting that prevention of necroptosis is susceptible to providing multiorgan beneficial effects for DMD.
Collapse
Affiliation(s)
- Maximilien Bencze
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Baptiste Periou
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Isabel Punzón
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Inès Barthélémy
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Valentina Taglietti
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Cyrielle Hou
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Louai Zaidan
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Kaouthar Kefi
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Stéphane Blot
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Onnik Agbulut
- Institut de Biologie Paris‐Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and AgeingSorbonne UniversitéParisFrance
| | - Marianne Gervais
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Geneviève Derumeaux
- Team Derumeaux, Department of Physiology, Henri Mondor Hospital, FHU‐SENEC, AP‐HPU955‐IMRB, Université Paris‐Est Créteil (UPEC)CréteilFrance
| | - François‐Jérôme Authier
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Laurent Tiret
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Fréderic Relaix
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| |
Collapse
|
13
|
Cisterna B, Lofaro FD, Lacavalla MA, Boschi F, Malatesta M, Quaglino D, Zancanaro C, Boraldi F. Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training. Front Cell Dev Biol 2023; 11:1273309. [PMID: 38020923 PMCID: PMC10679468 DOI: 10.3389/fcell.2023.1273309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: A regular physical training is known to contribute to preserve muscle mass and strength, maintaining structure and function of neural and vascular compartments and preventing muscle insulin resistance and inflammation. However, physical activity is progressively reduced during aging causing mobility limitations and poor quality of life. Although physical exercise for rehabilitation purposes (e.g., after fractures or cardiovascular events) or simply aiming to counteract the development of sarcopenia is frequently advised by physicians, nevertheless few data are available on the targets and the global effects on the muscle organ of adapted exercise especially if started at old age. Methods: To contribute answering this question for medical translational purposes, the proteomic profile of the gastrocnemius muscle was analyzed in 24-month-old mice undergoing adapted physical training on a treadmill for 12 weeks or kept under a sedentary lifestyle condition. Proteomic data were implemented by morphological and morphometrical ultrastructural evaluations. Results and Discussion: Data demonstrate that muscles can respond to adapted physical training started at old age, positively modulating their morphology and the proteomic profile fostering protective and saving mechanisms either involving the extracellular compartment as well as muscle cell components and pathways (i.e., mitochondrial processes, cytoplasmic translation pathways, chaperone-dependent protein refolding, regulation of skeletal muscle contraction). Therefore, this study provides important insights on the targets of adapted physical training, which can be regarded as suitable benchmarks for future in vivo studies further exploring the effects of this type of physical activity by functional/metabolic approaches.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Maria Assunta Lacavalla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Zancanaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Malis V, Sinha U, Smitaman E, Obra JKL, Langer HT, Mossakowski AA, Baar K, Sinha S. Time-dependent diffusion tensor imaging and diffusion modeling of age-related differences in the medial gastrocnemius and feasibility study of correlations to histopathology. NMR IN BIOMEDICINE 2023; 36:e4996. [PMID: 37434581 PMCID: PMC10592510 DOI: 10.1002/nbm.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Implement STEAM-DTI to model time-dependent diffusion eigenvalues using the random permeable barrier model (RPBM) to study age-related differences in the medial gastrocnemius (MG) muscle. Validate diffusion model-extracted fiber diameter for histological assessment. METHODS Diffusion imaging at different diffusion times (Δ) was performed on seven young and six senior participants. Time-dependent diffusion eigenvalues (λ2 (t), λ3 (t), and D⊥ (t); average of λ2 (t) and λ3 (t)) were fit to the RPBM to extract tissue microstructure parameters. Biopsy of the MG tissue for histological assessment was performed on a subset of participants (four young, six senior). RESULTS λ3 (t) was significantly higher in the senior cohort for the range of diffusion times. RPBM fits to λ2 (t) yielded fiber diameters in agreement to those from histology for both cohorts. The senior cohort had lower values of volume fraction of membranes, ζ, in fits to λ2 (t), λ3 (t), and D⊥ (t) (significant for fit to λ3 (t)). Fits of fiber diameter from RPBM to that from histology had the highest correlation for the fit to λ2 (t). CONCLUSION The age-related patterns in λ2 (t) and λ3 (t) could tentatively be explained from RPBM fits; these patterns may potentially arise from a decrease in fiber asymmetry and an increase in permeability with age.
Collapse
Affiliation(s)
- Vadim Malis
- Physics, UC San Diego, San Diego, California, USA
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, San Diego, California, USA
| | - Edward Smitaman
- Department of Radiology, UC San Diego, San Diego, California, USA
| | - Jed Keenan Lim Obra
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Henning T Langer
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Agata A Mossakowski
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Keith Baar
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| |
Collapse
|
15
|
Rohl AH, Connor NP, Russell JA. Age-related sex differences in tongue strength and muscle morphometry in a rat model. Arch Oral Biol 2023; 155:105779. [PMID: 37556980 PMCID: PMC10592197 DOI: 10.1016/j.archoralbio.2023.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To investigate potential effects of sex on voluntary tongue strength, evoked twitch and tetanic tension, speed of contraction, and muscle fiber cross-sectional area in the muscles of the rat tongue. Additionally, we aimed to determine whether estrous cycle stage impacts any of the dependent variables as a pilot investigation into the use of female rats in a model of tongue exercise and aging. DESIGN Fischer 344-Brown Norway male and female rats in two age groups (16 middle-aged, 16 young-adult) were trained to use a tongue force operandum. Tongue muscle contraction, myosin heavy chain (MyHC) composition, and cross section area of the genioglossus and styloglossus muscles were examined. Vaginal lavage determined estrous cycle stage of the female rats daily. RESULTS The female group had significantly lower evoked twitch and tetanic tension, longer contraction times, and a smaller proportion of MyHC type IIa and MyHC type IIx in the styloglossus muscle. There was no significant sex effect in maximal voluntary tongue force (MVTF) despite a significant weight difference between the male and female groups. There were no significant age or sex effects in the genioglossus. Estrous cycle stage did not have a significant effect on any of the dependent variables. CONCLUSIONS Sex and age both have a significant effect on tongue muscle structure and physiology. While the female group showed reduced contraction speed and maximal twitch and tetanic tension relative to the male group, differences in muscle morphology appeared to vary by muscle.
Collapse
Affiliation(s)
- Andrea H Rohl
- Department of Neurosurgery, University of Iowa, USA.
| | - Nadine P Connor
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin, Madison, USA
| | | |
Collapse
|
16
|
Garbincius JF, Salik O, Cohen HM, Choya-Foces C, Mangold AS, Makhoul AD, Schmidt AE, Khalil DY, Doolittle JJ, Wilkinson AS, Murray EK, Lazaropoulos MP, Hildebrand AN, Tomar D, Elrod JW. TMEM65 regulates NCLX-dependent mitochondrial calcium efflux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561062. [PMID: 37873405 PMCID: PMC10592617 DOI: 10.1101/2023.10.06.561062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The balance between mitochondrial calcium (mCa2+) uptake and efflux regulates ATP production, but if perturbed causes energy starvation or mCa2+ overload and cell death. The mitochondrial sodium-calcium exchanger, NCLX, is a critical route of mCa2+ efflux in excitable tissues, such as the heart and brain, and animal models support NCLX as a promising therapeutic target to limit pathogenic mCa2+ overload. However, the mechanisms that regulate NCLX activity remain largely unknown. We used proximity biotinylation proteomic screening to identify the NCLX interactome and define novel regulators of NCLX function. Here, we discover the mitochondrial inner membrane protein, TMEM65, as an NCLX-proximal protein that potently enhances sodium (Na+)-dependent mCa2+ efflux. Mechanistically, acute pharmacologic NCLX inhibition or genetic deletion of NCLX ablates the TMEM65-dependent increase in mCa2+ efflux. Further, loss-of-function studies show that TMEM65 is required for Na+-dependent mCa2+ efflux. Co-fractionation and in silico structural modeling of TMEM65 and NCLX suggest these two proteins exist in a common macromolecular complex in which TMEM65 directly stimulates NCLX function. In line with these findings, knockdown of Tmem65 in mice promotes mCa2+ overload in the heart and skeletal muscle and impairs both cardiac and neuromuscular function. We further demonstrate that TMEM65 deletion causes excessive mitochondrial permeability transition, whereas TMEM65 overexpression protects against necrotic cell death during cellular Ca2+ stress. Collectively, our results show that loss of TMEM65 function in excitable tissue disrupts NCLX-dependent mCa2+ efflux, causing pathogenic mCa2+ overload, cell death and organ-level dysfunction, and that gain of TMEM65 function mitigates these effects. These findings demonstrate the essential role of TMEM65 in regulating NCLX-dependent mCa2+ efflux and suggest modulation of TMEM65 as a novel strategy for the therapeutic control of mCa2+ homeostasis.
