1
|
LaBarge LR, Krofel M, Allen ML, Hill RA, Welch AJ, Allan ATL. Keystone individuals - linking predator traits to community ecology. Trends Ecol Evol 2024; 39:983-994. [PMID: 39068138 DOI: 10.1016/j.tree.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
Individual behavioral plasticity enables animals to adjust to different scenarios. Yet, personality traits limit this flexibility, leading to consistent interindividual differences in behavior. These individual behavioral traits have the potential to govern community interactions, although testing this is difficult in complex natural systems. For large predators who often exert strong effects on ecosystem functioning, this behavioral diversity may be especially important and lead to individualized ecosystem roles. We present a framework for quantifying individual behavioral plasticity and personality traits of large wild predators, revealing the extent to which certain natural behaviors are governed by these latent traits. The outcomes will reveal how the innate characteristics of wildlife can scale up to affect community interactions.
Collapse
Affiliation(s)
- Laura R LaBarge
- Comparative Socioecology Group, Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.
| | - Miha Krofel
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maximilian L Allen
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Russell A Hill
- Department of Anthropology, Durham University, Durham, UK; Department of Biological Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | | | | |
Collapse
|
2
|
Sonnega S, Sheriff MJ. Harnessing the gut microbiome: a potential biomarker for wild animal welfare. Front Vet Sci 2024; 11:1474028. [PMID: 39415953 PMCID: PMC11479891 DOI: 10.3389/fvets.2024.1474028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The welfare of wild animal populations is critically important to conservation, with profound implications for ecosystem health, biodiversity, and zoonotic disease transmission. Animal welfare is typically defined as the accumulated affective mental state of an animal over a particular time period. However, the assessment of animal welfare in the wild poses unique challenges, primarily due to the lack of universally applicable biomarkers. This perspective explores the potential role of the gut microbiome, a dynamic and non-invasive biomarker, as a novel avenue for evaluating animal welfare in wild animals. The gut microbiome, through interactions with the host's physiology, behavior, and cognition, offers a promising opportunity to gain insights into the well-being of animals. In this synthesis, we discuss the distinction between fitness and welfare, the complexities of assessing welfare in wild populations, and the linkages between the gut microbiome and aspects of animal welfare such as behavior and cognition. We lastly elucidate how the gut microbiome could serve as a valuable tool for wildlife managers, with the potential to serve as a non-invasive yet informative window into the welfare of wild animals. As this nascent field evolves, it presents unique opportunities to enhance our understanding of the well-being of wild animals and to contribute to the preservation of ecosystems, biodiversity, and human health.
Collapse
Affiliation(s)
- Sam Sonnega
- Department of Biology, UMass Dartmouth, Dartmouth, MA, United States
| | | |
Collapse
|
3
|
Scherer U, Laskowski KL, Kressler MM, Ehlman SM, Wolf M, Bierbach D. Predator exposure early in life shapes behavioral development and individual variation in a clonal fish. Sci Rep 2024; 14:21668. [PMID: 39289453 PMCID: PMC11408663 DOI: 10.1038/s41598-024-72550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Predation risk is one of the most important factors generating behavioral differences among populations. In addition, recent attention focusses on predation as a potential driver of patterns of individual behavioral variation within prey populations. Previous studies provide mixed results, reporting either increased or decreased among-individual variation in response to risk. Here, we take an explicit developmental approach to documenting how among-individual variation develops over time in response to predator exposure, controlling for both genetic and experiential differences among individuals. We reared juveniles of naturally clonal Amazon mollies, Poecilia formosa, either with or without a predator visible during feedings over 4 weeks and analyzed activity during feedings, time spent feeding and number of visits to the feeding spot. (I) Predator-exposed fish did not differ from control fish in average feeding behavior, but they were less active during feeding trials. (II) In the absence of the predator, substantial changes in among-individual variation over time were detected: among-individual differences in feeding duration increased whereas differences in activity decreased, but there were no changes in feeder visits. In contrast, in the presence of a predator, among-individual variation in all three behaviors was stable over time and often lower compared to control conditions. Our work suggests that predation risk may have an overall stabilizing effect on the development of individual variation and that differences in predation risk may well lead to population-wide differences in among-individual behavioral variation.
Collapse
Affiliation(s)
- U Scherer
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany.
- Faculty of Life Sciences, Humboldt-Universität Zu Berlin, 10117, Berlin, Germany.
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany.
| | - K L Laskowski
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - M M Kressler
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - S M Ehlman
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität Zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - M Wolf
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - D Bierbach
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität Zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| |
Collapse
|
4
|
Pardo C, Bellati A, Polverino G, Canestrelli D. The dark side of organic farming: Copper sulphate compromises the life history and behaviour of the walking stick insect, Bacillus rossius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173626. [PMID: 38844229 DOI: 10.1016/j.scitotenv.2024.173626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Organic farming is considered the most sustainable form of modern soil cultivation. Yet it often relies on the use of chemical compounds that are not necessarily harmless for the surrounding wildlife. In this study, we tested the effects of realistic concentrations of copper sulphate-largely used in organic farming as a fungicide-on ecologically-relevant traits of the walking stick insect Bacillus rossius, a species commonly found in the proximity of cultivated fields across Europe. By using second-generation progeny of wild-caught parthenogenetic females bred in common gardens, we measured the impact of copper sulphate (CuSO4) on both the life-history (body condition, number of eggs, and hatching success) and behavioural traits (activity and maximum vertical speed) of the individuals. We observed strong negative effects of high, realistic concentrations of copper sulphate on most traits within 12 days of exposure, while effects were less evident at lower concentrations of the pollutant. Our results reveal that realistic concentrations of copper sulphate can compromise important traits that regulate both the survival and reproduction of animals in the wild, with such effects that are, however, dose dependent. We suggest that common practices in organic farming require further consideration on their ecological and evolutionary impact on wildlife.
Collapse
Affiliation(s)
- Claudio Pardo
- Department of Ecological and Biological Sciences, University of Tuscia, Italy
| | - Adriana Bellati
- Department of Ecological and Biological Sciences, University of Tuscia, Italy
| | - Giovanni Polverino
- Department of Ecological and Biological Sciences, University of Tuscia, Italy; School of Biological Sciences, Monash University, Australia; School of Biological Sciences, The University of Western Australia, Australia.
| | - Daniele Canestrelli
- Department of Ecological and Biological Sciences, University of Tuscia, Italy
| |
Collapse
|
5
|
González-Gómez JC, Simone Y, Pérez LMF, Valenzuela-Rojas JC, van der Meijden A. Rapid prey manipulation and bite location preferences in three species of wandering spiders. Behav Processes 2024; 221:105083. [PMID: 39094759 DOI: 10.1016/j.beproc.2024.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Predator-prey interactions are the interspecific relationships of greatest interest in ecology. Spiders are among the most diverse and ubiquitous terrestrial predators on the planet. Their large dietary breadth is often linked with the development of specific predatory behaviors and morphological adaptations. However, studies on the predatory behavior of spiders have mostly focused on specialist species, leaving behind the ethological variability occurring in generalist species that allow them to respond to the different prey types. For three species of generalist wandering spiders, we searched images of predation events on the Internet to determine the most common prey. Subsequently, the focal predator species were then used in behavioral experiments. Using high-speed videos, handling patterns for different prey types (spider and cricket) were analyzed. Our results show a notable difference in handling patterns between prey types. We found that the spider prey was often rotated around the axis allowing the predator to bite in the ventral region of the prey and thus avoid a counterattack. Contrary, crickets were arbitrarily rotated. Our work may be an indication that these three species of generalist spiders have a preference for manipulating prey differently with a preference to rotate spiders, allowing them to exploit prey with various defensive mechanisms.
Collapse
Affiliation(s)
- Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; Programa de Doctorado en Ciencias Biológicas, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia; Semillero de Investigación INVUSCO, Grupo GIPB, Licenciatura en Ciencias Naturales y Educación Ambiental, Universidad Surcolombiana, Neiva, Huila, Colombia.
| | - Yuri Simone
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; BIOPOLIS, CIBIO/InBio, Rua Padre Armando Quintas 7, Vairão 4485-661, Portugal.
| | - Lida Marcela Franco Pérez
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué, Colombia.
| | - Juan Carlos Valenzuela-Rojas
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; Semillero de Investigación INVUSCO, Grupo GIPB, Licenciatura en Ciencias Naturales y Educación Ambiental, Universidad Surcolombiana, Neiva, Huila, Colombia; Institución Educativa San Roque, Oporapa, Huila, Colombia.
| | - Arie van der Meijden
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; BIOPOLIS, CIBIO/InBio, Rua Padre Armando Quintas 7, Vairão 4485-661, Portugal.
| |
Collapse
|
6
|
Aich U, Polverino G, Yazdan Parast F, Melo GC, Tan H, Howells J, Nosrati R, Wong BBM. Long-term effects of widespread pharmaceutical pollution on trade-offs between behavioural, life-history and reproductive traits in fish. J Anim Ecol 2024. [PMID: 39188010 DOI: 10.1111/1365-2656.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/27/2024] [Indexed: 08/28/2024]
Abstract
In our rapidly changing world, understanding how species respond to shifting conditions is of paramount importance. Pharmaceutical pollutants are widespread in aquatic ecosystems globally, yet their impacts on animal behaviour, life-history and reproductive allocation remain poorly understood, especially in the context of intraspecific variation in ecologically important traits that facilitate species' adaptive capacities. We test whether a widespread pharmaceutical pollutant, fluoxetine (Prozac), disrupts the trade-off between individual-level (co)variation in behavioural, life-history and reproductive traits of freshwater fish. We exposed the progeny of wild-caught guppies (Poecilia reticulata) to three field-relevant levels of fluoxetine (mean measured concentrations: 0, 31.5 and 316 ng/L) for 5 years, across multiple generations. We used 12 independent laboratory populations and repeatedly quantified activity and risk-taking behaviour of male guppies, capturing both mean behaviours and variation within and between individuals across exposure treatments. We also measured key life-history traits (body condition, coloration and gonopodium size) and assessed post-copulatory sperm traits (sperm vitality, number and velocity) that are known to be under strong sexual selection in polyandrous species. Intraspecific (co)variation of these traits was analysed using a comprehensive, multivariate statistical approach. Fluoxetine had a dose-specific (mean) effect on the life-history and sperm trait of guppies: low pollutant exposure altered male body condition and increased gonopodium size, but reduced sperm velocity. At the individual level, fluoxetine reduced the behavioural plasticity of guppies by eroding their within-individual variation in both activity and risk-taking behaviour. Fluoxetine also altered between-individual correlations in pace-of-life syndrome traits: it triggered the emergence of correlations between behavioural and life-history traits (e.g. activity and body condition) and between life-history and sperm traits (e.g. gonopodium size and sperm vitality), but collapsed other between-individual correlations (e.g. activity and gonopodium size). Our results reveal that chronic exposure to global pollutants can affect phenotypic traits at both population and individual levels, and even alter individual-level correlations among such traits in a dose-specific manner. We discuss the need to integrate individual-level analyses and test behaviour in association with life-history and reproductive traits to fully understand how animals respond to human-induced environmental change.
