1
|
Chin YC, Lin CC, Lan MY, Huang PI, Yeh CF. Risk factors of post-irradiation carotid blowout syndrome in patients with nasopharyngeal carcinoma. Support Care Cancer 2024; 32:706. [PMID: 39373897 DOI: 10.1007/s00520-024-08905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE Carotid blowout syndrome (CBS) is a severe complication of radiotherapy in patients with nasopharyngeal carcinoma (NPC). This study is aimed at analyzing risk factors of post-irradiation CBS in patients with NPC. METHODS We retrospectively analyzed 660 patients with NPC between 2006 and 2019. The patients were divided into those with and without CBS, and their characteristics and outcomes were evaluated. Independent predictors of CBS were determined by multivariate logistic regression analysis. RESULTS We identified 17 NPC patients with CBS in our study. In multivariate logistic regression analysis, lower body mass index (BMI) (P = 0.018), tumor encasement (P = 0.039), local recurrence (P = 0.006), and skull base osteoradionecrosis (P < 0.001) were independent predictors of CBS, and a predictive equation model was established. Log-rank test revealed that patients with low BMI, tumor encasement of carotid vessels, local recurrence, and skull base osteoradionecrosis all exhibited shorter CBS-free time (all P < 0.001). CONCLUSION We demonstrated that low BMI, tumor encasement, local recurrence, and skull base osteoradionecrosis were independent predictors for CBS in NPC patients. Physicians can use these factors for the early detection and prevention of CBS.
Collapse
Affiliation(s)
- Yu-Ching Chin
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Shipai Rd, No. 201, Sec. 2, Taipei, 11217, Taiwan
| | - Ching-Chia Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Shipai Rd, No. 201, Sec. 2, Taipei, 11217, Taiwan
| | - Ming-Ying Lan
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Shipai Rd, No. 201, Sec. 2, Taipei, 11217, Taiwan
- Department of Otorhinolaryngology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, 11221, Taiwan
| | - Pin-I Huang
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Shipai Rd, No. 201, Sec. 2, Taipei, 11217, Taiwan
| | - Chien-Fu Yeh
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Shipai Rd, No. 201, Sec. 2, Taipei, 11217, Taiwan.
- Department of Otorhinolaryngology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St, Taipei, 11221, Taiwan.
| |
Collapse
|
2
|
Nassar SI, Suk A, Nguyen SA, Adilbay D, Pang J, Nathan CAO. The Role of ctDNA and Liquid Biopsy in the Diagnosis and Monitoring of Head and Neck Cancer: Towards Precision Medicine. Cancers (Basel) 2024; 16:3129. [PMID: 39335101 PMCID: PMC11430155 DOI: 10.3390/cancers16183129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Recent data have shown a continued rise in the worldwide annual incidence and mortality rates of head and neck cancers. The present standard for diagnosis and monitoring for disease recurrence or progression involves clinical examination, imaging, and invasive biopsy techniques of lesions suspected of being malignant. In addition to limitations relating to cost, time, and patient discomfort, these methodologies have inherent inaccuracies for detecting recurrence. In view of these limitations, the analysis of patient bodily fluid samples via liquid biopsy proposes a cost-effective and convenient alternative, which provides insight on the biogenetic and biomolecular underpinnings of oncologic disease processes. The monitoring of biomarkers for head and neck cancer via liquid biopsy, including circulating tumor DNA, circulating tumor cells, and circulating cell-free RNA, has shown clinical utility in the screening, diagnosis, prognostication, and monitoring of patients with various forms of head and neck cancer. The present review will provide an update on the current literature examining the use of liquid biopsy in head and neck cancer care and the clinical applicability of potential biomarkers, with a focus on viral and non-viral circulating tumor DNA. Possible future avenues for research to address specific shortcomings of liquid biopsy will be discussed.
Collapse
Affiliation(s)
- Sami I. Nassar
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Amber Suk
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Shaun A. Nguyen
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Dauren Adilbay
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - John Pang
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| |
Collapse
|
3
|
Toh HC, Yang MH, Wang HM, Hsieh CY, Chitapanarux I, Ho KF, Hong RL, Ang MK, Colevas AD, Sirachainan E, Lertbutsayanukul C, Ho GF, Nadler E, Algazi A, Lulla P, Wirth LJ, Wirasorn K, Liu YC, Ang SF, Low SHJ, Tho LM, Hasbullah HH, Brenner MK, Wang WW, Ong WS, Tan SH, Horak I, Ding C, Myo A, Samol J. Gemcitabine, carboplatin, and Epstein-Barr virus-specific autologous cytotoxic T lymphocytes for recurrent or metastatic nasopharyngeal carcinoma: VANCE, an international randomized phase III trial. Ann Oncol 2024:S0923-7534(24)03923-1. [PMID: 39241963 DOI: 10.1016/j.annonc.2024.08.2344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus-specific cytotoxic T lymphocyte (EBV-CTL) is an autologous adoptive T-cell immunotherapy generated from the blood of individuals and manufactured without genetic modification. In a previous phase II trial of locally recurrent or metastatic nasopharyngeal carcinoma (R/M NPC) patients, first-line gemcitabine and carboplatin (GC) and EBV-CTL combination demonstrated objective antitumor EBV-CTL activity and a favorable safety profile. The present study explored whether this combined first-line chemo-immunotherapy strategy would produce superior clinical efficacy and better quality of life compared with conventional chemotherapy treatment. PATIENTS AND METHODS This multicenter, randomized, phase III trial evaluated the efficacy and safety of GC followed by EBV-CTL versus GC alone as first-line treatment of R/M NPC patients. Thirty clinical sites in Singapore, Malaysia, Taiwan, Thailand, and the USA were included. Subjects were randomized to first-line GC (four cycles) and EBV-CTL (six cycles) or GC (six cycles) in a 1 : 1 ratio. The primary outcome was overall survival (OS) and secondary outcomes included progression-free survival, objective response rate, clinical benefit rate, quality of life, and safety. CLINICALTRIALS gov identifier: NCT02578641. RESULTS A total of 330 subjects with NPC were enrolled. Most subjects in both treatment arms received four or more cycles of chemotherapy and most subjects in the GC + EBV-CTL group received two or more infusions of EBV-CTL. The central Good Manufacturing Practices (GMP) facility produced sufficient EBV-CTL for 94% of GC + EBV-CTL subjects. The median OS was 25.0 months in the GC + EBV-CTL group and 24.9 months in the GC group (hazard ratio = 1.19; 95% confidence interval 0.91-1.56; P = 0.194). Only one subject experienced a grade 2 serious adverse event related to EBV-CTL. CONCLUSIONS GC + EBV-CTL in subjects with R/M NPC demonstrated a favorable safety profile but no overall improvement in OS versus chemotherapy. This is the largest adoptive T-cell therapy trial reported in solid tumors to date.
Collapse
Affiliation(s)
- H C Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| | - M-H Yang
- Department of Oncology, Taipei Veterans General Hospital, Taipei
| | - H-M Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan City
| | - C Y Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan
| | - I Chitapanarux
- Department of Radiology, Chiang Mai University, Chiang Mai, Thailand
| | - K F Ho
- Clinical Oncology Unit, Mount Miriam Cancer Hospital, Tanjung Bungah, Malaysia
| | - R-L Hong
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - M K Ang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - A D Colevas
- Division of Medical Oncology, Stanford University School of Medicine, Stanford, USA
| | - E Sirachainan
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok
| | - C Lertbutsayanukul
- Department of Radiology, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - G F Ho
- Department of Clinical Oncology, University of Malaya, Kuala Lumpur, Malaysia
| | - E Nadler
- Texas Oncology-Baylor Charles A. Sammons Cancer Centre, Dallas
| | - A Algazi
- Division of Hematology and Oncology, University of California, San Francisco
| | - P Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston
| | - L J Wirth
- Harvard Medical School, Massachusetts General Hospital, Boston, USA
| | - K Wirasorn
- Department of Medicine, Srinagarind Khon Kaen University Hospital, Khon Kaen, Thailand
| | - Y C Liu
- Department of Radiation-Oncology, Veterans General Hospital-Taichung, Taichung, Taiwan
| | - S F Ang
- Penang Adventist Hospital, Penang
| | - S H J Low
- Pantai Hospital Kuala Lumpur, Kuala Lumpur
| | | | | | - M K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston
| | - W-W Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - W S Ong
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - S H Tan
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - I Horak
- Tessa Therapeutics Ltd, Singapore
| | - C Ding
- Tessa Therapeutics Ltd, Singapore
| | - A Myo
- Tessa Therapeutics Ltd, Singapore
| | - J Samol
- Department of Medical Oncology, Clinical Trials, CRIO, P.H. Feng Research Centre, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Singapore; Johns Hopkins University, Baltimore, USA
| |
Collapse
|
4
|
Zhu Y, Lu Y, Xu C, Huang Y, Yu Z, Wang T, Mao L, Liao X, Li S, Zhang W, Zhou F, Liu K, Zhang Y, Yang W, Min S, Deng Y, Wang Z, Fan X, Nie G, Xie X, Li Z. TMEM52B Isoforms P18 and P20 Differentially Promote the Oncogenesis and Metastasis of Nasopharyngeal Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402457. [PMID: 38940427 PMCID: PMC11434218 DOI: 10.1002/advs.202402457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Transmembrane protein 52B (TMEM52B), a newly identified tumor-related gene, has been reported to regulate various tumors, yet its role in nasopharyngeal carcinoma (NPC) remains unclear. Transcriptomic analysis of NPC cell lines reveals frequent overexpression of TMEM52B, and immunohistochemical results show that TMEM52B is associated with advanced tumor stage, recurrence, and decreased survival time. Depleting TMEM52B inhibits the proliferation, migration, invasion, and oncogenesis of NPC cells in vivo. TMEM52B encodes two isoforms, TMEM52B-P18 and TMEM52B-P20, differing in their N-terminals. While both isoforms exhibit similar pro-oncogenic roles and contribute to drug resistance in NPC, TMEM52B-P20 differentially promotes metastasis. This functional discrepancy may be attributed to their distinct subcellular localization; TMEM52B-P18 is confined to the cytoplasm, while TMEM52B-P20 is found both at the cell membrane and in the cytoplasm. Mechanistically, cytoplasmic TMEM52B enhances AKT phosphorylation by interacting with phosphoglycerate kinase 1 (PGK1), fostering NPC growth and metastasis. Meanwhile, membrane-localized TMEM52B-P20 promotes E-cadherin ubiquitination and degradation by facilitating its interaction with the E3 ubiquitin ligase NEDD4, further driving NPC metastasis. In conclusion, the TMEM52B-P18 and TMEM52B-P20 isoforms promote the metastasis of NPC cells through different mechanisms. Drugs targeting these TMEM52B isoforms may offer therapeutic benefits to cancer patients with varying degrees of metastasis.
