1
|
Louwen F, Kreis NN, Ritter A, Yuan J. Maternal obesity and placental function: impaired maternal-fetal axis. Arch Gynecol Obstet 2024; 309:2279-2288. [PMID: 38494514 PMCID: PMC11147848 DOI: 10.1007/s00404-024-07462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
The prevalence of maternal obesity rapidly increases, which represents a major public health concern worldwide. Maternal obesity is characteristic by metabolic dysfunction and chronic inflammation. It is associated with health problems in both mother and offspring. Increasing evidence indicates that the placenta is an axis connecting maternal obesity with poor outcomes in the offspring. In this brief review, we have summarized the current data regarding deregulated placental function in maternal obesity. The data show that maternal obesity induces numerous placental defects, including lipid and glucose metabolism, stress response, inflammation, immune regulation and epigenetics. These placental defects affect each other and result in a stressful intrauterine environment, which transduces and mediates the adverse effects of maternal obesity to the fetus. Further investigations are required to explore the exact molecular alterations in the placenta in maternal obesity, which may pave the way to develop specific interventions for preventing epigenetic and metabolic programming in the fetus.
Collapse
Affiliation(s)
- Frank Louwen
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
2
|
Calvo MJ, Parra H, Santeliz R, Bautista J, Luzardo E, Villasmil N, Martínez MS, Chacín M, Cano C, Checa-Ros A, D'Marco L, Bermúdez V, De Sanctis JB. The Placental Role in Gestational Diabetes Mellitus: A Molecular Perspective. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:10-18. [PMID: 38812661 PMCID: PMC11132656 DOI: 10.17925/ee.2024.20.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 05/31/2024]
Abstract
During pregnancy, women undergo several metabolic changes to guarantee an adequate supply of glucose to the foetus. These metabolic modifications develop what is known as physiological insulin resistance. When this process is altered, however, gestational diabetes mellitus (GDM) occurs. GDM is a multifactorial disease, and genetic and environmental factors play a crucial role in its aetiopathogenesis. GDM has been linked to both macroscopic and molecular alterations in placental tissues that affect placental physiology. This review summarizes the role of the placenta in the development of GDM from a molecular perspective, including hormonal and pro-inflammatory changes. Inflammation and hormonal imbalance, the characteristics dominating the GDM microenvironment, are responsible for placental changes in size and vascularity, leading to dysregulation in maternal and foetal circulations and to complications in the newborn. In conclusion, since the hormonal mechanisms operating in GDM have not been fully elucidated, more research should be done to improve the quality of life of patients with GDM and their future children.
Collapse
Affiliation(s)
- María José Calvo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Eliana Luzardo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricamen Chacín
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Checa-Ros
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Luis D'Marco
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
3
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
4
|
Cinquina V, Keimpema E, Pollak DD, Harkany T. Adverse effects of gestational ω-3 and ω-6 polyunsaturated fatty acid imbalance on the programming of fetal brain development. J Neuroendocrinol 2023; 35:e13320. [PMID: 37497857 PMCID: PMC10909496 DOI: 10.1111/jne.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
Obesity is a key medical challenge of our time. The increasing number of children born to overweight or obese women is alarming. During pregnancy, the circulation of the mother and her fetus interact to maintain the uninterrupted availability of essential nutrients for fetal organ development. In doing so, the mother's dietary preference determines the amount and composition of nutrients reaching the fetus. In particular, the availability of polyunsaturated fatty acids (PUFAs), chiefly their ω-3 and ω-6 subclasses, can change when pregnant women choose a specific diet. Here, we provide a succinct overview of PUFA biochemistry, including exchange routes between ω-3 and ω-6 PUFAs, the phenotypes, and probable neurodevelopmental disease associations of offspring born to mothers consuming specific PUFAs, and their mechanistic study in experimental models to typify signaling pathways, transcriptional, and epigenetic mechanisms by which PUFAs can imprint long-lasting modifications to brain structure and function. We emphasize that the ratio, rather than the amount of individual ω-3 or ω-6 PUFAs, might underpin physiologically correct cellular differentiation programs, be these for neurons or glia, during pregnancy. Thereupon, the PUFA-driven programming of the brain is contextualized for childhood obesity, metabolic, and endocrine illnesses.
Collapse
Affiliation(s)
- Valentina Cinquina
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Erik Keimpema
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Daniela D. Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
- Deaprtment of NeuroscienceBiomedicum 7D, Karolinska InstitutetStockholmSweden
| |
Collapse
|
5
|
Joshi NP, Madiwale SD, Sundrani DP, Joshi SR. Fatty acids, inflammation and angiogenesis in women with gestational diabetes mellitus. Biochimie 2023; 212:31-40. [PMID: 37059350 DOI: 10.1016/j.biochi.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder in pregnancy whose prevalence is on the rise. Reports suggest a likely association between inflammation and maternal GDM. A balance between pro and anti-inflammatory cytokines is necessary for the regulation of maternal inflammation system throughout pregnancy. Along with various inflammatory markers, fatty acids also act as pro-inflammatory molecules. However, studies reporting the role of inflammatory markers in GDM are contradictory, suggesting the need of more studies to better understand the role of inflammation in pregnancies complicated by GDM. Inflammatory response can be regulated by angiopoietins suggesting a link between inflammation and angiogenesis. Placental angiogenesis is a normal physiological process which is tightly regulated during pregnancy. Various pro and anti-angiogenic factors influence the regulation of the feto-placental vascular development. Studies evaluating the levels of angiogenic markers in women with GDM are limited and the findings are inconsistent. This review summarizes the available literature on fatty acids, inflammatory markers and angiogenesis in women with GDM. We also discuss the possible link between them and their influence on placental development in GDM.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Shweta D Madiwale
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
6
|
Diniz MS, Grilo LF, Tocantins C, Falcão-Pires I, Pereira SP. Made in the Womb: Maternal Programming of Offspring Cardiovascular Function by an Obesogenic Womb. Metabolites 2023; 13:845. [PMID: 37512552 PMCID: PMC10386510 DOI: 10.3390/metabo13070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity incidence has been increasing at an alarming rate, especially in women of reproductive age. It is estimated that 50% of pregnancies occur in overweight or obese women. It has been described that maternal obesity (MO) predisposes the offspring to an increased risk of developing many chronic diseases in an early stage of life, including obesity, type 2 diabetes, and cardiovascular disease (CVD). CVD is the main cause of death worldwide among men and women, and it is manifested in a sex-divergent way. Maternal nutrition and MO during gestation could prompt CVD development in the offspring through adaptations of the offspring's cardiovascular system in the womb, including cardiac epigenetic and persistent metabolic programming of signaling pathways and modulation of mitochondrial metabolic function. Currently, despite diet supplementation, effective therapeutical solutions to prevent the deleterious cardiac offspring function programming by an obesogenic womb are lacking. In this review, we discuss the mechanisms by which an obesogenic intrauterine environment could program the offspring's cardiovascular metabolism in a sex-divergent way, with a special focus on cardiac mitochondrial function, and debate possible strategies to implement during MO pregnancy that could ameliorate, revert, or even prevent deleterious effects of MO on the offspring's cardiovascular system. The impact of maternal physical exercise during an obesogenic pregnancy, nutritional interventions, and supplementation on offspring's cardiac metabolism are discussed, highlighting changes that may be favorable to MO offspring's cardiovascular health, which might result in the attenuation or even prevention of the development of CVD in MO offspring. The objectives of this manuscript are to comprehensively examine the various aspects of MO during pregnancy and explore the underlying mechanisms that contribute to an increased CVD risk in the offspring. We review the current literature on MO and its impact on the offspring's cardiometabolic health. Furthermore, we discuss the potential long-term consequences for the offspring. Understanding the multifaceted effects of MO on the offspring's health is crucial for healthcare providers, researchers, and policymakers to develop effective strategies for prevention and intervention to improve care.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-531 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
7
|
Zhang JW, Guan JQ, Zhong YX. Association of prenatal obesity and cord blood cytokine levels with allergic diseases in children: A 10-year follow-up cohort study. Heliyon 2023; 9:e17375. [PMID: 37484399 PMCID: PMC10361389 DOI: 10.1016/j.heliyon.2023.e17375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background and aim Although studies have associated elevated prenatal obesity with increased risk of various diseases in offspring, little is known regarding the immune system. The aim of this study was to evaluate the relationship between prenatal obesity and levels of cytokines in umbilical cord blood and development of allergic disease during the first 10 years of life in an offspring. Methods A cohort of term infants born at the ShaoXing Women and Children Hospitals in China in 2011 was enrolled in this study. Flow cytometry was performed to measure levels of various cord blood cytokines, namely IL1β, IL2, IL10, IL6, IL8, IL17, IL12, TNF-α and IFN-γ. Next, logistic regression was used to explore the association of prenatal BMI with the development of allergic disease. The relationship between levels of each cord blood cytokine with prenatal BMI, and allergic disease development was tested using linear and logistic regression analyses, respectively. Results After 10 years of follow-up, higher prenatal BMI was significantly associated with development of allergic disease in children (HR = 2.45, 95% CI:1.08-5.57, P = 0.033). We also adjusted for maternal age, education and infant gender, and found that prenatal BMI was significantly associated with higher levels of IL12 (P = 0.023) and IL1β (P = 0.049) in cord blood. Moreover, we adjusted for maternal age, education, allergic dermatitis, gestation age and infant gender, and found that increase in each unit (1.26 pg/ml) in IL17 was associated with a 55.5% higher risk of allergic disease in 10-year-old children (HR = 1.55, 95%Cl: 0.99-2.45, P = 0.056). Meanwhile, after adjusting for maternal age, education level, gestation age, prenatal BMI, gestational weight gain, infant gender and birthweight, we found that for every unit increase in IL10, IL6 and IL1β, the risk of overweight/obesity in children after 10-year follow-up increased by 18.7% (HR = 1.19, 95%Cl: 1.01-1.40, P = 0.042), 13.9% (HR = 1.14, 95%Cl: 1.02-1.27, P = 0.021) and 41.3% (HR = 1.41, 95%Cl: 1.02-1.95, P = 0.036), respectively. Conclusions Prenatal obesity was positively correlated with allergic diseases in offspring. Cord blood cytokine may play mediating roles in the associations of prenatal obesity with offspring allergic diseases.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Department of Pediatrics, Shaoxing Maternity and Child Health Care Hospital, China