Collapse
Affiliation(s)
- Upama Aich
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Giovanni Polverino
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Farin Yazdan Parast
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Gabriela C Melo
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - James Howells
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Camacho‐Cervantes M, Ojanguren AF. Within-population variation in an invasive fish' sociability when associating with conspecifics or heterospecifics. Ecol Evol 2024; 14:e70118. [PMID: 39091330 PMCID: PMC11293883 DOI: 10.1002/ece3.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Behavioural traits are key to promote invasion success because they are easier to adjust to changing environmental conditions than morphological or life history traits. Often, research has overlooked variance in behavioural traits within populations or has assumed it to be mere noise. However, a recent focus towards individual variation of behaviour of successful invaders has revealed new and more profound insights into the invasion process. Behavioural variation within a population could lead to more successful invasions, as they include individuals with diverse behaviours, which ensures at least some individuals could be able to cope with changing conditions. The aim of this research was to examine if invasive guppies (Poecilia reticulata) present within-population differences in their sociability (time spent associating with a shoal) when interacting with conspecifics or heterospecifics. Guppies presented significant differences in their individual tendencies to associate with conspecific or heterospecific shoals. There were among-individual differences in the time spent shoaling with conspecifics versus heterospecifics, where most individuals did not differ in their sociability with conspecifics or heterospecifics, and only 22% of individuals presented a higher tendency to associate with conspecifics. Our results are the first to show individual differences in fish' tendencies to associate with heterospecifics among individuals of the same population and rearing conditions. Given that associations with heterospecific natives have been found to be as beneficial as associations with conspecifics for invaders, our results contribute to the understanding of mechanisms behind heterospecific sociability between natives and invaders.
Collapse
Affiliation(s)
- Morelia Camacho‐Cervantes
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Alfredo F. Ojanguren
- Departamento de Biología de Organismos y SistemasUniversidad de OviedoOviedoAsturiasSpain
| |
Collapse
|
8
|
Spiegel O, Michelangeli M, Sinn DL, Payne E, Klein JRV, Kirkpatrick J, Harbusch M, Sih A. Resource manipulation reveals interactive phenotype-dependent foraging in free-ranging lizards. J Anim Ecol 2024; 93:1108-1122. [PMID: 38877691 DOI: 10.1111/1365-2656.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Recent evidence suggests that individuals differ in foraging tactics and this variation is often linked to an individual's behavioural type (BT). Yet, while foraging typically comprises a series of search and handling steps, empirical investigations have rarely considered BT-dependent effects across multiple stages of the foraging process, particularly in natural settings. In our long-term sleepy lizard (Tiliqua rugosa) study system, individuals exhibit behavioural consistency in boldness (measured as an individual's willingness to approach a novel food item in the presence of a threat) and aggressiveness (measured as an individual's response to an 'attack' by a conspecific dummy). These BTs are only weakly correlated and have previously been shown to have interactive effects on lizard space use and movement, suggesting that they could also affect lizard foraging performance, particularly in their search behaviour for food. To investigate how lizards' BTs affect their foraging process in the wild, we supplemented food in 123 patches across a 120-ha study site with three food abundance treatments (high, low and no-food controls). Patches were replenished twice a week over the species' entire spring activity season and feeding behaviours were quantified with camera traps at these patches. We tracked lizards using GPS to determine their home range (HR) size and repeatedly assayed their aggressiveness and boldness in designated assays. We hypothesised that bolder lizards would be more efficient foragers while aggressive ones would be less attentive to the quality of foraging patches. We found an interactive BT effect on overall foraging performance. Individuals that were both bold and aggressive ate the highest number of food items from the foraging array. Further dissection of the foraging process showed that aggressive lizards in general ate the fewest food items in part because they visited foraging patches less regularly, and because they discriminated less between high and low-quality patches when revisiting them. Bolder lizards, in contrast, ate more tomatoes because they visited foraging patches more regularly, and ate a higher proportion of the available tomatoes at patches during visits. Our study demonstrates that BTs can interact to affect different search and handling components of the foraging process, leading to within-population variation in foraging success. Given that individual differences in foraging and movement will influence social and ecological interactions, our results highlight the potential role of BT's in shaping individual fitness strategies and population dynamics.
Collapse
Affiliation(s)
- Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcus Michelangeli
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - David L Sinn
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Eric Payne
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Janine-Rose V Klein
- Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Jamie Kirkpatrick
- Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Marco Harbusch
- Georg-August-Büsgen-Institut, Universität Göttingen, Göttingen, Germany
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| |
Collapse
|
9
|
Gan L, Zhang S, Zeng R, Shen T, Tian L, Yu H, Hua K, Wang Y. Impact of Personality Trait Interactions on Foraging and Growth in Native and Invasive Turtles. Animals (Basel) 2024; 14:2240. [PMID: 39123765 PMCID: PMC11311056 DOI: 10.3390/ani14152240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Animal personalities play a crucial role in invasion dynamics. During the invasion process, the behavioral strategies of native species vary among personalities, just as the invasive species exhibit variations in behavior strategies across personalities. However, the impact of personality interactions between native species and invasive species on behavior and growth are rarely illustrated. The red-eared slider turtle (Trachemys scripta elegans) is one of the worst invasive species in the world, threatening the ecology and fitness of many freshwater turtles globally. The Chinese pond turtle (Mauremys reevesii) is one of the freshwater turtles most threatened by T. scripta elegans in China. In this study, we used T. scripta elegans and M. reevesii to investigate how the personality combinations of native and invasive turtles would impact the foraging strategy and growth of both species during the invasion process. We found that M. reevesii exhibited bolder and more exploratory personalities than T. scripta elegans. The foraging strategy of M. reevesii was mainly affected by the personality of T. scripta elegans, while the foraging strategy of T. scripta elegans was influenced by both their own personality and personalities of M. reevesii. Additionally, we did not find that the personality combination would affect the growth of either T. scripta elegans or M. reevesii. Differences in foraging strategy may be due to the dominance of invasive species and variations in the superficial exploration and thorough exploitation foraging strategies related to personalities. The lack of difference in growth may be due to the energy allocation trade-offs between personalities or be masked by the slow growth rate of turtles. Overall, our results reveal the mechanisms of personality interaction effects on the short-term foraging strategies of both native and invasive species during the invasion process. They provide empirical evidence to understand the effects of personality on invasion dynamics, which is beneficial for enhancing comprehension understanding of the personality effects on ecological interactions and invasion biology.
Collapse
Affiliation(s)
- Lin Gan
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Shufang Zhang
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Ruyi Zeng
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Tianyi Shen
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Liu Tian
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Hao Yu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Ke Hua
- Center of Reproductive Medicine, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Beck DW, Heaton CN, Davila LD, Rakocevic LI, Drammis SM, Tyulmankov D, Vara P, Giri A, Umashankar Beck S, Zhang Q, Pokojovy M, Negishi K, Batson SA, Salcido AA, Reyes NF, Macias AY, Ibanez-Alcala RJ, Hossain SB, Waller GL, O'Dell LE, Moschak TM, Goosens KA, Friedman A. Model of a striatal circuit exploring biological mechanisms underlying decision-making during normal and disordered states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605535. [PMID: 39211231 PMCID: PMC11361035 DOI: 10.1101/2024.07.29.605535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Decision-making requires continuous adaptation to internal and external contexts. Changes in decision-making are reliable transdiagnostic symptoms of neuropsychiatric disorders. We created a computational model demonstrating how the striosome compartment of the striatum constructs a mathematical space for decision-making computations depending on context, and how the matrix compartment defines action value depending on the space. The model explains multiple experimental results and unifies other theories like reward prediction error, roles of the direct versus indirect pathways, and roles of the striosome versus matrix, under one framework. We also found, through new analyses, that striosome and matrix neurons increase their synchrony during difficult tasks, caused by a necessary increase in dimensionality of the space. The model makes testable predictions about individual differences in disorder susceptibility, decision-making symptoms shared among neuropsychiatric disorders, and differences in neuropsychiatric disorder symptom presentation. The model reframes the role of the striosomal circuit in neuroeconomic and disorder-affected decision-making. Highlights Striosomes prioritize decision-related data used by matrix to set action values. Striosomes and matrix have different roles in the direct and indirect pathways. Abnormal information organization/valuation alters disorder presentation. Variance in data prioritization may explain individual differences in disorders. eTOC Beck et al. developed a computational model of how a striatal circuit functions during decision-making. The model unifies and extends theories about the direct versus indirect pathways. It further suggests how aberrant circuit function underlies decision-making phenomena observed in neuropsychiatric disorders.
Collapse
|
11
|
Wu L, Deng S, Tang W, Zhang S, Liang F, Ding S. Effects of Personality and Behavioral Syndromes on Competition for Social Hierarchical Status in Anemonefish Amphiprion clarkii. Animals (Basel) 2024; 14:2216. [PMID: 39123742 PMCID: PMC11311083 DOI: 10.3390/ani14152216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, the behavioral ethogram of Amphiprion clarkii during the growth phase prior to sexual differentiation was summarized based on behavioral observations in three social environments. These behaviors can be classified into four categories: in addition to normal behaviors, the other three categories of behaviors-threatening, agonistic, and appeasing behaviors-represent different intentions in interactions with other individuals. Subsequently, the personalities of each individual were assessed by testing their reactions to intruders. These individuals mainly exhibited two distinct personality types: bold-aggressive and shy-submissive. In pairing experiments, the interactive behaviors of the anemonefish were observed in pairing combinations of different body sizes and personalities. The impact of personality on the establishment of a stable social hierarchy was confirmed by significant differences in the success rates of different pairing combinations, with the frequency of appeasing behaviors being the main factor influencing the success rate. Our results suggested that in natural waters, when juvenile individuals migrate among host anemones, shy-submissive individuals are more likely to be accepted due to their appeasing behaviors towards larger individuals, thus avoiding the risk of being attacked and bitten, and benefiting the survival of the individual. Conversely, bold-aggressive individuals are more likely to be driven away to another host anemone due to their unwillingness to settle for a lower-ranked status, thereby contributing to population dispersal and increasing opportunities for gene exchange between populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxiong Ding
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China; (L.W.); (S.D.); (W.T.); (S.Z.); (F.L.)