Collapse
Affiliation(s)
- Yuqi Zhu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
| | - Yanxin Lu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Chunhua Xu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Yuqian Huang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Ziyi Yu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Tongyu Wang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Longyi Mao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Ximian Liao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Shi Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Wanqing Zhang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Feng Zhou
- Oncology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518060, China
| | - Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Shasha Min
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yaqin Deng
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Zaixing Wang
- Institute of Otorhinolaryngology and Shenzhen Key of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen, 518172, China
| | - Xiaoqin Fan
- The Bio-bank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Guohui Nie
- The Bio-bank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Xina Xie
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637199, China
| |
Collapse
|
5
|
Liu Y, Li N, Guo Y, Zhou Q, Yang Y, Lu J, Tian Z, Zhou J, Yan S, Li X, Shi L, Jiang S, Ge J, Feng R, Huang D, Zeng Z, Fan S, Xiong W, Li G, Zhang W. APLNR inhibited nasopharyngeal carcinoma growth and immune escape by downregulating PD-L1. Int Immunopharmacol 2024; 137:112523. [PMID: 38909500 DOI: 10.1016/j.intimp.2024.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND APLNR is a G protein-coupled receptor and our previous study had revealed that APLNR could inhibit nasopharyngeal carcinoma (NPC) growth and metastasis. However, the role of APLNR in regulating PD-L1 expression and immune escape in NPC is unknown. METHODS We analyzed the expression and correlation of APLNR and PD-L1 in NPC tissues and cells. We investigated the effect of APLNR on PD-L1 expression and the underlying mechanism in vitro and in vivo. We also evaluated the therapeutic potential of targeting APLNR in combination with PD-L1 antibody in a nude mouse xenograft model. RESULTS We found that APLNR was negatively correlated with PD-L1 in NPC tissues and cells. APLNR could inhibit PD-L1 expression by binding to the FERM domain of JAK1 and blocking the interaction between JAK1 and IFNGR1, thus suppressing IFN-γ-mediated activation of the JAK1/STAT1 pathway. APLNR could also inhibit NPC immune escape by enhancing IFN-γ secretion and CD8+ T-cell infiltration and reducing CD8+ T-cell apoptosis and dysfunction. Moreover, the best effect was achieved in inhibiting NPC growth in nude mice when APLNR combined with PD-L1 antibody. CONCLUSIONS Our study revealed a novel mechanism of APLNR regulating PD-L1 expression and immune escape in NPC and suggested that APLNR maybe a potential therapeutic target for NPC immunotherapy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nan Li
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yilin Guo
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qing Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuqin Yang
- Shenzhen Maternity &Child Healthcare Hospital Clinical Laboratory, Shenzhen, Guangdong, China
| | - Jiaxue Lu
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiqi Yan
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Su Jiang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ranran Feng
- Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Donghai Huang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Hung GA, Vohra S, Kim G, Jamal A, Srinivasan M, Huang RJ, Kim G, Palaniappan L, Colevas AD. Nasopharyngeal cancer mortality in disaggregated Asian and non-Asian Americans. Head Neck 2024. [PMID: 39022914 DOI: 10.1002/hed.27857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) mortality varies based on multiple risk factors. While NPC mortality is higher in Asia, little is known about Asian subgroups in the United States (US). METHODS Using the 2005-2020 National Vital Statistics System, we examined NPC mortality by age, race (non-Hispanic black, Hispanic white (HW), non-Hispanic white (NHW), Chinese, Filipino, Asian Indian, Japanese, Korean, Vietnamese), sex, and nativity (Untied States or foreign-born). RESULTS Upon disaggregation, Chinese (1.96 [CI: 1.78-2.16]), Filipino (0.68 [0.68-1.11]), and Vietnamese Americans (0.68 [0.52-1.10]) had the top age-adjusted mortality rates (AAMR per 100 000 person-years). Foreign-born Chinese, Vietnamese, Filipinos, Asian Indians, and NHW had higher AAMRs compared to US-born persons. All male groups had higher AAMR compared to females. Stratifying for race, nativity, and sex, foreign-born Chinese males (4.09 [3.79-4.40]) had the highest AAMR. CONCLUSION These findings demonstrate the importance of disaggregating NPC mortality data by Asian subgroups, providing valuable insights for targeted public health interventions in the United States.
Collapse
Affiliation(s)
- George A Hung
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Rice University, Houston, Texas, USA
| | - Sanah Vohra
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gina Kim
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Armaan Jamal
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malathi Srinivasan
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Robert J Huang
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Gloria Kim
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Latha Palaniappan
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - A Dimitrios Colevas
- Stanford Center for Asian Health Research and Education, Stanford University School of Medicine, Stanford, California, USA
- Division of Medical Oncology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
He S, Luo C, Shi F, Zhou J, Shang L. The Emerging Role of Ferroptosis in EBV-Associated Cancer: Implications for Cancer Therapy. BIOLOGY 2024; 13:543. [PMID: 39056735 PMCID: PMC11274159 DOI: 10.3390/biology13070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Ferroptosis is a novel and iron-dependent form of programmed cell death, which has been implicated in the pathogenesis of various human cancers. EBV is a well-recognized oncogenic virus that controls multiple signaling pathways within the host cell, including ferroptosis signaling. Recent studies show that inducing ferroptosis could be an efficient therapeutic strategy for EBV-associated tumors. This review will firstly describe the mechanism of ferroptosis, then summarize EBV infection and EBV-associated tumors, as well as the crosstalk between EBV infection and the ferroptosis signaling pathway, and finally discuss the role and potential application of ferroptosis-related reagents in EBV-associated tumors.
Collapse
Affiliation(s)
- Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Cheng Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| |
Collapse
|
8
|
Valentini M, Lambertoni A, Sileo G, Arosio AD, Dalfino G, Pedretti F, Karligkiotis A, Bignami M, Battaglia P, Castelnuovo P, Turri-Zanoni M. Salvage endoscopic nasopharyngectomy for recurrent nasopharyngeal carcinoma in a non-endemic area. Eur Arch Otorhinolaryngol 2024; 281:3601-3613. [PMID: 38480535 PMCID: PMC11211200 DOI: 10.1007/s00405-024-08500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To analyze oncological outcomes of endoscopic surgical treatment of locally recurrent EBV-related undifferentiated non-keratinizing nasopharyngeal carcinoma (uNK-NPC) in a non-endemic area. METHODS Retrospective review of patients affected by recurrent uNK-NPC treated with nasopharyngeal endoscopic resection (NER) in a tertiary-care referral center from 2003 to 2022, by evaluating survival rates, prognostic factors, and follow-up strategies. RESULTS The oncological outcomes of 41 patients were analyzed, over a mean follow-up period of 57 months. The 5-year overall, disease-specific, and disease-free survival of the cohort were 60.7% ± 8.9%, 69% ± 9%, and 39.7% ± 9.2%, respectively. The local (rT) and regional (rN) extension of recurrent disease, stage of disease, and status of resection margins appeared to significantly influence survivals. After a mean follow-up period of 21 months, a further recurrence after NER was observed in 36.6% of cases. Skull base osteonecrosis induced by previous irradiation and post-surgical bone remodeling represent the major challenges for early detection of further local relapses during postoperative follow-up. CONCLUSION NER appeared as a safe and effective treatment for recurrent uNK-NPC. The adequate selection of patients eligible for NER is essential, to maximize the chances to cure and minimize the risk of local complications.
Collapse
Affiliation(s)
- Marco Valentini
- Department of Otolaryngology Head and Neck Surgery, Department of Biotechnology and Life Sciences, ASST Lariana, Ospedale Sant'Anna, University of Insubria, 22042, Como, San Fermo Della Battaglia, Italy.
- Head and Neck Surgery and Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
| | - Alessia Lambertoni
- Department of Otorhinolaryngology Head and Neck Surgery, Ospedale di Circolo e Fondazione Macchi, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, 21100, Varese, Italy
| | - Giorgio Sileo
- Department of Otorhinolaryngology Head and Neck Surgery, Ospedale di Circolo e Fondazione Macchi, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, 21100, Varese, Italy
| | - Alberto Daniele Arosio
- Department of Otorhinolaryngology Head and Neck Surgery, Ospedale di Circolo e Fondazione Macchi, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, 21100, Varese, Italy
| | - Gianluca Dalfino
- Department of Otorhinolaryngology Head and Neck Surgery, Ospedale di Circolo e Fondazione Macchi, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, 21100, Varese, Italy
| | - Fabio Pedretti
- Department of Otolaryngology, University of Pavia, 27100, Pavia, Italy
| | - Apostolos Karligkiotis
- Department of Otorhinolaryngology Head and Neck Surgery, Ospedale di Circolo e Fondazione Macchi, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, 21100, Varese, Italy
| | - Maurizio Bignami
- Department of Otorhinolaryngology Head and Neck Surgery, Ospedale di Circolo e Fondazione Macchi, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, 21100, Varese, Italy
- Head and Neck Surgery and Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Paolo Battaglia
- Department of Otolaryngology Head and Neck Surgery, Department of Biotechnology and Life Sciences, ASST Lariana, Ospedale Sant'Anna, University of Insubria, 22042, Como, San Fermo Della Battaglia, Italy
- Head and Neck Surgery and Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Paolo Castelnuovo
- Department of Otorhinolaryngology Head and Neck Surgery, Ospedale di Circolo e Fondazione Macchi, Department of Biotechnology and Life Sciences, ASST Sette Laghi, University of Insubria, 21100, Varese, Italy
- Head and Neck Surgery and Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Mario Turri-Zanoni
- Department of Otolaryngology Head and Neck Surgery, Department of Biotechnology and Life Sciences, ASST Lariana, Ospedale Sant'Anna, University of Insubria, 22042, Como, San Fermo Della Battaglia, Italy
- Head and Neck Surgery and Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| |
Collapse
|
9
|
Huh G, Kim D, Lee KN, Han K, Cho JH. Risk of Head and Neck Cancer in Patients with Psoriasis: A Nationwide Population-based Study. Acta Derm Venereol 2024; 104:adv18487. [PMID: 38757177 PMCID: PMC11131588 DOI: 10.2340/actadv.v104.18487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/08/2024] [Indexed: 05/18/2024] Open
Abstract
An association between psoriasis and cancer risk has been suggested in prior studies, but few have focused on head and neck cancers. Using the Korean National Health Insurance Service database, the relevance between psoriasis and head and neck cancer risks was investigated in a cross-sectional study of 3,869,264 individuals over 20 years of age, who received general health examination in 2009 and were followed until 2020. Head and neck cancer incidence rates were compared between individuals with and without psoriasis, and contributing factors were analysed. The head and neck cancer risk was significantly increased in the psoriasis group compared with the non-psoriasis group (hazard ratio [HR] 1.36; 95% confidence interval [CI] 1.07-1.74; p = 0.01) after adjusting for age, sex, body mass index, income, smoking, alcohol, exercise, diabetes mellitus, hypertension and dyslipidaemia. The risk was especially elevated for nasopharyngeal (HR 2.04; 95% CI 1.12-3.70; p = 0.02) and salivary gland cancer (HR 1.96; 95% CI 1.08-3.56; p = 0.03). Alcohol consumption significantly influenced the risk, particularly for oropharyngeal and oral cavity cancer. Our study provides insights into the potential risks of head and neck cancer in patients with psoriasis, which could aid in refining patient management strategies.
Collapse
Affiliation(s)
- Gene Huh
- Department of Otolaryngology head and neck surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dongjun Kim
- Department of Otolaryngology head and neck surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu-Na Lee
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Republic of Korea.
| | - Jung-Hae Cho
- Department of Otolaryngology-Head Neck Surgery, St. Vincent's Hospital College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Ou X, Zhang Y, Xu Y, Liu Y, Tu W, Hu C, Liu Y. PICK1 inhibits the malignancy of nasopharyngeal carcinoma and serves as a novel prognostic marker. Cell Death Dis 2024; 15:294. [PMID: 38664379 PMCID: PMC11045752 DOI: 10.1038/s41419-024-06687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Although many important advances have been made in the treatment of nasopharyngeal carcinoma (NPC) in recent years, local recurrence and distant metastasis remain the main factors affecting NPC prognosis. Biomarkers for predicting the prognosis of NPC need to be urgently identified. Here, we used whole-exon sequencing (WES) to determine whether PICK1 mutations are associated with the prognosis of NPC. Functionally, PICK1 inhibits the proliferation and metastasis of NPC cells both in vivo and in vitro. Mechanistically, PICK1 inhibited the expression of proteins related to the Wnt/β-catenin signaling pathway. PICK1 restrained the nuclear accumulation of β-catenin and accelerated the degradation of β-catenin through the ubiquitin-proteasome pathway. The reduced PICK1 levels were significantly associated with poor patient prognosis. Hence, our study findings reveal the mechanism by which PICK1 inactivates the Wnt/β-catenin signaling pathway, thereby inhibiting the progression of NPC. They support PICK1 as a potential tumor suppressor and prognostic marker for NPC.
Collapse
Affiliation(s)
- Xiaomin Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yi Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
11
|
Pan Y, Wang X, Tan Q, Wang L. Effects and mechanisms of prussian blue nanozymes with multiple enzyme activities on nasopharyngeal carcinoma cells. Tissue Cell 2024; 87:102316. [PMID: 38301585 DOI: 10.1016/j.tice.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Prussian blue nanozymes (PBNs) with multiple enzyme activities are prepared and their activities of antitumor in nasopharyngeal carcinoma cells (CEN2) are also explored in this research. On the one hand, it shows that PBNs can exert the catalase-like (CAT-like) activity to decompose hydrogen peroxide (H2O2) into non-toxic H2O in CEN2 cells. The O2 release of H2O2 catalysed by PBNs effectively alleviates the hypoxic environment of tumors, which inhibits the glycolysis of tumor and reduces the production of lactic acid. On the other hand, we also find that PBNs also has peroxidase-like (POD-like) enzymatic activity, which can catalyze the production of·OH from H2O2 in tumor cells and result in tumor cell apoptosis. This study lays a solid biomedical foundation for the development of safe and non-toxic nanozymes, as well as the expansion of their application in tumor treatment.
Collapse
Affiliation(s)
- Ya Pan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaofeng Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi Tan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Liping Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
12
|
S M N Mydin RB, Azlan A, Okekpa SI, Gooderham NJ. Regulatory role of miRNAs in nasopharyngeal cancer involving PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F signaling pathways: A review. Cell Biochem Funct 2024; 42:e3945. [PMID: 38362935 DOI: 10.1002/cbf.3945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.
