1
|
Moalem Y, Katz R, Subramaniam AG, Malis Y, Yaffe Y, Borenstein-Auerbach N, Tadmor K, Raved R, Maoz BM, Yoo JS, Lustig Y, Luxenburg C, Perlson E, Einav S, Sklan EH. Numb-associated kinases regulate sandfly-borne Toscana virus entry. Emerg Microbes Infect 2024; 13:2382237. [PMID: 39017647 PMCID: PMC11285224 DOI: 10.1080/22221751.2024.2382237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Sandfly-borne Toscana virus (TOSV) is an enveloped tri-segmented negative single-strand RNA Phlebovirus. It is an emerging virus predominantly endemic in southwestern Europe and Northern Africa. Although TOSV infection is typically asymptomatic or results in mild febrile disease, it is neurovirulent and ranks among the three most common causes of summer meningitis in certain regions. Despite this clinical significance, our understanding of the molecular aspects and host factors regulating phlebovirus infection is limited. This study characterized the early steps of TOSV infection. Our findings reveal that two members of the Numb-associated kinases family of Ser/Thr kinases, namely adaptor-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), play a role in regulating the early stages of TOSV entry. FDA-approved inhibitors targeting these kinases demonstrated significant inhibition of TOSV infection. This study suggests that AAK1 and GAK represent druggable targets for inhibiting TOSV infection and, potentially, related Phleboviruses.
Collapse
Affiliation(s)
- Yarden Moalem
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rodolfo Katz
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anand G. Subramaniam
- Department of Physiology and Pharmacology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yehonathan Malis
- Department of Pathology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yakey Yaffe
- The Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nofit Borenstein-Auerbach
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Keshet Tadmor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roey Raved
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ben M. Maoz
- The Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ji Seung Yoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Public Health, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Guagliardo SAJ, Connelly CR, Lyons S, Martin SW, Sutter R, Hughes HR, Brault AC, Lambert AJ, Gould CV, Staples JE. Reemergence of Oropouche Virus in the Americas and Risk for Spread in the United States and Its Territories, 2024. Emerg Infect Dis 2024; 30:2241-2249. [PMID: 39353409 DOI: 10.3201/eid3011.241220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Oropouche virus has recently caused outbreaks in South America and the Caribbean, expanding into areas to which the virus was previously not endemic. This geographic range expansion, in conjunction with the identification of vertical transmission and reports of deaths, has raised concerns about the broader threat this virus represents to the Americas. We review information on Oropouche virus, factors influencing its spread, transmission risk in the United States, and current status of public health response tools. On the basis of available data, the risk for sustained local transmission in the continental United States is considered low because of differences in vector ecology and in human-vector interactions when compared with Oropouche virus-endemic areas. However, more information is needed about the drivers for the current outbreak to clarify the risk for further expansion of this virus. Timely detection and control of this emerging pathogen should be prioritized to mitigate disease burden and stop its spread.
Collapse
|
3
|
de Oliveira-Filho EF, Cabezas Sánchez CA, Manosalva DEV, Romero MDF, Sarmiento NSM, Ñique AIM, Málaga-Trillo E, Moreira-Soto A, Mendoza MPG, Drexler JF. Fort Sherman Virus Infection in Human, Peru, 2020. Emerg Infect Dis 2024; 30:2211-2214. [PMID: 39320235 PMCID: PMC11431901 DOI: 10.3201/eid3010.240124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Fort Sherman virus (FSV) was isolated in Panama in 1985 from a US soldier. We report a case of human FSV infection in a febrile patient from northern coastal Peru in 2020. FSV infections spanning ≈35 years and a distance of 2,000 km warrant diagnostics, genomic surveillance, and investigation of transmission cycles.
