1
|
Liu P, Shao L, Guo Z, Zhang Y, Cao Y, Ma X, Morawska L. Physicochemical characteristics of airborne microplastics of a typical coastal city in the Yangtze River Delta Region, China. J Environ Sci (China) 2025; 148:602-613. [PMID: 39095193 DOI: 10.1016/j.jes.2023.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 08/04/2024]
Abstract
Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.
Collapse
Affiliation(s)
- Pengju Liu
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Ziyu Guo
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yaxing Zhang
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xuying Ma
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Ece E, Aslan Y, Hacıosmanoğlu N, Inci F. MicroMetaSense: Coupling Plasmonic Metasurfaces with Fluorescence for Enhanced Detection of Microplastics in Real Samples. ACS Sens 2024. [PMID: 39729532 DOI: 10.1021/acssensors.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Diverse analytical techniques are employed to scrutinize microplastics (MPs)─pervasive at hazardous concentrations across diverse sources ranging from water reservoirs to consumable substances. The limitations inherent in existing methods, such as their diminished detection capacities, render them inadequate for analyzing MPs of diminutive dimensions (microplastics: 1-5 μm; nanoplastics: < 1 μm). Consequently, there is an imperative need to devise methodologies that afford improved sensitivity and lower detection limits for analyzing these pollutants. In this study, we introduce a holistic strategy, i.e., MicroMetaSense, reliant on a metal-enhanced fluorescence (MEF) phenomenon in detecting a myriad size and types of MPs (i.e., poly(methyl methacrylate) (PMMA) and poly(ethylene terephthalate) (PET)) down to 183-205 fg, as well as validated the system with real samples (tap and lake) and artificial ocean samples as a real-world scenario. To obtain precise size distribution in nanometer scale, MPs are initially processed with an ultrafiltration on-a-chip method, and subsequently, the MPs stained with Nile Red dye are subjected to meticulous analysis under a fluorescence microscope, utilizing both a conventional method (glass substrate) and the MicroMetaSense platform. Our approach employs a metasurface to augment fluorescence signals, leveraging the MEF phenomenon, and it demonstrates an enhancement rate of 36.56-fold in detecting MPs compared to the standardized protocols. This low-cost ($2), time-saving (under 30 min), and highly sensitive (183-205 femtogram) strategy presents a promising method for precise size distribution and notable improvements in detection efficacy not only for laboratory samples but also in real environmental samples; hence, signifying a pivotal advancement in conventional methodologies in MP detection.
Collapse
Affiliation(s)
- Emre Ece
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Yusuf Aslan
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
3
|
Boháčková J, Cajthaml T. Contribution of chemical toxicity to the overall toxicity of microplastic particles: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177611. [PMID: 39557166 DOI: 10.1016/j.scitotenv.2024.177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Nanoplastics and microplastics are of growing research interest due to their persistence in the environment and potential harm to organisms through physical damage, such as abrasions or blockages, and chemical harm from leached additives and contaminants. Despite extensive research, a clear distinction between the physical and chemical toxicity of plastic particles has been lacking. This study addresses this gap by reviewing studies examining both toxicity types, focusing on environmentally relevant leachates. The chemicals used in plastics manufacturing, which number over 16,000, include additives, processing aids, and monomers, many of which pose potential hazards due to their toxicity, persistence, and bioaccumulation. Studies typically use extraction or leaching methods to assess chemical toxicity, with leaching more closely mimicking environmental conditions. Factors influencing leaching include plastic type, particle size, and environmental conditions. A systematic literature search identified 35 relevant studies that assessed the toxicity of plastic particle suspensions and their leachates. Analysis revealed that, in 52 % of the cases, both the suspension and leachate had toxic effects, while in 35 % of the cases, toxicity was attributed to the suspension alone. At 13 %, only the leachate was toxic. This suggests that leachates contribute significantly to overall toxicity. However, the results vary widely depending on the experimental conditions and plastic type, highlighting the complexity of microplastic toxicity. The preparation methods used for leachates significantly influence toxicity results. Factors such as leaching time, particle size, and separation techniques affect the concentration and presence of toxic chemicals. Additionally, washed particles-those subjected to procedures for removing leachable chemicals-often showed reduced toxicity, although the results varied. This underscores the need for standardized methods to compare studies better and understand the relative contributions of physical and chemical toxicity to microplastic pollution.
Collapse
Affiliation(s)
- Jana Boháčková
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
4
|
Liu L, Yin H, Xu Y, Liu B, Ma Y, Feng J, Cao Z, Jung J, Li P, Li ZH. Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 263:120267. [PMID: 39481783 DOI: 10.1016/j.envres.2024.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field. Therefore, this paper reviews how OA affects the environmental behavior of MNPs and ENPs, and summarizes the effects and the potential mechanisms of their co-exposure on marine organisms. The review indicates that OA changes the marine chemical environment, thereby altering the behavior of MNPs and ENPs. These changes affect their bioavailability and lead to co-exposure effects. This impacts marine organisms' energy metabolism, growth and development, antioxidant systems, reproduction and immunity. The potential mechanisms involved the regulation of signaling pathways, abnormalities in energy metabolism, energy allocation, oxidative stress, decreased enzyme activity, and disruptions in immune and reproductive functions. Finally, based on the limitations of existing research, actual environment and hot issues, we have outlined future research needs and identified key priorities and directions for further investigation. This review deepens our understanding of the potential effects of MNPs and ENPs on marine organisms under OA, while also aiming to promote further research and development in related fields.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
5
|
Sørensen L, Zammite C, Igartua A, Christensen MM, Haraldsvik M, Creese M, Gomes T, Booth AM. Towards realism in hazard assessment of plastic and rubber leachates - Methodological considerations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136383. [PMID: 39504771 DOI: 10.1016/j.jhazmat.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
While plastic chemicals are key drivers of observed effects to aquatic species, there remains a lack of standardized and fit-for-purpose approaches for experimentally deconvoluting the effects of plastic chemicals from particle effects. This study investigated differences in chemical composition determined using two different organic solvents for extractions (dichloromethane-ethyl acetate, methanol) and by thermal desorption applied to 51 thermoplastic and elastomer products. The composition of natural water leachates of four select elastomers was also investigated. The number of chemical features in each material varied according to the extraction method, with solvent extracts exhibiting the most chemicals, and only 19 compounds commonly identified by all three methods. The number of chemical features in leachates was generally similar to the corresponding chemical extracts, but strong differences in relative composition were detected. While turbulence had minimal impact on leachate composition, particle loading strongly influenced leachate composition, temperature and salinity influenced the leachate concentration for some chemicals, and leaching time depended upon chemical mobility. Leachate composition cannot be readily predicted from particle characterization and multiple parameters are drivers of compositional variance in aquatic leachates. Recommendations for performing leaching studies that are relevant for hazard characterization in a realistic aquatic environment risk assessment scenario are suggested, with a particular focus on particle loading.
Collapse
Affiliation(s)
| | | | | | | | - Martin Haraldsvik
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Tânia Gomes
- Norwegian Institute of Water Research (NIVA), Oslo, Norway
| | | |
Collapse
|
6
|
Omidoyin KC, Jho EH. Environmental occurrence and ecotoxicological risks of plastic leachates in aquatic and terrestrial environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176728. [PMID: 39383966 DOI: 10.1016/j.scitotenv.2024.176728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Plastic pollution poses a significant threat to environmental and human health, with microplastics widely distributed across various ecosystems. Although current ecotoxicological studies have primarily focused on the inherent toxicity of plastics in natural environments, the role of chemical additives leaching from plastics into the environment remains underexplored despite their significant contribution to the overall toxic potential of plastics. Existing systematic studies on plastic leachates have often examined isolated additive compounds, neglecting the ecotoxicological effects of multiple compounds present in plastic leachates. Additionally, most previous research has focused on aquatic environments, overlooking the leaching mechanisms and ecological risks to diverse species with various ecological roles in aquatic and terrestrial ecosystems. This oversight hinders comprehensive ecological risk assessments. This study addresses these research gaps by reviewing the environmental occurrence of plastic leachates and their ecotoxicological impacts on aquatic and terrestrial ecosystems. Key findings reveal the pervasive presence of plastic leachates in various environments, identifying common additives such as phthalates, polybrominated diphenyl ethers (PBDEs), bisphenol A (BPA), and nonylphenols (NPs). Ecotoxicologically, chemical additives leaching from plastics under specific environmental conditions can influence their bioavailability and subsequent uptake by organisms. This review proposes a novel ecotoxicity risk assessment framework that integrates chemical analysis, ecotoxicological testing, and exposure assessment, offering a comprehensive approach to evaluating the risks of plastic leachates. This underscores the importance of interdisciplinary research that combines advanced analytical techniques with ecotoxicological studies across diverse species and environmental conditions to enhance the understanding of the complex impacts of plastic leachates and inform future research and regulatory policies.
Collapse
Affiliation(s)
- Kehinde Caleb Omidoyin
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interest of Society), 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Jamil A, Ahmad A, Irfan M, Hou X, Wang Y, Chen Z, Liu X. Global microplastics pollution: a bibliometric analysis and review on research trends and hotspots in agroecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:486. [PMID: 39509054 DOI: 10.1007/s10653-024-02274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
The prevalence of microplastics (MPs) in agricultural ecosystems poses a notable threat to dynamics of soil ecosystems, crop productivity, and global food security. MPs enter agricultural ecosystems from various sources and have considerable impacts on the physiochemical properties soil, soil organisms and microbial communities, and plants. However, the intensity of these impacts can vary with the size, shape, types, and the concentrations of MPs in the soil. Besides, MPs can enter food chain through consummation of crops grown on MPs polluted soils. In this study, we conducted a bibliometric analysis of 1636 publications on the effects of MPs on agricultural ecosystems from 2012 to May 2024. The results revealed a substantial increase in publications over the years, and China, the USA, Germany, and India have emerged as leading countries in this field of research. Social network analysis identified emerging trends and research hotspots. The latest burst keywords were contaminants, biochar, polyethylene microplastics, biodegradable microplastics, antibiotic resistance genes, and quantification. Furthermore, we have summarized the effects of MPs on various components of agricultural ecosystems. By integrating findings from diverse disciplinary perspectives, this study provides a valuable insight into the current knowledge landscape, identifies research gaps, and proposes future research directions to effectively tackle the intricate challenges associated with MPs pollution in agricultural environments.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ziwei Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
8
|
dos Santos JB, Choueri RB, dos Santos FEM, Santos LADO, da Silva LF, Nobre CR, Cardoso MA, de Britto Mari R, Simões FR, Delvalls TA, Gusso-Choueri PK. Are Microfibers a Threat to Marine Invertebrates? A Sea Urchin Toxicity Assessment. TOXICS 2024; 12:753. [PMID: 39453173 PMCID: PMC11510891 DOI: 10.3390/toxics12100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The rise of "fast fashion" has driven up the production of low-cost, short-lived clothing, significantly increasing global textile fiber production and, consequently, exacerbating environmental pollution. This study investigated the ecotoxicological effects of different types of anthropogenic microfibers-cotton, polyester, and mixed fibers (50% cotton: 50% polyester)-on marine organisms, specifically sea urchin embryos. All tested fibers exhibited toxicity, with cotton fibers causing notable effects on embryonic development even at environmentally relevant concentrations. The research also simulated a scenario where microfibers were immersed in seawater for 30 days to assess changes in toxicity over time. The results showed that the toxicity of microfibers increased with both concentration and exposure duration, with polyester being the most toxic among the fibers tested. Although synthetic fibers have been the primary focus of previous research, this study highlights that natural fibers like cotton, which are often overlooked, can also be toxic due to the presence of harmful additives. These natural fibers, despite decomposing faster than synthetic ones, can persist in aquatic environments for extended periods. The findings underline the critical need for further research on both natural and synthetic microfibers to understand their environmental impact and potential threats to marine ecosystems and sea urchin populations.