Collapse
Affiliation(s)
- Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- School of General and Foundation Studies, Asian Institute of Medicine, Science and Technology (AIMST University), Bedong, Kedah, Malaysia
| | - Simon I Okekpa
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
- Department of Medical Laboratory Science, Faculty of Health Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Nigel J Gooderham
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| |
Collapse
|
13
|
Wang Y, Koh KK, Chua E, Kiong KL, Kwan YH, Charn TC. The association between chronic sinonasal inflammation and nasopharyngeal carcinoma - A systematic review and meta-analysis. Am J Otolaryngol 2024; 45:104206. [PMID: 38141564 DOI: 10.1016/j.amjoto.2023.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE There has been mounting evidence that inflammation is a key risk factor towards the development of certain cancers. Past studies have shown associations between nasopharyngeal carcinoma (NPC) and sinonasal tract inflammation. We aim to conduct a review and meta-analysis on the association between NPC and chronic sinus inflammation. MATERIALS AND METHODS We conducted a meta-analysis, searching 4 international databases from 1 January 1973 to 28 March 2022 for studies reporting on sinonasal inflammation and NPC in adult patients (>18 years old). We included cohort, case-control or cross-sectional studies. These studies must examine the association between a prior history of sinonasal inflammation and the risk of developing NPC. The outcome is the incidence of NPC in patients who had prior sinonasal inflammation. RESULTS 8 studies (8245 NPC; 1,036,087 non-NPC) were included. The overall odds ratio (OR) of patients having NPC after reporting sinonasal inflammation was 1.81 (95 % CI 1.73-1.89). Of note, chronic rhinosinusitis (CRS) (OR of 1.78 (95 %-CI: 1.68-1.90)) was more closely associated with an increased risk of NPC, as compared to allergic rhinitis (AR) (OR of 1.60 (95 %-CI: 1.52-1.68)). CONCLUSION Chronic sinonasal inflammation is significantly associated with NPC in this systemic review and meta-analysis. The true cause-effect relationship and the potential effects of targeted screening need to be explored thoroughly with large scale prospective studies.
Collapse
Affiliation(s)
- Yuxing Wang
- Ministry of Health, MOH Holdings, Singapore 099253.
| | | | - Elizabeth Chua
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Kimberley Liqin Kiong
- Department of Otolaryngology, Singapore General Hospital, Singapore 169608, Singapore; Department of Otolaryngology, Sengkang General Hospital, Singapore 544886, Singapore.
| | - Yu Heng Kwan
- Internal Medicine, SingHealth Residency, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117559, Singapore; Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Tze Choong Charn
- Department of Otolaryngology, Singapore General Hospital, Singapore 169608, Singapore; Department of Otolaryngology, Sengkang General Hospital, Singapore 544886, Singapore.
| |
Collapse
|
14
|
Li R, Wang Y, Wen X, Cheng B, Lv R, Chen R, Hu W, Wang Y, Liu J, Lin B, Zhang H, Zhang E, Tang X. A novel EIF3C-related CD8 + T-cell signature in predicting prognosis and immunotherapy response of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2024; 150:103. [PMID: 38400862 PMCID: PMC10894114 DOI: 10.1007/s00432-023-05552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/09/2023] [Indexed: 02/26/2024]
Abstract
PURPOSE At present, dysfunctional CD8+ T-cells in the nasopharyngeal carcinoma (NPC) tumor immune microenvironment (TIME) have caused unsatisfactory immunotherapeutic effects, such as a low response rate of anti-PD-L1 therapy. Therefore, there is an urgent need to identify reliable markers capable of accurately predicting immunotherapy efficacy. METHODS Utilizing various algorithms for immune-infiltration evaluation, we explored the role of EIF3C in the TIME. We next found the influence of EIF3C expression on NPC based on functional analyses and RNA sequencing. By performing correlation and univariate Cox analyses of CD8+ Tcell markers from scRNA-seq data, we identified four signatures, which were then used in conjunction with the lasso algorithm to determine corresponding coefficients in the resulting EIF3C-related CD8+ T-cell signature (ETS). We subsequently evaluated the prognostic value of ETS using univariate and multivariate Cox regression analyses, Kaplan-Meier curves, and the area under the receiver operating characteristic curve (AUROC). RESULTS Our results demonstrate a significant relationship between low expression of EIF3C and high levels of CD8+ T-cell infiltration in the TIME, as well as a correlation between EIF3C expression and progression of NPC. Based on the expression levels of four EIF3C-related CD8+ T-cell marker genes, we constructed the ETS predictive model for NPC prognosis, which demonstrated success in validation. Notably, our model can also serve as an accurate indicator for detecting immunotherapy response. CONCLUSION Our findings suggest that EIF3C plays a significant role in NPC progression and immune modulation, particularly in CD8+ T-cell infiltration. Furthermore, the ETS model holds promise as both a prognostic predictor for NPC patients and a tool for adjusting individualized immunotherapy strategies.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Yikai Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xin Wen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, China
| | - Binglin Cheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ruxue Lv
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ruzhen Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Wen Hu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Yinglei Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jingwen Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Bingyi Lin
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Haixiang Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Enting Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - XinRan Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
15
|
Tsuge H, Kawakita D, Taniyama Y, Oze I, Koyanagi YN, Hori M, Nakata K, Sugiyama H, Miyashiro I, Oki I, Nishino Y, Katanoda K, Ito Y, Shibata A, Matsuda T, Iwasaki S, Matsuo K, Ito H. Subsite-specific trends in mid- and long-term survival for head and neck cancer patients in Japan: A population-based study. Cancer Sci 2024; 115:623-634. [PMID: 37994633 PMCID: PMC10859624 DOI: 10.1111/cas.16028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Advances in diagnostic techniques and treatment modalities have impacted head and neck cancer (HNC) prognosis, but their effects on subsite-specific prognosis remain unclear. This study aimed to assess subsite-specific trends in mid- and long-term survival for HNC patients diagnosed from 1993 to 2011 using data from population-based cancer registries in Japan. We estimated the net survival (NS) for HNC by subsite using data from 13 prefectural population-based cancer registries in Japan. Changes in survival over time were assessed by multivariate excess hazard model of mortality. In total, 68,312 HNC patients were included in this analysis. We observed an overall improvement in 5-year NS for HNC patients in Japan. However, survival varied among subsites of HNC, with some, such as naso-, oro- and hypopharyngeal cancers, showing significant improvement in both 5- and 10-year NS, whereas others such as laryngeal cancer showed only a slight improvement in 5-year NS and no significant change in 10-year NS after adjustment for age, sex and stage. In conclusion, the study provides insights into changing HNC survival by site at the population level in Japan. Although advances in diagnostic techniques and treatment modalities have improved survival, these improvements are not shared equally among subsites.
Collapse
Affiliation(s)
- Hiroshi Tsuge
- Division of Cancer Information and Control, Department of Preventive MedicineAichi Cancer Center Research InstituteNagoyaJapan
- Department of Otorhinolaryngology, Head and Neck SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Daisuke Kawakita
- Department of Otorhinolaryngology, Head and Neck SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yukari Taniyama
- Division of Cancer Information and Control, Department of Preventive MedicineAichi Cancer Center Research InstituteNagoyaJapan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Department of Preventive MedicineAichi Cancer Center Research InstituteNagoyaJapan
| | - Yuriko N. Koyanagi
- Division of Cancer Epidemiology and Prevention, Department of Preventive MedicineAichi Cancer Center Research InstituteNagoyaJapan
| | - Megumi Hori
- School of NursingUniversity of ShizuokaShizuokaJapan
| | - Kayo Nakata
- Cancer Control CenterOsaka International Cancer InstituteOsakaJapan
| | - Hiromi Sugiyama
- Department of EpidemiologyRadiation Effects Research FoundationHiroshimaJapan
| | - Isao Miyashiro
- Cancer Control CenterOsaka International Cancer InstituteOsakaJapan
| | - Izumi Oki
- Department of Health Sciences, School of Health and Social ServicesSaitama Prefectural UniversitySaitamaJapan
| | - Yoshikazu Nishino
- Department of Epidemiology and Public HealthKanazawa Medical UniversityIshikawaJapan
| | - Kota Katanoda
- Division of Population Data ScienceNational Cancer Center Institute for Cancer ControlTokyoJapan
| | - Yuri Ito
- Department of Medical Statistics, Research & Development CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Akiko Shibata
- Department of Radiology, Division of Diagnostic RadiologyYamagata University Faculty of MedicineYamagataJapan
| | - Tomohiro Matsuda
- Division of International Collaborative ResearchCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Shinichi Iwasaki
- Department of Otorhinolaryngology, Head and Neck SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive MedicineAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hidemi Ito
- Division of Cancer Information and Control, Department of Preventive MedicineAichi Cancer Center Research InstituteNagoyaJapan
- Division of Descriptive Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
16
|
van Velsen JS, van der Vegt B, Plaat BEC, Langendijk JA, Epskamp-Kuijpers CCHJ, van Dijk BAC, Oosting SF. Nasopharyngeal carcinoma: nationwide trends in subtype-specific incidence and survival over 3 decades in a non-endemic area. J Cancer Res Clin Oncol 2024; 150:49. [PMID: 38285234 PMCID: PMC10824861 DOI: 10.1007/s00432-023-05547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/02/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE To identify trends in incidence and survival of NPC, subdivided by EBV status and histopathological subtype, over a 30-year period in the Netherlands. METHODS Anonymized data from the Netherlands Cancer Registry and the Dutch Nationwide Pathology Databank (PALGA) for the period 1989-2018 were linked to identify and classify NPC cases. RESULTS Incidence of NPC remained stable, with an annual percentage change (APC) of - 0.2. (95% CI - 0.9; 0.5). EBV testing became routine only in the last decade, the incidence of EBV-positive tumors remained stable over this period (APC 1.2, 95% CI - 1.3; 3.8). An increase in EBV-negative tumors (APC: 7.1, 95% CI 2.5; 11.9) and a decrease in untested tumors were found (APC: - 10.7, 95% CI - 15.7; - 5.7). The incidence of non-keratinizing, differentiated tumors increased (APC: 3.8, (95% CI 2.2; 5.5) while the incidence of other histological subtypes remained stable. Overall survival was better in patients diagnosed after 1998 (hazard ratio 0.8, 95% CI 0.6; 0.9). EBV status, histology, stage, and age were independently associated with relative excess risk of dying, but period of diagnosis was not. CONCLUSION Testing for EBV increased over time, and a stable incidence of EBV-positive NPC over the last 10 years. The rising incidence of non-keratinizing, differentiated NPC mirrors data from the US and suggests a shift in non-endemic regions.
Collapse
Affiliation(s)
- Jort S van Velsen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Boudewijn E C Plaat
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | | | - Boukje A C van Dijk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), PO Box 19079, 3501 DB, Utrecht, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
17
|
Wu ZC, Lin KN, Li XQ, Ye X, Chen H, Tao J, Zhou HN, Chen WJ, Lin DF, Xie SH, Cao SM. Development and analytical validation of a novel nasopharynx swab-based Epstein-Barr virus C promoter methylation quantitative assay for nasopharyngeal carcinoma detection. Clin Chem Lab Med 2024; 62:187-198. [PMID: 37531579 DOI: 10.1515/cclm-2023-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES Epstein-Barr virus (EBV) C promoter (Cp) hypermethylation, a crucial factor for EBV latent infection of nasopharyngeal epithelial cells, has been recognized as a promising biomarker for nasopharyngeal carcinoma (NPC) detection. In this study, we develop a novel EBV Cp methylation quantification (E-CpMQ) assay and evaluate its diagnostic performance for NPC detection. METHODS A novel qPCR assay for simultaneous quantification of methylated- and unmethylated EBV Cp was developed by the combinational modification of MethyLight and QASM, with an innovative calibrator to improve the detection accuracy and consistency. The NP swab samples and synthetic standards were used for the analytical validation of the E-CpMQ. The diagnostic efficacy of the developed E-CpMQ assay was validated in 137 NPC patients and 137 non-NPC controls. RESULTS The E-CpMQ assay can detect the EBV Cp methylation ratio in one reaction system under 10 copies with 100 % recognition specificity, which is highly correlated to pyrosequencing with a correlation coefficient over 0.99. The calibrated E-CpMQ assay reduces the coefficient of variation by an average of 55.5 % with a total variance of less than 0.06 units standard deviation (SD). Linear methylation ratio detection range from 4.76 to 99.01 %. The sensitivity and specificity of the E-CpMQ respectively are 96.4 % (95 % CI: 91.7-98.8 %), 89.8 % (95 % CI: 83.5-94.3 %). CONCLUSIONS The developed E-CpMQ assay with a calibrator enables accurate and reproducible EBV Cp methylation ratio quantification and offers a sensitive, specific, cost-effective method for NPC early detection.
