1
|
Cox AW, Fernandes MA. Long-term cognitive and affective consequences of mild traumatic brain injury: comparison with older adults. Brain Inj 2024; 38:1133-1146. [PMID: 38994705 DOI: 10.1080/02699052.2024.2376769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE Memory and affective processing were compared in young adults with a remote mild traumatic brain injury (mTBI), to healthy younger and older adults. We evaluated memory performance when encoding was done under multi-tasking (divided attention) conditions, likely to exacerbate cognitive and psychological symptoms in mTBI. METHODS Participants studied pairs of unrelated words under either full or divided attention conditions. Memory for single words (item memory) and for pairs of words (associative memory) was then assessed in sequential independent recognition tests, under full attention. RESULTS Associative memory was poorer than item memory, and worse when encoding was done under divided than full attention. The decline in recognition accuracy from full to divided attention conditions on the associative memory test was significantly greater in mTBI compared to young adults and was similar in magnitude to that observed in older adults under full attention. Self-reported mental and total fatigue increased significantly as performance on the memory tests, following the divided attention condition, decreased, but only in the mTBI group. CONCLUSIONS Results show lingering memory deficits, and suggest that cognitive tasks may be experienced as psychologically more demanding in those with a mTBI, even months or years after injury.
Collapse
Affiliation(s)
- Adam William Cox
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - Myra A Fernandes
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Irshad CV, Padma Sri Lekha P, Abdul Azeez EP, Muhammed T. Late-life psychiatric factors and life satisfaction are associated with cognitive errors: evidence from an experimental module of a large-scale survey in India. Sci Rep 2024; 14:25917. [PMID: 39472727 PMCID: PMC11522421 DOI: 10.1038/s41598-024-76180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Older adults are at risk of committing cognitive and decision-making errors due to the decline in cognitive functions. However, the understanding of the determining factors of cognitive errors among ageing adults is limited. In this study, we explored the role of various psychiatric factors, life satisfaction, and other socioeconomic, health and behavioural risk factors of committing cognitive errors among middle-aged and older adults in India. The study utilized the data from the experimental module of the Longitudinal Ageing Study in India (LASI) Wave-1 (2017-2018) with a sample of 12,754 adults aged 45 years and above. The cognitive error was measured using logical fallacies committed in the activity-based experiments. The study employed descriptive, bivariate statistics and multivariable logistic regression models to identify the factors associated with cognitive errors among the study participants. Depression (aOR = 1.28, 99%, CI: 1.16-1.41), life satisfaction (aOR = 0.99, 99%, CI: 0.98-1.00), and cognitive impairment (aOR = 1.13, 90% CI: 1.00-1.30) self-reported psychiatric) were significantly associated with higher odds of committing cognitive errors among the middle-aged and older adults. Also, ageing adults with low educational levels, functional limitations, sleep disturbances, smoking history, living in rural areas and belonging to scheduled tribes had a higher probability of committing cognitive errors. However, involvement in physical activity, reading habits and social interactions reduced the odds of cognitive errors among this sample. Mental health and well-being indicators, including depression, life satisfaction, cognitive impairment, and other health and behavioural health factors, determine cognitive errors among ageing adults. Programs and policies should be initiated to address these factors, reduce cognitive errors, and ensure active ageing.
Collapse
Affiliation(s)
- C V Irshad
- School of Social Sciences and Languages, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - P Padma Sri Lekha
- School of Social Sciences and Languages, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - E P Abdul Azeez
- School of Social Sciences and Languages, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - T Muhammed
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
3
|
Billot A, Jhingan N, Varkanitsa M, Blank I, Ryskin R, Kiran S, Fedorenko E. The language network ages well: Preserved selectivity, lateralization, and within-network functional synchronization in older brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619954. [PMID: 39484368 PMCID: PMC11527140 DOI: 10.1101/2024.10.23.619954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Healthy aging is associated with structural and functional brain changes. However, cognitive abilities differ from one another in how they change with age: whereas executive functions, like working memory, show age-related decline, aspects of linguistic processing remain relatively preserved (Hartshorne et al., 2015). This heterogeneity of the cognitive-behavioral landscape in aging predicts differences among brain networks in whether and how they should change with age. To evaluate this prediction, we used individual-subject fMRI analyses ('precision fMRI') to examine the language-selective network (Fedorenko et al., 2024) and the Multiple Demand (MD) network, which supports executive functions (Duncan et al., 2020), in older adults (n=77) relative to young controls (n=470). In line with past claims, relative to young adults, the MD network of older adults shows weaker and less spatially extensive activations during an executive function task and reduced within-network functional synchronization. However, in stark contrast to the MD network, we find remarkable preservation of the language network in older adults. Their language network responds to language as strongly and selectively as in younger adults, and is similarly lateralized and internally synchronized. In other words, the language network of older adults looks indistinguishable from that of younger adults. Our findings align with behavioral preservation of language skills in aging and suggest that some networks remain young-like, at least on standard measures of function and connectivity. Significance Statement All organs, including brains, change as we age. However, the brain is not a uniform structure: it comprises multiple distinct networks, each supporting a different aspect of perception, motor control, and cognition. We examine two cognitive brain networks using fMRI and-across two independent cohorts-find a clear dissociation: the so-called Multiple Demand network, which supports executive functions (e.g., working memory), shows clear age-related decline; however, the language-selective network, which supports comprehension and production, remains young-like on all measures of network function and connectivity, in line with the preservation of linguistic skills in older adults. These findings challenge the notion of generalized brain aging and highlight the importance of dissociable components in the brain and mind.
Collapse
|
4
|
Gonzalez C, Ranchod S, Rakobowchuk M. Using multivariate partial least squares on fNIRS data to examine load-dependent brain-behaviour relationships in aging. PLoS One 2024; 19:e0312109. [PMID: 39401216 PMCID: PMC11472942 DOI: 10.1371/journal.pone.0312109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
Researchers implementing non-invasive neuroimaging have reported distinct load-dependent brain activity patterns in older adults compared with younger adults. Although findings are mixed, these age-related patterns are often associated with compensatory mechanisms of cognitive decline even in the absence of direct comparisons between brain activity and cognitive performance. This study investigated the effects of cognitive load on brain-behavior relationships in younger and older adults using a data-driven, multivariate partial least squares (PLS) analysis of functional near-infrared spectroscopy (fNIRS) data. We measured bilateral prefrontal brain activity in 31 older and 27 younger adults while they performed single and dual 2-back tasks. Behavioral PLS analysis was used to determine relationships between performance metrics (reaction time and error rate) and brain oxygenation (HbO) and deoxygenation (HbR) patterns across groups and task loads. Results revealed significant age-group differences in brain-behavior relationships. In younger adults, increased brain activity (i.e., increased HbO and decreased HbR) was associated with faster reaction times and better accuracy in the single task, indicating sufficient neural capacity. Conversely, older adults showed a negative correlation between HbR and error rates in the single task; however, in the dual task, they demonstrated a positive relationship between HbO and performance, indicative of compensatory mechanisms under the higher cognitive load. Overall, older adults' showed relationships with either HbR or HbO, but not both, indicating that the robustness of the relationship between brain activity and behavior varies across task load conditions. Our PLS approach revealed distinct load-dependent brain activity between age groups, providing further insight into neurocognitive aging patterns, such as compensatory mechanisms, by emphasizing the variability and complexity of brain-behavior relationships. Our findings also highlight the importance of considering task complexity and cognitive demands in interpreting age-related brain activity patterns.
Collapse
Affiliation(s)
- Claudia Gonzalez
- Psychology Department, Faculty of Arts, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Supreeta Ranchod
- Biology Department, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Mark Rakobowchuk
- Biology Department, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| |
Collapse
|
5
|
Fenerci C, Setton R, Baracchini G, Snytte J, Spreng RN, Sheldon S. Lifespan differences in hippocampal subregion connectivity patterns during movie watching. Neurobiol Aging 2024; 141:182-193. [PMID: 38968875 DOI: 10.1016/j.neurobiolaging.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/17/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18-88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.
Collapse
Affiliation(s)
- Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada.
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jamie Snytte
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, QC, Canada; Department of Psychology, Harvard University, Cambridge, MA, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Wen W, Grover S, Hazel D, Berning P, Baumgardt F, Viswanathan V, Tween O, Reinhart RMG. Beta-band neural variability reveals age-related dissociations in human working memory maintenance and deletion. PLoS Biol 2024; 22:e3002784. [PMID: 39259713 PMCID: PMC11389900 DOI: 10.1371/journal.pbio.3002784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Maintaining and removing information in mind are 2 fundamental cognitive processes that decline sharply with age. Using a combination of beta-band neural oscillations, which have been implicated in the regulation of working memory contents, and cross-trial neural variability, an undervalued property of brain dynamics theorized to govern adaptive cognitive processes, we demonstrate an age-related dissociation between distinct working memory functions-information maintenance and post-response deletion. Load-dependent decreases in beta variability during maintenance predicted memory performance of younger, but not older adults. Surprisingly, the post-response phase emerged as the predictive locus of working memory performance for older adults, with post-response beta variability correlated with memory performance of older, but not younger adults. Single-trial analysis identified post-response beta power elevation as a frequency-specific signature indexing memory deletion. Our findings demonstrate the nuanced interplay between age, beta dynamics, and working memory, offering valuable insights into the neural mechanisms of cognitive decline in agreement with the inhibition deficit theory of aging.