Collapse
Affiliation(s)
- Jennifer Barbosa dos Santos
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| | - Rodrigo Brasil Choueri
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Francisco Eduardo Melo dos Santos
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| | - Laís Adrielle de Oliveira Santos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Letícia Fernanda da Silva
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Caio Rodrigues Nobre
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Milton Alexandre Cardoso
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Unifesp, Diadema 09972-270, São Paulo, Brazil
| | - Renata de Britto Mari
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista (Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, São Paulo, Brazil; (L.A.d.O.S.); (L.F.d.S.); (R.d.B.M.)
| | - Fábio Ruiz Simões
- MarineTox_Lab, Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Campus Santos (Unifesp), Rua Carvalho de Mendonça, 144, Santos 11070-102, São Paulo, Brazil; (C.R.N.); (M.A.C.); (F.R.S.)
| | - Tomas Angel Delvalls
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
- Water Challenge S.L., Avda. Papa Negro, 63, 28043 Madrid, Spain
| | - Paloma Kachel Gusso-Choueri
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (Unisanta), Rua Oswaldo Cruz, 266, Santos 11045-907, São Paulo, Brazil; (J.B.d.S.); (F.E.M.d.S.); (T.A.D.); (P.K.G.-C.)
| |
Collapse
|
9
|
Lewin WC, Sühring R, Fries E, Solomon M, Brinkmann M, Weltersbach MS, Strehlow HV, Freese M. Soft plastic fishing lures as a potential source of chemical pollution - Chemical analyses, toxicological relevance, and anglers' perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173884. [PMID: 38885719 DOI: 10.1016/j.scitotenv.2024.173884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Soft plastic lures (SPLs) are commonly used artificial lures in recreational angling. Anglers regularly lose SPLs while fishing and there is little knowledge about the environmental impacts of lost SPLs. As with other plastic items, SPLs contain phthalates and other persistent additives that may leach into water. In this study, 16 randomly chosen SPLs of common models were analyzed for the leaching of persistent, water-soluble plastic additives, including phthalates. The estrogenicity of sample extracts from a subsample of 10 SPLs was assessed using luciferase reporter gene bioassays. Over a period of 61 days, 10 of the 16 SPLs leached the targeted phthalates dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP) and di-n-butyl phthalate (DnBP) at median detectable concentrations ranging from 10 ng/g sample BBP to a median of 1001 ng/g DMP as well as 45 persistent, mobile, and toxic (PMT) plastic additives. DEP was detected most frequently in 8 SPLs, followed by BBP (2 SPLs), DMP (2 SPLs) and DnBP (1 SPL). The extract from one SPL with comparatively low phthalate and PMT plastic additive levels was active in the bioassay, indicating high endocrine-disruptive potential, presumably due to unknown additives that were not among the target substances of the methodology used in this study. The study was supplemented by a mail survey among anglers, in which attitudes of anglers towards SPLs were investigated. The survey indicated that SPL loss is a common event during angling. Most participants were concerned about potential ecological impacts of SPLs, wanted the ingredients of SPLs to be labelled and supported legal restrictions concerning toxic ingredients of SPLs. The study shows that SPLs are a potential source of environmental pollution, may pose human health risks and need further investigation, considering the frequent use of SPLs in recreational angling.
Collapse
Affiliation(s)
- Wolf-Christian Lewin
- Thünen Institute of Baltic Sea Fisheries, Alter Hafen Süd 2, 18069 Rostock, Germany.
| | - Roxana Sühring
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
| | - Eric Fries
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
| | - Melissa Solomon
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Harry V Strehlow
- Thünen Institute of Baltic Sea Fisheries, Alter Hafen Süd 2, 18069 Rostock, Germany
| | - Marko Freese
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| |
Collapse
|
10
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
11
|
Huang J, Feng Y, Xie H, Liu X, Zhang Q, Wang B, Xing B. Biodegradable microplastics aging processes accelerated by returning straw in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173930. [PMID: 38879027 DOI: 10.1016/j.scitotenv.2024.173930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Biodegradable microplastics (MPs) have been released into agricultural soils and inevitably undergo various aging processes. Straw return is a popular agricultural management strategy in many countries. However, the effect of straw return on the aging process of biodegradable MPs in flooded paddy soil, which is crucial for studying the characteristics, fate, and environmental implications of biodegradable MPs, remains unclear. Here, we constructed a 180-day microcosm incubation to elucidate the aging mechanism of polylactic acid (PLA)-MPs in straw-enriched paddy soil. This study elucidated that the prominent aging characteristic of PLA-MPs occurred in the straw-enriched paddy soil, accompanied by increased chrominance (76.64-182.3 %), hydrophilicity (2.92-22.07 %), roughness (33.12-58.01 %), and biofilm formation (42.12-100.3 %) for the PLA-MPs, especially with 2 % (w/w) straw return treatment (P < 0.05). A 2 % straw return treatment has significantly impacted ester CO group changes in PLA-MPs, altered the MPs-attached soil bacterial communities composition, strengthened bacterial network structure, and increased soil proteinase K activity. The findings of this work demonstrated that flooded, straw-enriched paddy soil accelerated PLA-MPs aging affected by soil-water chemistry, soil microbe, and soil enzymatic. This study helps to deepen our understanding of the aging process of PLA-MPs in straw return paddy soil. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) are emerging contaminants in the global soil and terrestrial ecosystems. Biodegradable MPs are more likely to be formed and released into agricultural soils during aging. Straw return is a popular agricultural management strategy in many countries. Considering the wide use of plastic film, sewage sludge, plastic-coated fertilizer, and organic fertilizer in agricultural ecosystems, it is crucial to pay attention to the aging process of biodegradable MPs in straw-enriched paddy soil, which has not been adequately emphasized. This aspect has been overlooked in previous studies and threatens ecosystems. This study demonstrated that straw-enriched paddy soil accelerated polylactic acid (PLA)-MPs aging influenced by the dissolved organic matter, microorganisms, and enzyme activity associated with straw decomposition.
Collapse
Affiliation(s)
- Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobo Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Gambardella C, Miroglio R, Costa E, Cachot J, Morin B, Clérandeau C, Rotander A, Rocco K, d'Errico G, Almeda R, Alonso O, Grau E, Piazza V, Pittura L, Benedetti M, Regoli F, Faimali M, Garaventa F. New insights into the impact of leachates from in-field collected plastics on aquatic invertebrates and vertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124233. [PMID: 38801877 DOI: 10.1016/j.envpol.2024.124233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health.
Collapse
Affiliation(s)
- Chiara Gambardella
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| | - Roberta Miroglio
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Elisa Costa
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Jérôme Cachot
- University of Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805, F-33600, Pessac, France
| | - Bénédicte Morin
- University of Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805, F-33600, Pessac, France
| | | | - Anna Rotander
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Kevin Rocco
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Spain
| | - Olalla Alonso
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Spain
| | - Etienne Grau
- University of Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629, F-33600, Pessac, France
| | - Veronica Piazza
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Lucia Pittura
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Faimali
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Francesca Garaventa
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| |
Collapse
|
13
|
Vianna de Pinho J, Celano MR, Andrade J, Castro Cardoso De Almeida AE, Hauser-Davis RA, Conte-Junior CA, Xing B. Effects of salinity on naphthalene adsorption and toxicity of polyethylene microparticles on Artemia salina. CHEMOSPHERE 2024; 362:142718. [PMID: 38945219 DOI: 10.1016/j.chemosphere.2024.142718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Plastic pollution in aquatic ecosystems is increasing and plastic particles may adsorb and transport a diverse array of contaminants, thereby increasing their bioavailability to biota. This investigation aimed to evaluate the effects of varying polyethylene microplastics (PE MPs) and naphthalene (NAPH) concentrations on the survival and feeding rates of the model organism, Artemia salina, as well as NAPH adsorption to microplastics at different salinity levels (17, 75, 35.5 and 52.75 g L-1) under selected climate change scenarios. Survival (48 h) and feeding rates (6 h) of A. salina were also monitored, revealing that the presence of higher PE and NAPH concentrations lead to decreased survival rates while also increasing the number and size of microplastic particles in the saline solutions. Higher PE concentrations negatively affected A. salina feeding rates and NAPH concentrations were positively correlated with particle number and size, as well as with NAPH and PE adsorption rates in solution. Our findings demonstrate that the co-occurrence of microplastics and NAPH in aquatic environments can result in detrimental zooplankton survival and feeding rate effects. Furthermore, this interaction may contribute to the accumulation of these contaminants in the environment, highlighting the need to simultaneously monitor and mitigate the presence of microplastics and organic pollutants, like NAPH, in aquatic environments.
Collapse
Affiliation(s)
- Julia Vianna de Pinho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Michael Ribas Celano
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| | - Jelmir Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Antonio Eugênio Castro Cardoso De Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, 21040-360, Brazil.
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niteroi, 24220-000, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-909, RJ, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-909, RJ, Brazil.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
14
|
Iqbal S, Xu J, Arif MS, Worthy FR, Jones DL, Khan S, Alharbi SA, Filimonenko E, Nadir S, Bu D, Shakoor A, Gui H, Schaefer DA, Kuzyakov Y. Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8464-8479. [PMID: 38701232 DOI: 10.1021/acs.est.3c10247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 μm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.