Collapse
|
4
|
Tilston-Lunel NL. Oropouche Virus: An Emerging Orthobunyavirus. J Gen Virol 2024; 105:002027. [PMID: 39351896 PMCID: PMC11443551 DOI: 10.1099/jgv.0.002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
On 2 February 2024, the Pan American Health Organization/World Health Organization issued an epidemiological alert on rising Oropouche virus (OROV) infections in South America. By 3 August 2024, this alert level had escalated from medium to high. OROV has been a public health concern in Central and South America since its emergence in Brazil in the 1960s. However, the 2024 outbreak marks a turning point, with the sustained transmission in non-endemic regions of Brazil, local transmission in Cuba, two fatalities and several cases of vertical transmission. As of the end of August 2024, 9852 OROV cases have been confirmed. The 2024 OROV outbreak underscores critical gaps in our understanding of OROV pathogenesis and highlights the urgent need for antivirals and vaccines. This review aims to provide a concise overview of OROV, a neglected orthobunyavirus.
Collapse
Affiliation(s)
- Natasha L. Tilston-Lunel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Naveca FG, Almeida TAPD, Souza V, Nascimento V, Silva D, Nascimento F, Mejía M, Oliveira YSD, Rocha L, Xavier N, Lopes J, Maito R, Meneses C, Amorim T, Fé L, Camelo FS, Silva SCDA, Melo AXD, Fernandes LG, Oliveira MAAD, Arcanjo AR, Araújo G, André Júnior W, Carvalho RLCD, Rodrigues R, Albuquerque S, Mattos C, Silva C, Linhares A, Rodrigues T, Mariscal F, Morais MA, Presibella MM, Marques NFQ, Paiva A, Ribeiro K, Vieira D, Queiroz JADS, Passos-Silva AM, Abdalla L, Santos JH, Figueiredo RMPD, Cruz ACR, Casseb LN, Chiang JO, Frutuoso LV, Rossi A, Freitas L, Campos TDL, Wallau GL, Moreira E, Lins Neto RD, Alexander LW, Sun Y, Filippis AMBD, Gräf T, Arantes I, Bento AI, Delatorre E, Bello G. Human outbreaks of a novel reassortant Oropouche virus in the Brazilian Amazon region. Nat Med 2024:10.1038/s41591-024-03300-3. [PMID: 39293488 DOI: 10.1038/s41591-024-03300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
The Brazilian western Amazon is experiencing its largest laboratory-confirmed Oropouche virus (OROV) outbreak, with more than 6,300 reported cases between 2022 and 2024. In this study, we sequenced and analyzed 382 OROV genomes from human samples collected in Amazonas, Acre, Rondônia and Roraima states, between August 2022 and February 2024, to uncover the origin and genetic evolution of OROV in the current outbreak. Genomic analyses revealed that the upsurge of OROV cases in the Brazilian Amazon coincides with spread of a novel reassortant lineage containing the M segment of viruses detected in the eastern Amazon region (2009-2018) and the L and S segments of viruses detected in Peru, Colombia and Ecuador (2008-2021). The novel reassortant likely emerged in the Amazonas state between 2010 and 2014 and spread through long-range dispersion events during the second half of the 2010s. Phylodynamics reconstructions showed that the current OROV spread was driven mainly by short-range (< 2 km) movements consistent with the flight range of vectors. Nevertheless, a substantial proportion (22%) of long-range (>10 km) OROV migrations were also detected, consistent with viral dispersion by humans. Our data provide a view of the unprecedented spread and evolution of OROV in the Brazilian western Amazon region.
Collapse
Affiliation(s)
- Felipe Gomes Naveca
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil.