Collapse
Affiliation(s)
- Joanne F. Garbincius
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Oniel Salik
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Henry M. Cohen
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Carmen Choya-Foces
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Adam S. Mangold
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Angelina D. Makhoul
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Anna E. Schmidt
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Dima Y. Khalil
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joshua J. Doolittle
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Anya S. Wilkinson
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Emma K. Murray
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael P. Lazaropoulos
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Alycia N. Hildebrand
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Dhanendra Tomar
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - John W. Elrod
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Thürkauf M, Lin S, Oliveri F, Grimm D, Platt RJ, Rüegg MA. Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9. Nat Commun 2023; 14:6116. [PMID: 37777530 PMCID: PMC10542775 DOI: 10.1038/s41467-023-41769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Molecular screens comparing different disease states to identify candidate genes rely on the availability of fast, reliable and multiplexable systems to interrogate genes of interest. CRISPR/Cas9-based reverse genetics is a promising method to eventually achieve this. However, such methods are sorely lacking for multi-nucleated muscle fibers, since highly efficient nuclei editing is a requisite to robustly inactive candidate genes. Here, we couple Cre-mediated skeletal muscle fiber-specific Cas9 expression with myotropic adeno-associated virus-mediated sgRNA delivery to establish a system for highly effective somatic gene deletions in mice. Using well-characterized genes, we show that local or systemic inactivation of these genes copy the phenotype of traditional gene-knockout mouse models. Thus, this proof-of-principle study establishes a method to unravel the function of individual genes or entire signaling pathways in adult skeletal muscle fibers without the cumbersome requirement of generating knockout mice.
Collapse
Affiliation(s)
| | - Shuo Lin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Randall J Platt
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | |
Collapse
|
18
|
Leduc-Gaudet JP, Miguez K, Cefis M, Faitg J, Moamer A, Chaffer TJ, Reynaud O, Broering FE, Shams A, Mayaki D, Huck L, Sandri M, Gouspillou G, Hussain SN. Autophagy ablation in skeletal muscles worsens sepsis-induced muscle wasting, impairs whole-body metabolism, and decreases survival. iScience 2023; 26:107475. [PMID: 37588163 PMCID: PMC10425945 DOI: 10.1016/j.isci.2023.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Septic patients frequently develop skeletal muscle wasting and weakness, resulting in severe clinical consequences and adverse outcomes. Sepsis triggers sustained induction of autophagy, a key cellular degradative pathway, in skeletal muscles. However, the impact of enhanced autophagy on sepsis-induced muscle dysfunction remains unclear. Using an inducible and muscle-specific Atg7 knockout mouse model (Atg7iSkM-KO), we investigated the functional importance of skeletal muscle autophagy in sepsis using the cecal ligation and puncture model. Atg7iSkM-KO mice exhibited a more severe phenotype in response to sepsis, marked by severe muscle wasting, hypoglycemia, higher ketone levels, and a decreased in survival as compared to mice with intact Atg7. Sepsis and Atg7 deletion resulted in the accumulation of mitochondrial dysfunction, although sepsis did not further worsen mitochondrial dysfunction in Atg7iSkM-KO mice. Overall, our study demonstrates that autophagy inactivation in skeletal muscles triggers significant worsening of sepsis-induced muscle and metabolic dysfunctions and negatively impacts survival.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec À Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| | - Kayla Miguez
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Marina Cefis
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| | - Julie Faitg
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
- Amazentis SA, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Alaa Moamer
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Tomer Jordi Chaffer
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Olivier Reynaud
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| | - Felipe E. Broering
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Anwar Shams
- Department of Pharmacology, Faculty of Medicine, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Dominique Mayaki
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Laurent Huck
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Marco Sandri
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Veneto Institute of Molecular Medicine (VIMM) and Department of Biomedical Science, Università di Padova, 35129 Padova, Italy
| | - Gilles Gouspillou
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des sciences de l’activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| | - Sabah N.A. Hussain
- Department of Critical Care and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre (MUHC), Montréal, QC H3H 2R9, Canada
- Meakins-Christie Laboratories, Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
19
|
de Jong JCBC, Attema BJ, van der Hoek MD, Verschuren L, Caspers MPM, Kleemann R, van der Leij FR, van den Hoek AM, Nieuwenhuizen AG, Keijer J. Sex differences in skeletal muscle-aging trajectory: same processes, but with a different ranking. GeroScience 2023; 45:2367-2386. [PMID: 36820956 PMCID: PMC10651666 DOI: 10.1007/s11357-023-00750-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Sex differences in muscle aging are poorly understood, but could be crucial for the optimization of sarcopenia-related interventions. To gain insight into potential sex differences in muscle aging, we recruited young (23 ± 2 years, 13 males and 13 females) and old (80 ± 3.5 years, 28 males and 26 females) participants. Males and females in both groups were highly matched, and vastus lateralis muscle parameters of old versus young participants were compared for each sex separately, focusing on gene expression. The overall gene expression profiles separated the sexes, but similar gene expression patterns separated old from young participants in males and females. Genes were indeed regulated in the same direction in both sexes during aging; however, the magnitude of differential expression was sex specific. In males, oxidative phosphorylation was the top-ranked differentially expressed process, and in females, this was cell growth mediated by AKT signaling. Findings from RNA-seq data were studied in greater detail using alternative approaches. In addition, we confirmed our data using publicly available data from three independent human studies. In conclusion, top-ranked pathways differ between males and females, but were present and altered in the same direction in both sexes. We conclude that the same processes are associated with skeletal muscle aging in males and females, but the differential expression of those processes in old vs. young participants is sex specific.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Brecht J Attema
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands
| | - Marjanne D van der Hoek
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
- MCL Academy, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Feike R van der Leij
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
- Research and Innovation Centre Agri, Food & Life Sciences, Inholland University of Applied Sciences, Delft and Amsterdam, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands.
| |
Collapse
|
20
|
de Jong JCBC, Verschuren L, Caspers MPM, van der Hoek MD, van der Leij FR, Kleemann R, van den Hoek AM, Nieuwenhuizen AG, Keijer J. Evidence for sex-specific intramuscular changes associated to physical weakness in adults older than 75 years. Biol Sex Differ 2023; 14:45. [PMID: 37430322 DOI: 10.1186/s13293-023-00531-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Physical weakness is a key component of frailty, and is highly prevalent in older adults. While females have a higher prevalence and earlier onset, sex differences in the development of frailty-related physical weakness are hardly studied. Therefore, we investigated the intramuscular changes that differentiate between fit and weak older adults for each sex separately. METHODS Male (n = 28) and female (n = 26) older adults (75 + years) were grouped on the basis of their ranks according to three frailty-related physical performance criteria. Muscle biopsies taken from vastus lateralis muscle were used for transcriptome and histological examination. Pairwise comparisons were made between the fittest and weakest groups for each sex separately, and potential sex-specific effects were assessed. RESULTS Weak females were characterized by a higher expression of inflammatory pathways and infiltration of NOX2-expressing immune cells, concomitant with a higher VCAM1 expression. Weak males were characterized by a smaller diameter of type 2 (fast) myofibers and lower expression of PRKN. In addition, weakness-associated transcriptome changes in the muscle were distinct from aging, suggesting that the pathophysiology of frailty-associated physical weakness does not necessarily depend on aging. CONCLUSIONS We conclude that physical weakness-associated changes in muscle are sex-specific and recommend that sex differences are taken into account in research on frailty, as these differences may have a large impact on the development of (pharmaceutical) interventions against frailty. TRIAL REGISTRATION NUMBER The FITAAL study was registered in the Dutch Trial Register, with registration code NTR6124 on 14-11-2016 ( https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6124 ). HIGHLIGHTS • In female, but not male older adults, physical weakness was associated with a higher expression of intramuscular markers for inflammation. • In male, but not female older adults, physical weakness was associated with a smaller diameter of type 2 (fast) myofibers and lower PRKN expression. • Fit older adults (of both sexes) maintained expression levels comparable to young participants of weakness related genes, differing from frail participants.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700AH, Wageningen, The Netherlands
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Marjanne D van der Hoek
- Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700AH, Wageningen, The Netherlands
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
- MCL Academy, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Feike R van der Leij
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
- Research and Innovation Centre Agri, Food and Life Sciences, Inholland University of Applied Sciences, Delft and Amsterdam, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700AH, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700AH, Wageningen, The Netherlands.
| |
Collapse
|
21
|
Dubreil L, Damane N, Fleurisson R, Charrier M, Pichon J, Leroux I, Schleder C, Ledevin M, Larcher T, Jamme F, Puentes J, Rouger K. Specific and label-free endogenous signature of dystrophic muscle by Synchrotron deep ultraviolet radiation. Sci Rep 2023; 13:10808. [PMID: 37402811 PMCID: PMC10319894 DOI: 10.1038/s41598-023-37762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Dystrophic muscle is characterized by necrosis/regeneration cycles, inflammation, and fibro-adipogenic development. Conventional histological stainings provide essential topographical data of this remodeling but may be limited to discriminate closely related pathophysiological contexts. They fail to mention microarchitecture changes linked to the nature and spatial distribution of tissue compartment components. We investigated whether label-free tissue autofluorescence revealed by Synchrotron deep ultraviolet (DUV) radiation could serve as an additional tool for monitoring dystrophic muscle remodeling. Using widefield microscopy with specific emission fluorescence filters and microspectroscopy defined by high spectral resolution, we analyzed samples from healthy dogs and two groups of dystrophic dogs: naïve (severely affected) and MuStem cell-transplanted (clinically stabilized) animals. Multivariate statistical analysis and machine learning approaches demonstrated that autofluorescence emitted at 420-480 nm by the Biceps femoris muscle effectively discriminates between healthy, dystrophic, and transplanted dog samples. Microspectroscopy showed that dystrophic dog muscle displays higher and lower autofluorescence due to collagen cross-linking and NADH respectively than that of healthy and transplanted dogs, defining biomarkers to evaluate the impact of cell transplantation. Our findings demonstrate that DUV radiation is a sensitive, label-free method to assess the histopathological status of dystrophic muscle using small amounts of tissue, with potential applications in regenerative medicine.