Collapse
Affiliation(s)
- Shahid Iqbal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Jianchu Xu
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan, China
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Fiona R Worthy
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Davey L Jones
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, U.K
- Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, Main Campus Bannu-Township, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Ekaterina Filimonenko
- Center for Isotope Biogeochemistry, University of Tyumen, Volodarskogo Str., 6, Tyumen 625003, Russia
| | - Sadia Nadir
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, Main Campus Bannu-Township, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Dengpan Bu
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
| | - Awais Shakoor
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co., Wexford Y35 Y521, Ireland
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Douglas Allen Schaefer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen 37077, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Environmental SciencesKazan Federal University, Kazan 420049, Russia
- Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| |
Collapse
|
15
|
Saygin H, Tilkili B, Karniyarik S, Baysal A. Culture dependent analysis of bacterial activity, biofilm-formation and oxidative stress of seawater with the contamination of microplastics under climate change consideration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171103. [PMID: 38402970 DOI: 10.1016/j.scitotenv.2024.171103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Temperature changes due to climate change and microplastic contamination are worldwide concerns, creating various problems in the marine environment. Therefore, this study was carried out to discover the impact of different temperatures of seawater exposed to different types of plastic materials on culture dependent bacterial responses and oxidative characteristics. Seawater was exposed to microplastics obtained from various plastic materials at different temperature (-18, +4, +20, and +35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed seawater samples were analyzed for bacterial activity, biofilm formation and oxidative characteristics (antioxidant, catalase, glutathione, and superoxide dismutase) using Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. The results showed that the activity and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus were affected through oxidative stress by catalase, glutathione, and superoxide dismutase due to the microplastic deformation by temperature changes. This study confirms that temperature changes as a result of climate change might influence microplastic degradation and their contamination impact in seawater in terms of bacterial metabolic and oxidation reactions.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Sinem Karniyarik
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
16
|
Du Y, Teng J, Zhao J, Ren J, Ma H, Zhang T, Xia B, Sun S, Wang Q. Effects of ocean acidification and polystyrene microplastics on the oysters Crassostrea gigas: An integrated biomarker and metabolomic approach. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106434. [PMID: 38460223 DOI: 10.1016/j.marenvres.2024.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The adverse impacts of microplastics (MPs) or ocean acidification (OA) on mollusks have been widely reported, however, little is known about their combined effects on mollusks. The oysters Crassostrea gigas were exposed to two sizes of polystyrene MPs with 1 × 104 particles/L (small polystyrene MPs (SPS-MPs): 6 μm, large polystyrene MPs (LPS-MPs): 50-60 μm) at two pH levels (7.7 and 8.1) for 14 days. The antagonistic effects between MPs and OA on oysters were mainly observed. Single SPS-MPs exposure can induce CAT enzyme activity and LPO level in gills, while LPS-MPs exposure alone can increase PGK and PEPCK gene expression in digestive glands. Ocean acidification can increase clearance rate and inhibit antioxidant enzyme activity, whereas combined exposure of OA and SPS-MPs can affect the metabolomic profile of digestive glands. This study emphasized that the potential toxic effects of MPs under the scene of climate change should be concerned.
Collapse
Affiliation(s)
- Yunchao Du
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jingying Ren
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hengyuan Ma
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209 16, PR China
| | - Tianyu Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Shan Sun
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China.
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
17
|
Carlsen ECL, Hjelset S, Gomes T, Igartua A, Sørensen L, Booth AM, Hylland K, Eiler A. Synthetic and natural rubber associated chemicals drive functional and structural changes as well as adaptations to antibiotics in in vitro marine microbiomes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116134. [PMID: 38387143 DOI: 10.1016/j.ecoenv.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
The leaching of additives from plastics and elastomers (rubbers) has raised concerns due to their potential negative impacts on the environment and the development of antibiotic resistance. In this study, we investigated the effects of chemicals extracted from two types of rubber on microbiomes derived from a benthic sea urchin and two pelagic fish species. Additionally, we examined whether bacterial communities preconditioned with rubber-associated chemicals displayed adaptations to antibiotics. At the highest tested concentrations of chemicals, we observed reduced maximum growth rates and yields, prolonged lag phases, and increased alpha diversity. While the effects on alpha and beta diversity were not always conclusive, several bacterial genera were significantly influenced by chemicals from the two rubber sources. Subsequent exposure of sea urchin microbiomes preconditioned with rubber chemicals to the antibiotic ciprofloxacin resulted in decreased maximum growth rates. This indicates a more sensitive microbiome to ciprofloxacin when preconditioned with rubber chemicals. Although no significant interaction effects between rubber chemicals and ciprofloxacin exposure were observed in bacterial alpha and beta diversity, we observed log-fold changes in two bacterial genera in response to ciprofloxacin exposure. These findings highlight the structural and functional alterations in microbiomes originating from various marine species when exposed to rubber-associated chemicals and underscore the potential risks posed to marine life.
Collapse
Affiliation(s)
- Eira Catharine Lødrup Carlsen
- Section for Aquatic Biology and Toxicology, Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Blindernveien 31, Oslo 0371, Norway
| | - Sverre Hjelset
- Section for Aquatic Biology and Toxicology, Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Blindernveien 31, Oslo 0371, Norway; Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, Oslo 0579, Norway
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, Oslo 0579, Norway
| | - Amaia Igartua
- Department of Climate and Environment, SINTEF Ocean, SINTEF Sealab, Brattørkaia 17C, Trondheim 7010, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean, SINTEF Sealab, Brattørkaia 17C, Trondheim 7010, Norway
| | - Andy M Booth
- Department of Climate and Environment, SINTEF Ocean, SINTEF Sealab, Brattørkaia 17C, Trondheim 7010, Norway
| | - Ketil Hylland
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Blindernveien 31, Oslo 0371, Norway
| | - Alexander Eiler
- Section for Aquatic Biology and Toxicology, Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Blindernveien 31, Oslo 0371, Norway.
| |
Collapse
|
18
|
Sim W, Song SW, Park S, Jang JI, Kim JH, Cho YM, Kim HM. Unveiling microplastics with hyperspectral Raman imaging: From macroscale observations to real-world applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132861. [PMID: 37939557 DOI: 10.1016/j.jhazmat.2023.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
The widespread use of plastic materials, owing to their several advantageous properties, has resulted in a considerable increase in plastic consumption. Consequently, the production of primary and secondary microplastics has also increased. To identify, categorize, and quantify microplastics, several analytical methods, such as thermal analysis and spectroscopic methods, have been developed. They generally offer little insight into the size and shape of microplastics, require time-consuming sample preparation and classification, and are susceptible to background interference. Herein, we created a macroscale hyperspectral Raman method to quickly quantify and characterize large volumes of plastics. Using this approach, we successfully obtained Raman spectra of five different types of microplastics scattered over an area of 12.4 mm × 12.4 mm within just 550 s and perfectly classified these microplastics using a machine learning method. Additionally, we demonstrated that our system is effective for obtaining Raman spectra, even when the microplastics are suspended in aquatic environments or bound to metal-mesh nets. These results highlight the considerable potential of our proposed method for real-world applications.
Collapse
Affiliation(s)
- Wooseok Sim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Si Won Song
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Subeen Park
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin Il Jang
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Jae Hun Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yeo-Myoung Cho
- Department of Civil and Environmental Engineering, Stanford University, CA 94305, United States
| | - Hyung Min Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
19
|
Miralha A, Contins M, Carpenter LBT, Pinto RL, Marques Calderari MRC, Neves RAF. Leachates of weathering plastics from an urban sandy beach: Toxicity to sea urchin fertilization and early development. MARINE POLLUTION BULLETIN 2024; 199:115980. [PMID: 38171163 DOI: 10.1016/j.marpolbul.2023.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plastic leachates have chemical and biological implications for marine environments. This study experimentally evaluated acute effects of weathering plastic leachates (0, 25, 50, 75 and 100 %) on fertilization and early development of the sea urchin Lytechinus variegatus. Fertilization, embryonic and larval development were drastically inhibited (~75 %) when gametes were exposed to intermediate and high leachate concentrations or delayed when exposed to the lowest concentration. Fertilization and first cleavage stages were highly affected by exposure to intermediate and high leachate concentrations. None of the cells incubated at concentrations from 50 % reached blastula stage, suggesting that embryonic development was the most sensitive stage. Abnormalities in embryos and larvae were observed in all leachate treatments. Chemical analysis detected high concentration of bisphenol A, which may induce these observed effects. Our results highlight the potential threats of plastic pollution to sea urchin populations, which may severely affect the structure and functioning of coastal ecosystems.
Collapse
Affiliation(s)
- Agatha Miralha
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil
| | - Mariana Contins
- Science and Culture Forum, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Letícia B T Carpenter
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | - Rafael L Pinto
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | | | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil.
| |
Collapse
|
20
|
Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F. Do microbial decomposers find micro- and nanoplastics to be harmful stressors in the aquatic environment? A systematic review of in vitro toxicological research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166561. [PMID: 37633392 DOI: 10.1016/j.scitotenv.2023.166561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Microbial decomposers (bacteria and fungi) are likely to interact with plastic particles introduced into natural systems, particularly micro- and nanoplastics (MNPs), exposing them to a variety of risks. In vitro testing has proven to be an accessible and viable method for gaining insights into how microbial decomposers behave individually and systemically toward MNPs. Recent advances have enhanced our understanding of MNP interactions with organisms, revealing the molecular foundations of adaptive responses as well as the biological impact and potential risks to MNPs. Despite widespread attention, this topic has not yet been reviewed. Here, we conducted a systematic review of the available research to critically assess and highlight the most recent advances in two major areas: (1) methods for in vitro evaluation of environmentally relevant microbial decomposers to MNPs; and (2) current understanding of the underlying toxicity mechanisms gained from in vitro assessments. We also addressed the key considerations throughout and proposed available opportunities in the field. Our analysis revealed that MNPs' toxicity has been studied in vitro either alone or in combination with other contaminants (e.g., antibiotics and metallic nanoparticles), with Escherichia coli and polystyrene particles receiving the most attention. Moreover, there were methodological differences in terms of MNP size, shape, polymer, surface characteristics, exposure period, and concentrations. A combination of methods, including growth-viability tests, biochemical assays, and omics profiling (metabolomics and transcriptomics), were employed to detect the effects of MNP exposure and explain its toxicity mechanism. The current literature suggests that the impacts of MNPs on microbial decomposers include alterations in the antioxidative system, gene expression levels and cell-membrane permeability and oxidative damage, all of which can be further influenced by MNPs interaction with other contaminants. This review will thus provide critical insights and up-to-date knowledge to assist novices and experts in promoting advancements and research.