| | - Jie-Qiong Guan
- Department of Public Health, Shaoxing Maternity and Child Health Care Hospital, China
| | - Yong-Xing Zhong
- Department of Pediatrics, Shaoxing Maternity and Child Health Care Hospital, China
| |
Collapse
|
8
|
Visiedo F, Vázquez-Fonseca L, Ábalos-Martínez J, Broullón-Molanes JR, Quintero-Prado R, Mateos RM, Bugatto F. Maternal elevated inflammation impairs placental fatty acids β-oxidation in women with gestational diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1146574. [PMID: 37214247 PMCID: PMC10196201 DOI: 10.3389/fendo.2023.1146574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction An adverse proinflammatory milieu contributes to abnormal cellular energy metabolism response. Gestational diabetes mellitus (GDM) is closely related to an altered maternal inflammatory status. However, its role on lipid metabolism regulation in human placenta has not yet been assessed. The aim of this study was to examine the impact of maternal circulating inflammatory mediators ([TNF]-α, [IL]-6, and Leptin) on placental fatty acid metabolism in GDM pregnancies. Methods Fasting maternal blood and placental tissues were collected at term deliveries from 37 pregnant women (17 control and 20 GDM). Molecular approach techniques as radiolabeled lipid tracers, ELISAs, immunohistochemistry and multianalyte immunoassay quantitative analysis, were used to quantify serum inflammatory factors' levels, to measure lipid metabolic parameters in placental villous samples (mitochondrial fatty acid oxidation [FAO] rate and lipid content [Triglycerides]), and to analyze their possible relationships. The effect of potential candidate cytokines on fatty acid metabolism in ex vivo placental explants culture following C-section a term was also examined. Results Maternal serum IL-6, TNF-α and leptin levels were significantly increased in GDM patients compared with control pregnant women (9,9±4,5 vs. 3,00±1,7; 4,5±2,8 vs. 2,1±1,3; and 10026,7±5628,8 vs. 5360,2±2499,9 pg/ml, respectively). Placental FAO capacity was significantly diminished (~30%; p<0.01), whereas triglyceride levels were three-fold higher (p<0.01) in full-term GDM placentas. Uniquely the maternal IL-6 levels showed an inverse and positive correlation with the ability to oxidize fatty acids and triglyceride amount in placenta, respectively (r= -0,602, p=0.005; r= 0,707, p=0.001). Additionally, an inverse correlation between placental FAO and triglycerides was also found (r=-0.683; p=0.001). Interestingly, we ex vivo demonstrated by using placental explant cultures that a prolonged exposure with IL-6 (10 ng/mL) resulted in a decline in the fatty acid oxidation rate (~25%; p=0.001), along to acute increase (2-fold times) in triglycerides accumulation (p=0.001), and in lipid neutral and lipid droplets deposits. Conclusions Enhanced maternal proinflammatory cytokines levels (essentially IL-6) is closely associated with an altered placental fatty acid metabolism in pregnancies with GDM, which may interfere with adequate delivery of maternal fat across the placenta to the fetus.
Collapse
Affiliation(s)
- Francisco Visiedo
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Luis Vázquez-Fonseca
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Jessica Ábalos-Martínez
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - J. Román Broullón-Molanes
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology “Puerta del Mar” University Hospital, University of Cádiz, Cádiz, Spain
- Area of Obstetrics and Gynaecology, Department of Child and Mother Health and Radiology, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Rocío Quintero-Prado
- Department of Obstetrics and Gynecology, Puerto Real University Hospital, Cadiz, Spain
| | - Rosa María Mateos
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Cádiz, Spain
| | - Fernando Bugatto
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology “Puerta del Mar” University Hospital, University of Cádiz, Cádiz, Spain
- Area of Obstetrics and Gynaecology, Department of Child and Mother Health and Radiology, School of Medicine, University of Cádiz, Cádiz, Spain
| |
Collapse
|
9
|
Nguyen-Ngo C, Perkins AV, Lappas M. Selenium Prevents Inflammation in Human Placenta and Adipose Tissue In Vitro: Implications for Metabolic Diseases of Pregnancy Associated with Inflammation. Nutrients 2022; 14:nu14163286. [PMID: 36014792 PMCID: PMC9416138 DOI: 10.3390/nu14163286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity are significant metabolic complications increasingly prevalent in pregnancy. Of major concern, both GDM and maternal obesity can have long-term detrimental impacts on the health of both mother and offspring. Recent research has shown that increased inflammation and oxidative stress are two features central to the pathophysiology of these metabolic conditions. Evidence suggests selenium supplementation may be linked to disease prevention in pregnancy; however, the specific effects of selenium on inflammation and oxidative stress associated with GDM and maternal obesity are unknown. Therefore, this study aimed to investigate the effect of selenium supplementation on an in vitro model of GDM and maternal obesity. Human placental tissue, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were stimulated with either the bacterial product lipopolysaccharide (LPS) or the pro-inflammatory cytokine TNF-α. Selenium pre-treatment blocked LPS and TNF-α induced mRNA expression and secretion of pro-inflammatory cytokines and chemokines, while increasing anti-inflammatory cytokine and antioxidant mRNA expression in placenta, VAT and SAT. Selenium pre-treatment was also found to inhibit LPS- and TNF-α induced phosphorylation of ERK in placenta, VAT and SAT. These findings indicate that selenium may be able to prevent inflammation and oxidative stress associated with GDM and maternal obesity. Additional in vivo studies are required to identify the efficacy of selenium supplementation in preventing inflammatory pathways activated by GDM and maternal obesity and to elucidate the mechanism involved.
Collapse
Affiliation(s)
- Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3010, Australia
- Mercy Perinatal Research Centre, Melbourne 3084, Australia
| | - Anthony V. Perkins
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Adelaide 9726, Australia
- Correspondence:
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3010, Australia
- Mercy Perinatal Research Centre, Melbourne 3084, Australia
| |
Collapse
|
10
|
Marana MH, Poulsen R, Thormar EA, Clausen CG, Thit A, Mathiessen H, Jaafar R, Korbut R, Hansen AMB, Hansen M, Limborg MT, Syberg K, von Gersdorff Jørgensen L. Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish: A full generation multi-omics study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127705. [PMID: 34802818 DOI: 10.1016/j.jhazmat.2021.127705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution has become a major concern on a global scale. The plastic is broken down into minuscule particles, which have an impact on the biosystems, however long-term impacts through an entire generation is largely unknown. Here, we present the first whole generation study exposing fish to a 500 nm polystyrene plastic particle at environmentally relevant concentrations. Short- and long-term adverse effects were investigated in the zebrafish model organism using a holistic multi-omics approach. The particles accumulated in the yolk sac of young larvae and short-term biological impacts included immune-relevant gene regulation related to inflammation and tolerance as well as disruption of metabolic processes, such as the fatty acid and lipid pathways. The long-term effects comprised gene regulations pointing towards skin and/or gill inflammation, dysbiosis of the gut microbiota, a tendency towards decreased condition factor in adult males as well as a lowered reproductive capability. From this study, it can be concluded that exposures to plastic nanoparticles have an impact on population as well as ecosystem level in fish and likely also in other vertebrates.
Collapse
Affiliation(s)
- Moonika Haahr Marana
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rikke Poulsen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Eiríkur Andri Thormar
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Cecilie Grønlund Clausen
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Heidi Mathiessen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rzgar Jaafar
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rozalia Korbut
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Anna Magdalene Brun Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark.
| |
Collapse
|
11
|
Goudreau AD, Everest C, Nagpal TS, Puranda JL, Bhattacharjee J, Vasanthan T, Adamo KB. Elucidating the interaction between maternal physical activity and circulating myokines throughout gestation: A scoping review. Am J Reprod Immunol 2021; 86:e13488. [PMID: 34331363 DOI: 10.1111/aji.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Physical activity (PA) during pregnancy provides both maternal and fetal health benefits. It has been theorized that myokines, peptides secreted by contracting skeletal muscle, may play an important mechanistic role in facilitating the health benefits obtained from prenatal exercise. The objective of this review was to synthesize the current literature on the relationship between maternal PA and myokine response. A search strategy was developed using the terms pregnancy, PA, IL-6, IL-10, IL-13, and TNF-α. A systematic search was completed in July 2020, in Medline, SPORTDiscus, EMBASE, CENTRAL, and in November 2020 for unpublished dissertations (grey literature; Proquest). Both human- and animal-based studies of any design were included, while commentaries and editorial articles were excluded. Data were extracted by two independent reviewers and summarized narratively. Data were thematically summarized based on the myokine and whether findings were from human or animal studies. Ten studies were included in this review. Findings from studies that examined IL-6, IL-10, and TNF-α suggest a trimester-specific interaction between PA and myokine levels; no studies evaluated IL-13. Future research should investigate the PA-myokine relationship throughout all stages of gestation.
Collapse
Affiliation(s)
| | - Catherine Everest
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Taniya S Nagpal
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.,Society of Obstetricians and Gynaecologists of Canada, Ottawa, ON, Canada
| | - Jessica L Puranda
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jayonta Bhattacharjee
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Kristi B Adamo
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Murthi P, Rajaraman G. Inflammasomes in the Pathophysiology of Maternal Obesity: Potential Therapeutic Targets to Reduce Long-Term Adverse Health Outcomes in the Mother and Offspring. Curr Vasc Pharmacol 2021; 19:165-175. [PMID: 32493196 DOI: 10.2174/1570161118666200603131536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Over the past 20 years, the prevalence of obesity has risen dramatically worldwide, with an increase in occurrence among women in their reproductive age. Obesity during pregnancy is associated with significantly increased maternal and fetal morbidity and mortality. In addition to the short-term adverse health outcomes, both mother and the child are prone to develop cardiovascular, metabolic and neurological disorders. Although associations between obesity during pregnancy and adverse maternalfetal health outcomes are clear, the complex molecular mechanisms underlying maternal obesity remain largely unknown. This review describes multimeric self-assembling protein complexes, namely inflammasomes, as potential molecular targets in the pathophysiology of maternal obesity. Inflammasomes are implicated in both normal physiological and in pathophysiological processes that occur in response to an inflammatory milieu throughout gestation. This review highlights the current knowledge of inflammasome expression and its activity in pregnancies affected by maternal obesity. Key discussions in defining pharmacological inhibition of upstream as well as downstream targets of the inflammasome signaling cascade; and the inflammasome platform, as a potential therapeutic strategy in attenuating the pathophysiology underpinning inflammatory component in maternal obesity are presented herein.