| |
Collapse
|
12
|
Mohan M, Sathyakumar S, Krishnamurthy R. Predator in proximity: how does a large carnivore respond to anthropogenic pressures at fine-scales? Implications for interface area management. PeerJ 2024; 12:e17693. [PMID: 39006024 PMCID: PMC11246029 DOI: 10.7717/peerj.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Background Driven by habitat loss and fragmentation, large carnivores are increasingly navigating human-dominated landscapes, where their activity is restricted and their behaviour altered. This movement, however, raises significant concerns and costs for people living nearby. While intricately linked, studies often isolate human and carnivore impacts, hindering effective management efforts. Hence, in this study, we brought these two into a common framework, focusing on an interface area between the critical tiger habitat and the human-dominated multiple-use buffer area of a central Indian protected area. Methods We employed a fine-scale camera trap survey complemented by GPS-collar movement data to understand spatio-temporal activity patterns and adjustments of tigers in response to anthropogenic pressures. We used an occupancy framework to evaluate space use, Bayesian circular GLMs to model temporal activity, and home range and step length analyses to assess the movement patterns of tigers. Further, we used predation-risk models to understand conflict patterns as a function of tiger presence and other habitat variables. Results Despite disturbance, a high proportion of the sampled area was occupied by 17 unique tigers (ψ = 0.76; CI [0.73-0.92]). The distance to villages (β ± SE = 0.63 ± 0.21) and the relative abundance of large-bodied wild prey (β ± SE = 0.72 ± 0.37) emerged as key predictors of tiger space use probability, indicating a preference for wild prey by tigers, while human influences constrained their habitat utilisation. Distance to villages was also identified as the most significant predictor of the tigers' temporal activity (μ ± σ = 3.03 ± 0.06 rad) that exhibited higher nocturnality near villages. A total of 11% of tiger home ranges were within village boundaries, accompanied by faster movement in these areas (displacement 40-82% higher). Livestock depredation probability by tigers increased with proximity to villages (P = 0.002) and highway (P = 0.003). Although tiger space use probability (P = 0.056) and wild prey abundance (P = 0.134) were non-significant at the 0.05 threshold, their presence in the best-fit predation-risk model suggests their contextual relevance for understanding conflict risk. The results highlight the importance of appropriately managing livestock near human infrastructures to effectively mitigate conflict. Conclusions Shared space of carnivores and humans requires dynamic site-specific actions grounded in evidence-based decision-making. This study emphasises the importance of concurrently addressing the intricate interactions between humans and large carnivores, particularly the latter's behavioural adaptations and role in conflict dynamics. Such an integrated approach is essential to unravel cause-effect relationships and promote effective interface management in human-dominated landscapes.
Collapse
Affiliation(s)
- Manu Mohan
- Post-Graduate Programme in Wildlife Science, Wildlife Institute of India, Dehradun, Uttarakhand, India
- Department of Landscape Level Planning and Management, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Sambandam Sathyakumar
- Department of Endangered Species Management, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Ramesh Krishnamurthy
- Department of Landscape Level Planning and Management, Wildlife Institute of India, Dehradun, Uttarakhand, India
- Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Tan S, Li J, Chen J, Fu J. Context-dependent effects of thermal acclimation on physiological correlates of animal personality in Asiatic toads. Proc Biol Sci 2024; 291:20241012. [PMID: 39079664 PMCID: PMC11288686 DOI: 10.1098/rspb.2024.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
Persistent individual variation in behaviour, or 'personality', is a widespread phenomenon in animals, and understanding the evolution of animal personality is a key task of current biology. Natural selection has been proposed to promote the integration of personality with animal 'intrinsic states', such as metabolic or endocrine traits, and this integration varies with ecological conditions. However, these external ecological modulatory effects have rarely been examined. Here, we investigate the effects of thermal acclimation on between-individual covariations between physiology and behaviour in Asiatic toads (Bufo gargarizans) along an altitudinal gradient. Our results reveal that the thermal modulatory effects on the covariations depend on the altitudinal population. Specifically, at low altitudes, between-individual covariations are highly plastic, with risk-taking behaviour covarying with baseline glucocorticoids (GCs) under warm acclimation, but risk-taking and exploration behaviour covarying with resting metabolic rate (RMR) under cold acclimation. In contrast, between-individual covariations are relatively fixed at high altitudes, with risk-taking behaviour consistently covarying with baseline GCs. Furthermore, at low altitudes, changes in covariations between RMR and personality are associated with adjustment of energy management models. Evidently, animal physiological states that determine or covary with personality can adapt according to the seasonal thermal environment and the thermal evolutionary background of populations. Our findings highlight the importance of a multi-system physiological approach to understand the evolution of animal personality.
Collapse
Affiliation(s)
- Song Tan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
- University of the Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing100049, People’s Republic of China
| | - Juan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
| | - Jingfeng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- University of the Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing100049, People’s Republic of China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- Department of Integrative Biology, University of Guelph, Guelph, OntarioN1G 2W1, Canada
| |
Collapse
|
14
|
Bangura PB, Tiira K, Aykanat T, Niemelä PT, Erkinaro J, Liljeström P, Toikkanen A, Primmer CR. Sex-specific associations of the maturation locus vgll3 with exploratory behavior and boldness in Atlantic salmon juveniles. Ecol Evol 2024; 14:e11449. [PMID: 38835521 PMCID: PMC11148480 DOI: 10.1002/ece3.11449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Studies linking genetics, behavior and life history in any species are rare. In Atlantic salmon (Salmo salar), age at maturity is a key life-history trait and associates strongly with the vgll3 locus, whereby the vgll3*E allele is linked with younger age at maturity, and higher body condition than the vgll3*L allele. However, the relationship between this genetic variation and behaviors like boldness and exploration which may impact growth and reproductive strategies is poorly understood. The pace-of-life syndrome (POLS) framework provides predictions, whereby heightened exploratory behavior and boldness are predicted in individuals with the early maturation-associated vgll3 genotype (EE). Here, we tested these predictions by investigating the relationship between vgll3 genotypes and exploration and boldness behaviors in 129 juveniles using the novel environment and novel object trials. Our results indicated that contrary to POLS predictions, vgll3*LL fish were bolder and more explorative, suggesting a genotype-level syndrome including several behaviors. Interestingly, clear sex differences were observed in the latency to move in a new environment, with vgll3*EE males, but not females, taking longer to move than their vgll3*LL counterparts. Our results provide further empirical support for recent calls to consider more nuanced explanations than the pace of life theory for integrating behavior into life-history theory.
Collapse
Affiliation(s)
- Paul Bai Bangura
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
- Lammi Biological Station, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Katriina Tiira
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Tutku Aykanat
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Petri T Niemelä
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | | | - Petra Liljeström
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
- Lammi Biological Station, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Anna Toikkanen
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Craig R Primmer
- Organismal & Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki Finland
| |
Collapse
|
15
|
Su L, Lu L, Si M, Ding J, Li C. Effect of Population Density on Personality of Crayfish ( Procambarus clarkii). Animals (Basel) 2024; 14:1486. [PMID: 38791703 PMCID: PMC11117368 DOI: 10.3390/ani14101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Personality is widely observed in animals and has important ecological and evolutionary implications. In addition to being heritable, personality traits are also influenced by the environment. Population density commonly affects animal behavior, but the way in which it shapes animal personality remains largely unknown. In this study, we reared juvenile crayfish at different population densities and measured their personality traits (shyness, exploration, and aggression) after reaching sexual maturity. Our results showed repeatability for each behavior in all treatments, except for the shyness of females at medium density. There was a negative correlation between shyness and exploration in each treatment, and aggression and exploration were positively correlated in medium- and high-density females. These indicate the presence of a behavior syndrome. On average, the crayfish raised at higher population densities were less shy, more exploratory, and more aggressive. We found no behavioral differences between the sexes in crayfish. These results suggested that population density may affect the average values of behavioral traits rather than the occurrence of personality traits. Our study highlights the importance of considering population density as a factor influencing personality traits in animals and, therefore, might help us to understand animal personality development.
Collapse
Affiliation(s)
- Li Su
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.S.); (L.L.); (M.S.)
| | - Leiyu Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.S.); (L.L.); (M.S.)
| | - Mengdi Si
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.S.); (L.L.); (M.S.)
| | | | - Chunlin Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.S.); (L.L.); (M.S.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| |
Collapse
|
16
|
Lichtenstein JLL, McEwen BL, Primavera SD, Lenihan T, Wood ZM, Carson WP, Costa-Pereira R. Top-down effects of intraspeciflic predator behavioral variation. Oecologia 2024; 205:203-214. [PMID: 38789814 DOI: 10.1007/s00442-024-05564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Among-individual variation in predator traits is ubiquitous in nature. However, variation among populations in this trait variation has been seldom considered in trophic dynamics. This has left unexplored (a) to what degree does among-individual variation in predator traits regulate prey populations and (b) to what degree do these effects vary spatially. We address these questions by examining how predator among-individual variation in functional traits shapes communities across habitats of varying structural complexity, in field conditions. We manipulated Chinese mantis (Tenodera sinensis) density (six or twelve individuals) and behavioral trait variability (activity level by movement on an open field) in experimental patches of old fields with varying habitat complexity (density of plant material). Then, we quantified their impacts on lower trophic levels, specifically prey (arthropods > 4 mm) and plant biomass. Predator behavioral variability only altered prey biomass in structurally complex plots, and this effect depended on mantis density. In the plots with the highest habitat complexity and mantis density, behaviorally variable groups decreased prey biomass by 40.3%. In complex plots with low mantis densities, low levels of behavioral variability decreased prey biomass by 32.2%. Behavioral variability and low habitat complexity also changed prey community composition, namely by increasing ant biomass by 881%. Our results demonstrate that among-individual trait variation can shape species-rich prey communities. Moreover, these effects depend on both predator density and habitat complexity. Incorporating this important facet of ecological diversity revealed normally unnoticed effects of functional traits on the structure and function of food webs.
Collapse
Affiliation(s)
- James L L Lichtenstein
- Department of Biology, Sacred Heart University, Fairfield, CT, 06825, USA.
- Department of Ecology, Evolution & Marine Biology, University of California-Santa Barbara, Santa Barbara, California, 93106, USA.
| | - Brendan L McEwen
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton Ontario, L8S 4K1, Canada
| | - Skylar D Primavera
- Department of Ecology, Evolution & Marine Biology, University of California-Santa Barbara, Santa Barbara, California, 93106, USA
| | - Thomas Lenihan
- Department of Ecology, Evolution & Marine Biology, University of California-Santa Barbara, Santa Barbara, California, 93106, USA
| | - Zoe M Wood
- Department of Entomology and Nematology, Davis, CA, 95616, USA
| | - Walter P Carson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Raul Costa-Pereira
- Department of Animal Biology, Universidade Estadual de Campinas (Unicamp), Campinas, SP, 13083-865, Brazil
| |
Collapse
|
17
|
Xia M, Xia Y, Sun Y, Wang J, Lu J, Wang X, Xia D, Xu X, Sun B. Gut microbiome is associated with personality traits of free-ranging Tibetan macaques ( Macaca thibetana). Front Microbiol 2024; 15:1381372. [PMID: 38711972 PMCID: PMC11070476 DOI: 10.3389/fmicb.2024.1381372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Recent studies have emphasized that there is a strong link between the gut microbiome and the brain that affects social behavior and personality in animals. However, the interface between personality and the gut microbiome in wild primates remains poorly understood. Here, we used high-throughput sequencing and ethological methods in primate behavioral ecology to investigate the relationship between gut microbiome and personality in Tibetan macaques (Macaca thibetana). The behavioral assessment results indicated three personality dimensions including socialization, shyness, and anxiety. There was significant variation in alpha diversity only for shyness, with a significantly lower alpha diversity indices (including Shannon, Chao1, and PD) for bold individuals than for shy individuals. Using regression models to control for possible confounding factors, we found that the relative abundance of three genera, Akkermansia, Dialister, and Asteroleplasma, was significantly and positively correlated with the sociability scores in the macaques. In addition, Oscillospiraceae exhibited a positive correlation with scores for Shy Dimension. Furthermore, we found that the predicted functional genes for propionate and pyruvate, porphyrin and chlorophyll metabolic pathways related to animal behavior, were significant enriched in shyness group. We propose that the gut microbiome may play an important role in the formation of personality of Tibetan macaques.