Collapse
Affiliation(s)
| | - Noreddine Damane
- Oniris, INRAE, PAnTher, 44300, Nantes, France
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
| | | | | | | | | | | | | | | | - Frédéric Jamme
- Synchrotron SOLEIL, BP48, L'Orme Des Merisiers, 91120, Gif-Sur-Yvette, France
| | - John Puentes
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
| | - Karl Rouger
- Oniris, INRAE, PAnTher, 44300, Nantes, France.
| |
Collapse
|
22
|
Murphy K, Zhang A, Bittel AJ, Chen YW. Molecular and Phenotypic Changes in FLExDUX4 Mice. J Pers Med 2023; 13:1040. [PMID: 37511653 PMCID: PMC10381554 DOI: 10.3390/jpm13071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the double homeobox 4 (DUX4) gene. The FLExDUX4 mouse model carries an inverted human DUX4 transgene which has leaky DUX4 transgene expression at a very low level. No overt muscle pathology was reported before 16 weeks. The purpose of this study is to track and characterize the FLExDUX4 phenotypes for a longer period, up to one year old. In addition, transcriptomic changes in the muscles of 2-month-old mice were investigated using RNA-seq. The results showed that male FLExDUX4 mice developed more severe phenotypes and at a younger age in comparison to the female mice. These include lower body and muscle weight, and muscle weakness measured by grip strength measurements. Muscle pathological changes were observed at older ages, including fibrosis, decreased size of type IIa and IIx myofibers, and the development of aggregates containing TDP-43 in type IIb myofibers. Muscle transcriptomic data identified early molecular changes in biological pathways regulating circadian rhythm and adipogenesis. The study suggests a slow progressive change in molecular and muscle phenotypes in response to the low level of DUX4 expression in the FLExDUX4 mice.
Collapse
Affiliation(s)
- Kelly Murphy
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Adam J Bittel
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Yi-Wen Chen
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
23
|
de Jong JCBC, Caspers MPM, Keijzer N, Worms N, Attema J, de Ruiter C, Lek S, Nieuwenhuizen AG, Keijer J, Menke AL, Kleemann R, Verschuren L, van den Hoek AM. Caloric Restriction Combined with Immobilization as Translational Model for Sarcopenia Expressing Key-Pathways of Human Pathology. Aging Dis 2023; 14:937-957. [PMID: 37191430 DOI: 10.14336/ad.2022.1201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/01/2022] [Indexed: 05/17/2023] Open
Abstract
The prevalence of sarcopenia is increasing while it is often challenging, expensive and time-consuming to test the effectiveness of interventions against sarcopenia. Translational mouse models that adequately mimic underlying physiological pathways could accelerate research but are scarce. Here, we investigated the translational value of three potential mouse models for sarcopenia, namely partial immobilized (to mimic sedentary lifestyle), caloric restricted (CR; to mimic malnutrition) and a combination (immobilized & CR) model. C57BL/6J mice were calorically restricted (-40%) and/or one hindleg was immobilized for two weeks to induce loss of muscle mass and function. Muscle parameters were compared to those of young control (4 months) and old reference mice (21 months). Transcriptome analysis of quadriceps muscle was performed to identify underlying pathways and were compared with those being expressed in aged human vastus lateralis muscle-biopsies using a meta-analysis of five different human studies. Caloric restriction induced overall loss of lean body mass (-15%, p<0.001), whereas immobilization decreased muscle strength (-28%, p<0.001) and muscle mass of hindleg muscles specifically (on average -25%, p<0.001). The proportion of slow myofibers increased with aging in mice (+5%, p<0.05), and this was not recapitulated by the CR and/or immobilization models. The diameter of fast myofibers decreased with aging (-7%, p<0.05), and this was mimicked by all models. Transcriptome analysis revealed that the combination of CR and immobilization recapitulated more pathways characteristic for human muscle-aging (73%) than naturally aged (21 months old) mice (45%). In conclusion, the combination model exhibits loss of both muscle mass (due to CR) and function (due to immobilization) and has a remarkable similarity with pathways underlying human sarcopenia. These findings underline that external factors such as sedentary behavior and malnutrition are key elements of a translational mouse model and favor the combination model as a rapid model for testing the treatments against sarcopenia.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Serene Lek
- Clinnovate Health UK Ltd, Glasgow, United Kingdom
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
24
|
Gorza L, Germinario E, Vitadello M, Guerra I, De Majo F, Gasparella F, Caliceti P, Vitiello L, Danieli-Betto D. Curcumin Administration Improves Force of mdx Dystrophic Diaphragm by Acting on Fiber-Type Composition, Myosin Nitrotyrosination and SERCA1 Protein Levels. Antioxidants (Basel) 2023; 12:1181. [PMID: 37371910 DOI: 10.3390/antiox12061181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The vegetal polyphenol curcumin displays beneficial effects against skeletal muscle derangement induced by oxidative stress, disuse or aging. Since oxidative stress and inflammation are involved in the progression of muscle dystrophy, the effects of curcumin administration were investigated in the diaphragm of mdx mice injected intraperitoneally or subcutaneously with curcumin for 4-12-24 weeks. Curcumin treatment independently of the way and duration of administration (i) ameliorated myofiber maturation index without affecting myofiber necrosis, inflammation and degree of fibrosis; (ii) counteracted the decrease in type 2X and 2B fiber percentage; (iii) increased about 30% both twitch and tetanic tensions of diaphragm strips; (iv) reduced myosin nitrotyrosination and tropomyosin oxidation; (v) acted on two opposite nNOS regulators by decreasing active AMP-Kinase and increasing SERCA1 protein levels, the latter effect being detectable also in myotube cultures from mdx satellite cells. Interestingly, increased contractility, decreased myosin nitrotyrosination and SERCA1 upregulation were also detectable in the mdx diaphragm after a 4-week administration of the NOS inhibitor 7-Nitroindazole, and were not improved further by a combined treatment. In conclusion, curcumin has beneficial effects on the dystrophic muscle, mechanistically acting for the containment of a deregulated nNOS activity.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Maurizio Vitadello
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Irene Guerra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Federica De Majo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Paolo Caliceti
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy
| | - Libero Vitiello
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | |
Collapse
|
25
|
Russell AJ, DuVall M, Barthel B, Qian Y, Peter AK, Newell-Stamper BL, Hunt K, Lehman S, Madden M, Schlachter S, Robertson B, Van Deusen A, Rodriguez HM, Vera C, Su Y, Claflin DR, Brooks SV, Nghiem P, Rutledge A, Juehne TI, Yu J, Barton ER, Luo YE, Patsalos A, Nagy L, Sweeney HL, Leinwand LA, Koch K. Modulating fast skeletal muscle contraction protects skeletal muscle in animal models of Duchenne muscular dystrophy. J Clin Invest 2023; 133:e153837. [PMID: 36995778 PMCID: PMC10178848 DOI: 10.1172/jci153837] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by absence of the protein dystrophin, which acts as a structural link between the basal lamina and contractile machinery to stabilize muscle membranes in response to mechanical stress. In DMD, mechanical stress leads to exaggerated membrane injury and fiber breakdown, with fast fibers being the most susceptible to damage. A major contributor to this injury is muscle contraction, controlled by the motor protein myosin. However, how muscle contraction and fast muscle fiber damage contribute to the pathophysiology of DMD has not been well characterized. We explored the role of fast skeletal muscle contraction in DMD with a potentially novel, selective, orally active inhibitor of fast skeletal muscle myosin, EDG-5506. Surprisingly, even modest decreases of contraction (<15%) were sufficient to protect skeletal muscles in dystrophic mdx mice from stress injury. Longer-term treatment also decreased muscle fibrosis in key disease-implicated tissues. Importantly, therapeutic levels of myosin inhibition with EDG-5506 did not detrimentally affect strength or coordination. Finally, in dystrophic dogs, EDG-5506 reversibly reduced circulating muscle injury biomarkers and increased habitual activity. This unexpected biology may represent an important alternative treatment strategy for Duchenne and related myopathies.