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Tatiana Amaral Pires de Almeida
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas, FCecon, Manaus, Brazil
| | - Victor Souza
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Valdinete Nascimento
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Dejanane Silva
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Fernanda Nascimento
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Matilde Mejía
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Yasmin Silva de Oliveira
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados - ViVER/EDTA, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Luisa Rocha
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Natana Xavier
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Janis Lopes
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Rodrigo Maito
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Cátia Meneses
- Laboratório Central de Saúde Pública de Roraima, Boa Vista, Brazil
| | - Tatyana Amorim
- Fundação de Vigilância em Saúde - Dra. Rosemary Costa Pinto, Manaus, Brazil
| | - Luciana Fé
- Fundação de Vigilância em Saúde - Dra. Rosemary Costa Pinto, Manaus, Brazil
| | | | | | | | | | | | - Ana Ruth Arcanjo
- Laboratório Central de Saúde Pública do Amazonas, Manaus, Brazil
| | - Guilherme Araújo
- Laboratório Central de Saúde Pública do Amazonas, Manaus, Brazil
| | | | | | - Rosiane Rodrigues
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | | | - Cristiane Mattos
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Ciciléia Silva
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Aline Linhares
- Laboratório Central de Saúde Pública de Rondônia, Porto Velho, Brazil
| | - Taynã Rodrigues
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Francy Mariscal
- Laboratório Central de Saúde Pública do Acre, Rio Branco, Brazil
| | - Márcia Andréa Morais
- Núcleo de Doenças de Transmissão Vetorial, Secretaria Estadual de Saúde do Acre, Rio Branco, Brazil
| | | | | | - Anne Paiva
- Coordenação Geral de Laboratórios de Saúde Pública - CGLAB, Ministério da Saúde, Brasília, Brazil
| | - Karina Ribeiro
- Coordenação Geral de Laboratórios de Saúde Pública - CGLAB, Ministério da Saúde, Brasília, Brazil
| | - Deusilene Vieira
- Laboratório de Virologia Molecular, Fiocruz Rondônia, Porto Velho, Brazil
| | | | | | | | | | | | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Livia Neves Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, Brazil
| | - Livia Vinhal Frutuoso
- Coordenação-Geral de Vigilância de Arboviroses - CGARB, Departamento de Doenças Transmissíveis, Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, Brazil
| | - Agata Rossi
- Laboratório de Genômica e Ecologia Viral, Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Lucas Freitas
- GISAID Global Data Science Initiative, Munich, Germany
| | | | - Gabriel Luz Wallau
- Instituto Aggeu Magalhães, Fiocruz, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | | | | | - Laura W Alexander
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yining Sun
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| | - Ighor Arantes
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana I Bento
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edson Delatorre
- Laboratório de Genômica e Ecologia Viral, Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Fu P, Meng Z, Peng Y, Song F, He Y, Qin X, Qiu G, Liu Y, Xu T, Peng Y, Cui F, Qin X, Liu M, Wang C. Identification of severe fever with thrombocytopenia syndrome virus isolates in the northwest of Hubei Province, China. Acta Trop 2024; 260:107397. [PMID: 39278519 DOI: 10.1016/j.actatropica.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne viral disease that is increasingly affecting human being worldwide. The clinical manifestations and mortality rates of SFTS can vary depending on the geographic region and the specific genotype of the SFTS virus (SFTSV). From July 2022 to August 2023, we collected serum samples from 83 patients with suspected SFTSV infection in the northwest of Hubei Province, China. From which, 13 patients tested positive for SFTSV. Phylogenetic analysis of the SFTSV L, M, and S gene segments was performed using the maximum likelihood method to determine the genetic diversity of the isolates. At least 2 SFTSV genotypes (A and F) were identified in the northwest of Hubei Province. The clinical manifestations and laboratory findings on the first day of admission were investigated. Results showed that bleeding and disturbance of consciousness, and significant elevated AST and APTT, are valuable for assessing the prognosis for SFTS patients. This study disclosed the genomic sequences and genotypes of SFTSV spreading in the northwest of Hubei Province for the first time, providing information of genetically etiology for SFTS in the local district. Furthermore, certain symptoms and/or laboratory findings may indicate adverse clinical outcomes, highlighting the importance of identifying the symptoms and monitoring specific laboratory markers. Future research is needed to investigate the threshold values of these markers and to closely observe the indicative symptoms in order to early identify and timely management of critically ill patients within clinical settings.