Collapse
Affiliation(s)
- Zhi-Cong Wu
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ke-Na Lin
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Xue-Qi Li
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xin Ye
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hua Chen
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jun Tao
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, P.R. China
| | - Hang-Ning Zhou
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wen-Jie Chen
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Dong-Feng Lin
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Shang-Hang Xie
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Su-Mei Cao
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
18
|
Ouyang X, Li K, Wang J, Zhu W, Yi Q, Zhong J. HMGA2 promotes nasopharyngeal carcinoma progression and is associated with tumor resistance and poor prognosis. Front Oncol 2024; 13:1271080. [PMID: 38304037 PMCID: PMC10830841 DOI: 10.3389/fonc.2023.1271080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), as one of the most prevalent malignancies in the head and neck region, still lacks a complete understanding of its pathogenesis. Presently, radiotherapy, concurrent chemoradiotherapy, and targeted therapy stand as the primary modalities for treating NPC. With advancements in medicine, the cure rates for nasopharyngeal carcinoma have been steadily increasing. Nevertheless, recurrence and metastasis persist as the primary reasons for treatment failure. Consequently, a profound exploration of the molecular mechanisms underlying the occurrence and progression of nasopharyngeal carcinoma, along with the exploration of corresponding therapeutic approaches, becomes particularly imperative in the quest for comprehensive solutions to combat this disease. High mobility group AT-hook 2 (HMGA2) is a pivotal protein capable of altering chromatin structure, regulating gene expression, and influencing transcriptional activity. In the realm of cancer research, HMGA2 exhibits widespread dysregulation, playing a crucial role in nearly all malignant tumors. It is implicated in various tumorigenic processes, including cell cycle regulation, cell proliferation, epithelial-mesenchymal transition, angiogenesis, tumor invasion, metastasis, and drug resistance. Additionally, HMGA2 serves as a molecular marker and an independent prognostic factor in certain malignancies. Recent studies have increasingly unveiled the critical role of HMGA2 in nasopharyngeal carcinoma (NPC), particularly in promoting malignant progression, correlating with tumor resistance, and serving as an independent adverse prognostic factor. This review focuses on elucidating the oncogenic role of HMGA2 in NPC, suggesting its potential association with chemotherapy resistance in NPC, and proposing its candidacy as an independent factor in nasopharyngeal carcinoma prognosis assessment.
Collapse
Affiliation(s)
| | - Kangxin Li
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Yi
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
19
|
Aulestia-Viera PV, Rodrigues-Fernandes CI, Brandão TB, Rocha AC, Vargas PA, Lopes MA, Johnson NW, Kowalski LP, Ribeiro ACP, Santos-Silva AR. Malignant tumors affecting the head and neck region in ancient times: Comprehensive study of the CRAB Database. Braz Oral Res 2024; 38:e014. [PMID: 38198312 PMCID: PMC11376673 DOI: 10.1590/1807-3107bor-2024.vol38.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2023] [Indexed: 01/12/2024] Open
Abstract
In the modern world, cancer is a growing cause of mortality, but archeological studies have shown that it is not exclusive to modern populations. The aim of this study is to examine the epidemiologic, social, and clinicopathologic features of head and neck cancers in ancient populations. To do this, we extracted all records that described malignant lesions in the head and neck region available in the Cancer Research in Ancient Bodies Database (CRAB). The estimated age, sex, physical condition of the remains (skeletonized, mummified), anatomic location of tumors, geographic location, chronology, tumor type, and methods of tumor diagnosis were collected. One hundred and sixty-seven cases were found, mostly originating from Europe (51.5%). Most records were of adults between 35 and 49 years of age (37.7%). The most involved site was the skullcap (60.4%), and the most common malignancies were metastases to the bone (65.3%) and multiple myeloma (17.4%). No primary soft tissue malignancies were registered. The results of our study indicate that head and neck cancers were present in ancient civilizations, at least since 500,000 BCE. The available data can help to improve the current understanding of the global distribution of head and neck cancer and its multidimensional impacts on populations in the contemporary world.
Collapse
Affiliation(s)
| | | | - Thaís Bianca Brandão
- Universidade de São Paulo - USP, School of Medicine, Dental Oncology Service, São Paulo, SP, Brazil
| | - André Caroli Rocha
- Universidade de São Paulo - USP, Medical School, Clínicas Hospital, São Paulo, SP, Brazil
| | - Pablo Agustin Vargas
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Oral Diagnosis Department, Piracicaba, SP, Brazil
| | - Marcio Ajudarte Lopes
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Oral Diagnosis Department, Piracicaba, SP, Brazil
| | | | - Luiz Paulo Kowalski
- Universidade de São Paulo - USP, Medical School, Head and Neck Surgery Department, São Paulo, SP, Brazil
| | | | - Alan Roger Santos-Silva
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Oral Diagnosis Department, Piracicaba, SP, Brazil
| |
Collapse
|
20
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Yoshizaki T, Kondo S, Dochi H, Kobayashi E, Mizokami H, Komura S, Endo K. Recent Advances in Assessing the Clinical Implications of Epstein-Barr Virus Infection and Their Application to the Diagnosis and Treatment of Nasopharyngeal Carcinoma. Microorganisms 2023; 12:14. [PMID: 38276183 PMCID: PMC10820804 DOI: 10.3390/microorganisms12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Reports about the oncogenic mechanisms underlying nasopharyngeal carcinoma (NPC) have been accumulating since the discovery of Epstein-Barr virus (EBV) in NPC cells. EBV is the primary causative agent of NPC. EBV-host and tumor-immune system interactions underlie the unique representative pathology of NPC, which is an undifferentiated cancer cell with extensive lymphocyte infiltration. Recent advances in the understanding of immune evasion and checkpoints have changed the treatment of NPC in clinical settings. The main EBV genes involved in NPC are LMP1, which is the primary EBV oncogene, and BZLF1, which induces the lytic phase of EBV. These two multifunctional genes affect host cell behavior, including the tumor-immune microenvironment and EBV behavior. Latent infections, elevated concentrations of the anti-EBV antibody and plasma EBV DNA have been used as biomarkers of EBV-associated NPC. The massive infiltration of lymphocytes in the stroma suggests the immunogenic characteristics of NPC as a virus-infected tumor and, at the same time, also indicates the presence of a sophisticated immunosuppressive system within NPC tumors. In fact, immune checkpoint inhibitors have shown promise in improving the prognosis of NPC patients with recurrent and metastatic disease. However, patients with advanced NPC still require invasive treatments. Therefore, there is a pressing need to develop an effective screening system for early-stage detection of NPC in patients. Various modalities, such as nasopharyngeal cytology, cell-free DNA methylation, and deep learning-assisted nasopharyngeal endoscopy for screening and diagnosis, have been introduced. Each modality has its advantages and disadvantages. A reciprocal combination of these modalities will improve screening and early diagnosis of NPC.
Collapse
|
22
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
23
|
Looi CK, Foong LC, Chung FFL, Khoo ASB, Loo EM, Leong CO, Mai CW. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer. Cell Biol Toxicol 2023; 39:2501-2526. [PMID: 37755585 DOI: 10.1007/s10565-023-09830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA
| | - Ee-Mun Loo
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China.
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Zhang J, Luo Q, Li X, Guo J, Zhu Q, Lu X, Wei L, Xiang Z, Peng M, Ou C, Zou Y. Novel role of immune-related non-coding RNAs as potential biomarkers regulating tumour immunoresponse via MICA/NKG2D pathway. Biomark Res 2023; 11:86. [PMID: 37784183 PMCID: PMC10546648 DOI: 10.1186/s40364-023-00530-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023] Open
Abstract
Major histocompatibility complex class I related chain A (MICA) is an important and stress-induced ligand of the natural killer group 2 member D receptor (NKG2D) that is expressed in various tumour cells. Given that the MICA/NKG2D signalling system is critically embedded in the innate and adaptive immune responses, it is particularly involved in the surveillance of cancer and viral infections. Emerging evidence has revealed the important roles of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in different cancer types. We searched for all relevant publications in the PubMed, Scopus and Web of Science database using the keywords ncRNA, MICA, NKG2D, cancer, and miRNAs. All relevant studies published from 2008 to the 2023 were retrieved and collated. Notably, we found that miRNAs can target to NKG2D mRNA and MICA mRNA 3'-untranslated regions (3'-UTR), leading to translation inhibition of NKG2D and MICA degradation. Several immune-related MICA/NKG2D pathways may be dysregulated in cancer with aberrant miRNA expressions. At the same time, the competitive endogenous RNA (ceRNA) hypothesis holds that circRNAs, lncRNAs, and mRNAs induce an abnormal MICA expression by directly targeting downstream miRNAs to mediate mRNA suppression in cancer. This review summarizes the novel mechanism of immune escape in the ncRNA-related MICA/NKG2D pathway mediated by NK cells and cancer cells. Moreover, we identified the miRNA-NKG2D, miRNA-MICA and circRNA/lncRNA/mRNA-miRNA-mRNA/MICA axis. Thus, we were particularly concerned with the regulation of mediated immune escape in the MICA/NKG2D pathway by ncRNAs as potential therapeutic targets and diagnostic biomarkers of immunity and cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Qizhi Luo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Xin Li
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Junshuang Guo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Quan Zhu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Leiyan Wei
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Zhiqing Xiang
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Manqing Peng
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
25
|
Zhou P, Zhou J, Lian CL, Yu YF, Zhou R, Lin Q, Wu SG. Residual plasma Epstein-Barr virus DNA after intensity-modulated radiation therapy is associated with poor outcomes in nasopharyngeal carcinoma. Future Oncol 2023; 19:2227-2235. [PMID: 37909289 DOI: 10.2217/fon-2023-0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Aim: To investigate the effects of residual plasma Epstein-Barr virus (EBV) DNA levels after 3 months of intensity-modulated radiation therapy (IMRT) (postIMRT-EBV DNA) on prognosis in patients with nasopharyngeal carcinoma. Methods: Data from 300 patients were retrospectively collected for analysis. Results: Of these patients, 25 (8.3%) and 275 (91.7%) had positive and negative postIMRT-EBV DNA, respectively. Multivariate survival analysis showed that EBV DNA >688 IU/ml was independently associated with inferior distant metastasis-free survival (p = 0.003) and progression-free survival (p = 0.002). Moreover, postIMRT-EBV DNA was independently associated with inferior locoregional recurrence-free survival (hazard ratio: 4.325; p = 0.018), distant metastasis-free survival (hazard ratio: 10.226; p < 0.001) and progression-free survival (hazard ratio: 10.520; p < 0.001). Conclusion: Positive postIMRT-EBV DNA is a prognostic biomarker for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ping Zhou
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center (Xiamen Branch), Xiamen, 361027, China
| | - Juan Zhou
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Chen-Lu Lian
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center (Xiamen Branch), Xiamen, 361027, China
| | - Yi-Feng Yu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Rui Zhou
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Qin Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - San-Gang Wu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| |
Collapse
|
26
|