Collapse
Affiliation(s)
- Wen Wen
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Shrey Grover
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Douglas Hazel
- Tufts University, Department of Biology, Medford, Massachusetts, United States of America
| | - Peyton Berning
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Frederik Baumgardt
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Vighnesh Viswanathan
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Olivia Tween
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Robert M G Reinhart
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Cognitive Neuroimaging Center, Boston University, Boston, Massachusetts, United States of America
- Center for Research in Sensory Communication and Emerging Neural Technology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Ilyés A, Paulik B, Keresztes A. Discrimination of semantically similar verbal memory traces is affected in healthy aging. Sci Rep 2024; 14:17971. [PMID: 39095437 PMCID: PMC11297280 DOI: 10.1038/s41598-024-68380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Mnemonic discrimination of highly similar memory traces is affected in healthy aging via changes in hippocampal pattern separation-i.e., the ability of the hippocampus to orthogonalize highly similar neural inputs. The decline of this process leads to a loss of episodic specificity. Because previous studies have almost exclusively tested mnemonic discrimination of visuospatial stimuli (e.g., objects or scenes), less is known about age-related effects on the episodic specificity of semantically similar traces. To address this gap, we designed a task to assess mnemonic discrimination of verbal stimuli as a function of semantic similarity based on word embeddings. Forty young (Mage = 21.7 years) and 40 old adults (Mage = 69.8 years) first incidentally encoded adjective-noun phrases, then performed a surprise recognition test involving exactly repeated and highly similar lure phrases. We found that increasing semantic similarity negatively affected mnemonic discrimination in both age groups, and that compared to young adults, older adults showed worse discrimination at medium levels of semantic similarity. These results indicate that episodic specificity of semantically similar memory traces is affected in aging via less efficient mnemonic operations and strengthen the notion that mnemonic discrimination is a modality-independent process supporting memory specificity across representational domains.
Collapse
Affiliation(s)
- Alex Ilyés
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Borbála Paulik
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Keresztes
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
Ho NCW, Bethlehem RAI, Seidlitz J, Nogovitsyn N, Metzak P, Ballester PL, Hassel S, Rotzinger S, Poppenk J, Lam RW, Taylor VH, Milev R, Bullmore ET, Alexander-Bloch AF, Frey BN, Harkness KL, Addington J, Kennedy SH, Dunlop K. Atypical Brain Aging and Its Association With Working Memory Performance in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:786-799. [PMID: 38679324 DOI: 10.1016/j.bpsc.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Patients with major depressive disorder (MDD) can present with altered brain structure and deficits in cognitive function similar to those seen in aging. However, the interaction between age-related brain changes and brain development in MDD remains understudied. In a cohort of adolescents and adults with and without MDD, we assessed brain aging differences and associations through a newly developed tool that quantifies normative neurodevelopmental trajectories. METHODS A total of 304 participants with MDD and 236 control participants without depression were recruited and scanned from 3 studies under the Canadian Biomarker Integration Network for Depression. Volumetric data were used to generate brain centile scores, which were examined for 1) differences between participants with MDD and control participants; 2) differences between individuals with versus without severe childhood maltreatment; and 3) correlations with depressive symptom severity, neurocognitive assessment domains, and escitalopram treatment response. RESULTS Brain centiles were significantly lower in the MDD group than in the control group. Brain centile was also significantly correlated with working memory in the control group but not the MDD group. No significant associations were observed between depression severity or antidepressant treatment response and brain centiles. Likewise, childhood maltreatment history did not significantly affect brain centiles. CONCLUSIONS Consistent with previous work on machine learning models that predict brain age, brain centile scores differed in people diagnosed with MDD, and MDD was associated with differential relationships between centile scores and working memory. The results support the notion of atypical development and aging in MDD, with implications for neurocognitive deficits associated with aging-related cognitive function.
Collapse
Affiliation(s)
- Natalie C W Ho
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Institute of Translational Medicine & Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nikita Nogovitsyn
- Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada
| | - Paul Metzak
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Pedro L Ballester
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Susan Rotzinger
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Treatment and Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jordan Poppenk
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada; School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valerie H Taylor
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Roumen Milev
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada; Providence Care Hospital, Kingston, Ontario, Canada
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Institute of Translational Medicine & Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benicio N Frey
- Mood Disorders Treatment and Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Sidney H Kennedy
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Katharine Dunlop
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Wang P, Guo SJ, Li HJ. Brain imaging of a gamified cognitive flexibility task in young and older adults. Brain Imaging Behav 2024; 18:902-912. [PMID: 38627304 DOI: 10.1007/s11682-024-00883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 08/31/2024]
Abstract
The study aimed to develop and validate a gamified cognitive flexibility task through brain imaging, and to investigate behavioral and brain activation differences between young and older adults during task performance. Thirty-one young adults (aged 18-35) and 31 older adults (aged 60-80) were included in the present study. All participants underwent fMRI scans while completing the gamified cognitive flexibility task. Results showed that young adults outperformed older adults on the task. The left inferior frontal junction (IFJ), a key region of cognitive flexibility, was significantly activated during the task in both older and young adults. Comparatively, the percent signal change in the left IFJ was stronger in older adults than in young adults. Moreover, older adults demonstrated more precise representations during the task in the left IFJ. Additionally, the left inferior parietal lobule (IPL) and superior parietal lobule in older adults and the left middle frontal gyrus (MFG) and inferior frontal gyrus in young adults were also activated during the task. Psychophysiological interaction analyses showed significant functional connectivity between the left IFJ and the left IPL, as well as the right precuneus in older adults. In young adults, significant functional connectivity was found between the left IFJ and the left MFG, as well as the right angular. The current study provides preliminary evidence for the validity of the gamified cognitive flexibility task through brain imaging. The findings suggest that this task could serve as a reliable tool for assessing cognitive flexibility and for exploring age-related differences of cognitive flexibility in both brain and behavior.
Collapse
Affiliation(s)
- Ping Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
- McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Sheng-Ju Guo
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui-Jie Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Latimer CS, Prater KE, Postupna N, Dirk Keene C. Resistance and Resilience to Alzheimer's Disease. Cold Spring Harb Perspect Med 2024; 14:a041201. [PMID: 38151325 PMCID: PMC11293546 DOI: 10.1101/cshperspect.a041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dementia is a significant public health crisis; the most common underlying cause of age-related cognitive decline and dementia is Alzheimer's disease neuropathologic change (ADNC). As such, there is an urgent need to identify novel therapeutic targets for the treatment and prevention of the underlying pathologic processes that contribute to the development of AD dementia. Although age is the top risk factor for dementia in general and AD specifically, these are not inevitable consequences of advanced age. Some individuals are able to live to advanced age without accumulating significant pathology (resistance to ADNC), whereas others are able to maintain cognitive function despite the presence of significant pathology (resilience to ADNC). Understanding mechanisms of resistance and resilience will inform therapeutic strategies to promote these processes to prevent or delay AD dementia. This article will highlight what is currently known about resistance and resilience to AD, including our current understanding of possible underlying mechanisms that may lead to candidate preventive and treatment interventions for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - Katherine E Prater
- Department of Neurology, University of Washington, Seattle 98195, Washington, USA
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| |
Collapse
|
11
|
Arenaza‐Urquijo EM, Boyle R, Casaletto K, Anstey KJ, Vila‐Castelar C, Colverson A, Palpatzis E, Eissman JM, Kheng Siang Ng T, Raghavan S, Akinci M, Vonk JMJ, Machado LS, Zanwar PP, Shrestha HL, Wagner M, Tamburin S, Sohrabi HR, Loi S, Bartrés‐Faz D, Dubal DB, Vemuri P, Okonkwo O, Hohman TJ, Ewers M, Buckley RF. Sex and gender differences in cognitive resilience to aging and Alzheimer's disease. Alzheimers Dement 2024; 20:5695-5719. [PMID: 38967222 PMCID: PMC11350140 DOI: 10.1002/alz.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Sex and gender-biological and social constructs-significantly impact the prevalence of protective and risk factors, influencing the burden of Alzheimer's disease (AD; amyloid beta and tau) and other pathologies (e.g., cerebrovascular disease) which ultimately shape cognitive trajectories. Understanding the interplay of these factors is central to understanding resilience and resistance mechanisms explaining maintained cognitive function and reduced pathology accumulation in aging and AD. In this narrative review, the ADDRESS! Special Interest Group (Alzheimer's Association) adopted a multidisciplinary approach to provide the foundations and recommendations for future research into sex- and gender-specific drivers of resilience, including a sex/gender-oriented review of risk factors, genetics, AD and non-AD pathologies, brain structure and function, and animal research. We urge the field to adopt a sex/gender-aware approach to resilience to advance our understanding of the intricate interplay of biological and social determinants and consider sex/gender-specific resilience throughout disease stages. HIGHLIGHTS: Sex differences in resilience to cognitive decline vary by age and cognitive status. Initial evidence supports sex-specific distinctions in brain pathology. Findings suggest sex differences in the impact of pathology on cognition. There is a sex-specific change in resilience in the transition to clinical stages. Gender and sex factors warrant study: modifiable, immune, inflammatory, and vascular.