Collapse
Affiliation(s)
- Padma Murthi
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Victoria, Australia
| | | |
Collapse
|
13
|
Simino LAP, Panzarin C, Fontana MF, de Fante T, Geraldo MV, Ignácio-Souza LM, Milanski M, Torsoni MA, Ross MG, Desai M, Torsoni AS. MicroRNA Let-7 targets AMPK and impairs hepatic lipid metabolism in offspring of maternal obese pregnancies. Sci Rep 2021; 11:8980. [PMID: 33903707 PMCID: PMC8076304 DOI: 10.1038/s41598-021-88518-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nutritional status during gestation may lead to a phenomenon known as metabolic programming, which can be triggered by epigenetic mechanisms. The Let-7 family of microRNAs were one of the first to be discovered, and are closely related to metabolic processes. Bioinformatic analysis revealed that Prkaa2, the gene that encodes AMPK α2, is a predicted target of Let-7. Here we aimed to investigate whether Let-7 has a role in AMPKα2 levels in the NAFLD development in the offspring programmed by maternal obesity. Let-7 levels were upregulated in the liver of newborn mice from obese dams, while the levels of Prkaa2 were downregulated. Let-7 levels strongly correlated with serum glucose, insulin and NEFA, and in vitro treatment of AML12 with glucose and NEFA lead to higher Let-7 expression. Transfection of Let-7a mimic lead to downregulation of AMPKα2 levels, while the transfection with Let-7a inhibitor impaired both NEFA-mediated reduction of Prkaa2 levels and the fat accumulation driven by NEFA. The transfection of Let-7a inhibitor in ex-vivo liver slices from the offspring of obese dams restored phospho-AMPKα2 levels. In summary, Let-7a appears to regulate hepatic AMPKα2 protein levels and lead to the early hepatic metabolic disturbances in the offspring of obese dams.
Collapse
Affiliation(s)
- Laís A P Simino
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil.
| | - Carolina Panzarin
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marina F Fontana
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Murilo V Geraldo
- Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Letícia M Ignácio-Souza
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marcio A Torsoni
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Michael G Ross
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, CA, USA
| | - Mina Desai
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, CA, USA
| | - Adriana S Torsoni
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| |
Collapse
|
14
|
Placental mobilization of free fatty acids contributes to altered materno-fetal transfer in obesity. Int J Obes (Lond) 2021; 45:1114-1123. [PMID: 33637949 PMCID: PMC8081658 DOI: 10.1038/s41366-021-00781-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metabolic changes in obese pregnant women, such as changes of plasma lipids beyond physiological levels, may subsequently affect fetal development in utero. These metabolic derangements may remain in the offspring and continue throughout life. The placenta mediates bidirectional exchange of nutrients between mother and fetus. The impact of prepregnancy obesity on placental transfer of lipids is still unknown. OBJECTIVE We aimed to examine materno-to-fetal free fatty acid (FFA) transfer by a combined experimental and modeling approach. Flux of 13C-labeled FFA was evaluated by ex vivo perfusion of human placentae as a function of prepregnancy obesity. Mathematical modeling complemented ex vivo results by providing FFA kinetic parameters. RESULTS Obesity was strongly associated with elevated materno-to-fetal transfer of applied 13C-FFA. Clearance of polyunsaturated 13C-docosahexaenoic acid (DHA) was most prominently affected. The use of the mathematical model revealed a lower tissue storage capacity for DHA in obese compared with lean placentae. CONCLUSION Besides direct materno-to-fetal FFA transfer, placental mobilization accounts for the fetal FA supply. Together, with metabolic changes in the mother and an elevated materno-fetal FFA transfer shown in obesity, these changes suggest that they may be transmitted to the fetus, with yet unknown consequences.
Collapse
|
15
|
Hu M, Li J, Baker PN, Tong C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J 2021; 289:336-354. [PMID: 33529475 DOI: 10.1111/febs.15745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal mortality and morbidity worldwide, impacting the long-term health of both mother and offspring. PE has long been characterized by deficient trophoblast invasion into the uterus and consequent placental hypoperfusion, yet the upstream causative factors and effective interventional targets for PE remain unknown. Alterations in the metabolism of preeclamptic placentas are thought to result from placental ischemia, while disturbances of the metabolism and of metabolites in PE pathogenesis are largely ignored. In fact, as one of the largest fetal organs at birth, the placenta consumes a considerable amount of glucose and fatty acid. Increasing evidence suggests glucose and fatty acid exist as energy substrates and regulate placental development through bioactive derivates. Moreover, recent findings have revealed that the placental metabolism adapts readily to environmental changes, altering its response to nutrients and endocrine signals; this adaptability optimizes pregnancy outcomes by diversifying available carbon sources for energy production, hormone synthesis, angiogenesis, immune activation, and tolerance, and fetoplacental growth. These observations raise the possibility that carbohydrate and lipid metabolism abnormalities play a role in both the etiology and clinical progression of PE, sparking a renewed interest in the interrelationship between PE and metabolic dysregulation. This review will focus on key metabolic substrates and regulatory molecules in the placenta and aim to provide novel insights with respect to the metabolism's role in modulating placental development and functions. Further investigations from this perspective are poised to decipher the etiology of PE and suggest potential therapies.
Collapse
Affiliation(s)
- Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
16
|
Álvarez D, Muñoz Y, Ortiz M, Maliqueo M, Chouinard-Watkins R, Valenzuela R. Impact of Maternal Obesity on the Metabolism and Bioavailability of Polyunsaturated Fatty Acids during Pregnancy and Breastfeeding. Nutrients 2020; 13:nu13010019. [PMID: 33374585 PMCID: PMC7822469 DOI: 10.3390/nu13010019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Prenatal and postnatal development are closely related to healthy maternal conditions that allow for the provision of all nutritional requirements to the offspring. In this regard, an appropriate supply of fatty acids (FA), mainly n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA), is crucial to ensure a normal development, because they are an integral part of cell membranes and participate in the synthesis of bioactive molecules that regulate multiple signaling pathways. On the other hand, maternal obesity and excessive gestational weight gain affect FA supply to the fetus and neonate, altering placental nutrient transfer, as well as the production and composition of breast milk during lactation. In this regard, maternal obesity modifies FA profile, resulting in low n-3 and elevated n-6 PUFA levels in maternal and fetal circulation during pregnancy, as well as in breast milk during lactation. These modifications are associated with a pro-inflammatory state and oxidative stress with short and long-term consequences in different organs of the fetus and neonate, including in the liver, brain, skeletal muscle, and adipose tissue. Altogether, these changes confer to the offspring a higher risk of developing obesity and its complications, as well as neuropsychiatric disorders, asthma, and cancer. Considering the consequences of an abnormal FA supply to offspring induced by maternal obesity, we aimed to review the effects of obesity on the metabolism and bioavailability of FA during pregnancy and breastfeeding, with an emphasis on LCPUFA homeostasis.
Collapse
Affiliation(s)
- Daniela Álvarez
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Yasna Muñoz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Macarena Ortiz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: or ; Tel.: +56-2-9786746
| |
Collapse
|
17
|
Fetal Growth Trajectories and Their Association with Maternal, Cord Blood, and 5-year Child Adipokines. J Nutr Metab 2020; 2020:4861523. [PMID: 33029393 PMCID: PMC7530496 DOI: 10.1155/2020/4861523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/22/2020] [Accepted: 08/23/2020] [Indexed: 11/18/2022] Open
Abstract
Background The growth of the fetus is a complex process influenced by multiple factors. Studies have highlighted the important role of biochemical growth markers such as leptin and adiponectin on fetal growth. Objective To compare fetal growth trajectories with biochemical growth markers from maternal blood samples at 28 weeks' gestation, cord blood samples at birth, and in child blood samples at 5 years of age from mother-infant pairs who were part of the longitudinal ROLO study. Methods 781 mother-infant pairs from the ROLO and ROLO Kids study were included. Ultrasound measurements and birth weight were used to develop fetal growth trajectory groups for estimated abdominal circumference and estimated weight. Blood serum levels of leptin, adiponectin, insulin, TNF-alpha, and IL-6 from maternal, cord, and 5-year child samples were recorded. ANOVA and chi-square tests were applied to test the associations between fetal growth trajectory membership and maternal and child biochemical growth indicators. The influence of child sex was also investigated. Results Male sex was associated with a faster weight trajectory compared to females (p=0.001). At 28 weeks' gestation, maternal leptin levels were significantly higher in mothers with a fetus on a slower estimated abdominal circumference trajectory compared to fast (25616 [IQR: 11656.0 to 35341.0] vs. 14753.8 [IQR: 8565.4 to 24308.1], p < 0.001) and maternal adiponectin levels were lower in fetuses on a slower estimated abdominal circumference trajectory compared to a fast trajectory (22.4 [IQR: 13.6 to 35.9] vs. 27.6 [IQR: 17.6 to 46.3], p=0.027). No associations were noted with inflammatory markers. No associations were identified between fetal growth trajectories and growth markers at 5 years of age. Conclusions This study shows that male sex is associated with an accelerated estimated weight trajectory. Furthermore, high leptin and low adiponectin in maternal serum in late gestation are associated with a slower fetal growth trajectory. No associations were identified with blood growth markers after pregnancy.