Collapse
Affiliation(s)
- V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
21
|
Weis JS, Alava JJ. (Micro)Plastics Are Toxic Pollutants. TOXICS 2023; 11:935. [PMID: 37999586 PMCID: PMC10675727 DOI: 10.3390/toxics11110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Plastics, including microplastics, have generally been regarded as harmful to organisms because of their physical characteristics. There has recently been a call to understand and regard them as persistent, bioaccumulative, and toxic. This review elaborates on the reasons that microplastics in particular should be considered as "toxic pollutants". This view is supported by research demonstrating that they contain toxic chemicals within their structure and also adsorb additional chemicals, including polychlorinated biphenyls (PCBs), pesticides, metals, and polycyclic aromatic hydrocarbons (PAHs), from the environment. Furthermore, these chemicals can be released into tissues of animals that consume microplastics and can be responsible for the harmful effects observed on biological processes such as development, physiology, gene expression, and behavior. Leachates, weathering, and biofilm play important roles in the interactions between microplastics and biota. Global policy efforts by the United Nations Environmental Assembly via the international legally binding treaty to address global plastic pollution should consider the designation of harmful plastics (e.g., microplastics) with associated hazardous chemicals as toxic pollutants.
Collapse
Affiliation(s)
- Judith S. Weis
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan José Alava
- Ocean Pollution Research Unit & Nippon Foundation-Ocean Litter Project, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T1Z4, Canada;
| |
Collapse
|
22
|
Thacharodi A, Meenatchi R, Hassan S, Hussain N, Bhat MA, Arockiaraj J, Ngo HH, Le QH, Pugazhendhi A. Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119433. [PMID: 39492398 DOI: 10.1016/j.jenvman.2023.119433] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Microplastics are small plastic pieces ranging in size from 1μ to <5 mm in diameter, are water-soluble, and can be either primary as they are initially created in small sizes or secondary as they develop due to plastic degradation. Approximately 360 million tons of plastic are produced globally every year, with only 7% recycled, leaving the majority of waste to accumulate in the environment and pose a serious threat in the form of microplastics. All ecosystems, particularly freshwater ecosystems, experience microplastic accumulation and are also prone to degrading processes. Degraded microplastics accumulate in many aquatic systems, contaminate them, and enter the food chain as a result of the excessive discharge of plastic trash annually from the domestic to the industrial sector. Due to their pervasiveness, these tiny plastic particles are constantly present in freshwater environments, which are essential to human life. In this sense, microplastic pollution is seen as a worldwide problem that has a detrimental impact on every component of the freshwater environment. Microplastics act as carriers for various toxic components such as additives and other hazardous substances from industrial and urbanized areas. These microplastic-contaminated effluents are ultimately transferred into water systems and directly ingested by organisms associated with a particular ecosystem. The microplastics components also pose an indirect threat to aquatic ecosystems by adsorbing surrounding water pollutants. This review mainly focuses on the sources of microplastics, the ecotoxicity of microplastics and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the Government to combat microplastic pollution are also discussed in this review.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Mansoor Ahmad Bhat
- Eskişehir Technical University, Faculty of Engineering, Department of Environmental Engineering, Eskişehir, 26555, Turkey
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
23
|
Zhang Y, Yang S, Zeng Y, Chen Y, Liu H, Yan X, Pu S. A new quantitative insight: Interaction of polyethylene microplastics with soil - microbiome - crop. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132302. [PMID: 37647663 DOI: 10.1016/j.jhazmat.2023.132302] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
In this study, the interaction between primary/secondary PE MPs and soil - microbiome - crop complex system and PE MPs enrichment behavior in crops were studied by using the self-developed quantitative characterization method of Eu-MPs and in situ zymography. The results demonstrated for the first time the enrichment effect of micron-sized PE (> 10 µm) in crops, manifested as roots>leaves>stems. Primary PE MPs significantly increased soil TN, TC, SOM and β-glu activity and inhibited Phos activity. Age-PE MPs significantly reduced soil TN, TP, β-glu and Phos activities and also have significant inhibitory effects on plant height, stem diameter, and leaf dry weight of maize. Age-PE MPs significantly affected soil microbial diversity, mainly caused by bacterial genera such as UTCFX1, Sphingomonas, Subgroup-6 and Gemmatimonas. Age-PE MPs also affected some metabolism related to microbial community composition and maize growth, including Glycerolipid, Citrate cycle (TCA cycle), C5-Branched dibasic acid, Arginine and proline, Tyrosine metabolism, pentose phosphate pathway, Valine, leucine and isoleucine biosynthesis. These research results indicated that the PE MPs, which are widely present in farmland soils, can affect crop growth, soil microbial community and metabolic function after aging, thus affecting agroecosystems and terrestrial biodiversity.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shuo Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yuping Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hanshuang Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Xinyao Yan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
24
|
Tan E, Ong MC, Mohd Zanuri NB. Polyethylene degradation and heavy metals leaching under realistic tropical marine climate. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106113. [PMID: 37619477 DOI: 10.1016/j.marenvres.2023.106113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
The study examines the influence of temperature and pH on the leaching of six heavy metals (HMs) species: aluminum (Al), zinc (Zn), chromium (Cr), copper (Cu), lead (Pb) and arsenic (As) from transparent polyethylene pellets into seawater. The idea is to understand the potential influence of intensifying global warming and ocean acidification towards microplastic toxicity in the ocean. HMs leaching was obvious by 24th hours, with most HMs concentration decreased in water by 120th and 240th hours except Al. Nevertheless, we report that temperature and pH do not influence the overall HMs leaching from PE pellets with statistical analysis showing no significance (p < 0.05) between temperature and pH toward HMs concentration. Instead, it is hypothesized that these two parameters may be crucial in promoting heavy metal adsorption onto PE pellets under tropical weathering. However, Field Emission Scanning Electron Microscope (FESEM) revealed that temperature and pH are influential in polymer aging and surficial breakdown where pellets exposed in warm, acidic waters showed the greatest extent of weathering. This study highlights that PE pellets exposed under tropical conditions may accelerate surficial degradation and possibly stimulate HMs adherence to the polymer as a pollution vector. Further consideration of metal behaviour in water and microbial activities is crucial to improve our understanding of microplastic toxicity under tropical weathering.
Collapse
Affiliation(s)
- Evonne Tan
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Meng Chuan Ong
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21300, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Kuala Nerus, 21300, Terengganu, Malaysia
| | - Norlaila Binti Mohd Zanuri
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
25
|
Wang H, Liu H, Zhang Y, Zhang L, Wang Q, Zhao Y. The toxicity of microplastics and their leachates to embryonic development of the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106114. [PMID: 37517918 DOI: 10.1016/j.marenvres.2023.106114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Microplastic pollution has been widely detected across the global ocean, posing a major threat to a wide variety of marine biota. To date, the deleterious impacts of microplastics have predominantly been linked to their direct exposure, while the potential risks posed by the leachates emanating from microplastics have received comparatively less attention. Here, the toxicity of virgin plasticized polyvinyl chloride (PVC) microspheres and their leachates were evaluated on the embryo-larval development of sea cucumber Apostichopus japonicus using an in-vitro assay. Results showed that a significant toxic effect of both PVC microspheres and their leachates on the embryo development and larval growth of sea cucumbers follows a dose-dependent and time-dependent pattern. Nonetheless, the toxicity of PVC leachates surpasses that of the microspheres themselves. Abnormal developmental phenotypes, such as aberrant gastrulation, misaligned mesenchymal cells, and delayed arm development, were also observed in embryos and larvae treated with PVC. Further chemical analyses of PVC microspheres and leachates revealed the existence of five distinct phthalate esters (PAEs), with DIBP (diisobutyl phthalate) and DBP (dibutyl phthalate) exhibiting higher concentrations in the PVC leachates. This finding suggests that the elevated toxicity of plastic leachate may be attributed to the leaching of phthalate additives from the plastic particles.
Collapse
Affiliation(s)
- Haona Wang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Lijie Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
26
|
Rowlands E, Galloway T, Cole M, Lewis C, Hacker C, Peck VL, Thorpe S, Blackbird S, Wolff GA, Manno C. Scoping intergenerational effects of nanoplastic on the lipid reserves of Antarctic krill embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106591. [PMID: 37329636 DOI: 10.1016/j.aquatox.2023.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Antarctic krill (Euphausia superba) plays a central role in the Antarctic marine food web and biogeochemical cycles and has been identified as a species that is potentially vulnerable to plastic pollution. While plastic pollution has been acknowledged as a potential threat to Southern Ocean marine ecosystems, the effect of nanoplastics (<1000 nm) is poorly understood. Deleterious impacts of nanoplastic are predicted to be higher than that of larger plastics, due to their small size which enables their permeation of cell membranes and potentially provokes toxicity. Here, we investigated the intergenerational impact of exposing Antarctic krill to nanoplastics. We focused on whether embryonic energy resources were affected when gravid female krill were exposed to nanoplastic by determining lipid and fatty acid compositions of embryos produced in incubation. Embryos were collected from females who had spawned under three different exposure treatments (control, nanoplastic, nanoplastic + algae). Embryos collected from each maternal treatment were incubated for a further 6 days under three nanoplastic exposure treatments (control, low concentration nanoplastic, and high concentration nanoplastic). Nanoplastic additions to seawater did not impact lipid metabolism (total lipid or fatty acid composition) across the maternal or direct embryo treatments, and no interactive effects were observed. The provision of a food source during maternal exposure to nanoplastic had a positive effect on key fatty acids identified as important during embryogenesis, including higher total polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) when compared to the control and nanoplastic treatments. Whilst the short exposure time was ample for lipids from maternally digested algae to be incorporated into embryos, we discuss why the nanoplastic-fatty acid relationship may be more complex. Our study is the first to scope intergeneration effects of nanoplastic on Antarctic krill lipid and fatty acid reserves. From this, we suggest directions for future research including long term exposures, multi-stressor scenarios and exploring other critical energy reserves such as proteins.