Collapse
Affiliation(s)
- Peixi Fu
- Department of Infectious Diseases, Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhongji Meng
- Department of Infectious Diseases, Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yanli Peng
- Department of Infectious Diseases, Yunyang People's Hospital, Shiyan, 442500, China
| | - Fangmin Song
- Department of Infectious Diseases, Yunxi People's Hospital, Shiyan, 442600, China
| | - Yuqian He
- Department of Infectious Diseases, Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xueqin Qin
- Department of Infectious Diseases, Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Guangyu Qiu
- Department of Emergency, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Yang Liu
- Department of Emergency, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Tianyi Xu
- Department of Infectious Diseases, Yunxi People's Hospital, Shiyan, 442600, China
| | - Yong Peng
- Department of Infectious Diseases, Zhushan People's Hospital, Shiyan, 442200, China
| | - Fangfang Cui
- Department of Infectious Diseases, Gucheng People's Hospital, Xiangyang, 441700, China
| | - Xin Qin
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Mingming Liu
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, 441000, China.
| | - Chuanmin Wang
- Department of Infectious Diseases, Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
7
|
Wesselmann KM, Postigo-Hidalgo I, Pezzi L, de Oliveira-Filho EF, Fischer C, de Lamballerie X, Drexler JF. Emergence of Oropouche fever in Latin America: a narrative review. THE LANCET. INFECTIOUS DISEASES 2024; 24:e439-e452. [PMID: 38281494 DOI: 10.1016/s1473-3099(23)00740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2024]
Abstract
Since its discovery in 1955, the incidence and geographical spread of reported Oropouche virus (OROV) infections have increased. Oropouche fever has been suggested to be one of the most important vector-borne diseases in Latin America. However, both literature on OROV and genomic sequence availability are scarce, with few contributing laboratories worldwide. Three reassortant OROV glycoprotein gene variants termed Iquitos, Madre de Dios, and Perdões virus have been described from humans and non-human primates. OROV predominantly causes acute febrile illness, but severe neurological disease such as meningoencephalitis can occur. Due to unspecific symptoms, laboratory diagnostics are crucial. Several laboratory tests have been developed but robust commercial tests are hardly available. Although OROV is mainly transmitted by biting midges, it has also been detected in several mosquito species and a wide range of vertebrate hosts, which likely facilitates its widespread emergence. However, potential non-human vertebrate reservoirs have not been systematically studied. Robust animal models to investigate pathogenesis and immune responses are not available. Epidemiology, pathogenesis, transmission cycle, cross-protection from infections with OROV reassortants, and the natural history of infection remain unclear. This Review identifies Oropouche fever as a neglected disease and offers recommendations to address existing knowledge gaps, enable risk assessments, and ensure effective public health responses.
Collapse
Affiliation(s)
- Konrad M Wesselmann
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Ignacio Postigo-Hidalgo
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Pezzi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France; Centre National de Référence (CNR) des Arbovirus, Marseille, France
| | - Edmilson F de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlo Fischer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France; Centre National de Référence (CNR) des Arbovirus, Marseille, France
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research (DZIF), Berlin, Germany.
| |
Collapse
|
8
|
Castilletti C, Mori A, Matucci A, Ronzoni N, Van Duffel L, Rossini G, Sponga P, D'Errico ML, Rodari P, Cristini F, Huits R, Gobbi FG. Oropouche fever cases diagnosed in Italy in two epidemiologically non-related travellers from Cuba, late May to early June 2024. Euro Surveill 2024; 29:2400362. [PMID: 38940002 PMCID: PMC11212459 DOI: 10.2807/1560-7917.es.2024.29.26.2400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Oropouche fever is caused by Oropouche virus (OROV), transmitted primarily through the bite of infected midges, particularly of the genus Culicoides. The virus is mainly circulating in Central and South America where several countries reported an ongoing outbreak. We report here two imported cases of OROV infection identified in Italy, late May-early June 2024. These cases indicate that in the shadow of a massive dengue outbreak in the Americas, the Oropouche outbreak might be more widespread than previously estimated.