Collapse
|
18
|
Hellström A, Hellström W, Hellgren G, E. H. Smith L, Puttonen H, Fyhr IM, Sävman K, Nilsson AK, Klevebro S. Docosahexaenoic Acid and Arachidonic Acid Levels Are Associated with Early Systemic Inflammation in Extremely Preterm Infants. Nutrients 2020; 12:nu12071996. [PMID: 32635612 PMCID: PMC7400618 DOI: 10.3390/nu12071996] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Fetal and early postnatal inflammation have been associated with increased morbidity in extremely preterm infants. This study aimed to demonstrate if postpartum levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) were associated with early inflammation. In a cohort of 90 extremely preterm infants, DHA and AA in cord blood, on the first postnatal day and on postnatal day 7 were examined in relation to early systemic inflammation, defined as elevated C-reactive protein (CRP) and/or interleukin-6 (IL-6) within 72 h from birth, with or without positive blood culture. Median serum level of DHA was 0.5 mol% (95% CI (confidence interval) 0.2–0.9, P = 0.006) lower than the first postnatal day in infants with early systemic inflammation, compared to infants without signs of inflammation, whereas levels of AA were not statistically different between infants with and without signs of inflammation. In cord blood, lower serum levels of both DHA (correlation coefficient −0.40; P = 0.010) and AA (correlation coefficient −0.54; p < 0.001) correlated with higher levels of IL-6. Levels of DHA or AA did not differ between infants with and without histological signs of chorioamnionitis or fetal inflammation. In conclusion, serum levels of DHA at birth were associated with the inflammatory response during the early postnatal period in extremely preterm infants.
Collapse
Affiliation(s)
- Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (A.H.); (G.H.); (A.K.N.)
| | - William Hellström
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41686 Gothenburg, Sweden; (W.H.); (H.P.); (K.S.)
| | - Gunnel Hellgren
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (A.H.); (G.H.); (A.K.N.)
- Institute of Bioscience, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Henri Puttonen
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41686 Gothenburg, Sweden; (W.H.); (H.P.); (K.S.)
- Department of Pathology, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden;
| | - Ing-Marie Fyhr
- Department of Pathology, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden;
| | - Karin Sävman
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41686 Gothenburg, Sweden; (W.H.); (H.P.); (K.S.)
- Department of Neonatology, Region Västra Götaland, the Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Anders K. Nilsson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (A.H.); (G.H.); (A.K.N.)
| | - Susanna Klevebro
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (A.H.); (G.H.); (A.K.N.)
- Department of Clinical Science and Education, Stockholm South General Hospital, Karolinska Institutet, 11883 Solna, Sweden
- Correspondence:
| |
Collapse
|
19
|
Role of adipose tissue in regulating fetal growth in gestational diabetes mellitus. Placenta 2020; 102:39-48. [PMID: 33218577 DOI: 10.1016/j.placenta.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a global health issue with significant short and long-term complications for both mother and baby. There is a strong need to identify an effective therapeutic that can prevent the development of GDM. A better understanding of the pathophysiology of GDM and the relationship between the adipose tissue, the placenta and fetal growth is required. The placenta regulates fetal growth by modulating nutrient transfer of glucose, amino acids and fatty acids. Various factors secreted by the adipose tissue, such as adipokines, adipocytokines and more recently identified extracellular vesicles, can influence inflammation and interact with placental nutrient transport. In this review, the role of the placental nutrient transporters and the adipose-derived factors that can influence their function will be discussed. A better understanding of these factors and their relationship may make a potential target for therapeutic interventions to prevent the development of GDM and its consequences.
Collapse
|
20
|
Abstract
Worldwide obesity is increasing at an alarming rate in children and adolescents, with the consequent emergence of co-morbidities. Moreover, the maternal environment during pregnancy plays an important role in obesity, contributing to transgenerational transmission of the same and metabolic dysfunction. White adipose tissue represents a prime target of metabolic programming induced by maternal milieu. In this article, we review adipose tissue physiology and development, as well as maternal influences during the perinatal period that may lead to obesity in early postnatal life and adulthood. First, we describe the adipose tissue cell composition, distribution and hormonal action, together with the evidence of hormonal factors participating in fetal/postnatal programming. Subsequently, we describe the critical periods of adipose tissue development and the relationship of gestational and early postnatal life with healthy fetal adipose tissue expansion. Furthermore, we discuss the evidence showing that adipose tissue is an important target for nutritional, hormonal and epigenetic signals to modulate fetal growth. Finally, we describe nutritional, hormonal, epigenetic and microbiome changes observed in maternal obesity, and whether their disruption alters fetal growth and adiposity. The presented evidence supports the developmental origins of health and disease concept, which proposes that the homeostatic system is affected during gestational and postnatal development, impeding the ability to regulate body weight after birth, thereby resulting in adult obesity. Consequently, we anticipate that promoting a healthy early-life programming of adipose tissue and increasing the knowledge of the mechanisms by which maternal factors affect the health of future generations may offer novel strategies for explaining and addressing worldwide health problems such as obesity.
Collapse
|
21
|
Impaired Mitochondrial Function Results from Oxidative Stress in the Full-Term Placenta of Sows with Excessive Back-Fat. Animals (Basel) 2020; 10:ani10020360. [PMID: 32102192 PMCID: PMC7070850 DOI: 10.3390/ani10020360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine the effect of excessive back-fat (BF) of sows on placental oxidative stress, ATP generation, mitochondrial alterations in content and structure, and mitochondrial function in isolated trophoblasts. Placental tissue was collected by vaginal delivery from BFI (15-20 mm, n = 10) and BFII (21-27 mm, n = 10) sows formed according to BF at mating. Our results demonstrated that excessive back-fat contributed to augmented oxidative stress in term placenta, as evidenced by excessive production of ROS, elevated protein carbonylation, and reduced SOD, GSH-PX, and CAT activities (p < 0.05). Indicative of mitochondrial dysfunction, reduced mitochondrial respiration in cultured trophoblasts was linked to decreased ATP generation, lower mitochondrial Complex I activity and reduced expression of electron transport chain subunits in placenta of BFII sows (p < 0.05). Meanwhile, we observed negative alterations in mitochondrial biogenesis and structure in the placenta from BFII group (p < 0.05). Finally, our in vitro studies showed lipid-induced ROS production resulted in mitochondrial alterations in trophoblasts, and these effects were blocked by antioxidant treatment. Together, these data reveal that excessive back-fat aggravates mitochondrial injury induced by increased oxidative stress in pig term placenta, which may have detrimental consequences on placental function and therefore impaired fetal growth and development.
Collapse
|
22
|
Johns EC, Denison FC, Reynolds RM. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165374. [PMID: 30684643 DOI: 10.1016/j.bbadis.2018.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Maternal obesity is the most common metabolic disturbance in pregnancy affecting >1 in 5 women in some countries. Babies born to obese women are heavier with more adiposity at birth, and are vulnerable to obesity and metabolic disease across the lifespan suggesting offspring health is 'programmed' by fetal exposure to an obese intra-uterine environment. The placenta plays a major role in dictating the impact of maternal health on prenatal development. Maternal obesity impacts the function of integral placental receptors and transporters for glucocorticoids and nutrients, key drivers of fetal growth, though mechanisms remain poorly understood. This review aims to summarise current knowledge in this area, and considers the impact of obesity on the epigenetic machinery of the placenta at this vital juncture in offspring development. Further research is required to advance understanding of these areas in the hope that the trans-generational cycle of obesity can be alleviated.
Collapse
Affiliation(s)
- Emma C Johns
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Fiona C Denison
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Rebecca M Reynolds
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| |
Collapse
|
23
|
In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:553-576. [PMID: 32504388 DOI: 10.1007/5584_2020_536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes in pregnancy is associated with an increased risk of poor outcomes, both for the mother and her offspring. Although clinical and epidemiological studies are invaluable to assess these outcomes and the effectiveness of potential treatments, there are certain ethical and practical limitations to what can be assessed in human studies.Thus, both in vivo and in vitro models can aid us in the understanding of the mechanisms behind these complications and, in the long run, towards their prevention and treatment. This review summarizes the existing animal and cell models used to mimic diabetes, with a specific focus on the intrauterine environment. Summary of this review.
Collapse
|
24
|
Fusarium Mycotoxins Disrupt the Barrier and Induce IL-6 Release in a Human Placental Epithelium Cell Line. Toxins (Basel) 2019; 11:toxins11110665. [PMID: 31739567 PMCID: PMC6891427 DOI: 10.3390/toxins11110665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
Deoxynivalenol, T-2 toxin, and zearalenone, major Fusarium mycotoxins, contaminate human food on a global level. Exposure to these mycotoxins during pregnancy can lead to abnormalities in neonatal development. Therefore, the aim of this study was to investigate the effects of Fusarium mycotoxins on human placental epithelial cells. As an in vitro model of placental barrier, BeWo cells were exposed to different concentrations of deoxynivalenol, zearalenone or T-2 toxin. Cytotoxicity, effects on barrier integrity, paracellular permeability along with mRNA and protein expression and localization of junctional proteins after exposure were evaluated. Induction of proinflammatory responses was determined by measuring cytokine production. Increasing mycotoxin concentrations affect BeWo cell viability, and T-2 toxin was more toxic compared to other mycotoxins. Deoxynivalenol and T-2 toxin caused significant barrier disruption, altered protein and mRNA expression of junctional proteins, and induced irregular cellular distribution. Although the effects of zearalenone on barrier integrity were less prominent, all tested mycotoxins were able to induce inflammation as measured by IL-6 release. Overall, Fusarium mycotoxins disrupt the barrier of BeWo cells by altering the expression and structure of junctional proteins and trigger proinflammatory responses. These changes in placental barrier may disturb the maternal–fetal interaction and adversely affect fetal development.
Collapse
|
25
|
Wang A, Han TL, Chen Z, Zhou X, Yu X, Qi H, Baker PN, Zhang H. Metabolic analysis of adipose tissues in a rodent model of pre-pregnancy maternal obesity combined with offsprings on high-carbohydrate diet. Exp Cell Res 2019; 381:29-38. [PMID: 31071317 DOI: 10.1016/j.yexcr.2019.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/15/2023]
Abstract
Maternal obesity is associated with adverse effects on the health of offsprings. Consumption of a high-carbohydrate (HC) diet has been found to promote abnormal fatty acid metabolism in adipose tissue. Therefore, we hypothesised that maternal obesity combined with an offspring HC diet would alter the fatty acid metabolism of adipose tissue and subsequently contribute to offspring obesity. Leprdb/+ mice were used to model pre-pregnancy maternal obesity and the C57BL/6 wildtype were used as a control group. Offspring were fed either HC diet or a normal-carbohydrate (NC) diet after weaning. Brown adipose tissue (BAT) and white adipose tissue (WAT) were collected from offspring at 20 weeks of age and their fatty acid metabolome was characterized using gas chromatography-mass spectrometry. We found that HC diet increased the body weight of offspring (males increased by 14.70% and females increased by 1.05%) compared to control mothers. However, maternal obesity alone caused a 7.9% body weight increase in female offspring. Maternal obesity combined with an offspring HC diet resulted in dynamic alterations of the fatty acid profiles of adipose tissue in male offspring. Under the impact of a HC diet, the fatty acid metabolome was solely elevated in female WAT, whereas, the fatty acid metabolites in BAT showed a similar trend in the male and female offsprings. 6,9-octadecadienoic acid and 12,15-cis-octadecatrienoic acid were significantly affected in female WAT, in response to offspring consumption of a HC diet. Our study demonstrated that maternal obesity and offspring HC diet have different metabolic effects on adipose tissue in male and female offsprings.