Zheng XH, Deng CM, Zhou T, Li XZ, Tang CL, Jiang CT, Liao Y, Wang TM, He YQ, Jia WH. Saliva biopsy: Detecting the difference of EBV DNA methylation in the diagnosis of nasopharyngeal carcinoma. Int J Cancer 2023; 153:882-892. [PMID: 37170851 DOI: 10.1002/ijc.34561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Saliva sampling is a non-invasive method, and could be performed by donors themselves. However, there are few studies reporting biomarkers in saliva in the diagnosis of NPC. A total of 987 salivary samples were used in this study. First, EBV DNA methylation was profiled by capture sequencing in the discovery cohort (n = 36). Second, a q-PCR based method was developed and five representative EBV DNA CpG sites (11 029 bp, 45 849 bp, 57 945 bp, 66 226 bp and 128 102 bp) were selected and quantified to obtain the methylated density in the validation cohort1 (n = 801). Third, a validation cohort2 (n = 108) was used to further verify the differences of EBV methylation in saliva. A significant increase of EBV methylation was found in NPC patients compared with controls. The methylated score of EBV genome obtained by capture sequencing could distinguish NPC from controls (sensitivity 90%, specificity 100%). Further, the methylated density of EBV DNA CpG sites revealed by q-PCR showed a good diagnostic performance. The sensitivity and specificity of detecting a single CpG site (11 029 bp) could reach 75.4% and 99.7% in the validation cohort1, and 78.2% and 100% in the validation cohort2. Besides, the methylated density of the CpG site was found to decrease below the COV in NPC patients after therapy, and increase above the COV after recurrence. Our study provides an appealing alternative for the non-invasive detection of NPC without clinical setting. It paves the way for conducting a home-based large-scale screening in the future.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Cao-Li Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Cheng-Tao Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Huang H, Yao Y, Deng X, Huang Z, Chen Y, Wang Z, Hong H, Huang H, Lin T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int J Oncol 2023; 63:97. [PMID: 37417358 PMCID: PMC10367053 DOI: 10.3892/ijo.2023.5545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial tumor located in the nasopharynx and is highly associated with Epstein‑Barr virus (EBV) infection. Although radiotherapy alone can cure ~90% of patients with early‑stage disease, >70% of patients with NPC have locoregionally advanced or metastatic disease at the first diagnosis due to the insidious and aggressive nature of NPC. After comprehensive radiochemotherapy, 20‑30% of patients with advanced NPC still fail treatment, mainly due to recurrence and/or metastasis (R/M). Conventional salvage treatments, such as radiotherapy, chemotherapy and surgery, are suboptimal and frequently accompanied by severe adverse effects and limited efficacy. In recent years, immunotherapy has emerged as a promising treatment modality for R/M NPC. An increasing number of clinical studies have investigated the safety and efficacy of immunotherapy for advanced NPC and have shown considerable progress. In the present review, the rationale for the use of immunotherapy to treat NPC was summarized and the current status, progress and challenges of NPC clinical research on different immunotherapeutic approaches were highlighted, including immune checkpoint inhibitors, vaccines, immunomodulators, adoptive cell transfer and EBV‑specific monoclonal antibodies. The comprehensive overview of immunotherapy in NPC may provide insight for clinical practice and future investigation.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Yuyi Yao
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120
| | - Zongyao Huang
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Yungchang Chen
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Zhao Wang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Huangming Hong
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - He Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Tongyu Lin
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
28
|
He Q, Huang Y, Yuan L, Wang Z, Wang Q, Liu D, Li L, Li X, Cao Z, Wang D, Yang M. A promising predictive biomarker combined EBV NDA with PNI for nasopharyngeal carcinoma in nonendemic area of China. Sci Rep 2023; 13:11700. [PMID: 37474716 PMCID: PMC10359455 DOI: 10.1038/s41598-023-38396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
In endemic areas, EBV DNA is used to guide diagnosis, detect recurrence and distant metastasis of NPC. Until now, the importance of EBV DNA in the prediction of NPC has received little attention in non-endemic regions. To explore the prognostic value of EBV DNA alone or in combination with PNI in NPC patients from a non-endemic area of China. In this retrospective study, 493 NPC patients were enrolled. Clinical pathologic data, pre-treatment plasma EBV DNA, and laboratory tests were all performed. A standard anticancer treatment was prescribed, and follow up data were collected. EBV DNA was found to be positively related to clinical stage (r = 0.357, P < 0.001), T stage (r = 0.193, P < 0.001), N stage (r = 0.281, P < 0.001), and M stage (r = 0.215, P < 0.001). The difference in EBV DNA loads between clinical stage, T, N and M stage was statistically significant (P < 0.001). In this study, the best cutoff value for EBV-DNA to distinguish the prognosis of NPC was 262.7 copies/ml. The 5-year OS of patients in the EBV-DNA ≤ 262.7 copies/ml group and EBV-DNA > 262.7 copies/ml group was 88% and 65.3%, respectively (P < 0.001). EBV-DNA and PNI were found to be independent prognostic factors for OS in multivariate analysis (P < 0.05). EBV-DNA was independent prognostic factors for PFS. In predicting NPC patients OS, the novel combination marker of EBV DNA and PNI outperformed TNM staging (AUC: 0.709 vs. 0.675). In addition, the difference between EBV + PNI and EBV + TNM was not statistically significant for OS or PFS (P > 0.05). This novel combination biomarker was a promising biomarker for predicting NPC survival and may one day guide treatment option.
Collapse
Affiliation(s)
- Qiao He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, South Renmin Road, Chengdu, 610041, China
| | - Yecai Huang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, South Renmin Road, Chengdu, 610041, China.
| | - Linjia Yuan
- Department of Radiation Oncology, Jinjiang Da Guan Hospital of Chengdu, Chengdu, China
| | - Zuo Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, South Renmin Road, Chengdu, 610041, China
| | - Qiuju Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, South Renmin Road, Chengdu, 610041, China
| | - Daduan Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Centre for Translational Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Luona Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, South Renmin Road, Chengdu, 610041, China
| | - Xianbing Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, South Renmin Road, Chengdu, 610041, China
| | - Zhi Cao
- Department of Radiation Oncology, Jinjiang Da Guan Hospital of Chengdu, Chengdu, China
| | - Dongsheng Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, South Renmin Road, Chengdu, 610041, China.
| | - Mu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Centre for Translational Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
29
|
Awawda M, Salman S, Billan S. The Clinical Characteristics and Outcomes of Human Papillomavirus-Positive Nasopharyngeal Carcinoma in a Single-Institution Cohort. J Clin Med 2023; 12:4264. [PMID: 37445299 DOI: 10.3390/jcm12134264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a head and neck cancer more frequent among East Asian populations compared with Western populations. While much is known about human papillomavirus's (HPV's) role in oropharyngeal cancer (OPC), little is known about its prevalence and prognostic value in NPC. The aim of this study is to investigate the role of HPV in NPC treated with definitive radiotherapy at a single institution. METHODS A retrospective cohort analysis of patient's medical records and HPV status treated for NPC in Rambam Health Care Campus (Rambam HCC). Immunohistochemical staining for p16 was used as a surrogate marker of HPV infection in the tumor cells. All specimens were stained and evaluated by pathologists at the referring center independently. RESULTS In total, 87 patients diagnosed with NPC were treated at Rambam HCC between 2005 and 2018. Seventy-four patients had accessible data on the disease's clinical parameters and p16 status. In total, 10/74 (13.5%) had p16-positive staining in tumor cells; 75% were men and over 50% were smokers. The average age of diagnosis for the whole cohort was 48 years, being lower for p16-positive patients compared with p16-negative patients at 43 and 49 years old, respectively. A total of 84% of the patients had advanced disease of stage III and IV at presentation. Only 16% were diagnosed with stage I and II. Unlike the p16-negative group, the p16-positive group did not include any stage I or II disease. In univariate and multivariate analysis of overall survival rates, the age at diagnosis and the nodal spread status were the only statistically significant measures. P16 status was not found to be associated with survival. CONCLUSIONS The HPV prevalence in NPC is nontrivial. p16-positive patients had significantly less nodal spread and tended to be younger. Both age and nodal status were significantly correlated with the survival, but P16 status was not prognostic. Further large-scale trials are needed to elucidate the role of HPV in NPC.
Collapse
Affiliation(s)
- Muhammad Awawda
- Joseph Fishman Oncology Center, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Saeed Salman
- Joseph Fishman Oncology Center, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Salem Billan
- Joseph Fishman Oncology Center, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
30
|
Zhang Y, Lyu H, Guo R, Cao X, Feng J, Jin X, Lu W, Zhao M. Epstein‒Barr virus-associated cellular immunotherapy. Cytotherapy 2023:S1465-3249(23)00099-3. [PMID: 37149797 DOI: 10.1016/j.jcyt.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Epstein‒Barr virus (EBV) is a human herpes virus that is saliva-transmissible and universally asymptomatic. It has been confirmed that more than 90% of the population is latently infected with EBV for life. EBV can cause a variety of related cancers, such as nasopharyngeal carcinoma, diffuse large B-cell lymphoma, and Burkitt lymphoma. Currently, many clinical studies have demonstrated that EBV-specific cytotoxic T lymphocytes and other cell therapies can be safely and effectively transfused to prevent and treat some diseases caused by EBV. This review will mainly focus on discussing EBV-specific cytotoxic T lymphocytes and will touch on therapeutic EBV vaccines and chimeric antigen receptor T-cell therapy briefly.
Collapse
Affiliation(s)
- Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, China.
| | - Hairong Lyu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Juan Feng
- Tianjin Jizhou District People's Hospital, Tianjin, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
31
|
Nokovitch L, Maquet C, Crampon F, Taihi I, Roussel LM, Obongo R, Virard F, Fervers B, Deneuve S. Oral Cavity Squamous Cell Carcinoma Risk Factors: State of the Art. J Clin Med 2023; 12:jcm12093264. [PMID: 37176704 PMCID: PMC10179259 DOI: 10.3390/jcm12093264] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Head and neck (HN) squamous cell carcinomas (SCCs) originate from the epithelial cells of the mucosal linings of the upper aerodigestive tract, which includes the oral cavity, the pharynx, the larynx, and the sinonasal cavities. There are many associated risk factors, including alcohol drinking coupled with tobacco use, which accounts for 70% to 80% of HNSCCs. Human papilloma virus (HPV) is another independent risk factor for oropharyngeal SCC, but it is only a minor contributor to oral cavity SCC (OSCC). Betel quid chewing is also an established risk factor in southeast Asian countries. However, OSCC, and especially oral tongue cancer, incidence has been reported to be increasing in several countries, suggesting risk factors that have not been identified yet. This review summarizes the established risk factors for oral cavity squamous cell carcinomas and examines other undemonstrated risk factors for HNSCC.
Collapse
Affiliation(s)
- Lara Nokovitch
- Department of Otolaryngology-Head and Neck Surgery, CHU Rouen, 76000 Rouen, France
| | - Charles Maquet
- Department of Otolaryngology-Head and Neck Surgery, CHU Rouen, 76000 Rouen, France
| | - Frédéric Crampon
- Department of Otolaryngology-Head and Neck Surgery, CHU Rouen, 76000 Rouen, France
| | - Ihsène Taihi
- Oral Surgery Department, Rothschild Hospital, 75012 Paris, France
- URP 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, UFR Odontology, Health Department, Université Paris Cité, 92120 Montrouge, France
| | - Lise-Marie Roussel
- Department of Head and Neck Cancer and ENT Surgery, Centre Henri Becquerel, 76038 Rouen, France
- Rouen Cancer Federation, 76000 Rouen, France
| | - Rais Obongo
- Department of Head and Neck Cancer and ENT Surgery, Centre Henri Becquerel, 76038 Rouen, France
- Rouen Cancer Federation, 76000 Rouen, France
| | - François Virard
- INSERM U1052-CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, University Claude Bernard Lyon 1, 69008 Lyon, France
- Faculté d'Odontologie, Hospices Civils de Lyon, University of Lyon, 69002 Lyon, France
| | - Béatrice Fervers
- Département Prévention Cancer Environnement, Centre Léon Bérard, 69008 Lyon, France
- INSERM UMR 1296, "Radiations: Défense, Santé, Environnement", Centre Léon Bérard, 69008 Lyon, France
| | - Sophie Deneuve
- Department of Otolaryngology-Head and Neck Surgery, CHU Rouen, 76000 Rouen, France
- Rouen Cancer Federation, 76000 Rouen, France
- Quantification en Imagerie Fonctionnelle-Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes Equipe d'Accueil 4108 (QuantIF-LITIS EA4108), University of Rouen, 76000 Rouen, France
| |
Collapse
|
32
|
Fornel DG, Ferrisse TM, de Oliveira AB, Fontana CR. Photodynamic Therapy Can Modulate the Nasopharyngeal Carcinoma Microenvironment Infected with the Epstein-Barr Virus: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:biomedicines11051344. [PMID: 37239013 DOI: 10.3390/biomedicines11051344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
Nasopharyngeal carcinoma is a malignancy from epithelial cells predominantly associated with the Epstein-Barr virus (EBV) infection, and it is responsible for 140,000 deaths annually. There is a current need to develop new strategies to increase the efficacy of antineoplastic treatment and reduce side effects. Thus, the present study aimed to perform a systematic review and meta-analysis of the ability of photodynamic therapy (PDT) to modulate the tumor microenvironment and PDT efficacy in nasopharyngeal carcinoma treatment. The reviewers conducted all steps in the systematic review. PubMed, Science Direct, Scopus, Scielo, Lilacs, EMBASE, and the Cochrane library databases were searched. The OHAT was used to assess the risk of bias. Meta-analysis was performed with a random-effects model (α = 0.05). Nasopharyngeal carcinoma cells treated with PDT showed that IL-8, IL-1α, IL-1β, LC3BI, LC3BII, MMP2, and MMP9 levels were significantly higher than in groups that did not receive PDT. NF-ĸB, miR BART 1-5p, BART 16, and BART 17-5p levels were significantly lower in the PDT group than in the control group. Apoptosis levels and the viability of nasopharyngeal carcinoma cells (>70%) infected with EBV were effective after PDT. This treatment also increased LMP1 levels (0.28-0.50/p < 0.05) compared to the control group. PDT showed promising results for efficacy in killing nasopharyngeal carcinoma cells infected with EBV and modulating the tumor microenvironment. Further preclinical studies should be performed to validate these results.