Collapse
Affiliation(s)
- Alan J. Russell
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Mike DuVall
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Ben Barthel
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Ying Qian
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Angela K. Peter
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | | | - Kevin Hunt
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Sarah Lehman
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Molly Madden
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Stephen Schlachter
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Ben Robertson
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Ashleigh Van Deusen
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | | | - Carlos Vera
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Yu Su
- Molecular and Integrative Physiology and
| | - Dennis R. Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Peter Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alexis Rutledge
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Twlya I. Juehne
- Genome Technology Access Center, Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Jinsheng Yu
- Genome Technology Access Center, Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Elisabeth R. Barton
- Department of Applied Physiology and Kinesiology and Myology Institute, University of Florida College of Health and Human Performance, Gainesville, Florida, USA
| | - Yangyi E. Luo
- Department of Applied Physiology and Kinesiology and Myology Institute, University of Florida College of Health and Human Performance, Gainesville, Florida, USA
| | - Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics and Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Kevin Koch
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
26
|
Dominov JA, Madigan LA, Whitt JP, Rademacher KL, Webster KM, Zhang H, Banno H, Tang S, Zhang Y, Wightman N, Shychuck EM, Page J, Weiss A, Kelly K, Kucukural A, Brodsky MH, Jaworski A, Fallon JR, Lipscombe D, Brown RH. Up-regulation of cholesterol synthesis pathways and limited neurodegeneration in a knock-in Sod1 mutant mouse model of ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539444. [PMID: 37205335 PMCID: PMC10187330 DOI: 10.1101/2023.05.05.539444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder affecting brain and spinal cord motor neurons. Mutations in the copper/zinc superoxide dismutase gene ( SOD1 ) are associated with ∼20% of inherited and 1-2% of sporadic ALS cases. Much has been learned from mice expressing transgenic copies of mutant SOD1, which typically involve high-level transgene expression, thereby differing from ALS patients expressing one mutant gene copy. To generate a model that more closely represents patient gene expression, we created a knock-in point mutation (G85R, a human ALS-causing mutation) in the endogenous mouse Sod1 gene, leading to mutant SOD1 G85R protein expression. Heterozygous Sod1 G85R mutant mice resemble wild type, whereas homozygous mutants have reduced body weight and lifespan, a mild neurodegenerative phenotype, and express very low mutant SOD1 protein levels with no detectable SOD1 activity. Homozygous mutants exhibit partial neuromuscular junction denervation at 3-4 months of age. Spinal cord motor neuron transcriptome analyses of homozygous Sod1 G85R mice revealed up-regulation of cholesterol synthesis pathway genes compared to wild type. Transcriptome and phenotypic features of these mice are similar to Sod1 knock-out mice, suggesting the Sod1 G85R phenotype is largely driven by loss of SOD1 function. By contrast, cholesterol synthesis genes are down-regulated in severely affected human TgSOD1 G93A transgenic mice at 4 months. Our analyses implicate dysregulation of cholesterol or related lipid pathway genes in ALS pathogenesis. The Sod1 G85R knock-in mouse is a useful ALS model to examine the importance of SOD1 activity in control of cholesterol homeostasis and motor neuron survival. SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis is a devastating disease involving the progressive loss of motor neurons and motor function for which there is currently no cure. Understanding biological mechanisms leading to motor neuron death is critical for developing new treatments. Using a new knock-in mutant mouse model carrying a Sod1 mutation that causes ALS in patients, and in the mouse, causes a limited neurodegenerative phenotype similar to Sod1 loss-of-function, we show that cholesterol synthesis pathway genes are up-regulated in mutant motor neurons, whereas the same genes are down-regulated in transgenic SOD1 mice with a severe phenotype. Our data implicate dysregulation of cholesterol or other related lipid genes in ALS pathogenesis and provide new insights that could contribute to strategies for disease intervention.
Collapse
|
27
|
Hu N, Kim E, Antoury L, Wheeler TM. Correction of Clcn1 alternative splicing reverses muscle fiber type transition in mice with myotonic dystrophy. Nat Commun 2023; 14:1956. [PMID: 37029100 PMCID: PMC10082032 DOI: 10.1038/s41467-023-37619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
In myotonic dystrophy type 1 (DM1), deregulated alternative splicing of the muscle chloride channel Clcn1 causes myotonia, a delayed relaxation of muscles due to repetitive action potentials. The degree of weakness in adult DM1 is associated with increased frequency of oxidative muscle fibers. However, the mechanism for glycolytic-to-oxidative fiber type transition in DM1 and its relationship to myotonia are uncertain. Here we cross two mouse models of DM1 to create a double homozygous model that features progressive functional impairment, severe myotonia, and near absence of type 2B glycolytic fibers. Intramuscular injection of an antisense oligonucleotide for targeted skipping of Clcn1 exon 7a corrects Clcn1 alternative splicing, increases glycolytic 2B levels to ≥ 40% frequency, reduces muscle injury, and improves fiber hypertrophy relative to treatment with a control oligo. Our results demonstrate that fiber type transitions in DM1 result from myotonia and are reversible, and support the development of Clcn1-targeting therapies for DM1.
Collapse
Affiliation(s)
- Ningyan Hu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eunjoo Kim
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Layal Antoury
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thurman M Wheeler
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Cheuy VA, Dayton MR, Hogan CA, Graber J, Anair BM, Voigt TB, Nelms NJ, Stevens-Lapsley JE, Toth MJ. Neuromuscular electrical stimulation preserves muscle strength early after total knee arthroplasty: Effects on muscle fiber size. J Orthop Res 2023; 41:787-792. [PMID: 35856287 PMCID: PMC9852352 DOI: 10.1002/jor.25418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023]
Abstract
Loss of quadriceps strength after total knee arthroplasty (TKA) is most pronounced acutely but persists long-term, negatively impacting physical function in daily activities. Neuromuscular electrical stimulation (NMES) early after surgery is an effective adjuvant to standard of care rehabilitation (SOC) for attenuating strength loss following TKA, but the mechanisms whereby NMES maintains strength are unclear. This work aimed to determine the effects of early NMES on quadriceps strength and skeletal muscle fiber size 2 weeks after TKA compared to SOC. Patients scheduled for primary, unilateral TKA were enrolled and randomized into SOC (n = 9) or NMES plus SOC (n = 10) groups. NMES was started within 48 h of TKA, with 45-min sessions twice a day for 2 weeks. Isometric quadriceps strength was assessed preoperatively and 2 weeks following TKA. Vastus lateralis muscle biopsies of the involved leg were performed at the same time points and immunohistochemistry conducted to assess muscle fiber cross-sectional area and distinguish fiber types. Groups did not differ in age, body mass index, sex distribution, or preoperative strength. Both groups got weaker postoperatively, but the NMES group had higher normalized strength. After 2 weeks, the group receiving NMES and SOC had significantly greater MHC IIA and MHC IIA/IIX fiber size compared to SOC alone, with no group differences in MHC I fiber size. These results suggest that NMES mitigates early muscle weakness following TKA, in part, via effects on fast-twitch, type II muscle fiber size. This investigation advances our understanding of how adjuvant, early postoperative NMES aids muscle strength recovery.
Collapse
Affiliation(s)
- Victor A Cheuy
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Michael R Dayton
- Department of Orthopaedics, University of Colorado, Aurora, Colorado, USA
| | - Craig A Hogan
- Department of Orthopaedics, University of Colorado, Aurora, Colorado, USA
| | - Jeremy Graber
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, Colorado, USA
- VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), VA Eastern Colorado Healthcare System, Aurora, Colorado, USA
| | - Bradley M Anair
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Thomas B Voigt
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Nathaniel J Nelms
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, Vermont, USA
| | - Jennifer E Stevens-Lapsley
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, Colorado, USA
- VA Eastern Colorado Geriatric Research, Education, and Clinical Center (GRECC), VA Eastern Colorado Healthcare System, Aurora, Colorado, USA
| | - Michael J Toth
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, Vermont, USA
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
29
|
Pierre A, Bourel C, Favory R, Brassart B, Wallet F, Daussin FN, Normandin S, Howsam M, Romien R, Lemaire J, Grolaux G, Durand A, Frimat M, Bastide B, Amouyel P, Boulanger E, Preau S, Lancel S. Sepsis-like Energy Deficit Is Not Sufficient to Induce Early Muscle Fiber Atrophy and Mitochondrial Dysfunction in a Murine Sepsis Model. BIOLOGY 2023; 12:529. [PMID: 37106730 PMCID: PMC10136327 DOI: 10.3390/biology12040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Sepsis-induced myopathy is characterized by muscle fiber atrophy, mitochondrial dysfunction, and worsened outcomes. Whether whole-body energy deficit participates in the early alteration of skeletal muscle metabolism has never been investigated. Three groups were studied: "Sepsis" mice, fed ad libitum with a spontaneous decrease in caloric intake (n = 17), and "Sham" mice fed ad libitum (Sham fed (SF), n = 13) or subjected to pair-feeding (Sham pair fed (SPF), n = 12). Sepsis was induced by the intraperitoneal injection of cecal slurry in resuscitated C57BL6/J mice. The feeding of the SPF mice was restricted according to the food intake of the Sepsis mice. Energy balance was evaluated by indirect calorimetry over 24 h. The tibialis anterior cross-sectional area (TA CSA), mitochondrial function (high-resolution respirometry), and mitochondrial quality control pathways (RTqPCR and Western blot) were assessed 24 h after sepsis induction. The energy balance was positive in the SF group and negative in both the SPF and Sepsis groups. The TA CSA did not differ between the SF and SPF groups, but was reduced by 17% in the Sepsis group compared with the SPF group (p < 0.05). The complex-I-linked respiration in permeabilized soleus fibers was higher in the SPF group than the SF group (p < 0.05) and lower in the Sepsis group than the SPF group (p < 0.01). Pgc1α protein expression increased 3.9-fold in the SPF mice compared with the SF mice (p < 0.05) and remained unchanged in the Sepsis mice compared with the SPF mice; the Pgc1α mRNA expression decreased in the Sepsis compared with the SPF mice (p < 0.05). Thus, the sepsis-like energy deficit did not explain the early sepsis-induced muscle fiber atrophy and mitochondrial dysfunction, but led to specific metabolic adaptations not observed in sepsis.
Collapse
Affiliation(s)
- Alexandre Pierre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Claire Bourel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Raphael Favory
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Benoit Brassart
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Frederic Wallet
- Division of Bacteriology, Biology Pathology Institute of Lille, CHU de Lille, F-59000 Lille, France
| | - Frederic N. Daussin
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Sylvain Normandin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Michael Howsam
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Raphael Romien
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Jeremy Lemaire
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Gaelle Grolaux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Arthur Durand
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Marie Frimat
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Nephrology, CHU de Lille, Université de Lille, F-59000 Lille, France
| | - Bruno Bastide
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Sebastien Preau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| |
Collapse
|
30
|
Saad J, Fomich M, Día VP, Wang T. A novel automated protocol for ice crystal segmentation analysis using Cellpose and Fiji. Cryobiology 2023; 111:1-8. [PMID: 36773632 DOI: 10.1016/j.cryobiol.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Accurate measurement of ice crystal size is an essential step in quantitative ice recrystallization inhibition (IRI) analysis using the sucrose sandwiching assay (SSA) and splat assay (SA). Here, we introduce a novel method of measuring ice crystal size and shape using Fiji and Cellpose, an anatomical segmentation algorithm, to address the time-consuming and limited number of ice particle determination associated with the mean largest grain size measurement. This new automated approach, displaying rapid segmentation of ∼70 s per image, measures every ice crystal in an image field of view, consequently reducing bias introduced by subjectively selecting the largest crystals in an image. Consistent in determining a diverse set of crystal sizes and shapes, this method allows for the evaluation of ice crystals using Feret's diameter, a parameter that better accounts for irregular particle shape. This method provides new outputs such as standard deviation, particle size distributions of a population of ice crystals, and circularity to characterize and further provide insight into an analyte's IRI ability. Applicable to the SSA, the "shape descriptor" measurement can be used to quantify ice binding. This work presents a novel and accurate approach for ice crystal quantitative analysis.