Collapse
Affiliation(s)
- Emily Rowlands
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom.
| | - Tamara Galloway
- Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Matthew Cole
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Ceri Lewis
- Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Christian Hacker
- Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Victoria L Peck
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
| | - Sally Thorpe
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
| | - Sabena Blackbird
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Jane Herdman Building, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom
| | - George A Wolff
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Jane Herdman Building, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom
| | - Clara Manno
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom.
| |
Collapse
|
27
|
Ariza-Tarazona MC, Siligardi C, Carreón-López HA, Valdéz-Cerda JE, Pozzi P, Kaushik G, Villarreal-Chiu JF, Cedillo-González EI. Low environmental impact remediation of microplastics: Visible-light photocatalytic degradation of PET microplastics using bio-inspired C,N-TiO 2/SiO 2 photocatalysts. MARINE POLLUTION BULLETIN 2023; 193:115206. [PMID: 37392590 DOI: 10.1016/j.marpolbul.2023.115206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Microplastics (MPs) are plastic particles with sizes between 1 μm and 5 mm with a ubiquitous presence in aquatic ecosystems. MPs harm marine life and can cause severe health problems for humans. Advanced oxidation processes (AOPs) that involve the in-situ generation of highly oxidant hydroxyl radicals can be an alternative to fight MPs pollution. Of all the AOPs, photocatalysis has been proven a clean technology to overcome microplastic pollution. This work proposes novel C,N-TiO2/SiO2 photocatalysts with proper visible-active properties to degrade polyethylene terephthalate (PET) MPs. Photocatalysis was performed in an aqueous medium and at room temperature, evaluating the influence of two pH values (pH 6 and 8). The results demonstrated that the degradation of the PET MPs by C,N-TiO2/SiO2 semiconductors is possible, achieving mass losses between 9.35 and 16.22 %.
Collapse
Affiliation(s)
- Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| | - Cristina Siligardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy
| | - Hugo Alejandro Carreón-López
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - José Enrique Valdéz-Cerda
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Paolo Pozzi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66628, Nuevo León, Mexico
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| |
Collapse
|
28
|
Anselmi S, Cavallo A, Del Rio L, Renzi M. Impact of global change on environmental hazards of different clays: A case study on Aliivibrio fischeri. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131806. [PMID: 37329594 DOI: 10.1016/j.jhazmat.2023.131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
The effects of global change in marine ecosystems are expected to lower pH from the current 8.1-7.5-7.0, which will have significant impacts on marine species. The purpose of this study is to investigate whether the ecotoxicity of ten different natural clays change significantly in response to the acidification process and what factors are associated with the observed changes. In this study, the ecotoxicological response of a bacterium (Aliivibrio fischeri) was tested under current (pH= 8.1) and acidified (pH 7.5 and 7.0) conditions. The ecotoxicity detected in the solid phase test (SPT protocol) and in the contact water was affected by the pH, which increased the ecotoxicity from 2/10 clays (pH 8.10) to 7/10 clays (pH 7.00), also shifting the detected effects from low to high toxicity values. The analyses performed on the natural clays studied show that pH can affect the release of metals, metalloids and rare earths from the clays into the contact water phase, affecting the toxicity observed. This phenomenon depends on the type of clay and is closely related to its mineralogical composition. As consequence, in a globally changing scenario, ecotoxicity, even of natural materials such as clay, cannot be considered stable, but must be accurately revaluated depending on the mineralogical and chemical composition of the clay. Moreover, the mineralogical composition of clays showed different efficiency in absorbing bacteria on the surface of clay particles. It was found that live bacterial cells were absorbed on the clay surface in numbers that were dependent on both clay types and pH levels.
Collapse
Affiliation(s)
- Serena Anselmi
- Bioscience Research Center, via Aurelia Vecchia, 32, 58015 Orbetello, GR, Italy; CoNISMa, Piazzale Flaminio, 9, 00196 Rome, Italy
| | - Andrea Cavallo
- CERTEMA Scarl, S.P. del Cipressino km 10, 58044, Cinigiano, Italy
| | - Luca Del Rio
- CERTEMA Scarl, S.P. del Cipressino km 10, 58044, Cinigiano, Italy
| | - Monia Renzi
- Dipartimento di Scienze della Vita, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
29
|
Almeda R, Kuddithamby G, Alonso-Lópeza O, Vilas A, Christelle C, Loisel T, Nielsen TG, Cachot J, Beiras R. A protocol for lixiviation of micronized plastics for aquatic toxicity testing. CHEMOSPHERE 2023; 333:138894. [PMID: 37164198 DOI: 10.1016/j.chemosphere.2023.138894] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Plastics contain various types and amounts of additives that can leach into the water column when entering aquatic ecosystems. Some leached plastic additives are hazardous to marine biota at environmentally relevant concentrations. Disparate methodological approaches have been adopted for toxicity testing of plastic leachates, making comparison difficult. Here we propose a protocol to standardize the methodology to obtain leachates from microplastics (MPs) for aquatic toxicity testing. Literature reviewing and toxicity tests using marine model organisms and different types of MPs were conducted to define the main methodological aspects of the protocol. Acute exposure to leachates from the studied plastics caused negative effects on the early life stages of sea urchins and marine bacteria. We provide recommendations of key factors influencing MPs lixiviation, such as MP size (<250 μm), solid-to-liquid ratio (1-10 g/L), mixing conditions (1-60 rpm), and lixiviation time (72 h). The proposed methodology was successful to determine the toxicity of leachates from different micronized plastics on marine biota. Our recommendations balance feasibility and environmental relevance, and their use would help ensure comparability amongst studies for a better assessment of the toxicity of plastic leachates on aquatic biota.
Collapse
Affiliation(s)
- Rodrigo Almeda
- EOMAR Group, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| | | | - Olalla Alonso-Lópeza
- EOMAR Group, ECOAQUA, University of Las Palmas de Gran Canaria, Spain; ECOTOX Group, ECIMAT-CIM, University of Vigo, Spain
| | | | | | - Tara Loisel
- EPOC UMR 5805, University of Bordeaux, CNRS and INP Bordeaux, France
| | | | - Jérôme Cachot
- EPOC UMR 5805, University of Bordeaux, CNRS and INP Bordeaux, France
| | | |
Collapse
|
30
|
Jessieleena A, Rathinavelu S, Velmaiel KE, John AA, Nambi IM. Residential houses - a major point source of microplastic pollution: insights on the various sources, their transport, transformation, and toxicity behaviour. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67919-67940. [PMID: 37131007 PMCID: PMC10154189 DOI: 10.1007/s11356-023-26918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Municipal wastewater has been considered as one of the largest contributors and carriers of microplastics to the aquatic environment. However, the various residential activities that generate municipal wastewater are equally significant whenever the source of microplastics in aquatic system is accounted. However, so far, only municipal wastewater has received wide attention in previous review articles. Hence, this review article is written to address this gap by highlighting, firstly, the chances of microplastics arising from the usage of personal care products (PCPs), laundry washing, face masks, and other potential sources. Thereafter, the various factors influencing the generation and intensity of indoor microplastic pollution and the evidence available on the possibility of microplastic inhalation by humans and pet animals are explained. Followed by that, the removal efficiency of microplastics observed in wastewater treatment plants, the fate of microplastics present in the effluent and biosolids, and their impact on aquatic and soil environment are explored. Furthermore, the impact of aging on the characteristics of microsized plastics has been explored. Finally, the influence of age and size of microplastics on the toxicity effects and the factors impacting the retention and accumulation of microplastics in aquatic species are reviewed. Furthermore, the prominent pathway of microplastics into the human body and the studies available on the toxicity effects observed in human cells upon exposure to microplastics of different characteristics are explored.
Collapse
Affiliation(s)
- Angel Jessieleena
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Sasikaladevi Rathinavelu
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Kiruthika Eswari Velmaiel
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Anju Anna John
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Indumathi M Nambi
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India.
| |
Collapse
|
31
|
Song X, Ding J, Tian W, Xu H, Zou H, Wang Z. Effects of plastisphere on phosphorus availability in freshwater system: Critical roles of polymer type and colonizing habitat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161990. [PMID: 36737019 DOI: 10.1016/j.scitotenv.2023.161990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Biofilm covered microplastics (BMPs) can act as vectors for the transport of exogenous microbial groups to aquatic ecosystem. However, a consensus regarding the formation and development of BMPs and their effect on phosphorus (P) availability has not been reached. Herein, plastic particles made of fuel-based (PET) and biobased polymers (PLA) were deployed in water and hyporheic zones of an urban river for biofilm colonization. Then, BMPs were transferred to lab incubation to study their effects on the P availability. The results showed that different microplastic biofilms had various bacteria and phytoplankton compositions. Additionally, BMPs induced a shift in the microbial co-occurrence patterns co-differentiated by polymer type and colonizing habitats. Network analyses revealed that the structure of PLA BMPs was more robust, while PET colonized in the hyporheic zone reduced network complexity with looser connections between species, and stronger negatively correlated interactions. However, PET formed denser biofilms by the excretion of extracellular polymeric substances from microalgae, which contributed to the better capacity of P utilization. PET colonized in the water/hyporheic zone significantly decreased soluble reactive phosphate by 42.5 % and 30.8 %, respectively. The abovementioned results indicated that BMPs have the potential to disrupt nutrient availability. This study broadens our perspectives for the ecological effects of BMPs in the aquatic environment.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Wenqing Tian
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Xu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Pencik O, Molnarova K, Durdakova M, Kolackova M, Klofac D, Kucsera A, Capal P, Svec P, Bytesnikova Z, Richtera L, Brtnický M, Adam V, Huska D. Not so dangerous? PET microplastics toxicity on freshwater microalgae and cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121628. [PMID: 37059171 DOI: 10.1016/j.envpol.2023.121628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
Microalgae and cyanobacteria are among the most important primary producers and are responsible for the production of 50-80% of the oxygen on Earth. They can be significantly affected by plastic pollution, as the vast majority of plastic waste ends up in rivers and then the oceans. This research focuses on green microalgae Chlorella vulgaris (C. vulgaris), Chlamydomonas reinhardtii (C. reinhardtii), filamentous cyanobacterium Limnospira (Arthrospira) maxima (L.(A.) maxima) and how they are affected by environmentally relevant PET-MPs (polyethylene-terephtalate microplastics). Manufactured PET-MPs have asymmetric shape, size between 3 and 7 μm and were used in concentrations ranging from 5 mg/L to 80 mg/L. The highest inhibitory rate of growth was found in C. reinhardtii (-24%). Concentration-dependent changes in chlorophyll a composition were found in C. vulgaris and C. reinhardtii, not in L. (A.) maxima. Furthermore, cell damage was detected in all three organisms by CRYO-SEM (shriveling, cell wall disruption), but the cyanobacterium was the least damaged. A PET-fingerprint was detected on the surface of all tested organisms using FTIR, indicating the adherence of PET-MPs. The highest rate of PET-MPs adsorption was detected in L. (A.) maxima. Specifically, characteristic spectra were observed at ∼721, 850, 1100, 1275, 1342, and 1715 cm-1 which are specific for functional groups of PET-MPs. Nitrogen and carbon content significantly increased in L. (A.) maxima under exposure to 80 mg/L due to the PET-MPs adherence and mechanical stress. In all three tested organisms, weak exposure-related ROS generation was detected. In general, cyanobacteria seem to be more resistant to the effects of MPs. However, organisms in the aquatic environment are exposed to MPs over a longer time scale, so it is important to use the present findings for further longer-term experiments on environmentally relevant organisms.