Collapse
Affiliation(s)
- Mengyi Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yingna Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yu Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jingjing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jiakai Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Dongpo Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiaojuan Xu
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Binghua Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| |
Collapse
|
18
|
Lu L, Su L, Si M, Wang G, Li C. Effects of Cheliped Amputation on the Personality of Crayfish. Animals (Basel) 2024; 14:1132. [PMID: 38612371 PMCID: PMC11011115 DOI: 10.3390/ani14071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Animal personality, which describes inter-individual differences and intra-individual consistency in behaviors across time and contexts, has been widely observed and has significance for both ecology and evolution. Morphological modifications, particularly during early life stages, may highly influence animal behavior in adulthood; thus, exploring this relationship can elucidate personality development throughout ontogeny. In this study, we reared juvenile crayfish (Procambarus clarkii) with different degrees of cheliped mutilation and explored their personality patterns, including exploration and aggression, when they reached sexual maturity. Male crayfish showed repeatability in exploration, and both sexes showed repeatability in aggression. We observed no significant correlation between the two behavioral traits, indicating the absence of behavioral syndromes. Moreover, exploration did not differ according to the type of mutilation, but crayfish with more intact chelipeds were more aggressive, and males were more aggressive than females. These results indicate that cheliped mutilation may modify the average levels of personality traits associated with competition or self-defense. Our study provides insights into how morphological modifications may shape animal personalities in adulthood.
Collapse
Affiliation(s)
- Leiyu Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.L.); (L.S.); (G.W.)
| | - Li Su
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.L.); (L.S.); (G.W.)
| | - Mengdi Si
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.L.); (L.S.); (G.W.)
| | - Guangyao Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.L.); (L.S.); (G.W.)
| | - Chunlin Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.L.); (L.S.); (G.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| |
Collapse
|
19
|
Shelton DS, Suriyampola PS, Dinges ZM, Glaholt SP, Shaw JR, Martins EP. Plants buffer some of the effects of a pair of cadmium-exposed zebrafish on the un-exposed majority. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104419. [PMID: 38508506 PMCID: PMC11042042 DOI: 10.1016/j.etap.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Certain individuals have a disproportionate effect on group responses. Characteristics may include susceptibility to pollutants, such as cadmium (Cd), a potent trace metal. Here, we show how a pair of Cd-exposed individuals can impact the behavior of unexposed groups. We used behavioral assessments to characterize the extent of the effects of the Cd-exposed individuals on group boldness, cohesion, foraging, activity, and responses to plants. We found that groups with a pair of Cd-exposed fish remained closer to novel stimuli and plants than did groups with untreated (control) fish. The presence of plants reduced Cd-induced differences in shoal cohesion and delays feeding in male shoals. Shoals with Cd- and water-treated fish were equally active. The results suggest that fish acutely exposed to environmentally relevant Cd concentrations can have profound effects on the un-exposed majority. However, the presence of plants may mitigate the effects of contaminants on some aspects of social behavior.
Collapse
Affiliation(s)
- Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33134, USA.
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Zoe M Dinges
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
20
|
Fu SJ, Zhang N, Fan J. Personality and cognition: shoal size discrimination performance is related to boldness and sociability among ten freshwater fish species. Anim Cogn 2024; 27:6. [PMID: 38429558 PMCID: PMC10907435 DOI: 10.1007/s10071-024-01837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 03/03/2024]
Abstract
Several studies have reported that animals' personalities are often correlated with individual differences in cognition. Here, we tested whether personality is related to cognition across species, focusing on 10 freshwater fishes and a task relevant for fitness, the ability to discriminate shoal size. Bolder species exhibited more 'shuttle' behavior for information sampling during shoal selection and showed high performance (HP) in the numerical discrimination than shyer species, i.e., low performance (LP) species. Species at both the high and low ends of sociability showed LP, possibly due to loosened selection pressure because of either no need to perform shoal size discrimination tasks frequently in nature for very high sociability species or decreased willingness and motivation to join and stay within shoals for very low sociability species. Notably, the numerical discrimination was sensitive to the numerical contrast ratio in LP species but not in HP species, suggesting that the numerical system used for size discrimination also varied between species. Overall, we demonstrated the interspecies relationship between personality and shoal size discrimination across fish species, suggesting an evolutionary link between numerical abilities and behavior.
Collapse
Affiliation(s)
- Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China.
| | - Na Zhang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Jie Fan
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
21
|
Yang K, Wang SX, Lu W. Differential effects of ocean warming and BDE-47 on mussels with various personalities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123358. [PMID: 38242302 DOI: 10.1016/j.envpol.2024.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/07/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Marine warming and polybrominated diphenyl ethers (PBDEs) pollution are two of the most concerning environmental problems in recent years. However, the impact of their co-occurrence on marine bivalves and the tolerance of bivalves with different traits remain unknown. In this study, thick shell mussels Mytilus coruscus were divided into two personalities according to individual feeding and byssus growth. The reliability of the classification was validated by respiration, self-organization, and post-stress behavior. Then, the survival rate, hemolymph immunity, and digestive glands oxidase activity of classified mussels were evaluated after 21 days of compound exposure to warming and BDE-47. The results showed that mussels could be divided into proactive and reactive types consistently. Compared to reactive mussels, proactive mussels exhibited some traits, such as faster food recovery, more byssus growth, higher metabolic rate, and more efficient clustering. Both single or combined warming and BDE-47 exposure impacted the individual survival, hemolymph, and antioxidase of mussels. Notably, the negative impacts of BDE-47 were exacerbated by warming. Moreover, proactive mussels displayed better adaptability with higher survival rates along with less damage to hemolymph immunity and antioxidant ability compared to reactive ones when facing environmental challenges. This study highlights potential risks associated with the coexistence of marine warming and PBDEs pollution while demonstrating differential fitness among individuals with distinct personalities.
Collapse
Affiliation(s)
- Kun Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Shi Xiu Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology Shanghai, 201306, China.
| |
Collapse
|
22
|
Iwińska K, Wirowska M, Borowski Z, Boratyński Z, Solecki P, Ciesielski M, Boratyński JS. Energy allocation is revealed while behavioural performance persists after fire disturbance. J Exp Biol 2024; 227:jeb247114. [PMID: 38323432 DOI: 10.1242/jeb.247114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Metabolic physiology and animal behaviour are often considered to be linked, positively or negatively, according to either the performance or allocation models. Performance seems to predominate over allocation in natural systems, but the constraining environmental context may reveal allocation limitations to energetically expensive behaviours. Habitat disturbance, such as the large-scale fire that burnt wetlands of Biebrza National Park (NE Poland), degrades natural ecosystems. It arguably reduces food and shelter availability, modifies predator-prey interactions, and poses a direct threat for animal survival, such as that of the wetland specialist root vole Microtus oeconomus. We hypothesized that fire disturbance induces physiology-behaviour co-expression, as a consequence of changed environmental context. We repeatedly measured maintenance and exercise metabolism, and behavioural responses to the open field, in a root voles from post-fire and unburnt locations. Highly repeatable maintenance metabolism and distance moved during behavioural tests correlated positively, but relatively labile exercise metabolism did not covary with behaviour. At the same time, voles from a post-fire habitat had higher maintenance metabolism and moved shorter distances than voles from unburnt areas. We conclude there is a prevalence of the performance mechanism, but simultaneous manifestation of context-dependent allocation constraints of the physiology-behaviour covariation after disturbance. The last occurs at the within-individual level, indicating the significance of behavioural plasticity in the context of environmental disturbance.
Collapse
Affiliation(s)
- Karolina Iwińska
- University of Białystok Doctoral School in Exact and Natural Sciences, 15-245 Białystok, Poland
| | - Martyna Wirowska
- Adam Mickiewicz University, Department of Systematic Zoology, 61-614 Poznań, Poland
| | | | - Zbyszek Boratyński
- BIOPOLIS, CIBIO/InBio, Research Center in Biodiversity & Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Paweł Solecki
- Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-665 Warsaw, Poland
| | | | - Jan S Boratyński
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| |
Collapse
|
23
|
Mazzamuto MV, Morandini M, Lampman W, Wauters LA, Preatoni D, Koprowski JL, Martinoli A. Use of infrared thermography to detect reactions to stressful events: does animal personality matter? Integr Zool 2024; 19:224-239. [PMID: 37248795 DOI: 10.1111/1749-4877.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The study of the relationship between animal stress and personality for free-ranging animals is limited and provides contrasting results. The perception of stressors by an individual may vary due to its personality, and certain personality traits may help individuals to better cope with them. Using non-invasive infrared thermography (IRT), we investigated the link between physiological and behavioral components expressed during an acute stress event by free-ranging Fremont's squirrels (Tamiasciurus fremonti). We expected that, during the acute stress event of being approached by the researcher, individuals that showed a fast pace-of-life syndrome (bolder, more active, and less social/more aggressive) based on an arena test would exhibit stronger sympathetic-adrenal-medullary system reactivity showing a more intense stress-induced hyperthermia (high core body temperature and low peripheral temperature) than individuals with a slow pace of life (shy, less active, and more social). We successfully employed IRT technology to images of Fremont's squirrels with identification of the individuals' body parts (eye, nose, ear, hind foot). However, we found no support for our hypothesis. Squirrels' body surface temperatures told us more about a squirrel's external environment and less about the thermal state of the body in that environment following a stressful event. Further studies need to assess how to make IRT effective and efficient in the field and improve its performance in studying the relationships between physiology and personality in wildlife.