Collapse
Affiliation(s)
- Concetta Castilletti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Andrea Matucci
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Niccolò Ronzoni
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Lukas Van Duffel
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, Forlì, Italy
| | - Giada Rossini
- Unità Operativa Complessa Microbiologia, IRCCS Azienda Ospedaliero, University of Bologna, Bologna, Italy
| | - Pietro Sponga
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Maria Luca D'Errico
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Paola Rodari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Francesco Cristini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, Forlì, Italy
| | - Ralph Huits
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Federico Giovanni Gobbi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| |
Collapse
|
9
|
Lin Q, Goldberg EE, Leitner T, Molina-París C, King AA, Romero-Severson EO. The Number and Pattern of Viral Genomic Reassortments are not Necessarily Identifiable from Segment Trees. Mol Biol Evol 2024; 41:msae078. [PMID: 38648521 PMCID: PMC11152448 DOI: 10.1093/molbev/msae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Reassortment is an evolutionary process common in viruses with segmented genomes. These viruses can swap whole genomic segments during cellular co-infection, giving rise to novel progeny formed from the mixture of parental segments. Since large-scale genome rearrangements have the potential to generate new phenotypes, reassortment is important to both evolutionary biology and public health research. However, statistical inference of the pattern of reassortment events from phylogenetic data is exceptionally difficult, potentially involving inference of general graphs in which individual segment trees are embedded. In this paper, we argue that, in general, the number and pattern of reassortment events are not identifiable from segment trees alone, even with theoretically ideal data. We call this fact the fundamental problem of reassortment, which we illustrate using the concept of the "first-infection tree," a potentially counterfactual genealogy that would have been observed in the segment trees had no reassortment occurred. Further, we illustrate four additional problems that can arise logically in the inference of reassortment events and show, using simulated data, that these problems are not rare and can potentially distort our observation of reassortment even in small data sets. Finally, we discuss how existing methods can be augmented or adapted to account for not only the fundamental problem of reassortment, but also the four additional situations that can complicate the inference of reassortment.
Collapse
Affiliation(s)
- Qianying Lin
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Emma E Goldberg
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carmen Molina-París
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Aaron A King
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Ethan O Romero-Severson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
10
|
Heitmann A, Wehmeyer ML, Lühken R, Kliemke K, Jöst H, Becker N, Helms M, Schmidt-Chanasit J, Jansen S. Evaluation of the vector competence for Batai virus of native Culex and exotic Aedes species in Central Europe. Parasit Vectors 2024; 17:223. [PMID: 38750581 PMCID: PMC11094933 DOI: 10.1186/s13071-024-06296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Batai virus (BATV) is a zoonotic arbovirus of veterinary importance. A high seroprevalence in cows, sheep and goats and infection in different mosquito species has been observed in Central Europe. Therefore, we studied indigenous as well as exotic species of the genera Culex and Aedes for BATV vector competence at different fluctuating temperature profiles. METHODS Field caught Culex pipiens biotype pipiens, Culex torrentium, Aedes albopictus and Aedes japonicus japonicus from Germany and Aedes aegypti laboratory colony were infected with BATV strain 53.3 using artificial blood meals. Engorged mosquitoes were kept under four (Culex species) or three (Aedes species) fluctuating temperature profiles (18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C) at a humidity of 70% and a dark/light rhythm of 12:12 for 14 days. Transmission was measured by testing the saliva obtained by forced salivation assay for viable BATV particles. Infection rates were analysed by testing whole mosquitoes for BATV RNA by quantitative reverse transcription PCR. RESULTS No transmission was detected for Ae. aegypti, Ae. albopictus or Ae. japonicus japonicus. Infection was observed for Cx. p. pipiens, but only in the three conditions with the highest temperatures (21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C). In Cx. torrentium infection was measured at all tested temperatures with higher infection rates compared with Cx. p. pipiens. Transmission was only detected for Cx. torrentium exclusively at the highest temperature of 27 ± 5 °C. CONCLUSIONS Within the tested mosquito species, only Cx. torrentium seems to be able to transmit BATV if the climatic conditions are feasible.