Collapse
Affiliation(s)
- Eider M. Arenaza‐Urquijo
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Rory Boyle
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kaitlin Casaletto
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kaarin J. Anstey
- University of New South Wales Ageing Futures InstituteSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Psychology, University of New South WalesSidneyNew South WalesAustralia
| | | | - Aaron Colverson
- University of Florida Center for Arts in Medicine Interdisciplinary Research LabUniversity of Florida, Center of Arts in MedicineGainesvilleFloridaUSA
| | - Eleni Palpatzis
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jaclyn M. Eissman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ted Kheng Siang Ng
- Rush Institute for Healthy Aging and Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Muge Akinci
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jet M. J. Vonk
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luiza S. Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, FarroupilhaPorto AlegreBrazil
| | - Preeti P. Zanwar
- Jefferson College of Population Health, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- The Network on Life Course and Health Dynamics and Disparities, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Maude Wagner
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealth Future InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Psychology, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha Loi
- Neuropsychiatry Centre, Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
| | - David Bartrés‐Faz
- Department of MedicineFaculty of Medicine and Health Sciences & Institut de NeurociènciesUniversity of BarcelonaBarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques (IDIBAPS)BarcelonaBarcelonaSpain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de BarcelonaBadalonaBarcelonaSpain
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Biomedical and Neurosciences Graduate ProgramsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Ozioma Okonkwo
- Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Ewers
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig Maximilians Universität (LMU)MunichGermany
- German Center for Neurodegenerative Diseases (DZNE, Munich)MunichGermany
| | - Rachel F. Buckley
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
12
|
Javaid H, Nouman M, Cheaha D, Kumarnsit E, Chatpun S. Complexity measures reveal age-dependent changes in electroencephalogram during working memory task. Behav Brain Res 2024; 470:115070. [PMID: 38806100 DOI: 10.1016/j.bbr.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The alterations in electroencephalogram (EEG) signals are the complex outputs of functional factors, such as normal physiological aging, pathological process, which results in further cognitive decline. It is not clear that when brain aging initiates, but elderly people are vulnerable to be incipient of neurodegenerative diseases such as Alzheimer's disease. The EEG signals were recorded from 20 healthy middle age and 20 healthy elderly subjects while performing a working memory task. Higuchi's fractal dimension (HFD), Katz's fractal dimension (KFD), sample entropy and three Hjorth parameters were extracted to analyse the complexity of EEG signals. Four machine learning classifiers, multilayer perceptron (MLP), support vector machine (SVM), K-nearest neighbour (KNN), and logistic model tree (LMT) were employed to distinguish the EEG signals of middle age and elderly age groups. HFD, KFD and Hjorth complexity were found significantly correlated with age. MLP achieved the highest overall accuracy of 93.75%. For posterior region, the maximum accuracy of 92.50% was achieved using MLP. Since fractal dimension associated with the complexity of EEG signals, HFD, KFD and Hjorth complexity demonstrated the decreased complexity from middle age to elderly groups. The complexity features appear to be more appropriate indicators of monitoring EEG signal complexity in healthy aging.
Collapse
Affiliation(s)
- Hamad Javaid
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, Ex4 4QG, United Kingdom
| | - Muhammad Nouman
- Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Dania Cheaha
- Biology program, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Biosignal Research Centre for Health, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Ekkasit Kumarnsit
- Biosignal Research Centre for Health, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand; Physiology Program, Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Surapong Chatpun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Biosignal Research Centre for Health, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand; Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
13
|
Petersen M, Link MA, Mayer C, Nägele FL, Schell M, Fiehler J, Gallinat J, Kühn S, Twerenbold R, Omidvarnia A, Hoffstaedter F, Patil KR, Eickhoff SB, Thomalla G, Cheng B. Markers of Biological Brain Aging Mediate Effects of Vascular Risk Factors on Cognitive and Motor Functions: A Multivariate Imaging Analysis of 40,579 Individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.24.24310926. [PMID: 39108518 PMCID: PMC11302623 DOI: 10.1101/2024.07.24.24310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The increasing global life expectancy brings forth challenges associated with age-related cognitive and motor declines. To better understand underlying mechanisms, we investigated the connection between markers of biological brain aging based on magnetic resonance imaging (MRI), cognitive and motor performance, as well as modifiable vascular risk factors, using a large-scale neuroimaging analysis in 40,579 individuals of the population-based UK Biobank and Hamburg City Health Study. Employing partial least squares correlation analysis (PLS), we investigated multivariate associative effects between three imaging markers of biological brain aging - relative brain age, white matter hyperintensities of presumed vascular origin, and peak-width of skeletonized mean diffusivity - and multi-domain cognitive test performances and motor test results. The PLS identified a latent dimension linking higher markers of biological brain aging to poorer cognitive and motor performances, accounting for 94.7% of shared variance. Furthermore, a mediation analysis revealed that biological brain aging mediated the relationship of vascular risk factors - including hypertension, glucose, obesity, and smoking - to cognitive and motor function. These results were replicable in both cohorts. By integrating multi-domain data with a comprehensive methodological approach, our study contributes evidence of a direct association between vascular health, biological brain aging, and functional cognitive as well as motor performance, emphasizing the need for early and targeted preventive strategies to maintain cognitive and motor independence in aging populations.
Collapse
Affiliation(s)
- Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz A Link
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix L Nägele
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Schell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raphael Twerenbold
- Department of General and Interventional Cardiology, University Heart and Vascular Center, Hamburg, Germany
- Epidemiological Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center, Hamburg, Germany
| | - Amir Omidvarnia
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jullich, Jullich, Germany
| | - Felix Hoffstaedter
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jullich, Jullich, Germany
| | - Kaustubh R Patil
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jullich, Jullich, Germany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jullich, Jullich, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Nemati S, Arjmandi M, Busby N, Bonilha L, Fridriksson J. The impact of age-related hearing loss on cognitive decline: The mediating role of brain age gap. Neuroscience 2024; 551:185-195. [PMID: 38838977 DOI: 10.1016/j.neuroscience.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
In recent years, the relationship between age-related hearing loss, cognitive decline, and the risk of dementia has garnered significant attention. The significant variability in brain health and aging among individuals of the same chronological age suggests that a measure assessing how one's brain ages may better explain hearing-cognition links. The main aim of this study was to investigate the mediating role of Brain Age Gap (BAG) in the association between hearing impairment and cognitive function. This research included 185 participants aged 20-79 years. BAG was estimated based on the difference between participant's brain age (estimated based on their structural T1-weighted MRI scans) and chronological age. Cognitive performance was assessed using the Montreal Cognitive Assessment (MoCA) test while hearing ability was measured using pure-tone thresholds (PTT) and words-in-noise (WIN) perception. Mediation analyses were used to examine the mediating role of BAG in the relationship between age-related hearing loss as well as difficulties in WIN perception and cognition. Participants with poorer hearing sensitivity and WIN perception showed lower MoCA scores, but this was an indirect effect. Participants with poorer performance on PTT and WIN tests had larger BAG (accelerated brain aging), and this was associated with poorer performance on the MoCA test. Mediation analyses showed that BAG partially mediated the relationship between age-related hearing loss and cognitive decline. This study enhances our understanding of the interplay among hearing loss, cognition, and BAG, emphasizing the potential value of incorporating brain age assessments in clinical evaluations to gain insights beyond chronological age, thus advancing strategies for preserving cognitive health in aging populations.
Collapse
Affiliation(s)
- Samaneh Nemati
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Meisam Arjmandi
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
15
|
Montemurro S, Borek D, Marinazzo D, Zago S, Masina F, Napoli E, Filippini N, Arcara G. Aperiodic component of EEG power spectrum and cognitive performance are modulated by education in aging. Sci Rep 2024; 14:15111. [PMID: 38956186 PMCID: PMC11220063 DOI: 10.1038/s41598-024-66049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Recent studies have shown a growing interest in the so-called "aperiodic" component of the EEG power spectrum, which describes the overall trend of the whole spectrum with a linear or exponential function. In the field of brain aging, this aperiodic component is associated both with age-related changes and performance on cognitive tasks. This study aims to elucidate the potential role of education in moderating the relationship between resting-state EEG features (including aperiodic component) and cognitive performance in aging. N = 179 healthy participants of the "Leipzig Study for Mind-Body-Emotion Interactions" (LEMON) dataset were divided into three groups based on age and education. Older adults exhibited lower exponent, offset (i.e. measures of aperiodic component), and Individual Alpha Peak Frequency (IAPF) as compared to younger adults. Moreover, visual attention and working memory were differently associated with the aperiodic component depending on education: in older adults with high education, higher exponent predicted slower processing speed and less working memory capacity, while an opposite trend was found in those with low education. While further investigation is needed, this study shows the potential modulatory role of education in the relationship between the aperiodic component of the EEG power spectrum and aging cognition.
Collapse
Affiliation(s)
- Sonia Montemurro
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology, FISPPA, University of Padova, Padua, Italy.
| | - Daniel Borek
- Department of Data-Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Daniele Marinazzo
- Department of Data-Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Sara Zago
- IRCCS San Camillo Hospital, Venice, Italy
| | | | | | | | | |
Collapse
|
16
|
Singh K, Barsoum S, Schilling KG, An Y, Ferrucci L, Benjamini D. Neuronal microstructural changes in the human brain are associated with neurocognitive aging. Aging Cell 2024; 23:e14166. [PMID: 38659245 PMCID: PMC11258428 DOI: 10.1111/acel.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.
Collapse
Affiliation(s)
- Kavita Singh
- Multiscale Imaging and Integrative Biophysics UnitNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Stephanie Barsoum
- Multiscale Imaging and Integrative Biophysics UnitNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Kurt G. Schilling
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Yang An
- Brain Aging and Behavior SectionNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology BranchNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics UnitNational Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
17
|
Papenberg G, Karalija N, Johansson J, Andersson M, Axelsson J, Riklund K, Lindenberger U, Nyberg L, Bäckman L. The influence of hippocampal dopamine D2 receptor losses on episodic-memory decline across 5 years is moderated by BDNF and KIBRA polymorphisms. Cortex 2024; 176:53-61. [PMID: 38749085 DOI: 10.1016/j.cortex.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 06/11/2024]
Abstract
Losses in dopamine (DA) functioning may contribute to aging-related decline in cognition. Hippocampal DA is necessary for successful episodic memory formation. Previously, we reported that higher DA D2 receptor (D2DR) availability in hippocampus is beneficial for episodic memory only in older carriers of more advantageous genotypes of well-established plasticity-related genetic variations, the brain-derived neurotrophic factor (BDNF, rs6265) and the kidney and brain expressed protein (KIBRA, rs17070145) polymorphisms. Extending our observations to the longitudinal level, the current data show that individuals with one or no beneficial BDNF and KIBRA genotype (n = 80) decline more in episodic memory across five years, without any contribution of losses in hippocampal D2DR availability to memory decline. Although carriers of two beneficial genotypes (n = 39) did not decline overall in episodic memory, losses of hippocampal D2DR availability were predictive of episodic-memory decline among these individuals. Our findings have implications for interventions targeting DA modulation to enhance episodic memory in aging, which may not benefit all older individuals.