Collapse
Affiliation(s)
- Maria Vittoria Mazzamuto
- School of Natural Resources and Environment, College of Agriculture and Life Science, University of Arizona, Arizona, USA
- Unità di Analisi e Gestione delle Risorse Ambientali, Dipartimento di Scienze Teoriche e Applicate, Guido Tosi Research Group, Università degli Studi dell'Insubria, Varese, Italy
| | - Marina Morandini
- School of Natural Resources and Environment, College of Agriculture and Life Science, University of Arizona, Arizona, USA
| | - William Lampman
- School of Natural Resources and Environment, College of Agriculture and Life Science, University of Arizona, Arizona, USA
| | - Lucas Armand Wauters
- Unità di Analisi e Gestione delle Risorse Ambientali, Dipartimento di Scienze Teoriche e Applicate, Guido Tosi Research Group, Università degli Studi dell'Insubria, Varese, Italy
| | - Damiano Preatoni
- Unità di Analisi e Gestione delle Risorse Ambientali, Dipartimento di Scienze Teoriche e Applicate, Guido Tosi Research Group, Università degli Studi dell'Insubria, Varese, Italy
| | - John Lad Koprowski
- School of Natural Resources and Environment, College of Agriculture and Life Science, University of Arizona, Arizona, USA
- Haub School of Environment and Natural Resources, University of Wyoming, Wyoming, USA
| | - Adriano Martinoli
- Unità di Analisi e Gestione delle Risorse Ambientali, Dipartimento di Scienze Teoriche e Applicate, Guido Tosi Research Group, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
24
|
Skinner M, Nagabaskaran G, Gantert T, Miller N. Bolder together: conformity drives behavioral plasticity in eastern gartersnakes. Anim Cogn 2024; 27:2. [PMID: 38386147 PMCID: PMC10884060 DOI: 10.1007/s10071-024-01859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024]
Abstract
Personality traits drive individual differences in behaviour that are consistent across time and context. Personality limits behavioural plasticity, which could lead to maladaptive choices if animals cannot adapt their behavior to changing conditions. Here, we assessed consistency and flexibility in one personality trait, boldness, across non-social and social contexts in eastern gartersnakes (Thamnophis sirtalis sirtalis). Snakes explored a novel open arena either alone or in a pair. Pairs were assigned based on the data from the solo trials, such that each snake was paired once with a bolder and once with a less bold partner. We predicted that snakes would conform when in a social context, displaying plasticity in their personality, and causing boldness scores to converge. We found that snakes were consistent within contexts (solo or paired), but changed their behavior across contexts (from solo to paired). Plasticity in boldness resulted from an interaction between conformity and repeatable individual differences in plasticity. In line with some data on other species, snakes conformed more when they were the less bold partner. Personality reflects a consistent bias in decision-making, but our results highlight that the cognitive processes that drive the expression of personality traits in behavior are flexible and sensitive to social context. We show that both consistency and plasticity combine to shape snake social behavior in ways that are responsive to competition. This pattern of behavior may be particularly beneficial for species in which group-living is seasonal.
Collapse
Affiliation(s)
- Morgan Skinner
- Department of Psychology, Wilfrid Laurier University, 75 University Ave. West, Waterloo, ONT, N2L 3C5, Canada.
| | - Gokulan Nagabaskaran
- Department of Psychology, Wilfrid Laurier University, 75 University Ave. West, Waterloo, ONT, N2L 3C5, Canada
| | - Tom Gantert
- School of Nursing, Fanshawe College, London, Ontario, Canada
| | - Noam Miller
- Department of Psychology, Wilfrid Laurier University, 75 University Ave. West, Waterloo, ONT, N2L 3C5, Canada
| |
Collapse
|
25
|
Thiemer K, Lennox RJ, Torske A, Schneider SC, Haugen TO. A shift in habitat use patterns of brown trout (Salmo trutta): A behavioural response to macrophyte removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120047. [PMID: 38190781 DOI: 10.1016/j.jenvman.2024.120047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Mass development of macrophytes is an increasing problem worldwide and they are frequently removed where they are in conflict with local waterway users. Yet, macrophytes can provide important refuge and nursery habitats for fish. Little is known about the consequences of macrophyte removal for fish behavioural space use and habitat selection. We hypothesised that macrophyte removal would affect brown trout (Salmo trutta) movement during the partial removal of the aquatic plant Juncus bulbosus (L.) in an oligotrophic impounded Norwegian river.We tagged 94 brown trout and tracked them using passive acoustic telemetry for 10 months and mapped the cover of J. bulbosus. Trout behavioural patterns were quantified as space use (utilisation areas 50% and 95%) which was linked to habitat use and selection for J. bulbosus. Removal of J. bulbosus influenced space use of brown trout by reducing the core utilisation area by 22%. Habitat use and selection were likewise influenced by removal with increased use and selection of areas with low J. bulbosus cover (<25%) with corresponding reduction in high J. bulbosus cover (>25-75%). Finally, diurnal differences in space use and habitat use were found, with 19% larger utilisation areas at night and higher use of areas with low J. bulbosus during daytime. Yet, all effect sizes were relatively small compared to the size of the study area. This research provides a detailed case study on the effects of macrophyte removal on fish behavioural patterns in a section of a large Norwegian river with macrophyte mass development. We found no large effects of removal on trout behaviour but noted an increased use of areas with low macrophyte cover. This research is relevant for water managers and policy makers of freshwater conservation and provides a template for using acoustic telemetry to study the effects of macrophyte removal on fish.
Collapse
Affiliation(s)
- Kirstine Thiemer
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1430, Ås, Norway.
| | | | - Astrid Torske
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Susanne C Schneider
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Thrond O Haugen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1430, Ås, Norway
| |
Collapse
|
26
|
Raffard A, Jacob S, Schtickzelle N. Non-genetic phenotypic variability affects populations and communities in protist microcosms. J Anim Ecol 2024; 93:221-230. [PMID: 38192091 DOI: 10.1111/1365-2656.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Intraspecific trait variation (ITV), potentially driven by genetic and non-genetic mechanisms, can underlie variability in resource acquisition, individual fitness and ecological interactions. Impacts of ITV at higher levels of biological organizations are hence likely, but up-scaling our knowledge about ITV importance to communities and comparing its relative effects at population and community levels has rarely been investigated. Here, we tested the effects of genetic and non-genetic ITV on morphological traits in microcosms of protist communities by contrasting the effects of strains showing different ITV levels (i.e. trait averages and variance) on population growth, community composition and biomass production. We found that genetic and non-genetic ITV can lead to different effects on populations and communities across several generations. Furthermore, the effects of ITV declined across levels of biological organization: ITV directly altered population performance, with cascading but indirect consequences for community composition and biomass productivity. Overall, these results show that the drivers of ITV can have distinct effects on populations and communities, with cascading impacts on higher levels of biological organization that might mediate biodiversity-ecosystem functioning relationships.
Collapse
Affiliation(s)
- Allan Raffard
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Staffan Jacob
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, UAR-5321, Moulis, France
| | - Nicolas Schtickzelle
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Brand JA, Garcia-Gonzalez F, Dowling DK, Wong BBM. Mitochondrial genetic variation as a potential mediator of intraspecific behavioural diversity. Trends Ecol Evol 2024; 39:199-212. [PMID: 37839905 DOI: 10.1016/j.tree.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Mitochondrial genes play an essential role in energy metabolism. Variation in the mitochondrial DNA (mtDNA) sequence often exists within species, and this variation can have consequences for energy production and organismal life history. Yet, despite potential links between energy metabolism and the expression of animal behaviour, mtDNA variation has been largely neglected to date in studies investigating intraspecific behavioural diversity. We outline how mtDNA variation and interactions between mitochondrial and nuclear genotypes may contribute to the expression of individual-to-individual behavioural differences within populations, and why such effects may lead to sex differences in behaviour. We contend that integration of the mitochondrial genome into behavioural ecology research may be key to fully understanding the evolutionary genetics of animal behaviour.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station-CSIC, Seville, Spain; Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Bell AM. The evolution of decision-making mechanisms under competing demands. Trends Ecol Evol 2024; 39:141-151. [PMID: 37783626 PMCID: PMC10922085 DOI: 10.1016/j.tree.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
Animals in nature are constantly managing multiple demands, and decisions about how to adjust behavior in response to ecologically relevant demands is critical for fitness. Evidence for behavioral correlations across functional contexts (behavioral syndromes) and growing appreciation for shared proximate substrates of behavior prompts novel questions about the existence of distinct neural, molecular, and genetic mechanisms involved in decision-making. Those proximate mechanisms are likely to be an important target of selection, but little is known about how they evolve, their evolutionary history, or where they harbor genetic variation. Herein I provide a conceptual framework for understanding the evolution of mechanisms for decision-making, highlighting insights on decision-making in humans and model organisms, and sketch an emerging synthesis.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, 505 S. Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
29
|
Guo H, Shen C, Zou R, Tao P, Shi Y, Wang Z, Xing J. Complex pathways to cooperation emergent from asymmetry in heterogeneous populations. CHAOS (WOODBURY, N.Y.) 2024; 34:023139. [PMID: 38416672 DOI: 10.1063/5.0188177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Cooperation within asymmetric populations has garnered significant attention in evolutionary games. This paper explores cooperation evolution in populations with weak and strong players, using a game model where players choose between cooperation and defection. Asymmetry stems from different benefits for strong and weak cooperators, with their benefit ratio indicating the degree of asymmetry. Varied rankings of parameters including the asymmetry degree, cooperation costs, and benefits brought by weak players give rise to scenarios including the prisoner's dilemma (PDG) for both player types, the snowdrift game (SDG), and mixed PDG-SDG interactions. Our results indicate that in an infinite well-mixed population, defection remains the dominant strategy when strong players engage in the prisoner's dilemma game. However, if strong players play snowdrift games, global cooperation increases with the proportion of strong players. In this scenario, strong cooperators can prevail over strong defectors when the proportion of strong players is low, but the prevalence of cooperation among strong players decreases as their proportion increases. In contrast, within a square lattice, the optimum global cooperation emerges at intermediate proportions of strong players with moderate degrees of asymmetry. Additionally, weak players protect cooperative clusters from exploitation by strong defectors. This study highlights the complex dynamics of cooperation in asymmetric interactions, contributing to the theory of cooperation in asymmetric games.
Collapse
Affiliation(s)
- Hao Guo
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Chen Shen
- Faculty of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Rongcheng Zou
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pin Tao
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yuanchun Shi
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Zhen Wang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| | - Junliang Xing
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
English HM, Börger L, Kane A, Ciuti S. Advances in biologging can identify nuanced energetic costs and gains in predators. MOVEMENT ECOLOGY 2024; 12:7. [PMID: 38254232 PMCID: PMC10802026 DOI: 10.1186/s40462-024-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Foraging is a key driver of animal movement patterns, with specific challenges for predators which must search for mobile prey. These patterns are increasingly impacted by global changes, principally in land use and climate. Understanding the degree of flexibility in predator foraging and social strategies is pertinent to wildlife conservation under global change, including potential top-down effects on wider ecosystems. Here we propose key future research directions to better understand foraging strategies and social flexibility in predators. In particular, rapid continued advances in biologging technology are helping to record and understand dynamic behavioural and movement responses of animals to environmental changes, and their energetic consequences. Data collection can be optimised by calibrating behavioural interpretation methods in captive settings and strategic tagging decisions within and between social groups. Importantly, many species' social systems are increasingly being found to be more flexible than originally described in the literature, which may be more readily detectable through biologging approaches than behavioural observation. Integrating the effects of the physical landscape and biotic interactions will be key to explaining and predicting animal movements and energetic balance in a changing world.