Collapse
Affiliation(s)
- Diógenes Germano Fornel
- Department of Clinical Analysis, School of Pharmaceutical Sciences, UNESP-São Paulo State University, Araraquara 14801-902, SP, Brazil
| | - Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, School of Dentistry, UNESP-São Paulo State University, Araraquara 14801-903, SP, Brazil
| | - Analú Barros de Oliveira
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, UNESP-São Paulo State University, Araraquara 14801-903, SP, Brazil
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, UNESP-São Paulo State University, Araraquara 14801-902, SP, Brazil
| |
Collapse
|
33
|
Jani Kargar Moghaddam S, Mohammadi Roushandeh A, Hamidi M, Nemati S, Jahanian-Najafabadi A, Habibi Roudkenar M. Lipocalin-2 Upregulation in Nasopharyngeal Carcinoma: A Novel Potential Diagnostic Biomarker. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:268-276. [PMID: 37791335 PMCID: PMC10542929 DOI: 10.30476/ijms.2022.93041.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 10/05/2023]
Abstract
Background Lipocalin-2 (LCN2) deregulation has been reported in several types of cancer and is implicated in the proliferation, migration, angiogenesis, and progression of tumors. However, its aberrant expression has been rarely studied in nasopharyngeal carcinoma (NPC). In the present study, we investigated the expression of LCN2 in NPC patients. Methods In this descriptive cross-sectional study, 29 NPC and 20 non-cancerous control paraffin pathology blocks were obtained from the seven-year (2011 to 2018) archive of Razi Laboratory in Rasht, Iran. LCN2 mRNA expression was evaluated through quantitative real-time PCR. In addition, immunohistochemistry was performed to evaluate LCN2 expression at the protein level. The fold change value and total immunostaining score (TIS) were applied for quantitative evaluation. The nonparametric Mann-Whitney U test and Fisher's exact test were used through GraphPad Prism 8.3.0 software. P<0.05 was considered statistically significant. Results Our results revealed that LCN2 mRNA and protein levels in NPC tissues were significantly higher than control tissues (P=0.028 and P=0.002, respectively). At the protein level, 65.51% (19/29) of NPC patients were categorized as having high LCN2 expression (TIS>3) and 34.47% (10/29) as low expression (TIS≤3). While in the control group, 25% (5/20) of subjects represented a high expression of LCN2 (TIS>3), and 75% (15/20) showed no or weak expression (TIS≤3). No significant correlation was found between the overexpression of LCN2 at the protein level and the demographic features of the patients. Conclusion Our findings suggest that LCN2 might be considered a potential new diagnostic marker for NPC. However, this warrants further studies.
Collapse
Affiliation(s)
- Saghi Jani Kargar Moghaddam
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadman Nemati
- Otorhinolaryngology Research Center, School of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
34
|
Xu H, Liu J, Zhang Y, Zhou Y, Zhang L, Kang J, Ning C, He Z, Song S. KIF23, under regulation by androgen receptor, contributes to nasopharyngeal carcinoma deterioration by activating the Wnt/β-catenin signaling pathway. Funct Integr Genomics 2023; 23:116. [PMID: 37010644 DOI: 10.1007/s10142-023-01044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
Our study aimed to explore the potential mechanisms of KIF23 regulating function in the progression of nasopharyngeal carcinoma and pinpoint novel therapeutic targets for the clinical treatment of nasopharyngeal carcinoma patients. Firstly, the mRNA and protein level of KIF23 in nasopharyngeal carcinoma was measured using quantitative real-time PCR and western blot. Then, the influence of KIF23 on tumor metastasis and growth in nasopharyngeal carcinoma was determined through the in vivo and in vitro experiments. Lastly, the regulatory mechanisms of KIF23 in nasopharyngeal carcinoma were illustrated in the chromatin immunoprecipitation assay. KIF23 was first found to be overexpressed in nasopharyngeal carcinoma samples, and its expression was associated with poor prognosis. Then, the nasopharyngeal carcinoma cell's proliferation, migration, and invasion potential could be improved by inducing KIF23 expression both in vivo and in vitro. Furthermore, androgen receptor (AR) was found to bind to the KIF23 promoter region directly and enhance KIF23 transcription. At last, KIF23 could accelerate nasopharyngeal carcinoma deterioration via activating the Wnt/β-catenin signaling pathway. AR/KIF23/Wnt/β-catenin pathway promotes nasopharyngeal carcinoma deterioration. Our findings could serve as a new therapeutic strategy for nasopharyngeal carcinoma in the clinical practice.
Collapse
Affiliation(s)
- Hongbo Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
- Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical College, Bengbu, Anhui, China
| | - Jingjing Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Yajun Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Yan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Lei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Jia Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Can Ning
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Zelai He
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China.
- Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical College, Bengbu, Anhui, China.
| | - Shilong Song
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China.
- Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
35
|
Gu B, Wang Y, Huang J, Guo J, Ma L, Qi Y, Gao S. Retrospective analysis of Porphyromonas gingivalis in patients with nasopharyngeal carcinoma in central China. Mol Clin Oncol 2023; 18:32. [PMID: 36908973 PMCID: PMC9995702 DOI: 10.3892/mco.2023.2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Little is known about the presence and possible role of Porphyromonas gingivalis (P. gingivalis) in nasopharyngeal carcinoma (NPC), its co-infection with Epstein-Barr virus (EBV), or their association with clinical characteristics of patients with NPC in Central China, where NPC is non-endemic. A total of 45 NPC formalin-fixed paraffin-embedded (FFPE) tissues were retrospectively analyzed using immunohistochemistry (IHC) and a nested PCR combined with DNA sequencing to detect the presence of P. gingivalis, and using reverse transcription-quantitative PCR to detect the presence of EBV. Clinical data including EBV and P. gingivalis status were associated with overall survival (OS). All tumors were undifferentiated, non-keratinizing carcinomas, of which 40/45 (88.9%) were positive for EBV (EBV+), 26/45 (57.8%) were positive for P. gingivalis (by IHC), and 7/45 (15.6%) were positive for P. gingivalis DNA (P. gingivalis +). All seven P. gingivalis DNA-positive NPCs were co-infected with EBV. The 5-year survival rates of the patients with EBV-/P. gingivalis -, EBV+/P. gingivalis -, and EBV+/P. gingivalis + tumors were 60.0% (3/5), 39.4% (13/33) and 42.9% (3/7), respectively. No significant difference was found between the OS of NPC patients among the different infection groups (P=0.793). In conclusion, to the best of our knowledge, this is the first study to describe and confirm the presence of P. gingivalis in FFPE tissues from patients with NPC. P. gingivalis was found to co-exist with EBV in NPC tumor tissues, but is not etiologically relevant to NPC in non-endemic areas, such as Central China.
Collapse
Affiliation(s)
- Bianli Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| | - Yuehui Wang
- Department of Otolaryngology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jianwei Huang
- Department of Pathology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471003, P.R. China
| | - Jingyi Guo
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| | - Lixia Ma
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| | - Yijun Qi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Jianxi, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
36
|
Hao L, Wu W, Xu Y, Chen Y, Meng C, Yun J, Wang X. LncRNA-MALAT1: A Key Participant in the Occurrence and Development of Cancer. Molecules 2023; 28:molecules28052126. [PMID: 36903369 PMCID: PMC10004581 DOI: 10.3390/molecules28052126] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
LncRNAs are a group of non-coding RNA transcripts with lengths of over 200 nucleotides and can interact with DNA, RNA, and proteins to regulate gene expression of malignant tumors in human tissues. LncRNAs participate in vital processes, such as chromosomal nuclear transport in the cancerous site of human tissue, activation, and the regulation of proto-oncogenes, the differentiation of immune cells, and the regulation of the cellular immune system. The lncRNA metastasis-associated lung cancer transcript 1 (MALAT1) is reportedly involved in the occurrence and development of many cancers and serves as a biomarker and therapeutic target. These findings highlight its promising role in cancer treatment. In this article, we comprehensively summarized the structure and functions of lncRNA, notably the discoveries of lncRNA-MALAT1 in different cancers, the action mechanisms, and the ongoing research on new drug development. We believe our review would serve as a basis for further research on the pathological mechanism of lncRNA-MALAT1 in cancer and provide evidence and novel insights into its application in clinical diagnoses and treatments.
Collapse
Affiliation(s)
- Longhui Hao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yankun Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yufan Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chengzhen Meng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingyi Yun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence:
| |
Collapse
|
37
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023; 14:1116143. [PMID: 36846758 PMCID: PMC9947861 DOI: 10.3389/fmicb.2023.1116143] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics Sdn Bhd, Pusat Perdagangan Bandar, Persiaran Jalil 1, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
38
|
Treating Head and Neck Cancer in the Age of Immunotherapy: A 2023 Update. Drugs 2023; 83:217-248. [PMID: 36645621 DOI: 10.1007/s40265-023-01835-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Most patients diagnosed with head and neck squamous cell carcinoma (HNSCC) will present with locally advanced disease, requiring multimodality therapy. While this approach has a curative intent, a significant subset of these patients will develop locoregional failure and/or distant metastases. The prognosis of these patients is poor, and therapeutic options other than palliative chemotherapy are urgently needed. Epidermal growth factor receptor (EGFR) overexpression is an important factor in the pathogenesis of HNSCC, and a decade ago, the EGFR targeting monoclonal antibody cetuximab was approved for the treatment of late-stage HNSCC in different settings. In 2016, the anti-programmed death-1 (PD-1) immune checkpoint inhibitors nivolumab and pembrolizumab were both approved for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy, and in 2019, pembrolizumab was approved for first-line treatment (either as monotherapy in PD-L1 expressing tumors, or in combination with chemotherapy). Currently, trials are ongoing to include immune checkpoint inhibition in the (neo)adjuvant treatment of HNSCC as well as in novel combinations with other drugs in the recurrent/metastatic setting to improve response rates and survival and help overcome resistance mechanisms to immune checkpoint blockade. This article provides a comprehensive review of the management of head and neck cancers in the current era of immunotherapy.
Collapse
|
39
|
Luo Y, Ye J, Deng Y, Huang Y, Liu X, He Q, Chen Y, Li Q, Lin Y, Liang R, Li Y, Wei J, Zhang J. The miRNA-185-5p/STIM1 Axis Regulates the Invasiveness of Nasopharyngeal Carcinoma Cell Lines by Modulating EGFR Activation-Stimulated Switch from E- to N-Cadherin. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020818. [PMID: 36677874 PMCID: PMC9864293 DOI: 10.3390/molecules28020818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Distant metastasis remains the primary cause of treatment failure and suggests a poor prognosis in nasopharyngeal carcinoma (NPC). Epithelial-mesenchymal transition (EMT) is a critical cellular process for initiating a tumor invasion and remote metastasis. Our previous study showed that the blockage of the stromal interaction molecule 1 (STIM1)-mediated Ca2+ signaling blunts the Epstein-Barr virus (EBV)-promoted cell migration and inhibits the dissemination and lymphatic metastasis of NPC cells. However, the upstream signaling pathway that regulates the STIM1 expression remains unknown. In this follow-up study, we demonstrated that the miRNA-185-5p/STIM1 axis is implicated in the regulation of the metastatic potential of 5-8F cells, a highly invasive NPC cell line. We demonstrate that the knockdown of STIM1 attenuates the migration ability of 5-8F cells by inhibiting the epidermal growth factor receptor (EGFR) phosphorylation-induced switch from E- to N-cadherin in vitro. In addition, the STIM1 knockdown inhibited the locoregional lymphatic invasion of the 5-8F cells in mice. Furthermore, we identified miRNA-185-5p as an upstream regulator that negatively regulates the expression of STIM1. Our findings suggest that the miRNA-185-5p/STIM1 axis regulates the invasiveness of NPC cell lines by affecting the EGFR activation-modulated cell adhesiveness. The miRNA-185-5p/STIM1 axis may serve as a potentially effective therapeutic target for the treatment of NPC.