Collapse
Affiliation(s)
- Joshua Saad
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN, 37996-4539, USA
| | - Madison Fomich
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN, 37996-4539, USA
| | - Vermont P Día
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN, 37996-4539, USA
| | - Tong Wang
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, TN, 37996-4539, USA.
| |
Collapse
|
31
|
McCourt JL, Stearns-Reider KM, Mamsa H, Kannan P, Afsharinia MH, Shu C, Gibbs EM, Shin KM, Kurmangaliyev YZ, Schmitt LR, Hansen KC, Crosbie RH. Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways. Skelet Muscle 2023; 13:1. [PMID: 36609344 PMCID: PMC9817407 DOI: 10.1186/s13395-022-00311-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdxTG) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression. METHODS The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdxTG mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators. RESULTS Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt. CONCLUSIONS Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.
Collapse
Affiliation(s)
- Jackie L McCourt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kristen M Stearns-Reider
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hafsa Mamsa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | | | - Cynthia Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kara M Shin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Talukder MAH, Elfar J, Lee J, Karuman Z, Gurjar A, Govindappa P, Guddadarangaiah J, Manto K, Wandling G, Hegarty J, Waning D. Functional recovery and muscle atrophy in pre-clinical models of peripheral nerve transection and gap-grafting in mice: effects of 4-aminopyridine. Neural Regen Res 2023; 18:439-444. [PMID: 35900443 PMCID: PMC9396510 DOI: 10.4103/1673-5374.346456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We recently demonstrated a repurposing beneficial effect of 4-aminopyridine (4-AP), a potassium channel blocker, on functional recovery and muscle atrophy after sciatic nerve crush injury in rodents. However, this effect of 4-AP is unknown in nerve transection, gap, and grafting models. To evaluate and compare the functional recovery, nerve morphology, and muscle atrophy, we used a novel stepwise nerve transection with gluing (STG), as well as 7-mm irreparable nerve gap (G-7/0) and 7-mm isografting in 5-mm gap (G-5/7) models in the absence and presence of 4-AP treatment. Following surgery, sciatic functional index was determined weekly to evaluate the direct in vivo global motor functional recovery. After 12 weeks, nerves were processed for whole-mount immunofluorescence imaging, and tibialis anterior muscles were harvested for wet weight and quantitative histomorphological analyses for muscle fiber cross-sectional area and minimal Feret’s diameter. Average post-injury sciatic functional index values in STG and G-5/7 models were significantly greater than those in the G-7/0 model. 4-AP did not affect the sciatic functional index recovery in any model. Compared to STG, nerve imaging revealed more misdirected axons and distorted nerve architecture with isografting. While muscle weight, cross-sectional area, and minimal Feret’s diameter were significantly smaller in G-7/0 model compared with STG and G-5/7, 4-AP treatment significantly increased right TA muscle mass, cross-sectional area, and minimal Feret’s diameter in G-7/0 model. These findings demonstrate that functional recovery and muscle atrophy after peripheral nerve injury are directly related to the intervening nerve gap, and 4-AP exerts differential effects on functional recovery and muscle atrophy.
Collapse
|
33
|
Wittenstein J, Huhle R, Leiderman M, Möbius M, Braune A, Tauer S, Herzog P, Barana G, de Ferrari A, Corona A, Bluth T, Kiss T, Güldner A, Schultz MJ, Rocco PRM, Pelosi P, Gama de Abreu M, Scharffenberg M. Effect of patient-ventilator asynchrony on lung and diaphragmatic injury in experimental acute respiratory distress syndrome in a porcine model. Br J Anaesth 2023; 130:e169-e178. [PMID: 34895719 DOI: 10.1016/j.bja.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Patient-ventilator asynchrony during mechanical ventilation may exacerbate lung and diaphragm injury in spontaneously breathing subjects. We investigated whether subject-ventilator asynchrony increases lung or diaphragmatic injury in a porcine model of acute respiratory distress syndrome (ARDS). METHODS ARDS was induced in adult female pigs by lung lavage and injurious ventilation before mechanical ventilation by pressure assist-control for 12 h. Mechanically ventilated pigs were randomised to breathe spontaneously with or without induced subject-ventilator asynchrony or neuromuscular block (n=7 per group). Subject-ventilator asynchrony was produced by ineffective, auto-, or double-triggering of spontaneous breaths. The primary outcome was mean alveolar septal thickness (where thickening of the alveolar wall indicates worse lung injury). Secondary outcomes included distribution of ventilation (electrical impedance tomography), lung morphometric analysis, inflammatory biomarkers (gene expression), lung wet-to-dry weight ratio, and diaphragmatic muscle fibre thickness. RESULTS Subject-ventilator asynchrony (median [interquartile range] 28.8% [10.4] asynchronous breaths of total breaths; n=7) did not increase mean alveolar septal thickness compared with synchronous spontaneous breathing (asynchronous breaths 1.0% [1.6] of total breaths; n=7). There was no difference in mean alveolar septal thickness throughout upper and lower lung lobes between pigs randomised to subject-ventilator asynchrony vs synchronous spontaneous breathing (87.3-92.2 μm after subject-ventilator asynchrony, compared with 84.1-95.0 μm in synchronised spontaneous breathing;). There were also no differences between groups in wet-to-dry weight ratio, diaphragmatic muscle fibre thickness, atelectasis, lung aeration, or mRNA expression levels for inflammatory cytokines pivotal in ARDS pathogenesis. CONCLUSIONS Subject-ventilator asynchrony during spontaneous breathing did not exacerbate lung injury and dysfunction in experimental porcine ARDS.
Collapse
Affiliation(s)
- Jakob Wittenstein
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Robert Huhle
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Mark Leiderman
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Marius Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Anja Braune
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Nuclear Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Tauer
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Paul Herzog
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Giulio Barana
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology, Hospital Thurgau AG, Frauenfeld, Switzerland
| | - Alessandra de Ferrari
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesia and Intensive Care, IRCCS AOU San Martino IST, Genoa, Italy
| | - Andrea Corona
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology and Intensive Care, Mater Olbia Hospital, Olbia, Italy
| | - Thomas Bluth
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Thomas Kiss
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology, Intensive-, Pain- and Palliative Care Medicine, Radebeul Hospital, Academic Hospital of the Technische Universität Dresden, Radebeul, Germany
| | - Andreas Güldner
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Martin Scharffenberg
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| |
Collapse
|
34
|
Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:16080. [PMID: 36555721 PMCID: PMC9786356 DOI: 10.3390/ijms232416080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc (CUSL), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
35
|
Sahai A, Jones DL, Hughes M, Pu A, Williams K, Iyer SR, Rathinam C, Davis DL, Lovering RM, Gilotra MN. Fibroadipogenic progenitor cell response peaks prior to progressive fatty infiltration after rotator cuff tendon tear. J Orthop Res 2022; 40:2743-2753. [PMID: 35239216 PMCID: PMC9440165 DOI: 10.1002/jor.25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Fibroadipogenic progenitor (FAP) cells are implicated as a major source of fatty infiltration (FI) in murine rotator cuff (RC) injury, but FAP cell response after RC tear in a rabbit model is unknown. This study determined whether changes in FAP cell count after an RC tear predate muscle degeneration in a clinically relevant rabbit model. We hypothesized increases in FAP cell count correlate temporally with RC degeneration. New Zealand white rabbits (n = 26) were evaluated at 1, 2, 4, and 6 weeks after unilateral full-thickness tenotomy of supraspinatus and infraspinatus tendons. FI area and adipocyte size were histologically analyzed, muscle density was measured by computerized tomography, and quantification of FAP cells was measured by flow cytometry and immunohistochemistry. The percentage of intrafascicular adipocyte area increased over time in supraspinatus muscle samples (p = 0.03), significantly between 1- and 6-week samples (p = 0.04). There were no differences in perifascicular adipocyte area percentages between time points. Peak increase in FAP cell count occurred at 1-week (p = 0.03), with a decrease in the following weeks. There was a negative correlation between supraspinatus adipocyte area and FAP cell count (p < 0.05). On computed tomography (CT) scan, maximal decrease in muscle density was observed in the 4th to 6th weeks. In summary, FAP cell response occurred early after tenotomy and did not correlate temporally with increases in FI. This suggests that FAP cell response may predate degenerative changes, and early targeting of FAPs before adipocyte maturation could blunt FI after RC tear.