Collapse
Affiliation(s)
- Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Lars Nyberg
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Ludwig M, Yi YJ, Lüsebrink F, Callaghan MF, Betts MJ, Yakupov R, Weiskopf N, Dolan RJ, Düzel E, Hämmerer D. Functional locus coeruleus imaging to investigate an ageing noradrenergic system. Commun Biol 2024; 7:777. [PMID: 38937535 PMCID: PMC11211439 DOI: 10.1038/s42003-024-06446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
The locus coeruleus (LC), our main source of norepinephrine (NE) in the brain, declines with age and is a potential epicentre of protein pathologies in neurodegenerative diseases (ND). In vivo measurements of LC integrity and function are potentially important biomarkers for healthy ageing and early ND onset. In the present study, high-resolution functional MRI (fMRI), a reversal reinforcement learning task, and dedicated post-processing approaches were used to visualise age differences in LC function (N = 50). Increased LC responses were observed during emotionally and task-related salient events, with subsequent accelerations and decelerations in reaction times, respectively, indicating context-specific adaptive engagement of the LC. Moreover, older adults exhibited increased LC activation compared to younger adults, indicating possible compensatory overactivation of a structurally declining LC in ageing. Our study shows that assessment of LC function is a promising biomarker of cognitive aging.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
- NMR Methods Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Jin X, Zhang L, Wu G, Wang X, Du Y. Compensation or Preservation? Different Roles of Functional Lateralization in Speech Perception of Older Non-musicians and Musicians. Neurosci Bull 2024:10.1007/s12264-024-01234-x. [PMID: 38839688 DOI: 10.1007/s12264-024-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 06/07/2024] Open
Abstract
Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.
Collapse
Affiliation(s)
- Xinhu Jin
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Wu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyi Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Du
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
20
|
Yao Y, Luo R, Fan C, Qian Y, Zang X. Age-related contextual cueing features are more evident in reaction variability than in reaction time. Q J Exp Psychol (Hove) 2024:17470218241241954. [PMID: 38485526 DOI: 10.1177/17470218241241954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Visual-spatial contextual cueing learning underpins the daily lives of older adults, enabling them to navigate their surroundings, perform daily activities, and maintain cognitive function. While the contextual cueing effect has received increasing attention from researchers, the relationship between this cognitive ability and healthy ageing remains controversial. To investigate whether visual-spatial contextual cueing learning declines with age, we examined the contextual learning patterns of older (60-71 years old) and younger adults (18-26 years old) using a contextual-guided visual search paradigm and response variability measurements. We observed significant contextual learning effects in both age groups, impacting response speed and variability, with these effects persisting for at least 24 days. However, older adults required more repetitions and memorised fewer repeated stimuli during initial learning. Interestingly, their long-term memory maintenance appeared stronger, as their contextual facilitation persisted in both response speed and variability, while younger adults only persisted in response speed but not variability. Overall, our results suggest an age-related complex and diverse contextual cueing pattern, with older adults showing weaker learning but stronger long-term memory maintenance compared with younger adults.
Collapse
Affiliation(s)
- Yipeng Yao
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Rong Luo
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Chengyu Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
| | - Yeke Qian
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
| | - Xuelian Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
21
|
Reynolds A, Greenfield EA, Nepomnyaschy L. Disparate benefits of higher childhood socioeconomic status on cognition in young adulthood by intersectional social positions. ADVANCES IN LIFE COURSE RESEARCH 2024; 60:100608. [PMID: 38552532 PMCID: PMC11129928 DOI: 10.1016/j.alcr.2024.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES Emerging evidence supports the protective effects of higher childhood socioeconomic status (cSES) on cognition over the life course. However, less understood is if higher cSES confers benefits equally across intersecting social positions. Guided by a situational intersectionality perspective and the theory of Minority Diminished Returns (MDR), this study examined the extent to which associations between cSES and cognition in young adulthood are jointly moderated by racialized identity and region of childhood residence. METHODS Using data from the National Longitudinal Study of Adolescent to Adult Health (Add Health), we used multilevel modeling to test associations between cSES and delayed recall and working memory 14 years later when participants were ages 25-34. Further, we examined the influence of racialized identity and region of childhood residence on these associations. RESULTS Higher cSES was associated with higher delayed recall and working memory scores across social positions. However, the strength of the association between higher cSES and working memory differed across racialized subgroups and region of childhood residence. We found a statistically significant three-way interaction between cSES, race and region of childhood residence. Of particular important, a small yet statistically robust association was found in all groups, but was especially strong among White Southerners and especially weak among Black participants from the South. CONCLUSIONS This study contributes to a growing body of research indicating that the protective effects of higher cSES on cognition are not universal across subgroups of intersecting social positions, consistent with the theory of MDR. These findings provide evidence for the importance of considering the role of systemic racism across geographic contexts as part of initiatives to promote equity in life course cognitive aging and brain health.
Collapse
Affiliation(s)
- Addam Reynolds
- Andrus Gerontology Center, 3715 McClintock Ave, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Emily A Greenfield
- School of Social Work, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lenna Nepomnyaschy
- School of Social Work, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
22
|
Derks-Dijkman MW, Schaefer RS, Baan-Wessels L, van Tilborg IADA, Kessels RPC. Effects of musical mnemonics on working memory performance in cognitively unimpaired older adults and persons with amnestic mild cognitive impairment. J Neuropsychol 2024; 18:286-299. [PMID: 37583255 DOI: 10.1111/jnp.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
Episodic memory (EM) and working memory (WM) are negatively affected by healthy ageing, and additional memory impairment typically occurs in clinical ageing-related conditions such as amnestic mild cognitive impairment (aMCI). Recent studies on musical mnemonics in Alzheimer's dementia (AD) showed promising results on EM performance. However, the effects of musical mnemonics on WM performance have not yet been studied in (a)MCI or AD. Particularly in (a)MCI the use of musical mnemonics may benefit the optimisation of (working) memory performance. Therefore, in the present study, we examined the effects of musical presentation of digits consisting of pre-recorded rhythms, sung unfamiliar pitch sequences, and their combinations, as compared to spoken presentation. Furthermore, musical expertise was assessed with two perceptual tests and the Self-Report Inventory of the Goldsmiths Musical Sophistication Index. Thirty-two persons with aMCI and 32 cognitively unimpaired older adults (OA) participated in this study. Confirming and extending previous findings in research on ageing, our results show a facilitating effect of rhythm in both cognitively unimpaired OA and persons with aMCI (p = .001, ηp 2 = .158). Furthermore, pitch (p = .048, ηp 2 = .062) and melody (p = .012, ηp 2 = .098) negatively affected performance in both groups. Musical expertise increased this beneficial effect of musical mnemonics (p = .021, ηp 2 = .090). Implications for the future design of music-based memorisation strategies in (a)MCI are discussed.
Collapse
Affiliation(s)
- Marije W Derks-Dijkman
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Klimmendaal Rehabilitation Center, Arnhem/Zutphen, The Netherlands
- Health, Medical & Neuropsychology Unit, Institute for Psychology, Leiden University, Leiden, The Netherlands
| | - Rebecca S Schaefer
- Health, Medical & Neuropsychology Unit, Institute for Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Academy of Creative and Performing Arts, Leiden University, Leiden, The Netherlands
| | - Lisa Baan-Wessels
- de Boerhaven Expertisecentrum voor persoonlijkheidsstoornissen, Mediant Geestelijke Gezondheidszorg, Hengelo, The Netherlands
| | | | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Klimmendaal Rehabilitation Center, Arnhem/Zutphen, The Netherlands
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
- Department of Medical Psychology & Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Gaynor AM, Gazes Y, Haynes CR, Babukutty RS, Habeck C, Stern Y, Gu Y. Childhood engagement in cognitively stimulating activities moderates relationships between brain structure and cognitive function in adulthood. Neurobiol Aging 2024; 138:36-44. [PMID: 38522385 PMCID: PMC11363693 DOI: 10.1016/j.neurobiolaging.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Greater engagement in cognitively stimulating activities (CSA) during adulthood has been shown to protect against neurocognitive decline, but no studies have investigated whether CSA during childhood protects against effects of brain changes on cognition later in life. The current study tested the moderating role of childhood CSA in the relationships between brain structure and cognitive performance during adulthood. At baseline (N=250) and 5-year follow-up (N=204) healthy adults aged 20-80 underwent MRI to assess four structural brain measures and completed neuropsychological tests to measure three cognitive domains. Participants were categorized into low and high childhood CSA based on self-report questionnaires. Results of multivariable linear regressions analyzing interactions between CSA, brain structure, and cognition showed that higher childhood CSA was associated with a weaker relationship between cortical thickness and memory at baseline, and attenuated the effects of change in cortical thickness and brain volume on decline in processing speed over time. These findings suggest higher CSA during childhood may mitigate the effects of brain structure changes on cognitive function later in life.
Collapse
Affiliation(s)
- Alexandra M Gaynor
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Montclair State University, Department of Psychology, Montclair, NJ, United States
| | - Yunglin Gazes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Caleb R Haynes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Reshma S Babukutty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States
| | - Christian Habeck
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Psychiatry, Columbia University, New York, NY, United States
| | - Yian Gu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States.
| |
Collapse
|
24
|
Fjell AM. Aging Brain from a Lifespan Perspective. Curr Top Behav Neurosci 2024. [PMID: 38797799 DOI: 10.1007/7854_2024_476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Research during the last two decades has shown that the brain undergoes continuous changes throughout life, with substantial heterogeneity in age trajectories between regions. Especially, temporal and prefrontal cortices show large changes, and these correlate modestly with changes in the corresponding cognitive abilities such as episodic memory and executive function. Changes seen in normal aging overlap with changes seen in neurodegenerative conditions such as Alzheimer's disease; differences between what reflects normal aging vs. a disease-related change are often blurry. This calls for a dimensional view on cognitive decline in aging, where clear-cut distinctions between normality and pathology cannot be always drawn. Although much progress has been made in describing typical patterns of age-related changes in the brain, identifying risk and protective factors, and mapping cognitive correlates, there are still limits to our knowledge that should be addressed by future research. We need more longitudinal studies following the same participants over longer time intervals with cognitive testing and brain imaging, and an increased focus on the representativeness vs. selection bias in neuroimaging research of aging.