Collapse
Affiliation(s)
- Andi Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China; Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Zhu Chen
- Department of Obstetrics and Gynecology, Xin Qiao Hospital, The Second Medical College of Army Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinyang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Philip N Baker
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China; Liggins Institute, University of Auckland, Auckland, New Zealand; College of Medicine, Biological Sciences and Psychology, University of Leicester, UK
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
26
|
Ferchaud-Roucher V, Barner K, Jansson T, Powell TL. Maternal obesity results in decreased syncytiotrophoblast synthesis of palmitoleic acid, a fatty acid with anti-inflammatory and insulin-sensitizing properties. FASEB J 2019; 33:6643-6654. [PMID: 30811959 PMCID: PMC6463919 DOI: 10.1096/fj.201802444r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022]
Abstract
The fetus is dependent on delivery of fatty acids (FAs) by the syncytiotrophoblast, the transporting epithelium of the human placenta. Obese pregnant women have dyslipidemia; however, whether obesity impacts placental lipid transport and metabolism remains to be fully established. Palmitoleic acid (POA), an FA with anti-inflammatory and insulin-sensitizing properties, is synthesized from palmitic acid (PA) catalyzed by stearoyl-coenzyme A desaturase (SCD) activity. We hypothesized that the uptake and incorporation of FAs and POA synthesis are reduced in primary human trophoblasts (PHTs) isolated from pregnancies complicated by maternal obesity. Villous cytotrophoblasts were isolated from 7 placentas of obese [body mass index (BMI) = 37.5 ± 1.9] and 12 normal (BMI = 23.6 ± 0.6) mothers. FA uptake and incorporation were assessed using uniformly labeled (U[13C])-FA mixtures of PA, oleic acid (OA), linoleic acid, and docosahexaenoic acid. Cellular [13C] FAs were quantified both in total cellular lipids and in lipid classes by GC-MS. Uptake and incorporation of [13C] FAs in total cellular lipids were not different in PHTs isolated from obese mothers compared with normal mothers. Only the concentration of OA was increased in the triglyceride fraction (P < 0.05) if the mother was obese. We found an isotopic enrichment of POA after U[13C]-PA treatment, demonstrating SCD activity in PHT cells. Labeled POA content and the POA:PA ratio were significantly lower in PHTs isolated from placentas of obese mothers compared with normal, healthy controls. Decreased syncytiotrophoblast POA synthesis may contribute to insulin resistance and low-grade inflammation in the mother, placenta, or fetus (or a combination of the 3) in pregnancies complicated by obesity.-Ferchaud-Roucher, V., Barner, K., Jansson, T., Powell, T. L. Maternal obesity results in decreased syncytiotrophoblast synthesis of palmitoleic acid, a fatty acid with anti-inflammatory and insulin-sensitizing properties.
Collapse
Affiliation(s)
- Véronique Ferchaud-Roucher
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelsey Barner
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
27
|
Tian L, Wen A, Dong S, Yan P. Molecular Characterization of Microtubule Affinity-Regulating Kinase4 from Sus scrofa and Promotion of Lipogenesis in Primary Porcine Placental Trophoblasts. Int J Mol Sci 2019; 20:ijms20051206. [PMID: 30857324 PMCID: PMC6429113 DOI: 10.3390/ijms20051206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022] Open
Abstract
This study aimed to characterize the full-length cDNA of MARK4 in Sus scrofa, and evaluated its potential role in the regulation of lipid accumulation in pig placental trophoblasts and analyzed signaling pathways involved, thereby providing insights into mechanisms for placental lipotoxicity induced by excessive back-fat during pregnancy of sows. The cDNA obtained with 5′ and 3′ RACE amplification covered 3216 bp with an open reading frame of 2259 bp encoding 752 amino acids. Multiple alignments and phylogenetic analysis revealed MARK4 protein of Sus scrofa had a high homology (95%–99%) to that of other higher vertebrates. After transfection, enhanced MARK4 significantly promoted lipogenesis in pig trophoblasts, as evidenced by accelerated lipid accumulation and consistently increased mRNA expressions of lipogenic genes DGAT1, LPIN1, LPIN3, LPL, PPARδ and SREBP-1c. Meanwhile, PPARγ remarkably inhibited the stimulating effect of MARK4 on non-receptor-mediated lipid accumulation in trophoblasts. Further analyses revealed WNT signaling enhanced lipid accumulation and activation of MARK4 in pig trophoblast cells. Finally, we demonstrated that WNT/β-catenin signal pathway is involved in MARK4 activated lipogenesis. These results suggest that MARK4 promotes lipid accumulation in porcine placental trophoblasts and can be considered as a potential regulator of lipotoxicity associated with maternal obesity in the pig placenta.
Collapse
Affiliation(s)
- Liang Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Shusheng Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Ferchaud-Roucher V, Kramer A, Silva E, Pantham P, Weintraub ST, Jansson T, Powell TL. A potential role for lysophosphatidylcholine in the delivery of long chain polyunsaturated fatty acids to the fetal circulation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:394-402. [PMID: 30572119 DOI: 10.1016/j.bbalip.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Véronique Ferchaud-Roucher
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Anita Kramer
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena Silva
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Priyadarshini Pantham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
29
|
Hashemipour S, Haji Seidjavadi E, Maleki F, Esmailzadehha N, Movahed F, Yazdi Z. Level of maternal triglycerides is a predictor of fetal macrosomia in non-obese pregnant women with gestational diabetes mellitus. Pediatr Neonatol 2018; 59:567-572. [PMID: 29398554 DOI: 10.1016/j.pedneo.2018.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/20/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The role of maternal serum triglycerides (TGs) in the development of fetal macrosomia in different subgroups of body mass index (BMI) has received little attention. The aim of this study was to determine the association between the level of maternal TGs and fetal macrosomia in Iranian pregnant women of different BMI subgroups with gestational diabetes mellitus (GDM). METHODS This cohort study was conducted on 305 pregnant women with GDM referred for glucose control to Kowsar Hospital in Qazvin, Iran. Level of TGs was measured on the 24th-28th weeks of pregnancy. The ROC curve of the level of TGs was depicted in BMI subgroups to predict fetal macrosomia. Logistic regression analysis was used to determine the risk of macrosomia per 1-SD increase in the level of TGs. RESULTS The prevalence of hypertriglyceridemia did not significantly differ across BMI subgroups. Macrosomia was more prevalent in obese women (32.2%) than overweight (19.1%) and normal weight (11.1%) women (P < 0.05). A 1-SD increase in the level of TG was associated with 4.2 and 1.9 times increased risk of macrosomia in normal weight (P < 0.01) and overweight (P < 0.01) women, respectively. Serum level of TGs was not associated with macrosomia in any adjustment models in obese women. The area under the curve of the level of TGs for macrosomia was 0.828 (95% CI: 0.712-0.911, P < 0.001) and 0.711 (95% CI: 0.639-0.775, P < 0.001) in normal weight and overweight women, respectively. CONCLUSION Hypertriglyceridemia was a predictor of macrosomia in non-obese women. More studies on different ethnicities and lifestyles are necessary to determine the association between the level of maternal TG and fetal macrosomia in BMI subgroups.
Collapse
Affiliation(s)
- Sima Hashemipour
- Metabolic Diseases Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Firoozeh Maleki
- Metabolic Diseases Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Farideh Movahed
- Metabolic Diseases Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zohreh Yazdi
- Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
30
|
Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: Relevance to autism. J Steroid Biochem Mol Biol 2018; 180:73-80. [PMID: 29408533 DOI: 10.1016/j.jsbmb.2018.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Emerging evidence suggests that maternal or developmental vitamin D (DVD) deficiency is a risk factor for Autism Spectrum Disorders. A well-established association has also been found between gestational infection and increased incidence of autism. Placenta mediates the maternal immune response in respect to the foetus. The placenta is also a major source of vitamin D and locally produced vitamin D is an essential regulator of immune function during pregnancy. Here we investigate the effects of DVD-deficiency on baseline placental immune status and in response to the well-known viral and bacterial immune activating agents polyriboinosinic-polyribocytidylic acid (poly(I:C) and lipopolysaccharide (LPS). We show DVD-deficiency does not affect baseline inflammatory cytokines in placenta. However, when challenged with poly(I:C) but not LPS, DVD-deficient placentas from male foetuses had higher production of IL-6 and 1L-1β compared to control placentas. This suggests the developing DVD-deficient male foetus may be particularly vulnerable to maternal viral exposures. This in turn may have adverse implications for the developing male brain. In conclusion, a dysregulated placental immune response may provide a plausible mechanism for both the epidemiological links between DVD-deficiency and increased male incidence of developmental conditions such as autism.