Collapse
Affiliation(s)
- Amil Sahai
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Derek L. Jones
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Marcus Hughes
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Alex Pu
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Katrina Williams
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Shama R. Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Chozha Rathinam
- Department of Immunology, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Derik L. Davis
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Richard M. Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| | - Mohit N. Gilotra
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Baltimore, USA
| |
Collapse
|
36
|
Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation. Nat Commun 2022; 13:7108. [PMID: 36402791 PMCID: PMC9675748 DOI: 10.1038/s41467-022-34831-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
The absence of dystrophin in Duchenne muscular dystrophy disrupts the dystrophin-associated glycoprotein complex resulting in skeletal muscle fiber fragility and atrophy, associated with fibrosis as well as microtubule and neuromuscular junction disorganization. The specific, non-conventional cytoplasmic histone deacetylase 6 (HDAC6) was recently shown to regulate acetylcholine receptor distribution and muscle atrophy. Here, we report that administration of the HDAC6 selective inhibitor tubastatin A to the Duchenne muscular dystrophy, mdx mouse model increases muscle strength, improves microtubule, neuromuscular junction, and dystrophin-associated glycoprotein complex organization, and reduces muscle atrophy and fibrosis. Interestingly, we found that the beneficial effects of HDAC6 inhibition involve the downregulation of transforming growth factor beta signaling. By increasing Smad3 acetylation in the cytoplasm, HDAC6 inhibition reduces Smad2/3 phosphorylation, nuclear translocation, and transcriptional activity. These findings provide in vivo evidence that Smad3 is a new target of HDAC6 and implicate HDAC6 as a potential therapeutic target in Duchenne muscular dystrophy.
Collapse
|
37
|
Reinbigler M, Cosette J, Guesmia Z, Jimenez S, Fetita C, Brunet E, Stockholm D. Artificial intelligence workflow quantifying muscle features on Hematoxylin-Eosin stained sections reveals dystrophic phenotype amelioration upon treatment. Sci Rep 2022; 12:19913. [PMID: 36402802 PMCID: PMC9675753 DOI: 10.1038/s41598-022-24139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Cell segmentation is a key step for a wide variety of biological investigations, especially in the context of muscle science. Currently, automated methods still struggle to perform skeletal muscle fiber quantification on Hematoxylin-Eosin (HE) stained histopathological whole slide images due to low contrast. On the other hand, the Deep Learning algorithm Cellpose offers new perspectives considering its increasing adoption for segmentation of a wide range of cells. Combining two open-source tools, Cellpose and QuPath, we developed MyoSOTHES, an automated Myofibers Segmentation wOrkflow Tuned for HE Staining. MyoSOTHES enables solving segmentation inconsistencies encountered by default Cellpose model in presence of large range size cells and provides information related to muscle Feret's diameter distribution and Centrally Nucleated Fibers, thus depicting muscle health and treatment effects. MyoSOTHES achieves high quality segmentation compared to baseline workflow with a detection F1-score increasing from 0.801 to 0.919 and a Root Mean Square Error (RMSE) on diameter improved by 31%. MyoSOTHES was validated on an animal study featuring gene transfer in [Formula: see text]-Sarcoglycanopathy, for which dose-response effect is visible and conclusions drawn are consistent with those previously published. MyoSOTHES thus paves the way for wide quantification of HE stained muscle sections and retrospective analysis of HE labeled slices used in laboratories for decades.
Collapse
Affiliation(s)
- Marie Reinbigler
- grid.508893.fTélécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Jérémie Cosette
- grid.419946.70000 0004 0641 2700Généthon, 91000 Evry, France
| | - Zoheir Guesmia
- grid.419946.70000 0004 0641 2700Généthon, 91000 Evry, France ,grid.418250.a0000 0001 0308 8843Centre de Recherche en Myologie, UMR-S 974, Institut de Myologie, 75000 Paris, France
| | - Simon Jimenez
- grid.419946.70000 0004 0641 2700Généthon, 91000 Evry, France
| | - Catalin Fetita
- grid.508893.fTélécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Elisabeth Brunet
- grid.508893.fTélécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Daniel Stockholm
- grid.419946.70000 0004 0641 2700Généthon, 91000 Evry, France ,grid.424469.90000 0001 2195 5365École Pratique des Hautes Études, PSL University, 75000 Paris, France
| |
Collapse
|
38
|
Liu X, Yao S, Pan M, Cai Y, Shentu W, Cai W, Yu H. Two-dimensional speckle tracking echocardiography demonstrates improved myocardial function after intravenous infusion of bone marrow mesenchymal stem in the X-Linked muscular dystrophy mice. BMC Cardiovasc Disord 2022; 22:461. [PMID: 36329408 PMCID: PMC9635191 DOI: 10.1186/s12872-022-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) are commonly used in regenerative medicine. However, it is not clear whether transplantation of BMSCs can improve cardiac function of the X-Linked Muscular Dystrophy Mice (mdx) and how to detect it. We aimed to investigate the role of speckle tracking echocardiography (STE) in detecting cardiac function of the BMSCs-transplanted mdx in comparison with the untreated mdx. Methods The experimental mice were divided into the BMSCs-transplanted mdx, untreated mdx, and control mice groups (n = 6 per group). The BMSCs were transplanted via tail vein injections into a subset of mdx at 20 weeks of age. After four weeks, the cardiac functional parameters of all the mice in the 3 groups were analyzed by echocardiography. Then, all the mice were sacrificed, and the cardiac tissues were harvested and analyzed by immunofluorescence. The serum biochemical parameters were also analyzed to determine the beneficial effects of BMSCs transplantation. Results Traditional echocardiography parameters did not show statistically significant differences after BMSCs transplantation for the three groups of mice. In comparison with the control group, mdx showed significantly lower left ventricular (LV) STE parameters in both the long-axis and short-axis LV images (P < 0.05). However, BMSCs-transplanted mdx showed improvements in several STE parameters including significant increases in a few STE parameters (P < 0.05). Immunofluorescence staining of the myocardium tissues showed statistically significant differences between the mdx and the control mice (P < 0.05), and the mdx transplanted with BMSCs demonstrated significantly improvement compared with the untreated mdx (P < 0.05). Conclusion This study demonstrated that the early reduction in the LV systolic and diastolic function in the mdx were accurately detected by STE. Furthermore, our study demonstrated that the transplantation of BMSCs significantly improved myocardial function in the mdx.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Shixiang Yao
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Yingying Cai
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weihui Shentu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenqian Cai
- Heart Center, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongkui Yu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Ultrasonography, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
39
|
Chen X, Chen M, Yang Y, Xu C, Lu H, Xu Y, Li X, Wei Y, Zhu Z, Ding Y, Yu W. LIPOPOLYSACCHARIDE-PRECONDITIONED MESENCHYMAL STEM CELL TRANSPLANTATION ATTENUATES CRITICAL PERSISTENT INFLAMMATION IMMUNE SUPPRESSION AND CATABOLISM SYNDROME IN MICE. Shock 2022; 58:417-425. [PMID: 36155397 DOI: 10.1097/shk.0000000000001993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Background: Persistent inflammation, immunosuppression, and catabolism syndrome (PIICS) is associated with high mortality and high health care costs, and there is currently no effective target treatment. Mesenchymal stem cells (MSCs) possess multipotent immunomodulatory properties. LPS-preconditioned type 1 MSCs (MSC1s) are potentially beneficial for PIICS treatment because of their proinflammatory, anti-infective, and healing properties. Here, we investigated the therapeutic efficacy and mechanisms of action of MSC1s in PIICS. Methods: We previously optimized a reaggravated PIICS mouse model, which was used in this study. PIICS mice were subjected to cecal ligation and puncture on day 1 and LPS injection on day 11. Subsequently, the mice were treated with or without MSC1s. Animal survival and phenotypes, along with the levels of catabolism, inflammation, and immunosuppression, were evaluated. MSC1s were cocultured with CD8 + T cells in vitro , and inflammatory cytokine levels and CD8 + T-cell function were assessed. Results: MSC1 transplantation alleviated weight loss and muscle wasting, inhibited catabolism and inflammation, and considerably improved the proportion and function of CD8 + T cells in the PIICS mice. After coculture with MSC1s, the expression levels of CD107a and interferon γ increased, whereas the expression level of programmed death 1 decreased significantly in CD8 + T cells. MSC1s also promoted proinflammatory cytokine secretion and reduced the concentration of soluble PD-L1 in vitro . Conclusions: MSC1s can protect mice against critical PIICS, partly by enhancing CD8 + T-cell function. Therefore, MSC1 transplantation is a novel therapeutic candidate for PIICS.
Collapse
Affiliation(s)
- Xiancheng Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming Chen
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Can Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huimin Lu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yali Xu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiaojing Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu Wei
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhanghua Zhu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Hildyard JC, Riddell DO, Harron RC, Rawson F, Foster EM, Massey C, Taylor-Brown F, Wells DJ, Piercy RJ. The skeletal muscle phenotype of the DE50-MD dog model of Duchenne muscular dystrophy. Wellcome Open Res 2022; 7:238. [PMID: 36865375 PMCID: PMC9971692 DOI: 10.12688/wellcomeopenres.18251.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Animal models of Duchenne muscular dystrophy (DMD) are essential to study disease progression and assess efficacy of therapeutic intervention, however dystrophic mice fail to display a clinically relevant phenotype, limiting translational utility. Dystrophin-deficient dogs exhibit disease similar to humans, making them increasingly important for late-stage preclinical evaluation of candidate therapeutics. The DE50-MD canine model of DMD carries a mutation within a human 'hotspot' region of the dystrophin gene, amenable to exon-skipping and gene editing strategies. As part of a large natural history study of disease progression, we have characterised the DE50-MD skeletal muscle phenotype to identify parameters that could serve as efficacy biomarkers in future preclinical trials. Methods: Vastus lateralis muscles were biopsied from a large cohort of DE50-MD dogs and healthy male littermates at 3-monthly intervals (3-18 months) for longitudinal analysis, with multiple muscles collected post-mortem to evaluate body-wide changes. Pathology was characterised quantitatively using histology and measurement of gene expression to determine statistical power and sample sizes appropriate for future work. Results: DE50-MD skeletal muscle exhibits widespread degeneration/regeneration, fibrosis, atrophy and inflammation. Degenerative/inflammatory changes peak during the first year of life, while fibrotic remodelling appears more gradual. Pathology is similar in most skeletal muscles, but in the diaphragm, fibrosis is more prominent, associated with fibre splitting and pathological hypertrophy. Picrosirius red and acid phosphatase staining represent useful quantitative histological biomarkers for fibrosis and inflammation respectively, while qPCR can be used to measure regeneration ( MYH3, MYH8), fibrosis ( COL1A1), inflammation ( SPP1), and stability of DE50-MD dp427 transcripts. Conclusion: The DE50-MD dog is a valuable model of DMD, with pathological features similar to young, ambulant human patients. Sample size and power calculations show that our panel of muscle biomarkers are of strong pre-clinical value, able to detect therapeutic improvements of even 25%, using trials with only six animals per group.