Collapse
Affiliation(s)
- Anders Martin Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway.
| |
Collapse
|
25
|
Antón-Fernández A, Roldán-Lázaro M, Vallés-Saiz L, Ávila J, Hernández F. In vivo cyclic overexpression of Yamanaka factors restricted to neurons reverses age-associated phenotypes and enhances memory performance. Commun Biol 2024; 7:631. [PMID: 38789561 PMCID: PMC11126596 DOI: 10.1038/s42003-024-06328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been success in partially reprogramming peripheral organ cells using cyclic Yamanaka transcription factor (YF) expression, resulting in the reversal of age-related pathologies. In the case of the brain, the effects of partial reprogramming are scarcely known, and only some of its effects have been observed through the widespread expression of YF. This study is the first to exclusively partially reprogram a specific subpopulation of neurons in the cerebral cortex of aged mice. The in vivo model demonstrate that YF expression in postmitotic neurons does not dedifferentiate them, and it avoids deleterious effects observed with YF expression in other cell types. Additionally, our study demonstrates that only cyclic, not continuous, expression of YF result in a noteworthy enhancement of cognitive function in adult mice. This enhancement is closely tied to increased neuronal activation in regions related to memory processes, reversed aging-related epigenetic markers and to increased plasticity, induced by the reorganization of the extracellular matrix. These findings support the therapeutic potential of targeted partial reprogramming of neurons in addressing age-associated phenotypes and neurodegenerative diseases correlated with aging.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Serrano 117, 28006, Madrid, Spain.
| | - Marta Roldán-Lázaro
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Laura Vallés-Saiz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Serrano 117, 28006, Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
26
|
Zhao S, Sang F, Liu C, Wang F, Liu J, Chen C, Wang J, Li X, Zhang Z. Age-related enhancement of the association between episodic memory and gray matter volume in medial temporal and frontal lobes. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:10. [PMID: 38702688 PMCID: PMC11069137 DOI: 10.1186/s12993-024-00237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Episodic memory (EM) deteriorates as a result of normal aging as well as Alzheimer's disease. The neural underpinnings of such age-related memory impairments in older individuals are not well-understood. Although previous research has unveiled the association between gray matter volume (GMV) and EM in the elderly population, such findings exhibit variances across distinct age cohorts. Consequently, an investigation into the dynamic evolution of this relationship with advancing age is imperative. RESULT The present study utilized a sliding window approach to examine how the correlation between EM and GMV varied with age in a cross-sectional sample of 926 Chinese older adults. We found that both verbal EM (VEM) and spatial EM (SEM) exhibited positive correlations with GMV in extensive areas primarily in the temporal and frontal lobes and that these correlations typically became stronger with older age. Moreover, there were variations in the strength of the correlation between EM and GMV with age, which differed based on sex and the specific type of EM. Specifically, the association between VEM and GMVs in the insula and parietal regions became stronger with age for females but not for males, whereas the association between SEM and GMVs in the parietal and occipital regions became stronger for males but not for females. At the brain system level, there is a significant age-related increase in the correlations between both types of EM and the GMV of both the anterior temporal (AT) system and the posterior medial (PM) system in male group. In females, both types of EM show stronger age-related correlations with the GMV of the AT system compared to males. CONCLUSIONS Our study revealed a significant positive correlation between GMV in most regions associated with EM and age, particularly in the frontal and temporal lobes. This discovery offers new insights into the connection between brain structure and the diminishing episodic memory function among older individuals.
Collapse
Affiliation(s)
- Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Chen Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Fei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Jiawen Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, 92697, USA
| | - Jun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
27
|
Wang S, Wong LLN. Development of the Mandarin Digit-in-Noise Test and Examination of the Effect of the Number of Digits Used in the Test. Ear Hear 2024; 45:572-582. [PMID: 37990396 DOI: 10.1097/aud.0000000000001447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
OBJECTIVES The study aimed to develop and validate the Mandarin digit-in-noise (DIN) test using four digit (i.e., two-, three-, four-, and five-digit) sequences. Test-retest reliability and criterion validity were evaluated. How the number of digits affected the results was examined. The research might lead to more informed choice of DIN tests for populations with specific cognitive needs such as memory impairment. DESIGN The International Collegium of Rehabilitative Audiology guideline for developing the DIN was adapted to create test materials. The test-retest reliability and psychometric function of each digit sequence were determined among young normal-hearing adults. The criterion validity of each digit sequence was determined by comparing the measured performance of older adult hearing aid users with that obtained from two other well-established sentence-in-noise tests: the Mandarin hearing-in-noise test and the Mandarin Chinese matrix test. The relation between the speech reception thresholds (SRTs) of each digit sequence of the DIN test and working memory capacity measured using the digit span test and the reading span test were explored among older adult hearing aid users. Together, the study sample consisted of 54 young normal-hearing adults and 56 older adult hearing aid users. RESULTS The slopes associated with the two-, three-, four-, and five-digit DIN test were 16.58, 18.79, 20.42, and 21.09 %/dB, respectively, and the mean SRTs were -11.11, -10.99, -10.56, and -10.02 dB SNR, respectively. Test-retest SRTs did not differ by more than 0.74 dB across all digit sequences, suggesting good test-retest reliability. Spearman rank-order correlation coefficients between SRTs obtained using the DIN across the four digit (i.e., two-, three-, four-, and five-digit) sequences and the two sentence-in-noise tests were uniformly high ( rs = 0.9) across all participants, when data from all participants were considered. Results from the digit span test and reading span test correlated significantly with the results of the five-digit sequences ( rs = -0.37 and -0.42, respectively) but not with the results of the two-, three-, and four-digit sequences among older hearing aid users. CONCLUSIONS While the three-digit sequence was found to be appropriate for clinical use for assessment of auditory perception, the two-digit sequence could be used for hearing screening. The five-digit sequence could be difficult for older hearing aid users, and with its SRT related to working memory capacity, its use in the evaluation of speech perception should be investigated further. The Mandarin DIN test was found to be reliable, and the findings are in line with SRTs obtained using standardized sentence tests, suggesting good criterion validity.
Collapse
Affiliation(s)
- Shangqiguo Wang
- Faculty of Education, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | |
Collapse
|
28
|
Walhovd KB, Krogsrud SK, Amlien IK, Sørensen Ø, Wang Y, Bråthen ACS, Overbye K, Kransberg J, Mowinckel AM, Magnussen F, Herud M, Håberg AK, Fjell AM, Vidal-Pineiro D. Fetal influence on the human brain through the lifespan. eLife 2024; 12:RP86812. [PMID: 38602745 PMCID: PMC11008813 DOI: 10.7554/elife.86812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4-82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.
Collapse
Affiliation(s)
- Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - Stine K Krogsrud
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | | | - Knut Overbye
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Jonas Kransberg
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | | | - Fredrik Magnussen
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Martine Herud
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyOsloNorway
| | - Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - Didac Vidal-Pineiro
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| |
Collapse
|
29
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Karalija N, Papenberg G, Johansson J, Wåhlin A, Salami A, Andersson M, Axelsson J, Kuznetsov D, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. Longitudinal support for the correlative triad among aging, dopamine D2-like receptor loss, and memory decline. Neurobiol Aging 2024; 136:125-132. [PMID: 38359585 DOI: 10.1016/j.neurobiolaging.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Dopamine decline is suggested to underlie aging-related cognitive decline, but longitudinal examinations of this link are currently missing. We analyzed 5-year longitudinal data for a sample of healthy, older adults (baseline: n = 181, age: 64-68 years; 5-year follow-up: n = 129) who underwent positron emission tomography with 11C-raclopride to assess dopamine D2-like receptor (DRD2) availability, magnetic resonance imaging to evaluate structural brain measures, and cognitive tests. Health, lifestyle, and genetic data were also collected. A data-driven approach (k-means cluster analysis) identified groups that differed maximally in DRD2 decline rates in age-sensitive brain regions. One group (n = 47) had DRD2 decline exclusively in the caudate and no cognitive decline. A second group (n = 72) had more wide-ranged DRD2 decline in putamen and nucleus accumbens and also in extrastriatal regions. The latter group showed significant 5-year working memory decline that correlated with putamen DRD2 decline, along with higher dementia and cardiovascular risk and a faster biological pace of aging. Taken together, for individuals with more extensive DRD2 decline, dopamine decline is associated with memory decline in aging.
Collapse
Affiliation(s)
- Nina Karalija
- Department of Medical and Translational Biology, Umeå University, Umeå S-90187, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90187, Sweden.
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90187, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå S-90187, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90187, Sweden; Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Umeå S-90187, Sweden; Department of Applied Physics and Electronics, Umeå University, Umeå S-90187, Sweden
| | - Alireza Salami
- Department of Medical and Translational Biology, Umeå University, Umeå S-90187, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90187, Sweden; Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Micael Andersson
- Department of Medical and Translational Biology, Umeå University, Umeå S-90187, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90187, Sweden
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90187, Sweden; Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Umeå S-90187, Sweden
| | - Dmitry Kuznetsov
- Faculty of Sociology, University of Bielefeld, Bielefeld, Germany
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90187, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå S-90187, Sweden
| | - Martin Lövdén
- Department of Psychology, University of Gothenburg, Göteborg S-41314, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin D-14195, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Lars Nyberg
- Department of Medical and Translational Biology, Umeå University, Umeå S-90187, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90187, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå S-90187, Sweden
| |
Collapse
|
31
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
32
|
Reuter-Lorenz PA, Park DC. Cognitive aging and the life course: A new look at the Scaffolding theory. Curr Opin Psychol 2024; 56:101781. [PMID: 38278087 DOI: 10.1016/j.copsyc.2023.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024]
Abstract
Our understanding of human neurocognitive aging, its developmental roots, and life course influences has been transformed by brain imaging technologies, increasing availability of longitudinal data sets, and analytic advances. The Scaffolding Theory of Aging and Cognition is a life course model, proposed originally in 2009, featuring adaptivity and compensatory potential as lifelong mechanisms for meeting neurocognitive challenges posed by the environment and by developing or declining brain circuitry. Here, we review the scaffolding theory in relation to new evidence addressing when during the life course potentially enriching and depleting factors exert their effects on brain health and scaffolding, and we consider the implications for separable, and potentially reciprocal, influences on the level of cognitive function and the rate of decline in later life.