Collapse
Affiliation(s)
- Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katarina Molnarova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Michaela Durdakova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Daniel Klofac
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Attilla Kucsera
- Department of Molecular Biology and Radiobiology, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71, Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
33
|
Wan L, Cheng H, Liu Y, Shen Y, Liu G, Su X. Global meta-analysis reveals differential effects of microplastics on soil ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161403. [PMID: 36621506 DOI: 10.1016/j.scitotenv.2023.161403] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
A large number of individual studies and meta-analyses have shown that microplastics (MPs) affect soil ecosystems. However, the effects of different concentrations and types of MPs on soil ecosystem are still unclear. Here, a comprehensive meta-analysis was performed to examine the responses of 19 variables, associated with soil properties, microbes, enzymes, and fauna, to MPs, based on 114 peer-reviewed studies. The results showed that the addition of MPs significantly reduced the soil organic carbon (SOC), total nitrogen (TN), NH4+-N, pH, and diversity of bacteria, and increased the dissolved organic carbon (DOC), diversity of fungi and enzyme activities, especially enzymes related to the biogeochemical cycle. We further discussed that soil MPs exerted negative effects on soil fauna, including survival, growth, and reproduction, and that the concentration of MPs, rather than the type, was the biggest driving factor causing the toxicity of MPs affecting soil animals. More importantly, the concentrations of MPs were the main factor affecting the DOC, TN, NO3--N, total phosphorus (TP), available phosphorus (AP), and diversity of fungi, whereas the types of MPs were the main factors reflected in the SOC, NH4+-N, pH, diversity of bacteria, and enzyme activities. This study aimed to evaluate the response of soil ecosystems to the different concentrations and types of MPs, and the largest driving factor for the toxicity of MPs.
Collapse
Affiliation(s)
- Lingfan Wan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Cheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xukun Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Pinlova B, Nowack B. Characterization of fiber fragments released from polyester textiles during UV weathering. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121012. [PMID: 36623791 DOI: 10.1016/j.envpol.2023.121012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Synthetic textiles are considered a prime source of microplastics fibers which are a prevalent shape of microplastic pollution. Whilst the release mechanisms and formation of such microplastic fibers have been so far mainly studied in connection with laundry washing, there are some studies emerging that describe also other release pathways for microplastic fibers such as abrasion during wearing. The aim of this study was to consider weathering as another process contributing to the formation of microplastic fibers and their presence in the environment. Four types of polyester fabrics were selected and exposed to artificial weathering by UV-light for two months. The fabrics were extracted every 15 days to quantify and characterize the formed microplastics. Microplastic fibers with the diameter matching the size of the fibers in the textiles were observed. However, additional microplastic fibers of different shapes were also formed. These included partially broken fibers, thin fibers with a diameter below the size of the fiber in the fabrics, fibers flattened into a ribbon, and non-fibrous microplastics. The released microplastics evinced physical alterations on their surface in the form of pits and cracks. The released microplastics exhibited a steep increase in number with progressing weathering; from hundreds of fibers per gram of textile from unaged fabrics, to hundred thousands fibers (150,000-450,000 MPF/g) after 2 months of weathering. Additional 10,000-52,000 unfibrous microplastics/g were released from the weathered fabrics. While plain fabrics showed higher releases than interlock and fleece, further research is needed to evaluate the importance of the textile architecture on the weathering process in comparison with the production history of the fabrics. Based on a comparison with washing studies with the same textiles, we can estimate that the potential of weathered fabrics to be a source of microplastic fibers can be 20-40 times larger than washing only.
Collapse
Affiliation(s)
- Barbora Pinlova
- Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
35
|
Khalid N, Aqeel M, Noman A, Fatima Rizvi Z. Impact of plastic mulching as a major source of microplastics in agroecosystems. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130455. [PMID: 36463747 DOI: 10.1016/j.jhazmat.2022.130455] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The contamination of agroecosystems by microplastics (MPs) has raised great concerns recently. Plastic mulching has contributed a lot in the building of MP pollution in farmlands. This technique has been in use for decades worldwide because of its immense advantages, preferably in drier and colder regions. The physical extraction of plastic mulches at the end of the growing season is very laborious and ineffective, and thus small pieces of mulches are left in the field which later convert into MP particles after aging, weathering, or on exposure to solar radiation. MPs not only influence physical, chemical, or biological properties of soils but also reduce crop productivity which could be a threat to our food security. They also interact with and accumulate other environmental contaminants such as microbial pathogens, heavy metals, and persistent organic pollutants on their surfaces which increase their risk of toxicity in the environment. MPs also transfer from one trophic level to the other in the food chain and ultimately may impact human health. Because of the ineffectiveness of the recovery of plastic film fragments from fields, researchers are now mainly focusing on alternative solutions to conventional plastic mulch films such as the use of biodegradable mulches. In this review, we have discussed the issue of plastic mulch films in agroecosystems and tried to link already existing knowledge to the current limitations in research on this topic from cropland soils and future prospects have been identified and proposed.
Collapse
Affiliation(s)
- Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| |
Collapse
|
36
|
Wilkie Johnston L, Bergami E, Rowlands E, Manno C. Organic or junk food? Microplastic contamination in Antarctic krill and salps. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221421. [PMID: 36998765 PMCID: PMC10049761 DOI: 10.1098/rsos.221421] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Microplastics (MP) have been reported in Southern Ocean (SO), where they are likely to encounter Antarctic zooplankton and enter pelagic food webs. Here we assess the presence of MP within Antarctic krill (Euphausia superba) and salps (Salpa thompsoni) and quantify their abundance and type by micro-Fourier transform infrared microscopy. MP were found in both species, with fibres being more abundant than fragments (krill: 56.25% and salps: 22.32% of the total MP). Polymer identification indicated MP originated from both local and distant sources. Our findings prove how in situ MP ingestion from these organisms is a real and ongoing process in the SO. MP amount was higher in krill (2.13 ± 0.26 MP ind-1) than salps (1.38 ± 0.42 MP ind-1), while MP size extracted from krill (130 ± 30 µm) was significantly lower than MP size from salps (330 ± 50 µm). We suggest that differences between abundance and size of MP ingested by these two species may be related to their food strategies, their ability to fragment MP as well as different human pressures within the collection areas of the study region. First comparative field-based evidence of MP in both krill and salps, two emblematic zooplankton species of the SO marine ecosystems, underlines that Antarctic marine ecosystems may be particularly sensitive to plastic pollution.
Collapse
Affiliation(s)
- Laura Wilkie Johnston
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
- University of St Andrews, St Andrews, Scotland KY16 9AJ, UK
| | - Elisa Bergami
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, Modena, Italy
| | - Emily Rowlands
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Clara Manno
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| |
Collapse
|
37
|
Khoshmanesh M, Sanati AM, Ramavandi B. Co-occurrence of microplastics and organic/inorganic contaminants in organisms living in aquatic ecosystems: A review. MARINE POLLUTION BULLETIN 2023; 187:114563. [PMID: 36623469 DOI: 10.1016/j.marpolbul.2022.114563] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Most studies on microplastics (MPs) and organisms, regardless of the MPs type and their presence in the environment and organisms, have been performed on a laboratory scale. In this review, reports of simultaneous analysis of the abundance of MPs and organic/inorganic contaminants in aquatic organisms in the natural environment have been collected and bibliometric analysis was performed. Biological and environmental factors affecting MPs absorption by organisms were discussed. The majority of microplastics were identified as fibrous and black with a small size (<500 μm). A positive correlation was reported between microplastic numbers and organic/inorganic contaminants in the tissue of some species. The most positive linear relationship between heavy metal and MPs was reported for Heniochus acuminatus from the Gulf of Mannar. To preserve biodiversity and the risks of transferring MPs and contaminants to aquatic organisms and humans, it is necessary to control microplastic contamination.
Collapse
Affiliation(s)
- Madineh Khoshmanesh
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran.
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| |
Collapse
|
38
|
Boháčková J, Havlíčková L, Semerád J, Titov I, Trhlíková O, Beneš H, Cajthaml T. In vitro toxicity assessment of polyethylene terephthalate and polyvinyl chloride microplastics using three cell lines from rainbow trout (Oncorhynchus mykiss). CHEMOSPHERE 2023; 312:136996. [PMID: 36336021 DOI: 10.1016/j.chemosphere.2022.136996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/08/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The RTgill-W1 (gill), RTG-2 (gonad), and RTL-W1 (liver) cell lines derived from a freshwater fish rainbow trout (Oncorhynchus mykiss), were used to assess the toxicity of polyethylene terephthalate (PET) and two forms of polyvinyl chloride (PVC). Two size fractions (25-μm and 90-μm particles) were tested for all materials. The highest tested concentration was 1 mg/ml, corresponding to from 70 000 ± 9000 to 620 000 ± 57 000 particles/ml for 25-μm particles and from 2300 ± 100 to 11 000 ± 1000 particles/ml for 90-μm particles (depending on the material). Toxicity differences between commercial PVC dry blend powder and secondary microplastics created from a processed PVC were newly described. After a 24-h exposure, the cells were analyzed for changes in viability, 7-ethoxyresorufin-O-deethylase (EROD) activity, and reactive oxygen species (ROS) generation. In addition to the microplastic suspensions, leachates and particles remaining after leaching resuspended in fresh exposure medium were tested. The particles were subjected to leaching for 1, 8, and 15 days. The PVC dry blend (25 μm and 90 μm) and processed PVC (25 μm) increased ROS generation, to which leached chemicals appeared to be the major contributor. PVC dry blend caused substantially higher ROS induction than processed PVC, showing that the former is not suitable for toxicity testing, as it can produce different results from those of secondary PVC. The 90-μm PVC dry blend increased ROS generation only after prolonged leaching. PET did not induce any changes in ROS generation, and none of the tested polymers had any effect on viability or EROD activity. The importance of choosing realistic extraction procedures for microplastic toxicity experiments was emphasized. Conducting long-term experiments is crucial to detect possible environmentally relevant effects. In conclusion, the tested materials showed no acute toxicity to the cell lines.