Collapse
Affiliation(s)
- Holly M English
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | - Adam Kane
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Simone Ciuti
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Sandhu S, Mikheev V, Pasternak A, Taskinen J, Morozov A. Revisiting the role of behavior-mediated structuring in the survival of populations in hostile environments. Commun Biol 2024; 7:93. [PMID: 38216662 PMCID: PMC10786947 DOI: 10.1038/s42003-023-05731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
Increasing the population density of target species is a major goal of ecosystem and agricultural management. This task is especially challenging in hazardous environments with a high abundance of natural enemies such as parasites and predators. Safe locations with lower mortality have been long considered a beneficial factor in enhancing population survival, being a promising tool in commercial fish farming and restoration of threatened species. Here we challenge this opinion and revisit the role of behavior structuring in a hostile environment in shaping the population density. We build a mathematical model, where individuals are structured according to their defensive tactics against natural enemies. The model predicts that although each safe zone enhances the survival of an individual, for an insufficient number of such zones, the entire population experiences a greater overall mortality. This is a result of the interplay of emergent dynamical behavioral structuring and strong intraspecific competition for safe zones. Non-plastic structuring in individuals' boldness reduces the mentioned negative effects. We demonstrate emergence of non-plastic behavioral structuring: the evolutionary branching of a monomorphic population into a dimorphic one with bold/shy strains. We apply our modelling approach to explore fish farming of salmonids in an environment infected by trematode parasites.
Collapse
Affiliation(s)
- Simran Sandhu
- School of Computing and Mathematical Sciences, University of Leicester, LE1 7RH, Leicester, UK
| | - Victor Mikheev
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Anna Pasternak
- Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Jouni Taskinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Andrew Morozov
- School of Computing and Mathematical Sciences, University of Leicester, LE1 7RH, Leicester, UK.
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
32
|
von Kortzfleisch VT, Richter SH. Systematic heterogenization revisited: Increasing variation in animal experiments to improve reproducibility? J Neurosci Methods 2024; 401:109992. [PMID: 37884081 DOI: 10.1016/j.jneumeth.2023.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Life sciences are currently facing a reproducibility crisis. Originally, the crisis was born out of single alarming failures to reproduce findings at different times and locations. Nowadays, systematic studies indicate that the prevalence of irreproducible research does in fact exceed 50%. Viewed from a rather cynical perspective, Fett's law of the lab "Never replicate a successful experiment" has thus taken on a completely new meaning. In this respect, animal research has come under particular scrutiny, as the stakes are high in terms of both research ethics and societal impact. To counteract this, it is essential to identify sources of poor reproducibility as well as to iron out these failures. We here review the current debate, briefly discuss potential reasons, and summarize steps that have already been undertaken to improve reproducibility in animal research. By the example of classical behavioural phenotyping studies, we particularly highlight the role strict standardization plays in exacerbating the crisis, and review the concept of systematic heterogenization as an alternative strategy to deal with variation in animal studies. Briefly, we argue that systematic variation rather than strict homogenization of experimental conditions benefits the robustness of research findings, and hence their reproducibility. To this end, we will present concrete examples for systematically heterogenized experiments and provide a practical guide on how to apply systematic heterogenization in experimental practice.
Collapse
Affiliation(s)
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany.
| |
Collapse
|
33
|
Dellinger M, Steele SE, Sprockel E, Philip J, Pálsson A, Benhaïm D. Variation in personality shaped by evolutionary history, genotype and developmental plasticity in response to feeding modalities in the Arctic charr. Proc Biol Sci 2023; 290:20232302. [PMID: 38087921 PMCID: PMC10716646 DOI: 10.1098/rspb.2023.2302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Animal personality has been shown to be influenced by both genetic and environmental factors and shaped by natural selection. Currently, little is known about mechanisms influencing the development of personality traits. This study examines the extent to which personality development is genetically influenced and/or environmentally responsive (plastic). We also investigated the role of evolutionary history, assessing whether personality traits could be canalized along a genetic and ecological divergence gradient. We tested the plastic potential of boldness in juveniles of five Icelandic Arctic charr morphs (Salvelinus alpinus), including two pairs of sympatric morphs, displaying various degrees of genetic and ecological divergence from the ancestral anadromous charr, split between treatments mimicking benthic versus pelagic feeding modalities. We show that differences in mean boldness are mostly affected by genetics. While the benthic treatment led to bolder individuals overall, the environmental effect was rather weak, suggesting that boldness lies under strong genetic influence with reduced plastic potential. Finally, we found hints of differences by morphs in boldness canalization through reduced variance and plasticity, and higher consistency in boldness within morphs. These findings provide new insights on how behavioural development may impact adaptive diversification.
Collapse
Affiliation(s)
- Marion Dellinger
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Sarah E. Steele
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
- Canadian Museum of Nature, Ottawa, Canada
| | - Evert Sprockel
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- HAS University of Applied Sciences, 's-Hertogenbosch, The Netherlands
| | - Joris Philip
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Glasgow, UK
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - David Benhaïm
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
| |
Collapse
|
34
|
Monk CT, Power M, Freitas C, Harrison PM, Heupel M, Kuparinen A, Moland E, Simpfendorfer C, Villegas-Ríos D, Olsen EM. Atlantic cod individual spatial behaviour and stable isotope associations in a no-take marine reserve. J Anim Ecol 2023; 92:2333-2347. [PMID: 37843043 DOI: 10.1111/1365-2656.14014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.
Collapse
Affiliation(s)
- Christopher T Monk
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Power
- Biology Department, University of Waterloo, Waterloo, Ontario, Canada
| | - Carla Freitas
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- MARE, Marine and Environmental Sciences Center, Madeira Tecnopolo, Funchal, Madeira, Portugal
| | - Philip M Harrison
- Department of Biology and Faculty of Forestry and Environmental Management, Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Michelle Heupel
- Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, Tasmania, Australia
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Even Moland
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Colin Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Esben M Olsen
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
35
|
Hernandez Duran L, Wilson DT, Rymer TL. Exploring behavioral traits over different contexts in four species of Australian funnel-web spiders. Curr Zool 2023; 69:766-774. [PMID: 37876639 PMCID: PMC10591153 DOI: 10.1093/cz/zoac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 10/26/2023] Open
Abstract
Australian funnel-web spiders are arguably the most venomous spiders in the world, with much research focusing on this aspect of their biology. However, other aspects related to their life history, ecology and behaviour have been overlooked. For the first time, we assessed repeatability, namely risk-taking behaviour, aggressiveness and activity in the contexts of predation, conspecific tolerance and exploration of a new territory in four species of Australian funnel-web spiders: two are closely related, Hadronyche valida and H. infensa, and two have overlapping distributions but occupy different habitats, H. cerberea and Atrax robustus. We also compared behaviors between species. At the species level, we found that H. valida showed consistency in risk-taking behavior when exposed to a predator stimulus, aggressiveness against conspecifics, and exploration of a new territory. In contrast, in the other species, only A. robustus showed repeatability in the context of exploration of a new territory. These results suggest that some behavioral traits are likely more flexible than others, and that the repeatability of behaviors may be species-specific in funnel-webs. When we compared species, we found differences in risk-taking behavior and defensiveness. This study provides novel insights to understanding variation in behavioral traits within and between species of funnel-web spiders, suggesting that some behavioral traits are likely context and/or species dependent, as a result of their evolutionary history. These findings provide key insights for understanding the ecological role of behavior and venom deployment in venomous animals, and a greater understanding of behavior in these medically significant and iconic spiders that are of conservation concern.
Collapse
Affiliation(s)
- Linda Hernandez Duran
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD 4870, Australia
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD 4870, Australia
| |
Collapse
|
36
|
Scherer U, Ehlman SM, Bierbach D, Krause J, Wolf M. Reproductive individuality of clonal fish raised in near-identical environments and its link to early-life behavioral individuality. Nat Commun 2023; 14:7652. [PMID: 38001119 PMCID: PMC10673926 DOI: 10.1038/s41467-023-43069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Recent studies have documented among-individual phenotypic variation that emerges in the absence of apparent genetic and environmental differences, but it remains an open question whether such seemingly stochastic variation has fitness consequences. We perform a life-history experiment with naturally clonal fish, separated directly after birth into near-identical (i.e., highly standardized) environments, quantifying 2522 offspring from 152 broods over 280 days. We find that (i) individuals differ consistently in the size of offspring and broods produced over consecutive broods, (ii) these differences are observed even when controlling for trade-offs between brood size, offspring size and reproductive onset, indicating individual differences in life-history productivity and (iii) early-life behavioral individuality in activity and feeding patterns, with among-individual differences in feeding being predictive of growth, and consequently offspring size. Thus, our study provides experimental evidence that even when minimizing genetic and environmental differences, systematic individual differences in life-history measures and ultimately fitness can emerge.
Collapse
Affiliation(s)
- Ulrike Scherer
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany.
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany.
| | - Sean M Ehlman
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - David Bierbach
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - Jens Krause
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| |
Collapse
|
37
|
Shelton DS, Suriyampola PS, Dinges ZM, Glaholt SP, Shaw JR, Martins EP. A Pair of Cadmium-exposed Zebrafish Affect Boldness and Landmark use in the Un-exposed Majority. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566440. [PMID: 38014116 PMCID: PMC10680604 DOI: 10.1101/2023.11.09.566440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Some individuals have a disproportionate effect on group responses. These individuals may possess distinct attributes that differentiate them from others. These characteristics may include susceptibility to contaminant exposure such as cadmium, a potent trace metal present in water and food. Here, we tested whether a pair of cadmium-exposed individuals could exert an impact on the behavior of the unexposed majority. We used behavioral assessments to characterize the extent of the effects of the cadmium-exposed pair on group boldness, cohesion, activity and responses to landmarks. We found that groups with a pair of cadmium-exposed fish approached and remained closer to novel stimuli and landmarks than did groups with pairs of fish treated with uncontaminated water (control). Shoals with cadmium and water treated fish exhibited similar levels of cohesion and activity. The results suggest that fish acutely exposed to environmentally-relevant cadmium concentrations can have profound effects on the un-exposed majority.