Collapse
|
33
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
34
|
Zamarreño P, Mateos PM, Valentín A. Working memory training improves episodic memory in older people: transfer based on controlled retrieval processes. Front Psychol 2024; 15:1314483. [PMID: 38572199 PMCID: PMC10987720 DOI: 10.3389/fpsyg.2024.1314483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The results of working memory (WM) training to improve episodic memory in older people are inconsistent. This inconsistency could be due to the fact that the episodic memory tests used do not share the same cognitive resources as the trained WM task. The aim of this study was to assess whether performance on an episodic memory test will improve only when this test requires controlled processes of retrieval of information from secondary memory or recollection, similar to the processes exercised during WM training. Method Fifty-five people over 60 years of age participated in the study: 27 were randomly assigned to the experimental group (EG) and the rest to the control group (CG). The EG was trained in complex span tasks. Before and after training, both groups were tested on episodic memory tests (a verbal and a visuospatial recognition test) and WM span tasks (reading, digit and spatial location). Results ANOVAs revealed a greater improvement of recollection estimates in the EG than in the CG for both verbal recognition (p = 0.023) and visuospatial recognition (p = 0.014). Discussion Our results provide support for a cognitive mechanism whose shared presence favored transfer from training on a WM task to a test of episodic memory. Consistent with our predictions, training on complex span tasks improved performance on recognition tests only when recall required a controlled search process in secondary memory, or recollection. We therefore stress the importance of identifying other cognitive resources that are susceptible to transfer from a training task to other untrained tasks. A better understanding of the phenomenon of transfer is crucial for the design of increasingly effective intervention programs for older people.
Collapse
|
35
|
Kuhn HG, Skau S, Nyberg J. A lifetime perspective on risk factors for cognitive decline with a special focus on early events. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100217. [PMID: 39071743 PMCID: PMC11273094 DOI: 10.1016/j.cccb.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 07/30/2024]
Abstract
Both Alzheimer's disease and vascular dementia are the result of disease processes that typically develop over several decades. Population studies have estimated that more than half of the risk for dementia is preventable or at least modifiable through behavioral adaptations. The association between these lifestyle factors and the risk of dementia is most evident for exposure in midlife. However, habits formed in middle age often reflect a lifetime of behavior patterns and living conditions. Therefore, individuals who, for example, are able to maintain healthy diets and regular exercise during their middle years are likely to benefit from these cognition-protective habits they have practiced throughout their lives. For numerous adult diseases, significant risks can often be traced back to early childhood. Suboptimal conditions during the perinatal period, childhood and adolescence can increase the risk of adult diseases, including stroke, heart disease, insulin resistance, hypertension and dementia. This review aims at summarizing some of the evidence for dementia risks from a life-time perspective with the goal of raising awareness for early dementia prevention and successful aging.
Collapse
Affiliation(s)
- H. Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Simon Skau
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Pedagogical, Curricular and Professional Studies, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Capogna E, Sørensen Ø, Watne LO, Roe J, Strømstad M, Idland AV, Halaas NB, Blennow K, Zetterberg H, Walhovd KB, Fjell AM, Vidal-Piñeiro D. Subtypes of brain change in aging and their associations with cognition and Alzheimer's disease biomarkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583291. [PMID: 38496633 PMCID: PMC10942348 DOI: 10.1101/2024.03.04.583291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Structural brain changes underly cognitive changes in older age and contribute to inter-individual variability in cognition. Here, we assessed how changes in cortical thickness, surface area, and subcortical volume, are related to cognitive change in cognitively unimpaired older adults using structural magnetic resonance imaging (MRI) data-driven clustering. Specifically, we tested (1) which brain structural changes over time predict cognitive change in older age (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers phosphorylated tau (p-tau) and amyloid-β (Aβ42), and (3) the degree of overlap between clusters derived from different structural features. In total 1899 cognitively healthy older adults (50 - 93 years) were followed up to 16 years with neuropsychological and structural MRI assessments, a subsample of which (n = 612) had CSF p-tau and Aβ42 measurements. We applied Monte-Carlo Reference-based Consensus clustering to identify subgroups of older adults based on structural brain change patterns over time. Four clusters for each brain feature were identified, representing the degree of longitudinal brain decline. Each brain feature provided a unique contribution to brain aging as clusters were largely independent across modalities. Cognitive change and baseline cognition were best predicted by cortical area change, whereas higher levels of p-tau and Aβ42 were associated with changes in subcortical volume. These results provide insights into the link between changes in brain morphology and cognition, which may translate to a better understanding of different aging trajectories.
Collapse
Affiliation(s)
- Elettra Capogna
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - James Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Ane Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Campus UllevÅl, University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
37
|
Carta E, Riccardi A, Marinetto S, Mattivi S, Selini E, Pucci V, Mondini S. Over ninety years old: Does high cognitive reserve still help brain efficiency? PSYCHOLOGICAL RESEARCH 2024; 88:678-683. [PMID: 37801087 PMCID: PMC10858058 DOI: 10.1007/s00426-023-01881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023]
Abstract
Nonagenarians and centenarians, also called oldest-old, are a very heterogeneous population that counts a limited number of individuals as it is a real challenge to reach this goal. Even if it is well known that cognitive reserve can be considered a factor in maintaining good cognitive functioning in ageing, only very few studies have been carried out on the role of cognitive reserve (CR) in the oldest-old people. The aim of this study is to investigate the relationship between cognitive reserve and cognitive functioning in a population living in a specific region of Italy, the Blue Zone in Sardinia. This population is characterised by extreme longevity and distinctive historical, geographic, social, linguistic and nutritional features. The cognitive Reserve Index questionnaire (CRIq) and the short cognitive Esame Neuropsicologico Breve-2 (ENB-2, Brief Neuropsychological Examination) were administered to 67 participants, all aged between 90 and 105 years old. The CRIq was a predictor of neuropsychological performance for the global score of the battery of tests, ENB-2 (ENB-tot) and also for 7 out of 16 of its sub-tests. All except one (Token) tapped executive functions (Interference memory at 10 and 30 s, TMT-B, Overlapping figures, Abstraction, Fluency). Results highlight that also in the oldest-old population CR has a positive effect on cognition, especially on executive functioning.
Collapse
Affiliation(s)
- Elisa Carta
- Department of Biomedical Sciences, Multiple Sclerosis Centre Binaghi Hospital, University of Cagliari, Cagliari, Italy
| | - Alice Riccardi
- Multiple Sclerosis Centre, Department of Neurosciences-DNS, University-Hospital of Padua, Padua, Italy
- Independent Researcher, Padua, Italy
| | | | | | - Enrico Selini
- Dipartimento di Filosofia Sociologia Pedagogia e Psicologia Applicata (FISPPA), University of Padua, Padua, Italy
| | - Veronica Pucci
- Dipartimento di Filosofia Sociologia Pedagogia e Psicologia Applicata (FISPPA), University of Padua, Padua, Italy
- Human Inspired Technology Research-Centre, University of Padua, Padua, Italy
| | - Sara Mondini
- Dipartimento di Filosofia Sociologia Pedagogia e Psicologia Applicata (FISPPA), University of Padua, Padua, Italy.
- Human Inspired Technology Research-Centre, University of Padua, Padua, Italy.
- Servizi Clinici Universitari Psicologici (SCUP), University of Padua, Padua, Italy.
| |
Collapse
|
38
|
Jauny G, Mijalkov M, Canal-Garcia A, Volpe G, Pereira J, Eustache F, Hinault T. Linking structural and functional changes during aging using multilayer brain network analysis. Commun Biol 2024; 7:239. [PMID: 38418523 PMCID: PMC10902297 DOI: 10.1038/s42003-024-05927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
Brain structure and function are intimately linked, however this association remains poorly understood and the complexity of this relationship has remained understudied. Healthy aging is characterised by heterogenous levels of structural integrity changes that influence functional network dynamics. Here, we use the multilayer brain network analysis on structural (diffusion weighted imaging) and functional (magnetoencephalography) data from the Cam-CAN database. We found that the level of similarity of connectivity patterns between brain structure and function in the parietal and temporal regions (alpha frequency band) is associated with cognitive performance in healthy older individuals. These results highlight the impact of structural connectivity changes on the reorganisation of functional connectivity associated with the preservation of cognitive function, and provide a mechanistic understanding of the concepts of brain maintenance and compensation with aging. Investigation of the link between structure and function could thus represent a new marker of individual variability, and of pathological changes.