Collapse
Affiliation(s)
- Yue Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xue Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qiuyun Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning 530021, China
- Correspondence: (J.W.); (J.Z.)
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Correspondence: (J.W.); (J.Z.)
| |
Collapse
|
40
|
Wang D, Jiang H. Long noncoding RNA long intergenic non-protein-coding RNA 173 contributes to nasopharyngeal carcinoma progression by regulating microRNA-765/Gremlin 1 pathway. Hum Exp Toxicol 2023; 42:9603271231172921. [PMID: 37365917 DOI: 10.1177/09603271231172921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
BACKGROUND Long intergenic non-protein-coding RNA 173 (LINC00173) executes vital functions in various cancers. Nevertheless, its role and expression in nasopharyngeal carcinoma (NPC) have yet to be investigated. Here, we investigated its effects on the malignancy characteristics of NPC and elucidated the potential molecular mechanism of LINC00173 in NPC progression. METHODS Quantitative real-time reverse transcription-PCR (qRT-PCR) and immunoblotting were conducted to estimate the LINC00173, microRNA-765 (miR-765), and Gremlin 1 (GREM1) expressions in NPC cells and tissues. Cell counting kit-8 (CCK8), colony formation, and wound healing experiments were done to evaluate the proliferation, growth, and migration of NPC cells, respectively. The tumorous growth of NPC cells in vivo was assessed through the xenograft tumor experiment. Furthermore, the interactions among miR-765, LINC00173, and GREM1 were investigated through bioinformatics analyses, luciferase reporter and RNA immunoprecipitation chip assays. RESULTS An upregulated LINC00173 expression was found in NPC cell lines and tissues. The functional experiments uncovered that its downregulation repressed NPC cell proliferation, growth, and migration. In addition, LINC00173 knockdown hampered the NPC cells' tumorous growth in vivo. These effects could partially be reversed by downregulating miR-765. GREM1 is a downstream target of miR-765. GREM1 knockdown could repress the proliferation, growth, and migration of NPC cells. Nonetheless, these anti-tumor effects could be abolished by miR-765 downregulation. Mechanistically, LINC00173 increased the expression of GREM1 by binding with miR-765. CONCLUSIONS LINC00173 functions as an oncogenic factor by binding with miR-765 to promote the progression of NPC via GREM1 upregulation. This study provides a novel insight into the molecular mechanisms involved in NPC progression.
Collapse
Affiliation(s)
- Dan Wang
- Otorhinolaryngologic Department, The Fifth Hospital of Wuhan, Wuhan, China
| | - Heng Jiang
- Otorhinolaryngologic Department, The Fifth Hospital of Wuhan, Wuhan, China
| |
Collapse
|
41
|
Ji L, Piao L, Gu X, Xiao F, Hua Q, Wu J. Silencing PARP-1 binding protein Inhibits Cell Migration and Invasion via Suppressing UBE2C in Nasopharyngeal Cancer Cells. EAR, NOSE & THROAT JOURNAL 2022; 102:NP161-NP168. [PMID: 36576436 DOI: 10.1177/01455613221134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignancy with a 2 per 100 000 incidence rate in the world. Overall survival (OS) of patients in stage I-II disease is around 80%, whereas OS of patients in stage III-IVB disease drops to 60%, implying the importance of diagnosis to reduce NPC mortality. However, more than 70% patients of NPC were diagnosed at advanced stages (stage III and IV) in clinics, and it definitely contributes to little substantial improvement in the 5-year survival rates although NPC is sensitive to radio-and chemotherapy. Hence, development of novel biomarkers and targetable genes in NPC is eagerly awaited. METHODS We had analyzed the dataset GSE12452 and found hundreds of genes trans-activated in NPC. Among them, this study focused on PARP-1 binding protein (PARPBP) whose overexpression was also validated in GSE13597 and GSE53819 datasets. RESULTS Knockdown of PARPBP significantly reduced cell viability in NPC and also identified hundreds of differentially expressed genes including 377 downregulated and 518 upregulated genes in HONE-1 cells with stably knockdown PARPBP. Furthermore, PARPBP might promote cell migration and invasion in NPC through positive regulation of ubiquitin-conjugating enzyme 2C (UBE2C). CONCLUSION The results demonstrate the aberrant expression of PARPBP in NPC, and imply its importance in nasopharyngeal carcinogenesis which further opens up the possibility of PARPBP as a novel diagnostic biomarker for NPC therapy.
Collapse
Affiliation(s)
- Li Ji
- Department of Otorhinolaryngology, 12461The Second People's Hospital of Changzhou affiliated to Nanjing Medical University, Changzhou, China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, 105810Jiangsu University of Technology, Changzhou, China
| | - Xiaofeng Gu
- Department of Otorhinolaryngology, 12461The Second People's Hospital of Changzhou affiliated to Nanjing Medical University, Changzhou, China
| | - Feng Xiao
- Department of Otorhinolaryngology, 12461The Second People's Hospital of Changzhou affiliated to Nanjing Medical University, Changzhou, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Wu
- Department of Otorhinolaryngology, 12461The Second People's Hospital of Changzhou affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
42
|
Chen CT, Yang SF, Chao SC, Lee CY, Huang JY, Lin HY. Nasopharyngeal Carcinoma and Its Effect on Dry Eye Disease: A Nationwide Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:387. [PMID: 36612710 PMCID: PMC9819044 DOI: 10.3390/ijerph20010387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The aim of the current study was to investigate the relationship between nasopharyngeal carcinoma (NPC) and dry eye disease (DED) using the National Health Insurance Research Database (NHIRD) of Taiwan. A retrospective cohort study was conducted, and patients with an NPC diagnosis were included. Next, one NPC patient was matched to four non-NPC participants via demographic data and systemic comorbidities. In total, 4184 and 16,736 participants were enrolled in the NPC and non-NPC groups, respectively. The primary outcome was the development of DED one year after the diagnosis of NPC. Cox proportional hazard regression was applied to estimate the adjusted hazard ratios (aHRs) with 95% confidence intervals (CIs) of DED. In this study, 717 and 2225 DED cases were found in the NPC and non-NPC groups, respectively, and the NPC group showed a significantly higher incidence of DED development compared to the non-NPC group (aHR: 1.45, 95% CI: 1.33−1.58, p < 0.0001) in the multivariable analysis. The other covariates that were positively correlated with DED development included age over 40 years, an education level higher than senior high school, hypertension, DM, allergic pulmonary diseases, allergic otolaryngologic diseases, and allergic dermatological diseases (all p < 0.05). In conclusion, the presence of NPC is an independent risk factor for subsequent DED.
Collapse
Affiliation(s)
- Ching-Tai Chen
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shih-Chun Chao
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Optometry, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- Department of Optometry, Yuan Pei University, Hsinchu 300, Taiwan
| | - Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Ophthalmology, Nobel Eye Institute, Taipei 115, Taiwan
- Department of Ophthalmology, Jen-Ai Hospital Dali Branch, Taichung 41265, Taiwan
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hung-Yu Lin
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Optometry, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
43
|
Paudel S, Warner BE, Wang R, Adams-Haduch J, Reznik AS, Dou J, Huang Y, Gao YT, Koh WP, Bäckerholm A, Yuan JM, Shair KHY. Serologic Profiling Using an Epstein-Barr Virus Mammalian Expression Library Identifies EBNA1 IgA as a Prediagnostic Marker for Nasopharyngeal Carcinoma. Clin Cancer Res 2022; 28:5221-5230. [PMID: 36165913 PMCID: PMC9722633 DOI: 10.1158/1078-0432.ccr-22-1600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE The favorable prognosis of stage I and II nasopharyngeal carcinoma (NPC) has motivated a search for biomarkers for the early detection and risk assessment of Epstein-Barr virus (EBV)-associated NPC. Although EBV seropositivity is ubiquitous among adults, a spike in antibodies against select EBV proteins is a harbinger of NPC. A serologic survey would likely reveal which EBV antibodies could discriminate those at risk of developing NPC. EXPERIMENTAL DESIGN Lysates from a new EBV mammalian expression library were used in a denaturing multiplex immunoblot assay to survey antibodies against EBV in sera collected from healthy individuals who later developed NPC (incident cases) in a prospective cohort from Singapore and validated in an independent cohort from Shanghai, P.R. China. RESULTS We show that IgA against EBV nuclear antigen 1 (EBNA1) discriminated incident NPC cases from matched controls with 100% sensitivity and 100% specificity up to 4 years before diagnosis in both Singapore and Shanghai cohorts. Incident NPC cases had a greater IgG repertoire against lytic-classified EBV proteins, and the assortment of IgA against EBV proteins detected by the immunoblot assay increased closer to diagnosis. CONCLUSIONS Although NPC tumors consistently harbor latent EBV, the observed heightened systemic and mucosal immunity against lytic-classified antigens years prior to clinical diagnosis is consistent with enhanced lytic transcription. We conclude that an expanding EBV mucosal reservoir (which can be latent and/or lytic) is a risk factor for NPC. This presents an opportunity to identify those at risk of developing NPC using IgA against EBNA1 as a biomarker.
Collapse
Affiliation(s)
- Sarita Paudel
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin E Warner
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renwei Wang
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Adams-Haduch
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex S Reznik
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Dou
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Bäckerholm
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathy H Y Shair
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Corresponding author: Kathy H Y Shair, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.8, Pittsburgh, PA 15213,Tel: 412-623 7717,
| |
Collapse
|
44
|
Insight into LncRNA- and CircRNA-Mediated CeRNAs: Regulatory Network and Implications in Nasopharyngeal Carcinoma—A Narrative Literature Review. Cancers (Basel) 2022; 14:cancers14194564. [PMID: 36230487 PMCID: PMC9559536 DOI: 10.3390/cancers14194564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of head-and-neck malignant tumor, and distant metastasis treatment resistance is the leading cause of patient death. In-depth understanding of NPC progression and treatment failure remains to be explored. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are noncoding RNAs that play key regulatory role in shaping tumor cell activities. Recent studies have revealed that lncRNA and circRNA function as competitive endogenous RNAs (ceRNAs) by regulating the posttranscriptional expression of genes as miRNA baits. The imbalanced ceRNA networks derived from lncRNA/circRNA-miRNA-mRNA interaction are widely found to contribute to NPC development. Herein, we summarize typical examples of lncRNA/circRNA-associated ceRNAs in recent years, which involved the potential molecular mechanisms in the regulation of proliferation, apoptosis, treatment resistance and metastasis of NPC, and discuss their potential clinical significance in the prognosis and treatment of NPC. Interpreting the involvement of ceRNAs networks will provide new insight into the pathogenesis and treatment strategies of NPC. However, ceRNA regulatory mechanism has some limitations currently. Screening the most effective ceRNA targets and the clinical application of ceRNA still has many challenges.
Collapse
|
45
|
Kueh MTW, Rahim FF, Rashid A. Development and validation of the health belief model questionnaire to promote smoking cessation for nasopharyngeal cancer prevention: a cross-sectional study. BMJ Open 2022; 12:e057552. [PMID: 36104123 PMCID: PMC9476129 DOI: 10.1136/bmjopen-2021-057552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Lifestyle-induced nasopharyngeal carcinoma is a serious but preventable risk factor. This study serves to develop and validate a questionnaire that aims to predict the health behavioural intention on smoking cessation in Sarawak, Malaysia using the Health Belief Model (HBM). DESIGN A cross-sectional study. SETTING Urban and suburban areas in Sarawak, Malaysia. PARTICIPANTS The preliminary items of the instrument were developed after extensive literature review. The instrument was translated into the Malay language using the forward-backwards method before commencing with the content validity by a panel of 10 experts. Face validity was done both quantitatively and qualitatively by 10 smokers. The construct validity of the instrument was evaluated through exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). A total of 100 smokers participated in phase 1 for EFA, while 171 smokers participated in phase 2 for CFA. Internal consistency was measured using Cronbach's alpha coefficients to evaluate the reliability. RESULTS In the exploratory stage, the factor loading of each item remained within the acceptable threshold. The final revised CFA yielded appropriate fit of the seven-factor model with the following model fit indices: χ2=641.705; df=500; p<0.001; comparative fit index=0.953; Tucker-Lewis Index=0.948; root mean square error of approximation=0.041. Satisfactory convergent validity and divergent validity were shown, with the exception of one pairwise construct. The internal reliability of these scales was above the desirable threshold, with Cronbach's alpha coefficients ranging from 0.705 to 0.864 and 0.838 to 0.889 in phases 1 and 2, respectively. CONCLUSIONS The study substantiated the instrument to be valid and reliable for predicting smokers' health behavioural intention to reduce cancer risk. The instrument is made up of 34 items, categorised into two sections, six HBM constructs and health behavioural intention. The instrument can be utilised for other smoking cessation-related cancers in different at-risk populations.