Collapse
Affiliation(s)
- Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | | | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | | | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Norbert Becker
- Institute for Dipterology (IfD), 67346, Speyer, Germany
- Center for Organismal Studies (COS), University of Heidelberg, 69120, Heidelberg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
11
|
Carpenter M, Kopanke J, Lee J, Rodgers C, Reed K, Sherman TJ, Graham B, Cohnstaedt LW, Wilson WC, Stenglein M, Mayo C. Evaluating Temperature Effects on Bluetongue Virus Serotype 10 and 17 Coinfection in Culicoides sonorensis. Int J Mol Sci 2024; 25:3063. [PMID: 38474308 PMCID: PMC10932384 DOI: 10.3390/ijms25053063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Bluetongue virus (BTV) is a segmented, double-stranded RNA virus transmitted by Culicoides midges that infects ruminants. As global temperatures increase and geographical ranges of midges expand, there is increased potential for BTV outbreaks from incursions of novel serotypes into endemic regions. However, an understanding of the effect of temperature on reassortment is lacking. The objectives of this study were to compare how temperature affected Culicoides survival, virogenesis, and reassortment in Culicoides sonorensis coinfected with two BTV serotypes. Midges were fed blood meals containing BTV-10, BTV-17, or BTV serotype 10 and 17 and maintained at 20 °C, 25 °C, or 30 °C. Midge survival was assessed, and pools of midges were collected every other day to evaluate virogenesis of BTV via qRT-PCR. Additional pools of coinfected midges were collected for BTV plaque isolation. The genotypes of plaques were determined using next-generation sequencing. Warmer temperatures impacted traits related to vector competence in offsetting ways: BTV replicated faster in midges at warmer temperatures, but midges did not survive as long. Overall, plaques with BTV-17 genotype dominated, but BTV-10 was detected in some plaques, suggesting parental strain fitness may play a role in reassortment outcomes. Temperature adds an important dimension to host-pathogen interactions with implications for transmission and evolution.
Collapse
Affiliation(s)
- Molly Carpenter
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Jennifer Kopanke
- Department of Comparative Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Justin Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Case Rodgers
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Kirsten Reed
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tyler J. Sherman
- Diagnostic Medicine Center, Colorado State University, 2450 Gillette Drive, Fort Collins, CO 80526, USA;
| | - Barbara Graham
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, The National Bio and Agro-Defense Facility, USDA Agricultural Research Service, P.O. Box 1807, Manhattan, KS 66505, USA; (L.W.C.); (W.C.W.)
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, The National Bio and Agro-Defense Facility, USDA Agricultural Research Service, P.O. Box 1807, Manhattan, KS 66505, USA; (L.W.C.); (W.C.W.)
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Christie Mayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| |
Collapse
|
12
|
O’Connor TW, Hick PM, Finlaison DS, Kirkland PD, Toribio JAL. Revisiting the Importance of Orthobunyaviruses for Animal Health: A Scoping Review of Livestock Disease, Diagnostic Tests, and Surveillance Strategies for the Simbu Serogroup. Viruses 2024; 16:294. [PMID: 38400069 PMCID: PMC10892073 DOI: 10.3390/v16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.