Collapse
Affiliation(s)
- Asad Ali
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Suzanne Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Brisbane, QLD, 4076, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Brisbane, QLD, 4076, Australia.
| |
Collapse
|
31
|
Zhu C, Han TL, Zhao Y, Zhou X, Mao X, Qi H, Baker PN, Zhang H. A mouse model of pre-pregnancy maternal obesity combined with offspring exposure to a high-fat diet resulted in cognitive impairment in male offspring. Exp Cell Res 2018; 368:159-166. [PMID: 29698637 DOI: 10.1016/j.yexcr.2018.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cognitive impairment is a brain dysfunction characterized by neuropsychological deficits in attention, working memory, and executive function. Maternal obesity and consumption of a high-fat diet (HFD) in the offspring has been suggested to have detrimental consequences for offspring cognitive function through its effect on the hippocampus and prefrontal cortex. Therefore, our study aimed to investigate the effects of maternal obesity and offspring HFD exposure on the brain metabolome of the offspring. METHODS In our pilot study, a LepRdb/+ mouse model was used to model pre-pregnancy maternal obesity and the c57bl/6 wildtype was used as a control group. Offspring were fed either a HFD or a low-fat control diet (LFD) after weaning (between 8 and 10 weeks). The Mirrors water maze was performed between 28 and 30 weeks to measure cognitive function. Fatty acid metabolomic profiles of the prefrontal cortex and hippocampus from the offspring at 30-32 weeks were analyzed using gas chromatography-mass spectrometry. RESULTS The memory of male offspring from obese maternal mice, consuming a HFD post-weaning, was significantly impaired when compared to the control offspring mice. No significant differences were observed in female offspring. In male mice, the fatty acid metabolites in the prefrontal cortex were most affected by maternal obesity, whereas, the fatty acid metabolites in the hippocampus were most affected by the offspring's diet. Hexadecanoic acid and octadecanoic acid were significantly affected in both the hippocampus and pre-frontal cortex, as a result of maternal obesity and a HFD in the offspring. CONCLUSION Our findings suggest that the combination of maternal obesity and HFD in the offspring can result in spatial cognitive deficiency in the male offspring, by influencing the fatty acid metabolite profiles in the prefrontal cortex and hippocampus. Further research is needed to validate the results of our pilot study.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Obstetrics and Gynecology, Xin Qiao Hospital, The Second Medical College of Army Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yalan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xun Mao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Philip N Baker
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Liggins Institute, University of Auckland, Auckland, New Zealand; College of Medicine, Biological Sciences and Psychology, University of Leicester, UK
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
32
|
Li G, Lin L, Wang YL, Yang H. 1,25(OH)2D3 Protects Trophoblasts Against Insulin Resistance and Inflammation Via Suppressing mTOR Signaling. Reprod Sci 2018; 26:223-232. [PMID: 29575997 DOI: 10.1177/1933719118766253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is the primary cause of maternal and fetal morbidity and mortality. Insulin resistance (IR) is pivotal to GDM pathogenesis, and mammalian target of rapamycin (mTOR) is a critical regulator of GDM. An increasing amount of evidence indicates that vitamin D deficiency is a risk factor for GDM. However, there are few reports on the effect of IR on GDM placentas. The present study aims to verify that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) can ameliorate trophoblast IR by suppressing mTOR signaling. An IR BeWo cell model was established in the presence of high insulin and glucose medium. The IR level and mTOR activation with or without 1,25(OH)2D3 treatment were evaluated. The IR cells exhibited excessive mTOR signaling activation, upregulated inflammatory factor levels, and extensive lipid infiltration. However, 1,25(OH)2D3 reversed mTOR activation and reduced the IR level and lipid infiltration. In addition, 1,25(OH)2D3 treatment in GDM placental explants blocked the aberrant, increased levels of leptin, TNF-α, and IL-6. Therefore, 1,25(OH)2D3 treatment protects trophoblasts against high IR mainly through suppressing mTOR signaling, and this mechanism may serve as a potential therapy for patients with GDM.
Collapse
Affiliation(s)
- Guanlin Li
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, People's Republic of China
| | - Li Lin
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, People's Republic of China
| | - Yan-Ling Wang
- 2 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huixia Yang
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
33
|
Huang X, Anderle P, Hostettler L, Baumann MU, Surbek DV, Ontsouka EC, Albrecht C. Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia. BMC Genomics 2018; 19:173. [PMID: 29499643 PMCID: PMC5833046 DOI: 10.1186/s12864-018-4518-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background Gestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE. Results In silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well-characterized IUGR/PE patients (IUGR, n = 8; PE, n = 5; PE+IUGR, n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases. Identified by both methods, three overlapping targets, SLC7A7, SLC38A5 (amino acid transporters), and ABCA1 (cholesterol transporter), were further investigated at the protein level by western blotting. Protein analyses in total placental tissue lysates and membrane fractions isolated from disease and control placentas indicated an altered functional activity of those three nutrient transporters in IUGR/PE. Conclusions Combining bioinformatic analysis, molecular biological experiments and mathematical diagramming, this study has demonstrated systematic alterations of nutrient transporter expressions in IUGR/PE. Among 46 initially targeted transporters, three significantly regulated genes were further investigated based on the severity and the disease specificity for IUGR and PE. Confirmed by mRNA and protein expression, the amino acid transporters SLC7A7 and SLC38A5 showed marked differences between controls and IUGR/PE and were regulated by both diseases. In contrast, ABCA1 may play an exclusive role in the development of PE. Electronic supplementary material The online version of this article (10.1186/s12864-018-4518-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Huang
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Pascale Anderle
- Swiss Institute of Bioinformatics and HSeT Foundation, Lausanne, Switzerland.,Sitem-insel AG, Bern, Switzerland
| | - Lu Hostettler
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Marc U Baumann
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Department of Obstetrics and Gynaecology, University Hospital, University of Bern, Bern, Switzerland
| | - Daniel V Surbek
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Department of Obstetrics and Gynaecology, University Hospital, University of Bern, Bern, Switzerland
| | - Edgar C Ontsouka
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Christiane Albrecht
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland. .,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Du Y, Zhang G, Liu Z. Human cytomegalovirus infection and coronary heart disease: a systematic review. Virol J 2018; 15:31. [PMID: 29409508 PMCID: PMC5801777 DOI: 10.1186/s12985-018-0937-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) infection is closely associated with coronary heart disease. Main body of the abstract In 1987, Adam et al. were the first to report an association between HCMV infection and atherosclerosis (AS), and later, many serum epidemiology and molecular biology studies showed that HCMV-infected endothelial cells play an important role in the development of AS. As patients with HCMV are generally susceptible to coronary heart disease, and with the increasing elderly population, a review of recent studies focusing on the relationships of HCMV infection and coronary heart disease is timely and necessary. Short conclusion The role of HCMV infection in the development of AS needs further study, since many remaining issues need to be explored and resolved. For example, whether HCMV promotes the development of coronary AS, and what the independent factors that lead to coronary artery AS by viral infection are. A comprehensive understanding of HCMV infection is needed in order to develop better strategies for preventing AS.
Collapse
Affiliation(s)
- Yu Du
- Department of Microbiology, Weifang Medical University, Weifang, 261053, China
| | - Guangxue Zhang
- Department of Clinical Laboratory, Shandong Qingzhou Rongjun Hospital, Qingzhou, 262500, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
35
|
Jamilian M, Samimi M, Afshar Ebrahimi F, Aghadavod E, Mohammadbeigi R, Rahimi M, Asemi Z. Effects of Selenium Supplementation on Gene Expression Levels of Inflammatory Cytokines and Vascular Endothelial Growth Factor in Patients with Gestational Diabetes. Biol Trace Elem Res 2018; 181:199-206. [PMID: 28528475 DOI: 10.1007/s12011-017-1045-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
Selenium is known to exert multiple beneficial effects including anti-inflammatory actions. The aim of the study was to evaluate the effects of selenium supplementation on gene expression levels of inflammatory cytokines and vascular endothelial growth factor (VEGF) in women with gestational diabetes (GDM). This randomized double-blind, placebo-controlled trial was carried out among 40 subjects diagnosed with GDM aged 18-40 years old. Subjects were randomly allocated into two groups to receive either 200 μg/day selenium supplements (n = 20) or placebo (n = 20) for 6 weeks. Gene expression of inflammatory cytokines and VEGF were assessed in lymphocytes of GDM women with RT-PCR method. Results of RT-PCR indicated that after the 6-week intervention, compared with the placebo, selenium supplementation downregulated gene expression of tumor necrosis factor alpha (TNF-α) (P = 0.02) and transforming growth factor beta (TGF-β) (P = 0.01), and upregulated gene expression of VEGF (P = 0.03) in lymphocytes of patients with GDM. There was no statistically significant change following supplementation with selenium on gene expression of interleukin (IL)-1β and IL-8 in lymphocytes of subjects with GDM. Selenium supplementation for 6 weeks in women with GDM significantly decreased gene expression of TNF-α and TGF-β, and significantly increased gene expression of VEGF, but did not affect gene expression of IL-1β and IL-8. Clinical trial registration number http://www.irct.ir : IRCT201612045623N95.
Collapse
Affiliation(s)
- Mehri Jamilian
- Endocrinology and Metabolism Research Center, Department of Gynecology and Obstetrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mansooreh Samimi
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Faraneh Afshar Ebrahimi
- Department of Gynecology and Obstetrics, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran
| | - Robabeh Mohammadbeigi
- Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahimi
- Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
36
|
Lager S, Ramirez VI, Acosta O, Meireles C, Miller E, Gaccioli F, Rosario FJ, Gelfond JAL, Hakala K, Weintraub ST, Krummel DA, Powell TL. Docosahexaenoic Acid Supplementation in Pregnancy Modulates Placental Cellular Signaling and Nutrient Transport Capacity in Obese Women. J Clin Endocrinol Metab 2017; 102:4557-4567. [PMID: 29053802 PMCID: PMC5718695 DOI: 10.1210/jc.2017-01384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023]
Abstract
Context Maternal obesity in pregnancy has profound impacts on maternal metabolism and promotes placental nutrient transport, which may contribute to fetal overgrowth in these pregnancies. The fatty acid docosahexaenoic acid (DHA) has bioactive properties that may improve outcomes in obese pregnant women by modulating placental function. Objective To determine the effects of DHA supplementation in obese pregnant women on maternal metabolism and placental function. Design Pregnant women were supplemented with DHA or placebo. Maternal fasting blood was collected at 26 and 36 weeks' gestation, and placentas were collected at term. Setting Academic health care institution. Subjects Thirty-eight pregnant women with pregravid body mass index ≥30 kg/m2. Intervention DHA (800 mg, algal oil) or placebo (corn/soy oil) daily from 26 weeks to term. Main Outcomes DHA content of maternal erythrocyte and placental membranes, maternal fasting blood glucose, cytokines, metabolic hormones, and circulating lipids were determined. Insulin, mTOR, and inflammatory signaling were assessed in placental homogenates, and nutrient transport capacity was determined in isolated syncytiotrophoblast plasma membranes. Results DHA supplementation increased erythrocyte (P < 0.0001) and placental membrane DHA levels (P < 0.0001) but did not influence maternal inflammatory status, insulin sensitivity, or lipids. DHA supplementation decreased placental inflammation, amino acid transporter expression, and activity (P < 0.01) and increased placental protein expression of fatty acid transporting protein 4 (P < 0.05). Conclusions Maternal DHA supplementation in pregnancy decreases placental inflammation and differentially modulates placental nutrient transport capacity and may mitigate adverse effects of maternal obesity on placental function.