Collapse
Affiliation(s)
- John C.W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Dominique O. Riddell
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Rachel C.M. Harron
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Faye Rawson
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
- Langford Veterinary Services, University of Bristol, Langford, UK
| | - Emma M.A. Foster
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Claire Massey
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Frances Taylor-Brown
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
- Cave Veterinary Specialists, George's Farm, West Buckland, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, London, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| |
Collapse
|
41
|
Toth MJ, Savage PD, Voigt TB, Anair BM, Bunn JY, Smith IB, Tourville TW, Blankstein M, Stevens-Lapsley J, Nelms NJ. Effects of total knee arthroplasty on skeletal muscle structure and function at the cellular, organellar, and molecular levels. J Appl Physiol (1985) 2022; 133:647-660. [PMID: 35900327 PMCID: PMC9467475 DOI: 10.1152/japplphysiol.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Total knee arthroplasty (TKA) is an important treatment option for knee osteoarthritis (OA) that improves self-reported pain and physical function, but objectively measured physical function typically remains reduced for years after surgery due, in part, to precipitous reductions in lower extremity neuromuscular function early after surgery. The present study examined intrinsic skeletal muscle adaptations during the first 5 weeks post-TKA to identify skeletal muscle attributes that may contribute to functional disability. Patients with advanced stage knee OA were evaluated prior to TKA and 5 weeks after surgery. Biopsies of the vastus lateralis were performed to assess muscle fiber size, contractility, and mitochondrial content, along with assessments of whole muscle size and function. TKA was accompanied by marked reductions in whole muscle size and strength. At the fiber (i.e., cellular) level, TKA caused profound muscle atrophy that was approximately twofold higher than that observed at the whole muscle level. TKA markedly reduced muscle fiber force production, contractile velocity, and power production, with force deficits persisting in myosin heavy chain (MHC) II fibers after expression relative to fiber size. Molecular level assessments suggest reduced strongly bound myosin-actin cross bridges and myofilament lattice stiffness as a mechanism underlying reduced force per unit fiber size. Finally, marked reductions in mitochondrial content were apparent and more prominent in the subsarcolemmal compartment. Our study represents the most comprehensive evaluation of skeletal muscle cellular adaptations to TKA and uncovers novel effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.NEW & NOTEWORTHY We report the first evaluation of the effects of total knee arthroplasty (TKA) on skeletal muscle at the cellular and subcellular levels. We found marked effects of TKA to cause skeletal muscle fiber atrophy and contractile dysfunction in older adults, as well as molecular mechanisms underlying impaired contractility. Our results reveal profound effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.
Collapse
Affiliation(s)
- Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Patrick D Savage
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas B Voigt
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bradley M Anair
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Janice Y Bunn
- Department of Medical Biostatistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
- Department of Mathematics and Statistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
| | - Isaac B Smith
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Michael Blankstein
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer Stevens-Lapsley
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- VA Eastern Colorado Geriatric Research Education and Clinical Center, Aurora, Colorado
| | - Nathaniel J Nelms
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
42
|
Cultured Myoblasts Derived from Rat Soleus Muscle Show Altered Regulation of Proliferation and Myogenesis during the Course of Mechanical Unloading. Int J Mol Sci 2022; 23:ijms23169150. [PMID: 36012431 PMCID: PMC9409304 DOI: 10.3390/ijms23169150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The structure and function of soleus muscle fibers undergo substantial remodeling under real or simulated microgravity conditions. However, unloading-induced changes in the functional activity of skeletal muscle primary myoblasts remain poorly studied. The purpose of our study was to investigate how short-term and long-term mechanical unloading would affect cultured myoblasts derived from rat soleus muscle. Mechanical unloading was simulated by rat hindlimb suspension model (HS). Myoblasts were purified from rat soleus at basal conditions and after 1, 3, 7, and 14 days of HS. Myoblasts were expanded in vitro, and the myogenic nature was confirmed by their ability to differentiate as well as by immunostaining/mRNA expression of myogenic markers. The proliferation activity at different time points after HS was analyzed, and transcriptome analysis was performed. We have shown that soleus-derived myoblasts differently respond to an early and later stage of HS. At the early stage of HS, the proliferative activity of myoblasts was slightly decreased, and processes related to myogenesis activation were downregulated. At the later stage of HS, we observed a decrease in myoblast proliferative potential and spontaneous upregulation of the pro-myogenic program.
Collapse
|
43
|
Argyriadou A, Tsitsos A, Stylianaki I, Vouraki S, Kallitsis T, Economou V, Arsenos G. A Comprehensive Study of the Quality of Fat-Tailed Sheep Carcasses in Greece. Animals (Basel) 2022; 12:ani12151998. [PMID: 35953987 PMCID: PMC9367314 DOI: 10.3390/ani12151998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Sheep farming in Greece is focused on milk production. Meat is considered a by-product and consists mainly light carcasses of undefined quality. The main challenge of the sector is to ensure sustainability, and hence efforts are towards efficient use of available resources, including undervalued carcasses of local fat-tailed sheep. The objective here was twofold: (i) to assess the carcass quality of fat-tailed sheep slaughtered at different live weights and (ii) to compare them with carcasses from thin-tailed sheep. In total, 146 fat-tailed and 97 thin-tailed dairy sheep were used. They belonged to five live-weight categories (LWC), representing 25%, 35%, 50%, 70% and 100% of mature body weight. Carcass length/weight/yield/pH and wither height were recorded. Muscle fiber minimum Feret’s diameter and meat color/tenderness/moisture/lipid and protein content were determined. Sex and LWC differences in fat-tailed sheep were assessed. Parametric and non-parametric tests were used to compare with thin-tailed sheep, considering the effects of LWC, sex and their interactions with sheep population (fat-tailed/thin-tailed). Most traits were significantly different (p < 0.05) between groups of fat-tailed sheep. Carcass yield of fat-tailed sheep was significantly higher compared to thin-tailed (p < 0.01). Interactions of sheep population with LWC or sex affected wither height, carcass pH, meat color and tenderness (p < 0.05). Fat-tailed sheep meat quality is equal or higher compared to thin-tailed. Finishing weights corresponding to 50 and 70% LWC may improve capitalization of fat-tailed carcasses.
Collapse
Affiliation(s)
- Angeliki Argyriadou
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-099-9977
| | - Anestis Tsitsos
- Laboratory of Hygiene of Food of Animal Origin—Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Ioanna Stylianaki
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Sotiria Vouraki
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Theodoros Kallitsis
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Vangelis Economou
- Laboratory of Hygiene of Food of Animal Origin—Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|
44
|
Valenzuela IMPY, Chen PJ, Barden J, Kosloski O, Akaaboune M. Distinct roles of the dystrophin-glycoprotein complex: α-dystrobrevin and α-syntrophin in the maintenance of the postsynaptic apparatus of the neuromuscular synapse. Hum Mol Genet 2022; 31:2370-2385. [PMID: 35157076 PMCID: PMC9307313 DOI: 10.1093/hmg/ddac041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/02/2023] Open
Abstract
α-syntrophin (α-syn) and α-dystrobrevin (α-dbn), two components of the dystrophin-glycoprotein complex, are essential for the maturation and maintenance of the neuromuscular junction (NMJ) and mice deficient in either α-syn or α-dbn exhibit similar synaptic defects. However, the functional link between these two proteins and whether they exert distinct or redundant functions in the postsynaptic organization of the NMJ remain largely unknown. We generated and analyzed the synaptic phenotype of double heterozygote (α-dbn+/-, α-syn+/-), and double homozygote knockout (α-dbn-/-; α-syn-/-) mice and examined the ability of individual molecules to restore their defects in the synaptic phenotype. We showed that in double heterozygote mice, NMJs have normal synaptic phenotypes and no signs of muscular dystrophy. However, in double knockout mice (α-dbn-/-; α-syn-/-), the synaptic phenotype (the density, the turnover and the distribution of AChRs within synaptic branches) is more severely impaired than in single α-dbn-/- or α-syn-/- mutants. Furthermore, double mutant and single α-dbn-/- mutant mice showed more severe exercise-induced fatigue and more significant reductions in grip strength than single α-syn-/- mutant and wild-type. Finally, we showed that the overexpression of the transgene α-syn-GFP in muscles of double mutant restores primarily the abnormal extensions of membrane containing AChRs that extend beyond synaptic gutters and lack synaptic folds, whereas the overexpression of α-dbn essentially restores the abnormal dispersion of patchy AChR aggregates in the crests of synaptic folds. Altogether, these data suggest that α-syn and α-dbn act in parallel pathways and exert distinct functions on the postsynaptic structural organization of NMJs.