Collapse
Affiliation(s)
- Jana Boháčková
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Lucie Havlíčková
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Jaroslav Semerád
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Ivan Titov
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 16206, Prague 6, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 16206, Prague 6, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
39
|
Hao B, Wu H, Zhang S, He B. Individual and combined toxicity of microplastics and diuron differs between freshwater and marine diatoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158334. [PMID: 36044954 DOI: 10.1016/j.scitotenv.2022.158334] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are considered as the emerging pollutants, which not only directly affect aquatic organisms, but also causes combined pollution by adsorbing other pollutants. Diuron, as one of the most widely used herbicides, is frequently monitored in the aquatic environment for its adverse effects on aquatic organisms. However, little is known about the combined toxicity of microplastics and diuron to aquatic organisms, especially diatoms. In this study, freshwater diatom (Cyclotella meneghiniana) and marine diatom (Skeletonema costatum) were selected to study the individual and combined toxicity of microplastics (polystyrene, 0.6- 1.0 μm) and diuron. Experimental concentrations of microplastics and diuron were set at 50 mg/L and 100 μg/L, respectively, which have been shown to significantly inhibit the growth of aquatic organisms. Results suggested that both single microplastics and single diuron significantly inhibited the growth of the two diatoms, while significant SOD and MDA increase were only found in single diuron exposure. For diatoms exposed to individual microplastics, the microplastic particles adsorbed inside Cyclotella sp. and those aggregated around Skeletonema sp. were the major factor inhibiting the growth of diatom, respectively. According to the independent action model, the combined toxicity for both diatoms were all antagonistic. The adsorption behavior of microplastics to diuron alleviated the intracellular damage to diatoms caused by diuron, and the oxidative stress induced by diuron mitigated the physical damage to diatoms caused by microplastics. Collectively, our findings suggest that the co-existence of microplastics and diuron may affect their respective toxicity to diatoms. The mechanism of this "cross-phenomenon" between microplastics and diuron and their combined toxicity to different aquatic organisms need to be further studied.
Collapse
Affiliation(s)
- Beibei Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Haoping Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Siyi Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Bin He
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China.
| |
Collapse
|
40
|
Raguso C, Grech D, Becchi A, Ubaldi PG, Lasagni M, Guala I, Saliu F. Detection of microplastics and phthalic acid esters in sea urchins from Sardinia (Western Mediterranean Sea). MARINE POLLUTION BULLETIN 2022; 185:114328. [PMID: 36368079 DOI: 10.1016/j.marpolbul.2022.114328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of microplastics (MPs) and phthalic acid esters (PAEs) in wild purple sea urchins (Paracentrotus lividus) of Sardinia (Italy, Western Mediterranean Sea) was surveyed. Specifically, MPs were analyzed in the digestive tract by μFTIR and PAEs in the gonads by SPME-LC-MS/MS. 9 out of 22 specimens resulted contaminated with MPs and 20 displayed levels of PAEs over the quantification limit. A total of 23 MPs were detected with a maximum concentration of 4 microplastics/individual in the commercially undersized specimens. PAEs displayed average concentration of 32 ng/g, σ = 5.3 with maximum value of 77 ng/g. The most abundant congeners were DEHP (17 ng/g, σ = 4.3) and DBP (10 ng/g, σ = 2.5). Statistical analysis showed correlation between DEHP and fiber concentrations and among the concentration of MEP, DEP, DBP and BBzP. Due to local use of sea urchin gonads as gourmet delicacy, the potential human exposition to MPs and PAEs by consumption is also discussed.
Collapse
Affiliation(s)
- Clarissa Raguso
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Daniele Grech
- IMC - International Marine Centre, 09170 Loc.tà Sa Mardini, Torregrande, Oristano, Italy
| | - Alessandro Becchi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paolo Giuseppe Ubaldi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Ivan Guala
- IMC - International Marine Centre, 09170 Loc.tà Sa Mardini, Torregrande, Oristano, Italy
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
41
|
Seuront L, Zardi GI, Uguen M, Bouchet VMP, Delaeter C, Henry S, Spilmont N, Nicastro KR. A whale of a plastic tale: A plea for interdisciplinary studies to tackle micro- and nanoplastic pollution in the marine realm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157187. [PMID: 35868387 DOI: 10.1016/j.scitotenv.2022.157187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Plastic is one of the most ubiquitous sources of both contamination and pollution of the Anthropocene, and accumulates virtually everywhere on the planet. As such, plastic threatens the environment, the economy and human well-being globally. The related potential threats have been identified as a major global conservation issue and a key research priority. As a consequence, plastic pollution has become one of the most prolific fields of research in research areas including chemistry, physics, oceanography, biology, ecology, ecotoxicology, molecular biology, sociology, economy, conservation, management, and even politics. In this context, one may legitimately expect plastic pollution research to be highly interdisciplinary. However, using the emerging topic of microplastic and nanoplastic leachate (i.e., the desorption of molecules that are adsorbed onto the surface of a polymer and/or absorbed into the polymer matrix in the absence of plastic ingestion) in the ocean as a case study, we argue that this is still far from being the case. Instead, we highlight that plastic pollution research rather seems to remain structured in mostly isolated monodisciplinary studies. A plethora of analytical methods are now available to qualify and quantify plastic monomers, polymers and the related additives. We nevertheless show though a survey of the literature that most studies addressing the effects of leachates on marine organisms essentially still lack of a quantitative assessment of the chemical nature and content of both plastic items and their leachates. In the context of the ever-increasing research effort devoted to assess the biological and ecological effects of plastic waste, we subsequently argue that the lack of a true interdisciplinary approach is likely to hamper the development of this research field. We finally introduce a roadmap for future research which has to evolve through the development of a sound and systematic ability to chemically define what we biologically compare.
Collapse
Affiliation(s)
- Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France; Department of Marine Energy and Resource, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Marine Uguen
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Vincent M P Bouchet
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Camille Delaeter
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Solène Henry
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Nicolas Spilmont
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Katy R Nicastro
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
42
|
Piccardo M, Provenza F, Anselmi S, Renzi M. Ecotoxicological Assessment of "Glitter" Leachates in Aquatic Ecosystems: An Integrated Approach. TOXICS 2022; 10:toxics10110677. [PMID: 36355968 PMCID: PMC9697108 DOI: 10.3390/toxics10110677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/01/2023]
Abstract
The most worrisome fraction within plastic pollution is that of microplastics (MP). A category of MP almost completely ignored is that of glitter. The objective of this study is to test the toxicity of nine types of glitter leachate (3 soak times: 3, 90 and 180 days) on model organisms in freshwater (Allivibrio fischeri, Raphidocelis subcapitata, Daphnia magna) and saltwater (Allivibrio fischeri, Phaeodactylum tricornutum, Paracentrotus lividus). An integrated approach was applied to obtain the percentage of ecotoxicological risk. The results show that (i) photosynthesizing primary producers are the most sensitive trophic level; (ii) algae transitioned from growth inhibition to biostimulation; (iii) D. magna showed higher sensitivity after 48 h compared to 24 h; (iv) A. fischeri responded more strongly in saltwater than in freshwater. The integrated data show a greater risk associated with the marine environment, with the highest risk for glitters that are hexagonal and composed of poly-methyl-methacrylate. Our multivariate analysis shows that the toxicity of plastic leaching is a complex phenomenon that depends on the sensitivity of the species, in some cases on the soaking time and on the medium, and is not clearly linked to the polymer type, the contact area or the colors of the particles.
Collapse
Affiliation(s)
- Manuela Piccardo
- Dipartimento di Scienze della Vita, Università di Trieste, 34127 Trieste, Italy
| | - Francesca Provenza
- Dipartimento di Scienze della Vita, Università di Trieste, 34127 Trieste, Italy
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, Italy
| | - Monia Renzi
- Dipartimento di Scienze della Vita, Università di Trieste, 34127 Trieste, Italy
- CoNISMa, Consorzio Interuniversitario per le Scienze del Mare, Piazzale Flaminio 4, 00196 Roma, Italy
| |
Collapse
|
43
|
Wang H, Qiu C, Song Y, Bian S, Wang Q, Chen Y, Fang C. Adsorption of tetracycline and Cd(II) on polystyrene and polyethylene terephthalate microplastics with ultraviolet and hydrogen peroxide aging treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157109. [PMID: 35779715 DOI: 10.1016/j.scitotenv.2022.157109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) could serve as vectors of antibiotics and heavy metals through sorption and desorption. However, the combined adsorption process of antibiotics and heavy metals on aged MPs has rarely been studied. In this study, combined adsorption/desorption of tetracycline (TC) and Cd(II) on/from polystyrene (PS) and polyethylene terephthalate (PET) MPs, as well as ultraviolet (UV) and H2O2 aged MPs, was investigated. The specific surface areas of the MPs increased after UV and H2O2 aging. Adsorption experiments showed that the pseudo-second-order kinetic model and Freundlich model fitted adsorption of TC and Cd(II) on all of the MPs. The adsorption capacities of TC and Cd(II) were higher on aged MPs than on the pristine MPs, especially on H2O2 treated MPs. TC adsorption on the MPs was hardly affected by Cd(II), and Cd(II) adsorption was not significantly affected by TC when the solution pH value was below 8.0. Cd(II) slightly enhanced TC adsorption on the MPs at pH 8.0, especially on the aged MPs. The TC adsorption capacities increased with increasing pH, reaching a maximum at pH 5.0 or 6.0, and they then decreased, while the largest level of Cd(II) adsorption was at approximately pH 6.0. Adsorption of TC and Cd(II) on the pristine and aged MPs was thermodynamically favorable and spontaneous. The trend of the desorption rates of TC and Cd(II) from the MPs in different background solutions was ultrapure water < surface water < simulated gastric fluid. The desorption rates of TC and Cd(II) from the aged MPs were lower than those from the pristine MPs. The results revealed the mechanism of the TC and Cd(II) combined adsorption process on aged MPs, which will provide insight for understanding the aging process and its potential effects on sorption and desorption of antibiotics and heavy metals in the real environment.