Collapse
Affiliation(s)
- Susanne Lager
- Department of Obstetrics and Gynaecology, University of Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, United Kingdom
| | - Vanessa I Ramirez
- Department of Obstetrics and Gynecology, University of Texas Health Science Center
| | - Ometeotl Acosta
- Department of Obstetrics and Gynecology, University of Texas Health Science Center
| | - Christiane Meireles
- Department of Obstetrics and Gynecology, University of Texas Health Science Center
| | - Evelyn Miller
- Department of Obstetrics and Gynecology, University of Texas Health Science Center
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, United Kingdom
| | - Fredrick J Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus
| | - Jonathan A L Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center
| | - Kevin Hakala
- Department of Biochemistry, University of Texas Health Science Center
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center
| | | | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| |
Collapse
|
37
|
Yang X, Glazebrook P, Ranasinghe GC, Haghiac M, Calabuig-Navarro V, Minium J, O'Tierney-Ginn P. Fatty acid transporter expression and regulation is impaired in placental macrovascular endothelial cells in obese women. J Matern Fetal Neonatal Med 2017; 32:971-978. [PMID: 29065800 DOI: 10.1080/14767058.2017.1397119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Fetal fatty acid (FA) delivery is ultimately controlled by placental transport. Focus has been the maternal-placental interface, but regulation at the feto-placental interface is unknown. METHODS Placental macrovascular endothelial cells (EC) (n = 4/group) and trophoblasts (TB) (n = 5/group) were isolated from lean (pregravid BMI <25 kg/m2) and obese (body mass index (BMI) > 30) women. Fatty acid transporters FAT/CD36, FABPpm, FATP4, FABP 3, 4 and 5, PLIN2 and PPARα, δ, γ expression, was measured in EC and TB. Transporter response to 24 h palmitate (PA) was assessed. RESULTS mRNA expression of FABP3, 4, 5 and PPARγ was 2- to 3-fold reduced in EC of obese versus lean women (p < .03), but not in TB. Protein level of FABPpm was 20% lower in obese (p < .05). Palmitate (PA) up-regulated CD36, FABP3, FABP4, and PLIN2 gene expression by 3- to 4-fold in lean but not obese EC (p < .05), while PA increased FABP4 and PLIN2 in lean and obese TB, and FABP5 in lean (p < .05) EC. PA exposure up-regulated peroxisome proliferator activated receptors (PPARs) 2-fold in lean and obese EC (p < .05), but not in TB. CONCLUSIONS In obese women, FA transporter expression is lower in placental EC, but not TB, and less sensitive to saturated FA, compared to lean women. FA transport may be regulated at the feto-placental interface.
Collapse
Affiliation(s)
- Xiaohua Yang
- a Center for Reproductive Health, Metrohealth Medical Center , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Patricia Glazebrook
- a Center for Reproductive Health, Metrohealth Medical Center , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Geraldine C Ranasinghe
- a Center for Reproductive Health, Metrohealth Medical Center , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Maricela Haghiac
- a Center for Reproductive Health, Metrohealth Medical Center , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Virtu Calabuig-Navarro
- a Center for Reproductive Health, Metrohealth Medical Center , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Judi Minium
- a Center for Reproductive Health, Metrohealth Medical Center , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Perrie O'Tierney-Ginn
- a Center for Reproductive Health, Metrohealth Medical Center , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| |
Collapse
|
38
|
Clinicoplacental correlates of amniocyte vacuolization in association with gastroschisis. Placenta 2017; 57:87-93. [DOI: 10.1016/j.placenta.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/15/2017] [Accepted: 06/04/2017] [Indexed: 12/30/2022]
|
39
|
Tian L, Dong SS, Hu J, Yao JJ, Yan PS. The effect of maternal obesity on fatty acid transporter expression and lipid metabolism in the full-term placenta of lean breed swine. J Anim Physiol Anim Nutr (Berl) 2017; 102:e242-e253. [PMID: 28508539 DOI: 10.1111/jpn.12735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/31/2017] [Indexed: 12/30/2022]
Abstract
This study was conducted to evaluate the influence of back-fat thickness (BF), at mating of sows, on the maternal and newborn circulating lipids, expression of placental fatty acids (FA) transporters and lipid accumulation in placenta. Full-term placentas were obtained by vaginal delivery from BFI (9-14 mm; n = 37), BFII (15-19 mm; n = 43) and BFIII (20-27 mm; n = 38) sows according to BF at mating, and frozen placental sections were analysed for fat accumulation. Blood samples were collected from the sows of day 105 pregnancy and from cord blood at delivery. mRNA and protein expression levels were evaluated with real-time RT-PCR and Western blotting. Our results demonstrated that BFII females had significantly increased litter weight and placental efficiency, decreased maternal triglyceride (TG) and non-esterified fatty acids (NEFA) levels, decreased maternal IL-6, TNFα and leptin levels compared to BFIII females (p < .05). BFIII sows were associated with significantly decreased newborn TG levels, increased newborn glucose, IL-6 and TNFα levels compared to BFI or BFII sows (p < .05). BFI and BFII females had significantly decreased placental TG, NEFA and cholesterol (CHOL) contents compared to BFIII females (p < .05). Moreover, decreased CD36, FATP1, FABP4, and FABP1 mRNA and protein and FATP4 protein expression, and increased LPL activity were also observed in BFIII group compared with BFII group (p < .05). PPARγ mRNA and protein and lipogenic genes such as SREBP-1c, ACSL1, ACCα, FAS and SCD mRNA expression were downregulated or upregulated, respectively, in the placentas of BFIII sows compared to BFI or BFII sows (p < .05). Overall, this study demonstrated that there is no advantage, in terms of litter live size, litter weight and placental FA transport and metabolism, in performing the mating of sows with BF>19 mm.
Collapse
Affiliation(s)
- L Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - S S Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J J Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - P S Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Dubé C, Aguer C, Adamo K, Bainbridge S. A role for maternally derived myokines to optimize placental function and fetal growth across gestation. Appl Physiol Nutr Metab 2017; 42:459-469. [DOI: 10.1139/apnm-2016-0446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exercise during pregnancy is associated with improved health outcomes for both mother and baby, including a reduced risk of future obesity and susceptibility to chronic diseases. Overwhelming evidence demonstrates a protective effect of maternal exercise against fetal birth weight extremes, reducing the rates of both large- and small-for-gestational-age infants. It is speculated that this protective effect is mediated in part through exercise-induced regulation of maternal physiology and placental development and function. However, the specific mechanisms through which maternal exercise regulates these changes remain to be discovered. We hypothesize that myokines, a collection of peptides and cytokines secreted from contracting skeletal muscles during exercise, may be an important missing link in the story. Myokines are known to reduce inflammation, improve metabolism and enhance macronutrient transporter expression and activity in various tissues of nonpregnant individuals. Little research to date has focused on the specific roles of the myokine secretome in the context of pregnancy; however, it is likely that myokines secreted from exercising skeletal muscles may modulate the maternal milieu and directly impact the vital organ of pregnancy—the placenta. In the current review, data in strong support of this potential role of myokines will be presented, suggesting myokine secretion as a key mechanism through which maternal exercise optimizes fetal growth trajectories. It is clear that further research is warranted in this area, as knowledge of the biological roles of myokines in the context of pregnancy would better inform clinical recommendations for exercise during pregnancy and contribute to the development of important therapeutic interventions.
Collapse
Affiliation(s)
- Chantal Dubé
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Céline Aguer
- Institut de recherche de l’Hôpital Montfort, Ottawa, ON K1K 0T1, Canada
- Biochemistry, Microbiology and Immunology department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kristi Adamo
- School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 1A2, Canada
- Healthy Active Living and Obesity Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shannon Bainbridge
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
41
|
Placental Pim-1 expression is increased in obesity and regulates cytokine- and toll-like receptor-mediated inflammation. Placenta 2017; 53:101-112. [PMID: 28487013 DOI: 10.1016/j.placenta.2017.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Obesity is a growing epidemic, and as a consequence the number of obese pregnancies has also increased. Pregnancy is characterised by maternal and placental inflammation which is intensified with maternal obesity. The proviral integration site for Moloney murine leukemic virus (Pim)-1 protein is a serine/threonine kinase involved in a wide range of inflammatory diseases. In relation to obesity, however, its role has not been elucidated in human placenta. The aims were to determine the placental expression of Pim-1 with pre-existing maternal obesity and its role in regulating placental inflammation associated with obesity. METHODS Human placenta was obtained at the time of term Caesarean section from lean and pre-existing obese pregnant women to determine the effect of maternal obesity on Pim-1 expression. To determine the effect of Pim-1 on the inflammatory response induced by bacterial endotoxin LPS and pro-inflammatory cytokines TNF-α or IL-1β, the chemical inhibitor SMI-4a and siRNA were used. RESULTS Pim-1 protein and mRNA expression was significantly increased in placenta of obese women. SMI-4a significantly suppressed the expression and release of pro-inflammatory cytokine IL-6 and chemokines GRO-α and MCP-1 when stimulated with LPS or TNF-α in placenta. Primary trophoblast cells transfected with Pim-1 siRNA had decreased expression and release of pro-inflammatory cytokines IL-1β, IL-6, chemokines GRO-α and MCP-1, when stimulated with LPS, TNF-α or IL-1β. DISCUSSION The findings from this study implicate Pim-1 may contribute to placental inflammation in pregnancies complicated by maternal obesity. Thus, therapeutic targets for Pim-1 may improve fetal outcomes complicated by obese pregnancies.