Collapse
Affiliation(s)
- Gwendolyn Jauny
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Mite Mijalkov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Joana Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Thomas Hinault
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
39
|
de Jager Loots CA, Price G, Barbera M, Neely AS, Gavelin HM, Lehtisalo J, Ngandu T, Solomon A, Mangialasche F, Kivipelto M. Development of a Cognitive Training Support Programme for prevention of dementia and cognitive decline in at-risk older adults. FRONTIERS IN DEMENTIA 2024; 3:1331741. [PMID: 39081598 PMCID: PMC11285552 DOI: 10.3389/frdem.2024.1331741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/05/2024] [Indexed: 08/02/2024]
Abstract
Background Evidence for the beneficial effects of cognitive training on cognitive function and daily living activities is inconclusive. Variable study quality and design does not allow for robust comparisons/meta-analyses of different cognitive training programmes. Fairly low adherence to extended cognitive training interventions in clinical trials has been reported. Aims The aim of further developing a Cognitive Training Support Programme (CTSP) is to supplement the Computerised Cognitive Training (CCT) intervention component of the multimodal Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER), which is adapted to different cultural, regional and economic settings within the Word-Wide FINGERS (WW-FINGERS) Network. The main objectives are to improve adherence to cognitive training through a behaviour change framework and provide information about cognitive stimulation, social engagement and lifestyle risk factors for dementia. Methods Six CTSP sessions were re-designed covering topics including (1) CCT instructions and tasks, (2) Cognitive domains: episodic memory, executive function and processing speed, (3) Successful ageing and compensatory strategies, (4) Cognitive stimulation and engagement, (5) Wellbeing factors affecting cognition (e.g., sleep and mood), (6) Sensory factors. Session content will be related to everyday life, with participant reflection and behaviour change techniques incorporated, e.g., strategies, goal-setting, active planning to enhance motivation, and adherence to the CCT and in relevant lifestyle changes. Conclusions Through interactive presentations promoting brain health, the programme provides for personal reflection that may enhance capability, opportunity and motivation for behaviour change. This will support adherence to the CCT within multidomain intervention trials. Efficacy of the programme will be evaluated through participant feedback and adherence metrics.
Collapse
Affiliation(s)
- Celeste A. de Jager Loots
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Geraint Price
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Mariagnese Barbera
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna Stigsdotter Neely
- Department of Social and Psychological Studies, Karlstad University, Karlstad, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | | | - Jenni Lehtisalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiia Ngandu
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Alina Solomon
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Mangialasche
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- FINGERS Brain Health Institute, Stockholm, Sweden
- Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Miia Kivipelto
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- FINGERS Brain Health Institute, Stockholm, Sweden
- Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Stockholm, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
40
|
Kattlun F, Hertel E, Geis C, Scherag A, Wickel J, Finke K. Persistent neurocognitive deficits in cognitively impaired survivors of sepsis are explained by reductions in working memory capacity. Front Psychol 2024; 15:1321145. [PMID: 38449763 PMCID: PMC10915060 DOI: 10.3389/fpsyg.2024.1321145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Mounting evidence suggests that many cognitively impaired sepsis survivors show long-term neurocognitive deficits in neuropsychological tasks. To date, the underlying mechanisms of these deficits are insufficiently understood. Based on previous evaluations we hypothesized that visual attention and working memory may be affected in a sample of cognitively impaired sepsis survivors. Methods We utilized psychophysical whole-and partial-report paradigms based on the computational theory of visual attention (TVA) to determine (i) whether sepsis survivors show changes in basic parameters of visual attention and working memory, (ii) whether the affected parameters are related to neuropsychological test results in a standard battery in sepsis survivors and matched healthy control participants, (iii) whether between-group differences in these basic parameters of visual attention could account for underperformance of sepsis survivors in neuropsychological tests when adjusting for potentially relevant clinical variables. Results We showed that, in sepsis survivors, the maximum number of elements consciously maintained in an instant, i.e. the working memory storage capacity K, is reduced (sepsis survivors: M = 3.0; healthy controls: M = 3.4). Moreover, K explained variance in neurocognitive outcomes -17% in attentional and 16 % in executive functions - in a standard neuropsychological battery. The association remained stable when adjusting for clinical variables. Discussion Thus, in our sample of cognitively impaired sepsis survivors, a reduction in working memory capacity seems to be a critical determinant of the neurocognitive sequelae. It should be the subject of future work on mechanisms but may also serve as surrogate outcome measure in interventional studies.
Collapse
Affiliation(s)
- Fabian Kattlun
- Department of Neurology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Elizabeth Hertel
- Department of Neurology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Christian Geis
- Center for Sepsis Control and Care, Jena University Hospital - Friedrich Schiller University, Jena, Germany
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - André Scherag
- Center for Sepsis Control and Care, Jena University Hospital - Friedrich Schiller University, Jena, Germany
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Jonathan Wickel
- Center for Sepsis Control and Care, Jena University Hospital - Friedrich Schiller University, Jena, Germany
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| |
Collapse
|
41
|
Shaffer C, Andreano JM, Touroutoglou A, Barrett LF, Dickerson BC, Wong B. Semantic Clustering during Verbal Episodic Memory Encoding and Retrieval in Older Adults: One Cognitive Mechanism of Superaging. Brain Sci 2024; 14:171. [PMID: 38391745 PMCID: PMC10886668 DOI: 10.3390/brainsci14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Normal aging is commonly accompanied by a decline in cognitive abilities, including memory, yet some individuals maintain these abilities as they get older. We hypothesize that semantic clustering, as an effective strategy for improving performance on episodic recall tasks, may contribute to the maintenance of youthful memory in older adults. We investigated the dynamics of spontaneous production and utilization of the semantic clustering strategy in two independent samples of older adults who completed a list learning paradigm (N1 = 40 and N2 = 29, respectively). Specifically, we predicted and observed that older adults who spontaneously used a semantic clustering strategy throughout the encoding process learned more words by the culmination of the encoding trials (Sample 1, R2= 0.53, p < 0.001; Sample 2, R2= 0.51, p < 0.001), and that those who utilized this strategy during retrieval recalled more words, when compared to older adults who did not produce or utilize a semantic clustering strategy during both a short (Sample 1, R2 = 0.81, p < 0.001; Sample 2, R2 = 0.70, p < 0.001) and long delay retrieval (Sample 1, R2 = 0.83, p < 0.001; Sample 2, R2 = 0.77, p < 0.001). We further predicted and observed that older adults who maintained a youthful level of delayed free recall (i.e., "Superagers") produced (Sample 1, F(1, 38) = 17.81, p < 0.0001; Sample 2, F(1, 27) = 14.45, p < 0.0001) and utilized (Sample 1, F(1, 39) = 25.84, p < 0.0001; Sample 2, F(1, 27) = 12.97, p < 0.01) more semantic clustering than did older individuals with normal memory for their age. These results suggest one cognitive mechanism through which Superagers maintain youthful memory function and raise the possibility that older adults may be able to train themselves to use strategies to promote better memory.
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Joseph M Andreano
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Alexandra Touroutoglou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bradford C Dickerson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
42
|
Li X, Ng KK, Wong JJY, Zhou JH, Yow WQ. Brain gray matter morphometry relates to onset age of bilingualism and theory of mind in young and older adults. Sci Rep 2024; 14:3193. [PMID: 38326334 PMCID: PMC10850089 DOI: 10.1038/s41598-023-48710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024] Open
Abstract
Lifelong bilingualism may result in neural reserve against decline not only in the general cognitive domain, but also in social cognitive functioning. In this study, we show the brain structural correlates that are associated with second language age of acquisition (L2AoA) and theory of mind (the ability to reason about mental states) in normal aging. Participants were bilingual adults (46 young, 50 older) who completed a theory-of-mind task battery, a language background questionnaire, and an anatomical MRI scan to obtain cortical morphometric features (i.e., gray matter volume, thickness, and surface area). Findings indicated a theory-of-mind decline in older adults compared to young adults, controlling for education and general cognition. Importantly, earlier L2AoA and better theory-of-mind performance were associated with larger volume, higher thickness, and larger surface area in the bilateral temporal, medial temporal, superior parietal, and prefrontal brain regions. These regions are likely to be involved in mental representations, language, and cognitive control. The morphometric association with L2AoA in young and older adults were comparable, but its association with theory of mind was stronger in older adults than young adults. The results demonstrate that early bilingual acquisition may provide protective benefits to intact theory-of-mind abilities against normal age-related declines.
Collapse
Affiliation(s)
- Xiaoqian Li
- Humanities, Arts and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joey Ju Yu Wong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - W Quin Yow
- Humanities, Arts and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore.
| |
Collapse
|
43
|
Jardim NYV, Bento-Torres NVO, Tomás AM, da Costa VO, Bento-Torres J, Picanço-Diniz CW. Unexpected cognitive similarities between older adults and young people: Scores variability and cognitive performances. Arch Gerontol Geriatr 2024; 117:105206. [PMID: 37742393 DOI: 10.1016/j.archger.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Increased interindividual variability in cognitive performance during aging has been proposed as an indicator of cognitive reserve. OBJECTIVE To determine if interindividual variability performance in episodic memory (PAL), working memory (SWM), reaction time (RTI), and sustained attention (RVP) could differentiate clusters of differential cognitive performance in healthy young and older adults and search for cognitive tests that most contribute to these differential performances. METHODS We employed hierarchical cluster and canonical discriminant function analyses of cognitive scores using the Cambridge Neuropsychological Test Automated Battery (CANTAB) to identify cognitive variability in older and young adults using the coefficient of variability of cognitive performances between and within groups. We also analyzed potential influences of age, education, and physical activity. RESULTS Cluster analysis distinguished groups with differential cognitive performance and correlation analysis revealed coefficient of variability and cognitive performance associations. The greater the coefficient of variability the poorer was cognitive performance in RTI but not in PAL and SWM. Older adults showed diverse trajectories of cognitive decline, and better education or higher percentage of physically active individuals exhibited better cognitive performance in both older and young adults. CONCLUSION PAL and SWM are the most sensitive tests to investigate the wide age range encompassing older and young adults. In older adults' intragroup analysis PAL showed greater discriminatory capacity, indicating its potential for clinical applications late in life. Our data underscore the importance of studying variability as a tool for early detection of subtle cognitive declines and for interpreting results that deviate from normality.