Collapse
Affiliation(s)
- Martin Tze Wah Kueh
- Department of Public Health Medicine, RCSI & UCD Malaysia Campus, Georgetown, Malaysia
| | - Fairuz Fadzilah Rahim
- Department of Public Health Medicine, RCSI & UCD Malaysia Campus, Georgetown, Malaysia
| | - Abdul Rashid
- Department of Public Health Medicine, RCSI & UCD Malaysia Campus, Georgetown, Malaysia
| |
Collapse
|
46
|
Lu Y, Huang H, Yang H, Hu X, Liu M, Huang C, Feng X, Chen X, Jiang Z. Maintenance therapy improves the survival outcomes of patients with metastatic nasopharyngeal carcinoma responding to first-line chemotherapy: a multicentre, randomized controlled clinical study. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04341-2. [PMID: 36075994 DOI: 10.1007/s00432-022-04341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To explore the safety and role of tegafur/gimeracil/oteracil (S1) maintenance therapy (MT) in metastatic nasopharyngeal carcinoma (NPC) patients after response to first-line chemotherapy and to assess outcome-associated biomarkers. METHODS This was a multicentre, open-label, randomized controlled study involving metastatic NPC patients recruited (from May 2015 to May 2019) at five hospitals in China. The participants were randomized to S1-MT (receiving S1 MT until disease progression or intolerance) or non-MT (followed up until disease progression) groups. The primary endpoint was the progression-free survival (PFS). The secondary endpoints were the overall survival (OS), the correlation between EBV-DNA, serum amyloid A (SAA) status, and outcomes after the first-line chemotherapy, and safety. RESULTS The median follow-up was 24.3 months; 88 and 95 participants were evaluable in the S1-MT and non-MT groups, respectively. Compared with non-MT, S1-MT prolonged PFS (16.9 vs. 9.3 months, P < 0.001) and OS (33.6 vs. 20.6 months, P < 0.001). Regardless of their EBV-DNA status after first-line chemotherapy, participants were able to benefit from S1 MT, but EBV-DNA-positive participants benefited more significantly (PFS: HR = 0.600, 95% CI = 0.373-0.965, P = 0.035; OS: HR = 0.393, 95% CI = 0.227-0.681, P = 0.001). MT only improved PFS and OS in patients with an SAA decline after first-line chemotherapy (PFS: HR = 0.570, 95% CI = 0.350-0.919, P = 0.021; OS: HR = 0.404, 95% CI = 0.230-0.709, P = 0.002). The median S1 treatment was 23 cycles. Grade 1-2 skin pigmentation, oral mucositis, and hand and foot syndrome were the main adverse reactions. CONCLUSION For metastatic NPC patients with first-line chemotherapy response, S1 MT can improve PFS and OS, with good tolerability. EBV-DNA and SAA can better help us identify patients who can benefit from MT after standard treatment. TRIAL REGISTRATION The study protocol was registered at the Chinese Clinical Trial Registry (ChiCTR-IOR-16007939).
Collapse
Affiliation(s)
- Ying Lu
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, No.1 Liushi Road, Liuzhou, 545000, Guangxi, China
| | - Haixin Huang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, No.1 Liushi Road, Liuzhou, 545000, Guangxi, China.
| | - Hui Yang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, No.1 Liushi Road, Liuzhou, 545000, Guangxi, China
| | - Xiaohua Hu
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Meilian Liu
- Department of Oncology, Affiliated Hospital of Guilin Medical College, Guilin, 541000, China
| | - Changjie Huang
- Department of Oncology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xianbin Feng
- Department of Oncology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, 545000, China
| | - Xishan Chen
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, No.1 Liushi Road, Liuzhou, 545000, Guangxi, China
| | - Zhou Jiang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, No.1 Liushi Road, Liuzhou, 545000, Guangxi, China
| |
Collapse
|
47
|
Souissi S, Ghedira R, Macherki Y, Ben‐Haj‐Ayed A, Gabbouj S, Remadi Y, Sfar I, Chadli Z, Aouam K, Hassine M, Bouaouina N, Zakhama A, Hassen E. Indoleamine 2,3-dioxygenase gene expression and kynurenine to tryptophan ratio correlation with nasopharyngeal carcinoma progression and survival. Immun Inflamm Dis 2022; 10:e690. [PMID: 36039641 PMCID: PMC9425015 DOI: 10.1002/iid3.690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/27/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive tryptophan-depleting enzyme expressed in nasopharyngeal carcinoma (NPC) tissue. However, IDO has not been reported in the peripheral blood of NPC patients. The aim of this study was to analyze, IDO1 and IDO2 messenger RNA (mRNA) expression, the kynurenine (Kyn) and tryptophan (Trp) plasma levels, their clinical values and their relationship with cytokine levels in NPC. METHODS We evaluated IDO1 and IDO2 mRNA expression in peripheral blood mononuclear cells (PBMC) by quantitative real-time PCR, plasma Trp and Kyn levels by HPLC, and cytokine levels by ELISA in 75 NPC patients and 51 healthy controls. RESULTS Compared to controls, IDO1 mRNA expression was significantly upregulated and IDO2 mRNA expression was significantly downregulated in PBMC of patients. Also compared to controls, plasma Kyn levels and Kyn/Trp ratio were significantly higher in patients. At the time of diagnosis, the plasma Kyn/Trp ratio was associated with advanced cancer status and was an independent prognostic factor for worse disease-specific survival. According to cancer stages, IDO1 mRNA expression was positively correlated with plasma Kyn/Trp ratio in patients with earlier stages (I-II-III) but negatively correlated in patients with the late-stage cancer (IV). Tumor necrosis factor-α, interleukin (IL)-6 and IL-10 levels were significantly higher in patients compared to controls. Moreover, and despite treatment, patients simultaneously carrying high plasma Kyn/Trp ratio and high plasma IL-6 and IL-10 levels at diagnosis died approximately 1 year after first diagnosis. CONCLUSION Measuring blood IDO mRNA expression and Kyn/Trp ratio at diagnosis could be a potential marker to evaluate NPC progression and predict survival outcome.
Collapse
Affiliation(s)
- Sameh Souissi
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
- Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Randa Ghedira
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Yosra Macherki
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Ahlem Ben‐Haj‐Ayed
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Sallouha Gabbouj
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Yasmine Remadi
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Imen Sfar
- Research Laboratory in Immunology of Renal Transplantation and ImmunopathologyTunis El Manar UniversityTunisTunisia
| | - Zohra Chadli
- Department of PharmacologyUniversity of MonastirMonastirTunisia
| | - Karim Aouam
- Department of PharmacologyUniversity of MonastirMonastirTunisia
| | - Mohsen Hassine
- Department of HematologyFattouma Bourguiba University HospitalMonastirTunisia
| | - Noureddine Bouaouina
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
- Department of Cancerology and RadiotherapyFarhat Hached University HospitalSousseTunisia
| | - Abdelfattah Zakhama
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
| | - Elham Hassen
- Laboratory of Molecular Immuno‐Oncology, Faculty of Medicine of MonastirUniversity of MonastirMonastirTunisia
- Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| |
Collapse
|
48
|
Jiang J, Ying H. Revealing the crosstalk between nasopharyngeal carcinoma and immune cells in the tumor microenvironment. J Exp Clin Cancer Res 2022; 41:244. [PMID: 35964134 PMCID: PMC9375932 DOI: 10.1186/s13046-022-02457-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelial cells located in the nasopharynx and has a distinct geographic distribution. Chronic Epstein-Barr virus (EBV) infection, as its most common causative agents, can be detected in 100% of NPC types. In-depth studies of the cellular and molecular events leading to immunosuppression in NPC have revealed new therapeutic targets and diverse combinations that promise to benefit patients with highly refractory, advanced and metastatic NPC. This paper reviews the mechanisms by which NPC cells to circumvent immune surveillance and approaches being attempted to restore immunity. We integrate existing insights into anti-NPC immunity and molecular signaling pathways as well as targeting therapies in anticipation of broader applicability and effectiveness in advanced metastatic NPC.
Collapse
|
49
|
Gorolay VV, Niles NN, Huo YR, Ahmadi N, Hanneman K, Thompson E, Chan MV. MRI detection of suspected nasopharyngeal carcinoma: a systematic review and meta-analysis. Neuroradiology 2022; 64:1471-1481. [PMID: 35499636 PMCID: PMC9271105 DOI: 10.1007/s00234-022-02941-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/03/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Endoscopic biopsy is recommended for diagnosis of nasopharyngeal carcinoma (NPC). A proportion of lesions are hidden from endoscopic view but detected with magnetic resonance imaging (MRI). This systematic review and meta-analysis investigated the diagnostic performance of MRI for detection of NPC. METHODS An electronic search of twelve databases and registries was performed. Studies were included if they compared the diagnostic accuracy of MRI to a reference standard (histopathology) in patients suspected of having NPC. The primary outcome was accuracy for detection of NPC. Random-effects models were used to pool outcomes for sensitivity, specificity, and positive and negative likelihood ratio (LR). Bias and applicability were assessed using the modified QUADAS-2 tool. RESULTS Nine studies were included involving 1736 patients of whom 337 were diagnosed with NPC. MRI demonstrated a pooled sensitivity of 98.1% (95% CI 95.2-99.3%), specificity of 91.7% (95% CI 88.3-94.2%), negative LR of 0.02 (95% CI 0.01-0.05), and positive LR of 11.9 (95% CI 8.35-16.81) for detection of NPC. Most studies were performed in regions where NPC is endemic, and there was a risk of selection bias due to inclusion of retrospective studies and one case-control study. There was limited reporting of study randomization strategy. CONCLUSION This study demonstrates that MRI has a high pooled sensitivity, specificity, and negative predictive value for detection of NPC. MRI may be useful for lesion detection prior to endoscopic biopsy and aid the decision to avoid biopsy in patients with a low post-test probability of disease.
Collapse
Affiliation(s)
- Vineet Vijay Gorolay
- Department of Radiology, Royal Price Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Naomi Natasha Niles
- Department of Ear, Nose and Throat Surgery, Concord Hospital, Concord, NSW, Australia
| | - Ya Ruth Huo
- Department of Radiology, Hospital Road, Concord Repatriation and General Hospital, University of Sydney, Concord, NSW, 2139, Australia
| | - Navid Ahmadi
- Department of Ear, Nose and Throat Surgery, Royal Prince Alfred Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Kate Hanneman
- Department of Medical Imaging, Peter Munk Cardiac Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Thompson
- Department of Radiology, Royal Price Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Michael Vinchill Chan
- Department of Radiology, Hospital Road, Concord Repatriation and General Hospital, University of Sydney, Concord, NSW, 2139, Australia.
| |
Collapse
|
50
|
Chen Y, Han G, Lin T, Liu X. CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation. SENSORS (BASEL, SWITZERLAND) 2022; 22:5053. [PMID: 35808548 PMCID: PMC9269783 DOI: 10.3390/s22135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023]
Abstract
Accurate segmentation of nasopharyngeal carcinoma is essential to its treatment effect. However, there are several challenges in existing deep learning-based segmentation methods. First, the acquisition of labeled data are challenging. Second, the nasopharyngeal carcinoma is similar to the surrounding tissues. Third, the shape of nasopharyngeal carcinoma is complex. These challenges make the segmentation of nasopharyngeal carcinoma difficult. This paper proposes a novel semi-supervised method named CAFS for automatic segmentation of nasopharyngeal carcinoma. CAFS addresses the above challenges through three mechanisms: the teacher-student cooperative segmentation mechanism, the attention mechanism, and the feedback mechanism. CAFS can use only a small amount of labeled nasopharyngeal carcinoma data to segment the cancer region accurately. The average DSC value of CAFS is 0.8723 on the nasopharyngeal carcinoma segmentation task. Moreover, CAFS has outperformed the state-of-the-art nasopharyngeal carcinoma segmentation methods in the comparison experiment. Among the compared state-of-the-art methods, CAFS achieved the highest values of DSC, Jaccard, and precision. In particular, the DSC value of CAFS is 7.42% higher than the highest DSC value in the state-of-the-art methods.
Collapse
Affiliation(s)
- Yitong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (Y.C.); (G.H.); (T.L.)
| | - Guanghui Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (Y.C.); (G.H.); (T.L.)
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Tianyu Lin
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (Y.C.); (G.H.); (T.L.)
| | - Xiujian Liu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (Y.C.); (G.H.); (T.L.)
| |
Collapse
|