Collapse
|
42
|
Obesity and female infertility: potential mediators of obesity's impact. Fertil Steril 2017; 107:840-847. [DOI: 10.1016/j.fertnstert.2017.01.017] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/01/2023]
|
43
|
The impact of maternal obesity on inflammatory processes and consequences for later offspring health outcomes. J Dev Orig Health Dis 2017; 8:529-540. [PMID: 28343461 DOI: 10.1017/s2040174417000204] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is a global epidemic, affecting both developed and developing countries. The related metabolic consequences that arise from being overweight or obese are a paramount global health concern, and represent a significant burden on healthcare systems. Furthermore, being overweight or obese during pregnancy increases the risk of offspring developing obesity and other related metabolic complications in later life, which can therefore perpetuate a transgenerational cycle of obesity. Obesity is associated with a chronic state of low-grade metabolic inflammation. However, the role of maternal obesity-mediated alterations in inflammatory processes as a mechanism underpinning developmental programming in offspring is less understood. Further, the use of anti-inflammatory agents as an intervention strategy to ameliorate or reverse the impact of adverse developmental programming in the setting of maternal obesity has not been well studied. This review will discuss the impact of maternal obesity on key inflammatory pathways, impact on pregnancy and offspring outcomes, potential mechanisms and avenues for intervention.
Collapse
|
44
|
Tran HT, Liong S, Lim R, Barker G, Lappas M. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle. PLoS One 2017; 12:e0173373. [PMID: 28278187 PMCID: PMC5344491 DOI: 10.1371/journal.pone.0173373] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/20/2017] [Indexed: 01/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.
Collapse
Affiliation(s)
- Ha T. Tran
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stella Liong
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- * E-mail:
| |
Collapse
|
45
|
Ruiz-Palacios M, Ruiz-Alcaraz AJ, Sanchez-Campillo M, Larqué E. Role of Insulin in Placental Transport of Nutrients in Gestational Diabetes Mellitus. ANNALS OF NUTRITION AND METABOLISM 2017; 70:16-25. [PMID: 28110332 DOI: 10.1159/000455904] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with increased fetal adiposity, which may increase the risk of obesity in adulthood. The placenta has insulin receptors and maternal insulin can activate its signaling pathways, affecting the transport of nutrients to the fetus. However, the effects of diet or insulin treatment on the placental pathophysiology of GDM are unknown. SUMMARY There are very few studies on possible defects in the insulin signaling pathway in the GDM placenta. Such defects could influence the placental transport of nutrients to the fetus. In this review we discuss the state of insulin signaling pathways in placentas of women with GDM, as well as the role of exogenous insulin in placental nutrient transport to the fetus, and fetal adiposity. Key Messages: Maternal insulin in the third trimester is correlated with fetal abdominal circumference at that time, suggesting the important role of insulin in this process. Since treatment with insulin at the end of pregnancy may activate placental nutrient transport to the fetus and promote placental fatty acid transfer, it would be interesting to improve maternal hyperlipidemia control in GDM subjects treated with this hormone. More research in this area with high number of subjects is necessary.
Collapse
Affiliation(s)
- María Ruiz-Palacios
- Department of Physiology, Molecular Biology B and Immunology, Murcia Biohealth Research Institute-University of Murcia (IMIB-UMU), Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain
| | | | | | | |
Collapse
|
46
|
Lipopolysaccharide and double stranded viral RNA mediate insulin resistance and increase system a amino acid transport in human trophoblast cells in vitro. Placenta 2017; 51:18-27. [PMID: 28292465 DOI: 10.1016/j.placenta.2017.01.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Inflammation and underlying low-grade maternal infection can impair insulin signalling and upregulate nutrient transport in the placenta which contribute to fetal overgrowth associated with GDM and/or obese pregnancies. There are, however, no studies on the role of infection on placental nutrient transport in pregnancies complicated by GDM and/or obesity. Thus, the aims of this study were to determine the effect of the bacterial product lipopolysaccharide (LPS) or the viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on the insulin signalling pathway and amino acid transport in primary human trophoblast cells. METHODS Human primary villous trophoblast cells were treated with LPS or poly(I:C). Protein expression of insulin signalling pathway proteins, insulin receptor (IR)-β, insulin receptor substrate (IRS)-1 and protein kinase B (also known as Akt), and phosphatidylinositol-4,5-bisphosphate 3-kinase p85α subunit (PI3K-p85α) protein were assessed by Western blotting. Glucose and amino acid uptake were assessed by radiolabelled assay. Western blotting and qRT-PCR were used to determine amino acid transporter protein and mRNA expression, respectively. RESULTS LPS and poly(I:C) significantly decreased phosphorylation of IR-β, IRS-1, Akt, total PI3K-p85α protein expression and glucose uptake. LPS and poly(I:C) also significantly increased expression of System A amino acid transporters SNAT1 and SNAT2, and System A-mediated uptake of amino acids. DISCUSSION LPS and poly(I:C) induces insulin resistance and increases amino acid uptake in human primary trophoblast cells. This suggests that the presence of low-grade maternal infection can contribute to excess placental nutrient availability and promote fetal overgrowth in pregnancies complicated by GDM and/or obesity.
Collapse
|
47
|
Nieman DC, Sha W, Pappan KL. IL-6 Linkage to Exercise-Induced Shifts in Lipid-Related Metabolites: A Metabolomics-Based Analysis. J Proteome Res 2017; 16:970-977. [PMID: 27996272 DOI: 10.1021/acs.jproteome.6b00892] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomics profiling and bioinformatics technologies were used to determine the relationship between exercise-induced increases in IL-6 and lipid-related metabolites. Twenty-four male runners (age 36.5 ± 1.8 y) ran on treadmills to exhaustion (2.26 ± 0.01 h, 24.9 ± 1.3 km, 69.7 ± 1.9% VO2max). Vastus lateralis muscle biopsy and blood samples were collected before and immediately after running and showed a 33.7 ± 4.2% decrease in muscle glycogen, 39.0 ± 8.8-, 2.4 ± 0.3-, and 1.4 ± 0.1-fold increases in plasma IL-6, IL-8, and MCP-1, respectively, and 95.0 ± 18.9 and 158 ± 20.6% increases in cortisol and epinephrine, respectively (all, P < 0.001). The metabolomics analysis revealed changes in 209 metabolites, especially long- and medium-chain fatty acids, fatty acid oxidation products (dicarboxylate and monohydroxy fatty acids, acylcarnitines), and ketone bodies. OPLS-DA modeling supported a strong separation in pre- and post-exercise samples (R2Y = 0.964, Q2Y = 0.902). OPLSR analysis failed to produce a viable model for the relationship between IL-6 and all lipid-related metabolites (R2Y = 0.76, Q2Y = -0.0748). Multiple structure equation models were evaluated based on IL-6, with the best-fit pathway model showing a linkage of exercise time to IL-6, then carnitine, and 13-methylmyristic acid (a marker for adipose tissue lipolysis) and sebacate. These metabolomics-based data indicate that the increase in plasma IL-6 after long endurance running has a minor relationship to increases in lipid-related metabolites.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Kirk L Pappan
- Metabolon, Inc. , Durham, North Carolina 27713, United States
| |
Collapse
|
48
|
Castillo-Castrejon M, Powell TL. Placental Nutrient Transport in Gestational Diabetic Pregnancies. Front Endocrinol (Lausanne) 2017; 8:306. [PMID: 29163373 PMCID: PMC5682011 DOI: 10.3389/fendo.2017.00306] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity during pregnancy is rising and is associated with increased risk of developing gestational diabetes mellitus (GDM), defined as glucose intolerance first diagnosed in pregnancy (1). Fetal growth is determined by the maternal nutrient supply and placental nutrient transfer capacity. GDM-complicated pregnancies are more likely to be complicated by fetal overgrowth or excess adipose deposition in utero. Infants born from GDM mothers have an increased risk of developing cardiovascular and metabolic disorders later in life. Diverse factors, such as ethnicity, age, fetal sex, clinical treatment for glycemic control, gestational weight gain, and body mass index among others, represent a challenge for studying underlying mechanisms in GDM subjects. Determining the individual roles of glucose intolerance, obesity, and other factors on placental function and fetal growth remains a challenge. This review provides an overview of changes in placental macronutrient transport observed in human pregnancies complicated by GDM. Improved knowledge and understanding of the alterations in placenta function that lead to pathological fetal growth will allow for development of new therapeutic interventions and treatments to improve pregnancy outcomes and lifelong health for the mother and her children.
Collapse
Affiliation(s)
- Marisol Castillo-Castrejon
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, Section of Neonatology, University of Colorado, Aurora, CO, United States
- *Correspondence: Theresa L. Powell,
| |
Collapse
|
49
|
Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reproduction 2016; 153:R97-R108. [PMID: 27864335 DOI: 10.1530/rep-16-0495] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/10/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Obesity has reached epidemic proportions, and pregnancies in obese mothers have increased risk for complications including gestational diabetes, hypertensive disorders, pre-term birth and caesarian section. Children born to obese mothers are at increased risk of obesity and metabolic disease and are susceptible to develop neuropsychiatric and cognitive disorders. Changes in placental function not only play a critical role in the development of pregnancy complications but may also be involved in linking maternal obesity to long-term health risks in the infant. Maternal adipokines, i.e., interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), leptin and adiponectin link maternal nutritional status and adipose tissue metabolism to placental function. Adipokines and metabolic hormones have direct impact on placental function by modulating placental nutrient transport. Nutrient delivery to the fetus is regulated by a complex interaction including insulin signaling, cytokine profile and insulin responsiveness, which is modulated by adiponectin and IL-1β. In addition, obese pregnant women are at risk for hypertension and preeclampsia with reduced placental vascularity and blood flow, which would restrict placental nutrient delivery to the developing fetus. These sometimes opposing signals regulating placental function may contribute to the diversity of short and long-term outcomes observed in pregnant obese women. This review focuses on the changes in adipokines and obesity-related metabolic hormones, how these factors influence placental function and fetal development to contribute to long-term metabolic and behavioral consequences of children born to obese mothers.
Collapse
Affiliation(s)
- Kristy R Howell
- Departments of PsychiatryObstetrics/Gynecology and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Theresa L Powell
- Departments of PsychiatryObstetrics/Gynecology and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
50
|
Liong S, Lappas M. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women. Mol Cell Endocrinol 2016; 425:11-25. [PMID: 26902174 DOI: 10.1016/j.mce.2016.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle.
Collapse
Affiliation(s)
- Stella Liong
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|