Collapse
Affiliation(s)
- Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Cheng Qiu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| | - Shaochen Bian
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yongmin Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
| |
Collapse
|
44
|
De Marchi L, Renzi M, Anselmi S, Pretti C, Guazzelli E, Martinelli E, Cuccaro A, Oliva M, Magri M, Bulleri F. Polyethylene microplastics reduce filtration and respiration rates in the Mediterranean sponge Petrosia ficiformis. ENVIRONMENTAL RESEARCH 2022; 211:113094. [PMID: 35292241 DOI: 10.1016/j.envres.2022.113094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) pollution represents a distinctive mark of the Anthropocene. Despite the increasing efforts to determine the ecological impacts of MP on marine biodiversity, our understanding of their toxicological effects on invertebrate species is still limited. Despite their key functional roles, sponges (Phylum Porifera) are particularly understudied in MP research. These filter-feeders extract and retain particles from the water column, across a broad size range. In this study, we carried out a laboratory experiment to assess the uptake of MPs (polyethylene, PE) by the Mediterranean sponge Petrosia ficiformis, how MPs influence key biological process after different times of exposure (24h and 72h) and whether they can be subsequently eliminated. MP uptake increased with time of exposure, with 30.6% of the inoculated MP particles found in sponge samples after 72h. MPs impaired filtration and respiration rates and these effects were still evident 72h after sponges had been transferred in uncontaminated water. Our study shows that time of exposure represents a key factor in determining MP toxicity in sponges. In addition, our results suggest that sponges are able to incorporate foreign particles and may thus be a potential bioindicator for MP pollutants.
Collapse
Affiliation(s)
- Lucia De Marchi
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.
| | - Monia Renzi
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Alessia Cuccaro
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Matteo Oliva
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | | | - Fabio Bulleri
- Dipartimento di Biologia - Unità di Ecologia e Biologia Marina, Università di Pisa, Pisa, Italy
| |
Collapse
|
45
|
Žuna Pfeiffer T, Špoljarić Maronić D, Stević F, Galir Balkić A, Bek N, Martinović A, Mandir T, Nikolašević R, Janjić D. Plastisphere development in relation to the surrounding biotic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119380. [PMID: 35500716 DOI: 10.1016/j.envpol.2022.119380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
To study the early colonization processes, polyethylene terephthalate (PET) microfragments were immersed in Lake Sakadaš and the Drava River and sampled weekly together with the surrounding biotic communities - phytoplankton, zooplankton, epixylon in the lake and epilithon in the river. At the end of the study, a rise in water level occurred in the river, which altered the environmental conditions and plankton communities. In studied environments, all of the sampled biotic communities were diverse and abundant. Plastispheres formed in both waters by the seventh day of incubation and developed rapidly, reaching a peak in abundance on the last day of the study. Initial colonization was supported equally by planktonic and periphytic taxa in both environments, but after initial settlement, plastisphere assemblages were affected differently in the river and lake. This study suggests that PET microfragments are a suitable substrate for microphyte settlement and may provide an important pathway for their transport in dynamic freshwater floodplains and river systems.
Collapse
Affiliation(s)
- Tanja Žuna Pfeiffer
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Dubravka Špoljarić Maronić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Filip Stević
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia.
| | - Anita Galir Balkić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Nikolina Bek
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Ana Martinović
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Tomislav Mandir
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Rahela Nikolašević
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| | - Doris Janjić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia
| |
Collapse
|
46
|
Delaeter C, Spilmont N, Bouchet VMP, Seuront L. Plastic leachates: Bridging the gap between a conspicuous pollution and its pernicious effects on marine life. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154091. [PMID: 35219681 DOI: 10.1016/j.scitotenv.2022.154091] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
With 4 to 12 million tons of plastic entering the marine environment each year, plastic pollution has become one of the most ubiquitous sources of pollution of the Anthropocene threatening the marine environment. Beyond the conspicuous physical damages, plastics may release a cocktail of harmful chemicals, i.e. monomers, additives and persistent organic pollutants. Although known to be highly toxic, plastic leachates seemingly appear, however, as the "somewhat sickly child" of the plastic pollution literature. We reviewed the only 26 studies investigating the impact of plastic leachates on marine microbes and invertebrates, and concluded that the observed effects essentially depend on the species, polymer type, plastic composition, accumulated contaminants and weathering processes. We identified several gaps that we believe may hamper progress in this emerging area of research and discussed how they could be bridged to further our understanding of the effects of the compounds released by plastic items on marine organisms. We first stress the lack of a consensus on the use of the term 'leachate', and subsequently introduce the concepts of primary and secondary leachates, based on the intrinisic or extrinsic origin of the products released in bulk seawater. We discuss how methodological inconsistencies and the discrepancy between the polymers used in experiments and their abundance in the environment respectively limit comparison between studies and a comprehensive assessment of the effects leachate may actually have in the ocean. We also discuss how the imbalanced in the variety of both organisms and polymers considered, the mostly unrealistic concentrations used in laboratory experiments, and the lack of investigation on key ecosystem engineers may considerably narrow the spectrum of our understanding of the plastic leachates' effects. We finally discuss how increasing multi-disciplinarity through collaborations between different research fields may benefit to an area of research which is still in its early infancy.
Collapse
Affiliation(s)
- Camille Delaeter
- Univ. Lille, CNRS, IRD, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France.
| | - Nicolas Spilmont
- Univ. Lille, CNRS, IRD, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Vincent M P Bouchet
- Univ. Lille, CNRS, IRD, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Laurent Seuront
- Univ. Lille, CNRS, IRD, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
47
|
Hu K, Yang Y, Zuo J, Tian W, Wang Y, Duan X, Wang S. Emerging microplastics in the environment: Properties, distributions, and impacts. CHEMOSPHERE 2022; 297:134118. [PMID: 35227746 DOI: 10.1016/j.chemosphere.2022.134118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are emerging and recalcitrant micropollutants in the environment, which have attracted soaring interests from a wide range of research disciplines. To this end, numerous technologies have been devised to understand the properties, environmental behaviors, and potential impacts/hazards of MPs. Herein, we present a review on the properties, environmental distribution and possible impacts. In this review, a comprehensive introduction of the most universal types of MPs, their shapes and characters will be first presented. Then the distributions of MPs in the environment and the impacts on microbe, plants, and human will be reported. Finally, major challenges and directions will be discussed to provide some clues to the better understanding, control and migration of MPs pollution in future studies.
Collapse
Affiliation(s)
- Kunsheng Hu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Yangyang Yang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Jian Zuo
- School of Architecture and Built Environment, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| |
Collapse
|
48
|
Xu D, Su W, Lu H, Luo Y, Yi T, Wu J, Wu H, Yin C, Chen B. A gold nanoparticle doped flexible substrate for microplastics SERS detection. Phys Chem Chem Phys 2022; 24:12036-12042. [PMID: 35537128 DOI: 10.1039/d1cp05870c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to overuse of plastic products, decomposed microplastics (MPs) are widely spread in aquatic ecosystems, and will cause irreparable harm to the human body through the food chain. Traditional MP detection methods require cumbersome sample pre-processing procedures and complex instruments, so there is an urgent demand to develop methods to achieve simple on-site detection. Herein, a simple, sensitive, accurate, and stable MP detection method based on surface-enhanced Raman scattering (SERS) is investigated. Considering the hydrophobic problems of MPs, gold nanoparticle (AuNP) doped filter paper as a flexible SERS substrate is applied to capture MPs in the fiber pores. Benefitting from the electromagnetic (EM) hot spots generated by AuNPs, the Raman signal of MPs can be effectively enhanced. Meanwhile, the flexible SERS substrate has good sensitivity to a minimum detectable concentration of 0.1 g L-1 for polyethylene terephthalate (PET) in water, and the maximum enhancement factor (EF) can reach 360.5. Furthermore, the practicability of the developed method has been proved by the successful detection of MPs in tap water and pond water. This research provides an easy process, high sensitivity, and good reproducibility method for MP detection.
Collapse
Affiliation(s)
- Dewen Xu
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Wei Su
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Hanwen Lu
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Yinlong Luo
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Tianan Yi
- College of Science, Hohai University, Changzhou, 213022, China. .,Research Institute of Ocean and Offshore Engineering, Hohai University, Nantong, 226300, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | - Hong Wu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
| | - Cheng Yin
- College of Science, Hohai University, Changzhou, 213022, China.
| | - Bingyan Chen
- College of Science, Hohai University, Changzhou, 213022, China.
| |
Collapse
|
49
|
Šaravanja A, Pušić T, Dekanić T. Microplastics in Wastewater by Washing Polyester Fabrics. MATERIALS 2022; 15:ma15072683. [PMID: 35408015 PMCID: PMC9000408 DOI: 10.3390/ma15072683] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Microplastics have become one of the most serious environmental hazards today, raising fears that concentrations will continue to rise even further in the near future. Micro/nanoparticles are formed when plastic breaks down into tiny fragments due to mechanical or photochemical processes. Microplastics are everywhere, and they have a strong tendency to interact with the ecosystem, putting biogenic fauna and flora at risk. Polyester (PET) and polyamide (PA) are two of the most important synthetic fibres, accounting for about 60% of the total world fibre production. Synthetic fabrics are now widely used for clothing, carpets, and a variety of other products. During the manufacturing or cleaning process, synthetic textiles have the potential to release microplastics into the environment. The focus of this paper is to explore the main potential sources of microplastic pollution in the environment, providing an overview of washable polyester materials.
Collapse
|
50
|
Zhang J, Yu F, Hu X, Gao Y, Qu Q. Multifeature superposition analysis of the effects of microplastics on microbial communities in realistic environments. ENVIRONMENT INTERNATIONAL 2022; 162:107172. [PMID: 35290867 DOI: 10.1016/j.envint.2022.107172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) contamination has become an increasingly serious environmental problem. However, the risks of MP contamination in complex global climatic and geographic scenarios remain unclear. We established a multifeature superposition analysis boosting (MFAB) machine learning (ML) approach to address the above knowledge gap. MFAB-ML identified and predicted the importance, interaction networks and superposition effects of multiple features, including 34 characteristic variables (e.g., MP contamination and climatic and geographic variables), from 1354 samples distributed globally. MFAB-ML analysis achieved realistic and significant results, in some cases even opposite to those obtained using a single or a few features, revealing the importance of considering complicated scenarios. We found that the microbial diversity in East Asian seas will continually decrease due to the superposition effects of MPs with ocean warming; for example, the Chao1 index will decrease by 10.32% by 2065. The present work provides a powerful approach to identify and predict the multifeature superposition effects of pollutants on realistic environments in complicated climatic and geographic scenarios, overcoming the bias from general studies.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yiming Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|