Collapse
Affiliation(s)
| | - Po-Ju Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Barden
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Olivia Kosloski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Mizobuti DS, da Rocha GL, da Silva HNM, Covatti C, de Lourenço CC, Pereira ECL, Salvador MJ, Minatel E. Antioxidant effects of bis-indole alkaloid indigo and related signaling pathways in the experimental model of Duchenne muscular dystrophy. Cell Stress Chaperones 2022; 27:417-429. [PMID: 35687225 PMCID: PMC9346048 DOI: 10.1007/s12192-022-01282-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 01/03/2023] Open
Abstract
Indigo is a bis-indolic alkaloid that has antioxidant and anti-inflammatory effects reported in literature and is a promissory compound for treating chronic inflammatory diseases. This fact prompted to investigate the effects of this alkaloid in the experimental model of Duchenne muscular dystrophy. The main aim of this study was to evaluate the potential role of the indigo on oxidative stress and related signaling pathways in primary skeletal muscle cell cultures and in the diaphragm muscle from mdx mice. The MTT and Neutral Red assays showed no indigo dose-dependent toxicities in mdx muscle cells at concentrations analyzed (3.12, 6.25, 12.50, and 25.00 μg/mL). Antioxidant effect of indigo, in mdx muscle cells and diaphragm muscle, was demonstrated by reduction in 4-HNE content, H2O2 levels, DHE reaction, and lipofuscin granules. A significant decrease in the inflammatory process was identified by a reduction on TNF and NF-κB levels, on inflammatory area, and on macrophage infiltration in the dystrophic sample, after indigo treatment. Upregulation of PGC-1α and SIRT1 in dystrophic muscle cells treated with indigo was also observed. These results suggest the potential of indigo as a therapeutic agent for muscular dystrophy, through their action anti-inflammatory, antioxidant, and modulator of SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Daniela Sayuri Mizobuti
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Guilherme Luiz da Rocha
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Caroline Covatti
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Caroline Caramano de Lourenço
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Elaine Cristina Leite Pereira
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
- Faculdade de Ceilândia, Universidade de Brasília (UnB), Brasília, Distrito Federal, 72220-275, Brazil
| | - Marcos José Salvador
- Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Elaine Minatel
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
46
|
Graca FA, Rai M, Hunt LC, Stephan A, Wang YD, Gordon B, Wang R, Quarato G, Xu B, Fan Y, Labelle M, Demontis F. The myokine Fibcd1 is an endogenous determinant of myofiber size and mitigates cancer-induced myofiber atrophy. Nat Commun 2022; 13:2370. [PMID: 35501350 PMCID: PMC9061726 DOI: 10.1038/s41467-022-30120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
- Xenograft Core, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ruishan Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
47
|
Morotti M, Garofalo S, Cocozza G, Antonangeli F, Bianconi V, Mozzetta C, De Stefano ME, Capitani R, Wulff H, Limatola C, Catalano M, Grassi F. Muscle Damage in Dystrophic mdx Mice Is Influenced by the Activity of Ca2+-Activated KCa3.1 Channels. Life (Basel) 2022; 12:life12040538. [PMID: 35455028 PMCID: PMC9025295 DOI: 10.3390/life12040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease, caused by a mutant dystrophin gene, leading to muscle membrane instability, followed by muscle inflammation, infiltration of pro-inflammatory macrophages and fibrosis. The calcium-activated potassium channel type 3.1 (KCa3.1) plays key roles in controlling both macrophage phenotype and fibroblast proliferation, two critical contributors to muscle damage. In this work, we demonstrate that pharmacological blockade of the channel in the mdx mouse model during the early degenerative phase favors the acquisition of an anti-inflammatory phenotype by tissue macrophages and reduces collagen deposition in muscles, with a concomitant reduction of muscle damage. As already observed with other treatments, no improvement in muscle performance was observed in vivo. In conclusion, this work supports the idea that KCa3.1 channels play a contributing role in controlling damage-causing cells in DMD. A more complete understanding of their function could lead to the identification of novel therapeutic approaches.
Collapse
Affiliation(s)
- Marta Morotti
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Germana Cocozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (C.L.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Valeria Bianconi
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (V.B.); (C.M.)
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (V.B.); (C.M.)
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Riccardo Capitani
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, CA 95616, USA;
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (C.L.)
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
- Correspondence:
| |
Collapse
|
48
|
Weng K, Li Y, Huo W, Zhang Y, Cao Z, Zhang Y, Xu Q, Chen G. Comparative phosphoproteomic provides insights into meat quality differences between slow- and fast-growing broilers. Food Chem 2022; 373:131408. [PMID: 34710681 DOI: 10.1016/j.foodchem.2021.131408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
The selection of broilers for augmented growth rate and breast yield has been accompanied by deterioration in meat quality. To characterise the meat quality differences between slow- (SG) and fast-growing broilers (FG), Xueshan and Ross 308 chickens were employed to determine the mechanisms causing these differences. SG meat was found to display more redness and yellowness, higher shear force, pH24h, and protein content, with lower intramuscular fat (IMF) content than FG meat. Further, based on comparative phosphoproteomic analysis (SG/FG), upregulated phosphorylated myofibrillar proteins resulted in larger fibres, which contributed to lower pressing loss and tenderness. The phosphoproteins of glycolytic enzymes, phosphorylase kinases, and calcium-related proteins were significantly downregulated, which reduced the acidity of the meat. SLC7A5 at Ser21, MRC2 at Ser1359 and CRAT at Ser341, AUP1 at Ser377 positively affected protein and IMF deposition, respectively. Together, these phosphoproteins elicit vital information for the genetic improvement of chicken meat quality.
Collapse
Affiliation(s)
- Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Li
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiran Huo
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengfeng Cao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Jiangsu, Yangzhou, China.
| |
Collapse
|
49
|
de Zélicourt A, Fayssoil A, Dakouane-Giudicelli M, De Jesus I, Karoui A, Zarrouki F, Lefebvre F, Mansart A, Launay JM, Piquereau J, Tarragó MG, Bonay M, Forand A, Moog S, Piétri-Rouxel F, Brisebard E, Chini CCS, Kashyap S, Fogarty MJ, Sieck GC, Mericskay M, Chini EN, Gomez AM, Cancela JM, de la Porte S. CD38-NADase is a new major contributor to Duchenne muscular dystrophic phenotype. EMBO Mol Med 2022; 14:e12860. [PMID: 35298089 PMCID: PMC9081905 DOI: 10.15252/emmm.202012860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase‐producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP‐ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38−/− mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA®) a monoclonal anti‐CD38 antibody. Finally, treatment of mdx and utrophin–dystrophin‐deficient (mdx/utr−/−) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti‐CD38 therapeutic intervention could be highly relevant to develop for DMD patients.
Collapse
Affiliation(s)
- Antoine de Zélicourt
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Institut des Neurosciences Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | | | | | - Isley De Jesus
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Ahmed Karoui
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Florence Lefebvre
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm, 2I, Versailles, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM UMR S942, Hôpital Lariboisière, Paris, France
| | - Jerome Piquereau
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Mariana G Tarragó
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcel Bonay
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Anne Forand
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France.,Inovarion, Paris, France
| | - Sophie Moog
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France.,Inovarion, Paris, France
| | - France Piétri-Rouxel
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France
| | | | - Claudia C S Chini
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonu Kashyap
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Fogarty
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C Sieck
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Mathias Mericskay
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Eduardo N Chini
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Ana Maria Gomez
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - José-Manuel Cancela
- Institut des Neurosciences Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | | |
Collapse
|
50
|
Ruiz A, Benucci S, Duthaler U, Bachmann C, Franchini M, Noreen F, Pietrangelo L, Protasi F, Treves S, Zorzato F. Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors. eLife 2022; 11:73718. [PMID: 35238775 PMCID: PMC8956288 DOI: 10.7554/elife.73718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
To date there are no therapies for patients with congenital myopathies, muscle disorders causing poor quality of life of affected individuals. In approximately 30% of the cases, patients with congenital myopathies carry either dominant or recessive mutations in the RYR1 gene; recessive RYR1 mutations are accompanied by reduction of RyR1 expression and content in skeletal muscles and are associated with fiber hypotrophy and muscle weakness. Importantly, muscles of patients with recessive RYR1 mutations exhibit increased content of class II histone de-acetylases and of DNA genomic methylation. We recently created a mouse model knocked-in for the p.Q1970fsX16+p.A4329D RyR1 mutations, which are isogenic to those carried by a severely affected child suffering from a recessive form of RyR1-related multi-mini core disease. The phenotype of the RyR1 mutant mice recapitulates many aspects of the clinical picture of patients carrying recessive RYR1 mutations. We treated the compound heterozygous mice with a combination of two drugs targeting DNA methylases and class II histone de-acetylases. Here we show that treatment of the mutant mice with drugs targeting epigenetic enzymes improves muscle strength, RyR1 protein content and muscle ultrastructure. This study provides proof of concept for the pharmacological treatment of patients with congenital myopathies linked to recessive RYR1 mutations.
Collapse
Affiliation(s)
- Alexis Ruiz
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Sofia Benucci
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Urs Duthaler
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Christoph Bachmann
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Martina Franchini
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Faiza Noreen
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Pietrangelo
- Department of Neuroscience, Imaging and Clinical Science, University G d' Annunzio of Chieti, Chieti, Italy
| | - Feliciano Protasi
- Department of Neuroscience, Imaging and Clinical Science, University G d' Annunzio of Chieti, Chieti, Italy
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Francesco Zorzato
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| |
Collapse
|