Collapse
|
38
|
Meuthen D, Salahinejad A, Chivers DP, Ferrari MCO. Transgenerational plasticity of exploratory behavior and a hidden cost of mismatched risk environments between parental sexes. Sci Rep 2023; 13:19737. [PMID: 37957198 PMCID: PMC10643415 DOI: 10.1038/s41598-023-46269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
We require a better understanding of the relative contribution of different modes of non-genetic inheritance in behavioral trait development. Thus, we investigate variation in exploratory behavior, which is ecologically relevant and a target of selection. The metabolic hypothesis predicts exploratory behavior to be size-dependent across taxa. This size-dependency is cancelled out under high perceived risk, allowing us to determine the transgenerationally integrated estimated level of risk. Using fathead minnows Pimephales promelas, we manipulated perceived risk in mothers, fathers, caring males and offspring through continuous exposure to either conspecific alarm cues or to a control water treatment. In 1000 four-month old offspring, we determined body sizes and exploratory behavior. Perceived high risk in mothers, followed by personal risk, was most effective in eliminating size-dependent behavior whereas effects of paternal risk on offspring behavioral development were substantially weaker. When maternal risk is high, environmental mismatches between parents prevented offspring from responding appropriately to personal high risk. The environment of the caring male also impacted offspring behavior to a greater extent than that of its genetic parents. Our study highlights the high relative importance of maternal, personal and caring male risk environments and showcases potential costs of an environmental mismatch between parental sexes.
Collapse
Affiliation(s)
- Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
39
|
Polverino G, Aich U, Brand JA, Bertram MG, Martin JM, Tan H, Soman VR, Mason RT, Wong BBM. Sex-specific effects of psychoactive pollution on behavioral individuality and plasticity in fish. Behav Ecol 2023; 34:969-978. [PMID: 37969553 PMCID: PMC10636733 DOI: 10.1093/beheco/arad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 11/17/2023] Open
Abstract
The global rise of pharmaceutical contaminants in the aquatic environment poses a serious threat to ecological and evolutionary processes. Studies have traditionally focused on the collateral (average) effects of psychoactive pollutants on ecologically relevant behaviors of wildlife, often neglecting effects among and within individuals, and whether they differ between males and females. We tested whether psychoactive pollutants have sex-specific effects on behavioral individuality and plasticity in guppies (Poecilia reticulata), a freshwater species that inhabits contaminated waterways in the wild. Fish were exposed to fluoxetine (Prozac) for 2 years across multiple generations before their activity and stress-related behavior were repeatedly assayed. Using a Bayesian statistical approach that partitions the effects among and within individuals, we found that males-but not females-in fluoxetine-exposed populations differed less from each other in their behavior (lower behavioral individuality) than unexposed males. In sharp contrast, effects on behavioral plasticity were observed in females-but not in males-whereby exposure to even low levels of fluoxetine resulted in a substantial decrease (activity) and increase (freezing behavior) in the behavioral plasticity of females. Our evidence reveals that psychoactive pollution has sex-specific effects on the individual behavior of fish, suggesting that males and females might not be equally vulnerable to global pollutants.
Collapse
Affiliation(s)
- Giovanni Polverino
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
- Department of Ecological and Biological Sciences, University of Tuscia, L.go dell'Università snc, Viterbo, 01100, Italy
| | - Upama Aich
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-907 36, Umeå,Sweden
| | - Jake M Martin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-907 36, Umeå,Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b114 18, Stockholm, Sweden
| | - Hung Tan
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Vrishin R Soman
- Department of Mechanical and Aerospace Engineering, New York University, 370 Jay Street, Brooklyn, 11201, NY, USA
| | - Rachel T Mason
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
- School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, 3125, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| |
Collapse
|
40
|
Long X, Weissing FJ. Transient polymorphisms in parental care strategies drive divergence of sex roles. Nat Commun 2023; 14:6805. [PMID: 37884497 PMCID: PMC10603145 DOI: 10.1038/s41467-023-42607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The parental roles of males and females differ considerably between and within species. By means of individual-based evolutionary simulations, we strive to explain this diversity. We show that the conflict between the sexes creates a sex bias (towards maternal or paternal care), even if the two sexes are initially identical. When including sexual selection, there are two outcomes: either female mate choice and maternal care or no mate choice and paternal care. Interestingly, the care pattern drives sexual selection and not vice versa. Longer-term simulations exhibit rapid switches between alternative parental care patterns, even in constant environments. Hence, the evolutionary lability of sex roles observed in phylogenetic studies is not necessarily caused by external changes. Overall, our findings are in striking contrast to the predictions of mathematical models. We show that the discrepancies are caused by transient within-sex polymorphisms in parental strategies, a factor largely neglected in current sex-role theory.
Collapse
Affiliation(s)
- Xiaoyan Long
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, The Netherlands
- Institute of Biology I, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
41
|
Fanjul MS, Cutrera AP, Luna F, Zenuto RR. Individual differences in behaviour are related to metabolism, stress response, testosterone, and immunity in the subterranean rodent Ctenomys talarum. Behav Processes 2023; 212:104945. [PMID: 37775063 DOI: 10.1016/j.beproc.2023.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 06/09/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The growth of personality research has led to the integration of consistent variation of individual behaviour in multidimensional approaches including physiological variables, which are required to continue building a more comprehensive theory about coping strategies. In this study, we used wild-caught males of Ctenomys talarum (tuco-tucos), a solitary subterranean rodent, to assess the relationships among personality traits and several physiological variables, namely stress response, testosterone, immunity, and energy metabolism. Subjects (n = 21) were used in experimental tests assessing behaviour, energy metabolism, testosterone levels, inflammatory cell-mediated and humoral immunity, and stress response to a simulated predator attack. The structural equation model explained a moderate portion of the variance of personality behaviours related to activity (52%), boldness (35%), and socioaversion (30%). More active and bold individuals showed higher oxygen consumption. While those subjects had lower baseline cortisol levels, there was no relationship between cortisol levels of the stress-induced response. Cell-mediated immune response was related to activity levels. Finally, testosterone only affected boldness. Despite some of these relationships diverge in direction to predicted ones, overall they support the existence of coping styles in male C. talarum; and are discussed in the light of current hypotheses and particular behavioural and ecological traits of tuco-tucos.
Collapse
Affiliation(s)
- María Sol Fanjul
- Grupo "Ecología Fisiológica y del Comportamiento", Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Ana Paula Cutrera
- Grupo "Ecología Fisiológica y del Comportamiento", Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Facundo Luna
- Grupo "Ecología Fisiológica y del Comportamiento", Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Roxana Rita Zenuto
- Grupo "Ecología Fisiológica y del Comportamiento", Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.
| |
Collapse
|
42
|
Bisconti R, Carere C, Costantini D, Liparoto A, Chiocchio A, Canestrelli D. Evolution of personality and locomotory performance traits during a late Pleistocene island colonization in a tree frog. Curr Zool 2023; 69:631-641. [PMID: 37637312 PMCID: PMC10449429 DOI: 10.1093/cz/zoac062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 08/29/2023] Open
Abstract
Recent empirical and theoretical studies suggest that personality and locomotory performance traits linked to dispersal abilities are crucial components of the dispersal syndromes, and that they can evolve during range expansions and colonization processes. Island colonization is one of the best characterized processes in dispersal biogeography, and its implication in the evolution of phenotypic traits has been investigated over a wide range of temporal scales. However, the effect of island colonization on personality and performance traits of natural populations, and how these traits could drive island colonization, has been little explored. Noteworthy, no studies have addressed these processes in the context of late Pleistocene range expansions. Here, we investigated the contribution of island colonization triggered by postglacial range expansions to intraspecific variation in personality and locomotory performance traits. We compared boldness, exploration, jumping performance, and stickiness abilities in populations from 3 equidistant areas of the Tyrrhenian tree frog Hyla sarda, 2 from the main island (Corsica Island), and 1 from the recently colonized island of Elba. Individuals from Elba were significantly bolder than individuals from Corsica, as they emerged sooner from a shelter (P = 0.028), while individuals from Corsica showed markedly higher jumping and stickiness performance (both P < 0.001), resulting as more performing than those of Elba. We discuss these results in the context of the major microevolutionary processes at play during range expansion, including selection, spatial sorting, founder effects, and their possible interaction with local adaptation processes.
Collapse
Affiliation(s)
- Roberta Bisconti
- Department of Ecological and Biological Science, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Claudio Carere
- Department of Ecological and Biological Science, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, CP32, 57 rue Cuvier 75005 Paris, France
| | - Anita Liparoto
- Department of Ecological and Biological Science, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Andrea Chiocchio
- Department of Ecological and Biological Science, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Daniele Canestrelli
- Department of Ecological and Biological Science, Tuscia University, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| |
Collapse
|
43
|
Gupte PR, Netz C, Weissing FJ. The Joint Evolution of Animal Movement and Competition Strategies. Am Nat 2023; 202:E65-E82. [PMID: 37606946 DOI: 10.1086/725394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractCompetition typically takes place in a spatial context, but eco-evolutionary models rarely address the joint evolution of movement and competition strategies. Here we investigate a spatially explicit forager-kleptoparasite model where consumers can either forage on a heterogeneous resource landscape or steal resource items from conspecifics (kleptoparasitism). We consider three scenarios: (1) foragers without kleptoparasites, (2) consumers specializing as foragers or as kleptoparasites, and (3) consumers that can switch between foraging and kleptoparasitism depending on local conditions. We model movement strategies as individual-specific combinations of preferences for environmental cues, similar to step-selection coefficients. Using mechanistic, individual-based simulations, we study the joint evolution of movement and competition strategies, and we investigate the implications for the distribution of consumers over this landscape. Movement and competition strategies evolve rapidly and consistently across scenarios, with marked differences among scenarios, leading to differences in resource exploitation patterns. In scenario 1, foragers evolve considerable individual variation in movement strategies, while in scenario 2, movement strategies show a swift divergence between foragers and kleptoparasites. In scenario 3, where individuals' competition strategies are conditional on local cues, movement strategies facilitate kleptoparasitism, and individual consistency in competition strategy also emerges. Even in the absence of kleptoparasitism (scenario 1), the distribution of consumers deviates considerably from predictions of ideal free distribution models because of the intrinsic difficulty of moving effectively on a depleted resource landscape with few reliable cues. Our study emphasizes the advantages of a mechanistic approach when studying competition in a spatial context and suggests how evolutionary modeling can be integrated with current work in animal movement ecology.
Collapse
|
44
|
van Dooren T, Price CJ, Banks PB, Berger-Tal O, Chrulew M, Johnson J, Lajeunesse G, Lynch KE, McArthur C, Parker FCG, Oakey M, Pitcher BJ, St Clair CC, Ward-Fear G, Widin S, Wong BBM, Blumstein DT. The ethics of intervening in animal behaviour for conservation. Trends Ecol Evol 2023; 38:822-830. [PMID: 37183150 DOI: 10.1016/j.tree.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Conservation behaviour is a growing field that applies insights from the study of animal behaviour to address challenges in wildlife conservation and management. Conservation behaviour interventions often aim to manage specific behaviours of a species to solve conservation challenges. The field is often viewed as offering approaches that are less intrusive or harmful to animals than, for example, managing the impact of a problematic species by reducing its population size (frequently through lethal control). However, intervening in animal behaviour, even for conservation purposes, may still raise important ethical considerations. We discuss these issues and develop a framework and a decision support tool, to aid managers and researchers in evaluating the ethical considerations of conservation behaviour interventions against other options.