Collapse
Affiliation(s)
- Naina Yuki Vieira Jardim
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil; Graduate Program in Human Movement Sciences, Federal University of Pará, Belém, 66075-110, Brazil.
| | - Alessandra Mendonça Tomás
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil
| | - Victor Oliveira da Costa
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil
| | - João Bento-Torres
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil; Graduate Program in Human Movement Sciences, Federal University of Pará, Belém, 66075-110, Brazil
| | - Cristovam Wanderley Picanço-Diniz
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil
| |
Collapse
|
44
|
Kizilirmak JM, Soch J, Richter A, Schott BH. Age-related differences in fMRI subsequent memory effects are directly linked to local grey matter volume differences. Neurobiol Aging 2024; 134:160-164. [PMID: 38096708 DOI: 10.1016/j.neurobiolaging.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Episodic memory performance declines with increasing age, and older adults typically show reduced activation of inferior temporo-parietal cortices in functional magnetic resonance imaging (fMRI) studies of episodic memory formation. Given the age-related cortical volume loss, it is conceivable that age-related reduction of memory-related fMRI activity may be partially attributable to reduced grey matter volume (GMV). We performed a voxel-wise multimodal neuroimaging analysis of fMRI correlates of successful memory encoding, using regional GMV as covariate. In a large cohort of healthy adults (106 young, 111 older), older adults showed reduced GMV across the entire neocortex and reduced encoding-related activation of inferior temporal and parieto-occipital cortices compared to young adults. Importantly, these reduced fMRI activations during successful encoding could in part be attributed to lower regional GMV. Our results highlight the importance of controlling for structural MRI differences in fMRI studies in older adults but also demonstrate that age-related differences in memory-related fMRI activity cannot be attributed to structural variability alone.
Collapse
Affiliation(s)
- Jasmin M Kizilirmak
- Cognitive Geriatric Psychiatry Group, German Center for Neurodegenerative Diseases, Göttingen, Germany; Neurodidactics and NeuroLab, Institute for Psychology, University of Hildesheim, Hildesheim, Germany; German Centre for Higher Education Research and Science Studies, Hannover, Germany.
| | - Joram Soch
- Cognitive Geriatric Psychiatry Group, German Center for Neurodegenerative Diseases, Göttingen, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg, Halle, Germany; German Center for Mental Health (DZPG), Germany
| | - Björn H Schott
- Cognitive Geriatric Psychiatry Group, German Center for Neurodegenerative Diseases, Göttingen, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Md Shah MN, Azman RR, Chan WY, Ng KH. Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information. Can Assoc Radiol J 2024; 75:92-97. [PMID: 37075322 DOI: 10.1177/08465371231171700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
The past two decades have seen a significant increase in the use of CT, with a corresponding rise in the mean population radiation dose. This rise in CT use has caused improved diagnostic certainty in conditions that were not previously routinely evaluated using CT, such as headaches, back pain, and chest pain. Unused data, unrelated to the primary diagnosis, embedded within these scans have the potential to provide organ-specific measurements that can be used to prognosticate or risk-profile patients for a wide variety of conditions. The recent increased availability of computing power, expertise and software for automated segmentation and measurements, assisted by artificial intelligence, provides a conducive environment for the deployment of these analyses into routine use. Data gathering from CT has the potential to add value to examinations and help offset the public perception of harm from radiation exposure. We review the potential for the collection of these data and propose the incorporation of this strategy into routine clinical practice.
Collapse
Affiliation(s)
- Mohammad Nazri Md Shah
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Raja Rizal Azman
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, UCSI University, Springhill, Negri Sembilan, Malaysia
| |
Collapse
|
46
|
Czoch A, Kaposzta Z, Mukli P, Stylianou O, Eke A, Racz FS. Resting-state fractal brain connectivity is associated with impaired cognitive performance in healthy aging. GeroScience 2024; 46:473-489. [PMID: 37458934 PMCID: PMC10828136 DOI: 10.1007/s11357-023-00836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 01/31/2024] Open
Abstract
Aging affects cognitive functions even in the absence of ongoing pathologies. The neurophysiological basis of age-related cognitive decline (CD), however, is not completely understood. Alterations in both functional brain connectivity and in the fractal scaling of neuronal dynamics have been linked to aging and cognitive performance. Recently, fractal connectivity (FrC) has been proposed - combining the two concepts - for capturing long-term interactions among brain regions. FrC was shown to be influenced by increased mental workload; however, no prior studies investigated how resting-state FrC relates to cognitive performance and plausible CD in healthy aging. We recruited 19 healthy elderly (HE) and 24 young control (YC) participants, who underwent resting-state electroencephalography (EEG) measurements and comprehensive cognitive evaluation using 7 tests of the Cambridge Neurophysiological Test Automated Battery. FrC networks were reconstructed from EEG data using the recently introduced multiple-resampling cross-spectral analysis (MRCSA). Elderly individuals could be characterized with increased response latency and reduced performance in 4-4 tasks, respectively, with both reaction time and accuracy being affected in two tasks. Auto- and cross-spectral exponents - characterizing regional fractal dynamics and FrC, respectively, - were found reduced in HE when compared to YC over most of the cortex. Additionally, fractal scaling of frontoparietal connections expressed an inverse relationship with task performance in visual memory and sustained attention domains in elderly, but not in young individuals. Our results confirm that the fractal nature of brain connectivity - as captured by MRCSA - is affected in healthy aging. Furthermore, FrC appears as a sensitive neurophysiological marker of age-related CD.
Collapse
Affiliation(s)
- Akos Czoch
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Zalan Kaposzta
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Orestis Stylianou
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Berlin Institute of Health at Charité, University Hospital Berlin, Berlin, Germany
- Department of Neurology With Experimental Neurology, Charité-University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Andras Eke
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Frigyes Samuel Racz
- Department of Physiology, Semmelweis University, Budapest, Hungary.
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Mulva Clinic for the Neurosciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
47
|
Fusi G, Giannì J, Borsa VM, Colautti L, Crepaldi M, Palmiero M, Garau F, Bonfiglio SN, Cao Y, Antonietti A, Penna MP, Rozzini L, Rusconi ML. Can Creativity and Cognitive Reserve Predict Psychological Well-Being in Older Adults? The Role of Divergent Thinking in Healthy Aging. Healthcare (Basel) 2024; 12:303. [PMID: 38338188 PMCID: PMC10855052 DOI: 10.3390/healthcare12030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The maintenance of psychological well-being (PWB) in the older adult population is a pivotal goal for our rapidly aging society. PWB is a multicomponent construct that can be influenced by several factors in the lifespan. The beneficial role of divergent thinking (DT) and cognitive reserve (CR) in sustaining older subjects' PWB has been scarcely investigated so far. The present study aims to investigate the relationships between DT, CR, and PWB in a sample of 121 healthy older adults (61 females; M age: 73.39 ± 6.66 years; M education: 11.33 ± 4.81 years). The results highlight that better DT performance predicts higher CR, which mediates an indirect positive effect of DT on emotional competence, one of the PWB factors. It follows that DT and CR can be considered protective factors in aging, and their effects go beyond cognitive functioning, revealing a positive effect even on some PWB components. The practical implications regarding targeted health interventions for prevention in the older adult population to support well-being and promote healthy aging are discussed.
Collapse
Affiliation(s)
- Giulia Fusi
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (J.G.); (V.M.B.); (M.C.); (M.L.R.)
| | - Jessica Giannì
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (J.G.); (V.M.B.); (M.C.); (M.L.R.)
| | - Virginia Maria Borsa
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (J.G.); (V.M.B.); (M.C.); (M.L.R.)
| | - Laura Colautti
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy; (L.C.); (A.A.)
| | - Maura Crepaldi
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (J.G.); (V.M.B.); (M.C.); (M.L.R.)
| | | | - Francesca Garau
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy; (F.G.); (S.N.B.); (Y.C.); (M.P.P.)
| | - Salvatore Natale Bonfiglio
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy; (F.G.); (S.N.B.); (Y.C.); (M.P.P.)
| | - Ylenia Cao
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy; (F.G.); (S.N.B.); (Y.C.); (M.P.P.)
| | - Alessandro Antonietti
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy; (L.C.); (A.A.)
| | - Maria Pietronilla Penna
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy; (F.G.); (S.N.B.); (Y.C.); (M.P.P.)
| | - Luca Rozzini
- Department of Clinical and Experimental Sciences, University of Brescia, 25136 Brescia, Italy;
| | - Maria Luisa Rusconi
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (J.G.); (V.M.B.); (M.C.); (M.L.R.)
| |
Collapse
|
48
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
49
|
Singh K, Barsoum S, Schilling KG, An Y, Ferrucci L, Benjamini D. Neuronal microstructural changes in the human brain are associated with neurocognitive aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575206. [PMID: 38260525 PMCID: PMC10802615 DOI: 10.1101/2024.01.11.575206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 unimpaired participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.
Collapse
Affiliation(s)
- Kavita Singh
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Stephanie Barsoum
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yang An
- Brain Aging and Behavior Section, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
50
|
Zammit AR, Bennett DA, Buchman AS. From theory to practice: translating the concept of cognitive resilience to novel therapeutic targets that maintain cognition in aging adults. Front Aging Neurosci 2024; 15:1303912. [PMID: 38283067 PMCID: PMC10811007 DOI: 10.3389/fnagi.2023.1303912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024] Open
Abstract
While the concept of cognitive resilience is well-established it has not been defined in a way that can be measured. This has been an impediment to studying its underlying biology and to developing instruments for its clinical assessment. This perspective highlights recent work that has quantified the expression of cortical proteins associated with cognitive resilience, thus facilitating studies of its complex underlying biology and the full range of its clinical effects in aging adults. These initial studies provide empirical support for the conceptualization of resilience as a continuum. Like other conventional risk factors, some individuals manifest higher-than-average cognitive resilience and other individuals manifest lower-than-average cognitive resilience. These novel approaches for advancing studies of cognitive resilience can be generalized to other aging phenotypes and can set the stage for the development of clinical tools that might have the potential to measure other mechanisms of resilience in aging adults. These advances also have the potential to catalyze a complementary therapeutic approach that focuses on augmenting resilience via lifestyle changes or therapies targeting its underlying molecular mechanisms to maintain cognition and brain health even in the presence of untreatable stressors like brain pathologies that accumulate in aging adults.
Collapse
Affiliation(s)
- Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|