Collapse
Affiliation(s)
- Thom van Dooren
- Sydney Environment Institute and School of Humanities, The University of Sydney, Sydney, NSW, Australia.
| | - Catherine J Price
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Peter B Banks
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Oded Berger-Tal
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Matthew Chrulew
- School of Media, Creative Arts and Social Inquiry, Curtin University, WA, Australia
| | - Jane Johnson
- Department of Philosophy, Macquarie University, NSW, Australia
| | | | - Kate E Lynch
- Department of Philosophy and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Clare McArthur
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Finn C G Parker
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Myles Oakey
- School of Humanities, The University of Sydney, NSW, Australia
| | - Benjamin J Pitcher
- Taronga Institute of Science and Learning, Taronga Conservation Society, Sydney, NSW, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Georgia Ward-Fear
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sam Widin
- School of Humanities, The University of Sydney, NSW, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Mutwill AM, Schielzeth H, Richter SH, Kaiser S, Sachser N. Conditional on the social environment? Roots of repeatability in hormone concentrations of male guinea pigs. Horm Behav 2023; 155:105423. [PMID: 37713739 DOI: 10.1016/j.yhbeh.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
Individual differences in behavioral and physiological traits among members of the same species are increasingly being recognized as important in animal research. On the group level, shaping of behavioral and hormonal phenotypes by environmental factors has been reported in different taxa. The extent to which the environment impacts behavior and hormones on the individual level, however, is rather unexplored. Hormonal phenotypes of guinea pigs can be shaped by the social environment on the group level: pair-housed and colony-housed males differ systematically in average testosterone and stressor-induced cortisol levels (i.e. cortisol responsiveness). The aim of the present study was to evaluate whether repeatability and individual variance components (i.e. between- and within-individual variation) of hormonal phenotypes also differ in different social environments. To test this, we determined baseline testosterone, baseline cortisol, and cortisol responsiveness after challenge in same-aged pair-housed and colony-housed guinea pig males over a period of four months. We found comparable repeatability for baseline cortisol and cortisol responsiveness in males from both social conditions. In contrast, baseline testosterone was repeatable only in males from colonies. Interestingly, this result was brought about by significantly larger between-individual variation of testosterone, that was not explained by differences in dominance rank. Individualized social niches differentiated under complex colony, but not pair housing, could be an explanation for this finding.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
46
|
Tosa MI, Biel MJ, Graves TA. Bighorn sheep associations: understanding tradeoffs of sociality and implications for disease transmission. PeerJ 2023; 11:e15625. [PMID: 37576510 PMCID: PMC10416771 DOI: 10.7717/peerj.15625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/02/2023] [Indexed: 08/15/2023] Open
Abstract
Sociality directly influences mating success, survival rates, and disease, but ultimately likely evolved for its fitness benefits in a challenging environment. The tradeoffs between the costs and benefits of sociality can operate at multiple scales, resulting in different interpretations of animal behavior. We investigated the influence of intrinsic (e.g., relatedness, age) and extrinsic factors (e.g., land cover type, season) on direct contact (simultaneous GPS locations ≤ 25 m) rates of bighorn sheep (Ovis canadensis) at multiple scales near the Waterton-Glacier International Peace Park. During 2002-2012, male and female bighorn were equipped with GPS collars. Indirect contact (GPS locations ≤ 25 m regardless of time) networks identified two major breaks whereas direct contact networks identified an additional barrier in the population, all of which corresponded with prior disease exposure metrics. More direct contacts occurred between same-sex dyads than female-male dyads and between bighorn groups with overlapping summer home ranges. Direct contacts occurred most often during the winter-spring season when bighorn traveled at low speeds and when an adequate number of bighorn were collared in the area. Direct contact probabilities for all dyad types were inversely related to habitat quality, and differences in contact probability were driven by variables related to survival such as terrain ruggedness, distance to escape terrain, and canopy cover. We provide evidence that probabilities of association are higher when there is greater predation risk and that contact analysis provides valuable information for understanding fitness tradeoffs of sociality and disease transmission potential.
Collapse
Affiliation(s)
- Marie I. Tosa
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, United States of America
| | - Mark J. Biel
- Glacier National Park, National Park Service, West Glacier, MT, United States of America
| | - Tabitha A. Graves
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, United States of America
| |
Collapse
|
47
|
Gupte PR, Albery GF, Gismann J, Sweeny A, Weissing FJ. Novel pathogen introduction triggers rapid evolution in animal social movement strategies. eLife 2023; 12:e81805. [PMID: 37548365 PMCID: PMC10449382 DOI: 10.7554/elife.81805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Animal sociality emerges from individual decisions on how to balance the costs and benefits of being sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality, selecting against gregariousness. Using an individual-based model that captures essential features of pathogen transmission among social hosts, we show how novel pathogen introduction provokes the rapid evolutionary emergence and coexistence of distinct social movement strategies. These strategies differ in how they trade the benefits of social information against the risk of infection. Overall, pathogen-risk-adapted populations move more and have fewer associations with other individuals than their pathogen-risk-naive ancestors, reducing disease spread. Host evolution to be less social can be sufficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in social tendency. Our conceptual model is broadly applicable to a wide range of potential host-pathogen introductions and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen spillover scenarios and a template for the development of theory in the ecology and evolution of animals' movement decisions.
Collapse
Affiliation(s)
- Pratik Rajan Gupte
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Gregory F Albery
- Georgetown UniversityWashingtonUnited States
- Wissenschaftskolleg zu BerlinBerlinGermany
| | - Jakob Gismann
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Amy Sweeny
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| |
Collapse
|
48
|
Blanchet S, Fargeot L, Raffard A. Phylogenetically-conserved candidate genes unify biodiversity-ecosystem function relationships and eco-evolutionary dynamics across biological scales. Mol Ecol 2023; 32:4467-4481. [PMID: 37296539 DOI: 10.1111/mec.17043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The intra- and interspecific facets of biodiversity have traditionally been analysed separately, limiting our understanding of how evolution has shaped biodiversity, how biodiversity (as a whole) alters ecological dynamics and hence eco-evolutionary feedbacks at the community scale. Here, we propose using candidate genes phylogenetically-conserved across species and sustaining functional traits as an inclusive biodiversity unit transcending the intra- and interspecific boundaries. This framework merges knowledge from functional genomics and functional ecology, and we first provide guidelines and a concrete example for identifying phylogenetically-conserved candidate genes (PCCGs) within communities and for measuring biodiversity from PCCGs. We then explain how biodiversity measured at PCCGs can be linked to ecosystem functions, which unifies recent observations that both intra- and interspecific biodiversity are important for ecosystem functions. We then highlight the eco-evolutionary processes shaping PCCG diversity patterns and argue that their respective role can be inferred from concepts derived from population genetics. Finally, we explain how PCCGs may shift the field of eco-evolutionary dynamics from a focal-species approach to a more realistic focal-community approach. This framework provides a novel perspective to investigate the global ecosystem consequences of diversity loss across biological scales, and how these ecological changes further alter biodiversity evolution.
Collapse
Affiliation(s)
- Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, UAR2029, Moulis, France
| | - Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Station d'Écologie Théorique et Expérimentale du CNRS à Moulis, UAR2029, Moulis, France
| | - Allan Raffard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
49
|
Michel A, Johnson JR, Szeligowski R, Ritchie EG, Sih A. Integrating sensory ecology and predator-prey theory to understand animal responses to fire. Ecol Lett 2023; 26:1050-1070. [PMID: 37349260 DOI: 10.1111/ele.14231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 06/24/2023]
Abstract
Fire regimes are changing dramatically worldwide due to climate change, habitat conversion, and the suppression of Indigenous landscape management. Although there has been extensive work on plant responses to fire, including their adaptations to withstand fire and long-term effects of fire on plant communities, less is known about animal responses to fire. Ecologists lack a conceptual framework for understanding behavioural responses to fire, which can hinder wildlife conservation and management. Here, we integrate cue-response sensory ecology and predator-prey theory to predict and explain variation in if, when and how animals react to approaching fire. Inspired by the literature on prey responses to predation risk, this framework considers both fire-naïve and fire-adapted animals and follows three key steps: vigilance, cue detection and response. We draw from theory on vigilance tradeoffs, signal detection, speed-accuracy tradeoffs, fear generalization, neophobia and adaptive dispersal. We discuss how evolutionary history with fire, but also other selective pressures, such as predation risk, should influence animal behavioural responses to fire. We conclude by providing guidance for empiricists and outlining potential conservation applications.
Collapse
Affiliation(s)
- Alice Michel
- Animal Behavior Graduate Group, University of California, Davis, California, USA
| | - Jacob R Johnson
- Animal Behavior Graduate Group, University of California, Davis, California, USA
| | - Richard Szeligowski
- Department of Environmental Science & Policy, University of California, Davis, California, USA
| | - Euan G Ritchie
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, Victoria, Australia
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, Davis, California, USA
| |
Collapse
|
50
|
Zhu B, Wang X, Ren Z, Zhang H, Liu D, Wang F. Each Personality Performs Its Own Function: Boldness and Exploration Lead to Differences in the Territoriality of Swimming Crabs ( Portunus trituberculatus). BIOLOGY 2023; 12:883. [PMID: 37372167 DOI: 10.3390/biology12060883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
The boldness and exploration of animals are closely related to their territoriality, with relevant studies having important applications in wildlife conservation. The present study establishes a behavior observation system measuring the boldness and exploration of swimming crabs (Portunus trituberculatus) to clarify the relationship between boldness, exploration, and territoriality, as well as to provide a behavioral basis for the construction of marine ranching. The behavioral tests of crabs in a safe environment (predator absence), a dangerous environment (predator presence), and habitat selection (complex and simple habitat) are analyzed. A territorial behavior score is calculated as an evaluation index of territoriality. The correlation between the swimming crabs' boldness, exploration, and territoriality is analyzed. The results show that there is no boldness-exploratory behavioral syndrome. In predator absence or presence environments, boldness is dominant in territorial behavior and positively correlates with territoriality. Exploration plays a vital role in habitat selection tests but has no significant correlation with territoriality. The experimental results preliminarily show that boldness and exploration jointly develop the difference in the space utilization ability of crabs with different personalities, improving the adaptability of swimming crabs in different conditions. The results of this study supplement the behavior rules of the dominant species of typical fishery resources in marine ranches, providing a basis for achieving animal behavior management function in marine ranches.
Collapse
Affiliation(s)
- Boshan Zhu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xin Wang
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao 266104, China
| | - Ziwen Ren
- Shandong Yellow River Delta Marine Technology Co., Ltd., Dongying 257000, China
| | - Hanzun Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Dapeng Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Fang Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|