Collapse
Affiliation(s)
- Tiffany W. O’Connor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia;
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Paul M. Hick
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Deborah S. Finlaison
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Peter D. Kirkland
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Jenny-Ann L.M.L. Toribio
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia;
| |
Collapse
|
13
|
Carpenter M, Kopanke J, Lee J, Rodgers C, Reed K, Sherman TJ, Graham B, Stenglein M, Mayo C. Assessing Reassortment between Bluetongue Virus Serotypes 10 and 17 at Different Coinfection Ratios in Culicoides sonorenesis. Viruses 2024; 16:240. [PMID: 38400016 PMCID: PMC10893243 DOI: 10.3390/v16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Bluetongue virus (BTV) is a segmented, double-stranded RNA orbivirus listed by the World Organization for Animal Health and transmitted by Culicoides biting midges. Segmented viruses can reassort, which facilitates rapid and important genotypic changes. Our study evaluated reassortment in Culicoides sonorensis midges coinfected with different ratios of BTV-10 and BTV-17. Midges were fed blood containing BTV-10, BTV-17, or a combination of both serotypes at 90:10, 75:25, 50:50, 25:75, or 10:90 ratios. Midges were collected every other day and tested for infection using pan BTV and cox1 (housekeeping gene) qRT-PCR. A curve was fit to the ∆Ct values (pan BTV Ct-cox1 Ct) for each experimental group. On day 10, the midges were processed for BTV plaque isolation. Genotypes of the plaques were determined by next-generation sequencing. Pairwise comparison of ∆Ct curves demonstrated no differences in viral RNA levels between coinfected treatment groups. Plaque genotyping indicated that most plaques fully aligned with one of the parental strains; however, reassortants were detected, and in the 75:25 pool, most plaques were reassortant. Reassortant prevalence may be maximized upon the occurrence of reassortant genotypes that can outcompete the parental genotypes. BTV reassortment and resulting biological consequences are important elements to understanding orbivirus emergence and evolution.
Collapse
Affiliation(s)
- Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Jennifer Kopanke
- Department of Comparative Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Kirsten Reed
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tyler J. Sherman
- Diagnostic Medicine Center, Colorado State University, Fort Collins, CO 80526, USA;
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| |
Collapse
|
14
|
Jansen S, Höller P, Helms M, Lange U, Becker N, Schmidt-Chanasit J, Lühken R, Heitmann A. Mosquitoes from Europe Are Able to Transmit Snowshoe Hare Virus. Viruses 2024; 16:222. [PMID: 38399996 PMCID: PMC10893336 DOI: 10.3390/v16020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Snowshoe hare virus (SSHV) is a zoonotic arthropod-borne virus (arbovirus) circulating in colder areas of the Northern Hemisphere. SSHV is maintained in an enzootic cycle between small mammals and mosquitoes, assumably of the genera Aedes and Culiseta. Symptoms of SSHV human infection can range from asymptomatic to severe neuroinvasive disease. Studies on SSHV transmission are limited, and there is no information available on whether mosquitoes of the genus Culex are able to transmit SSHV. Therefore, we investigated six mosquito species via salivation assay for their vector competence. We demonstrated that SSHV can be transmitted by the abundant European Culex species Cx. pipiens biotype pipiens, Cx. pipiens biotype molestus, and Cx. torrentium with low transmission efficiency between 3.33% and 6.67%. Additionally, the invasive species Ae. albopictus can also transmit SSHV with a low transmission efficiency of 3.33%. Our results suggest that local transmission of SSHV after introduction to Europe seems to be possible from a vector perspective.
Collapse
Affiliation(s)
- Stephanie Jansen
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20148 Hamburg, Germany; (S.J.); (J.S.-C.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (P.H.); (M.H.); (U.L.); (R.L.)
| | - Patrick Höller
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (P.H.); (M.H.); (U.L.); (R.L.)
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (P.H.); (M.H.); (U.L.); (R.L.)
| | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (P.H.); (M.H.); (U.L.); (R.L.)
| | - Norbert Becker
- Institute for Dipterology, 67346 Speyer, Germany;
- Center for Organismal Sudies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Jonas Schmidt-Chanasit
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20148 Hamburg, Germany; (S.J.); (J.S.-C.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (P.H.); (M.H.); (U.L.); (R.L.)
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (P.H.); (M.H.); (U.L.); (R.L.)
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (P.H.); (M.H.); (U.L.); (R.L.)
| |
Collapse
|
15
|
Zheng Y, Tian X, Wang R, Yao X, Zhang W, Yin Q, Li F, Nie K, Cui Q, Xu S, Fu S, Li H, Cheng J, Wang H. Genetic Characteristics of Wuxiang Virus in Shanxi Province, China. Viruses 2024; 16:103. [PMID: 38257803 PMCID: PMC10818450 DOI: 10.3390/v16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Wuxiang virus (WUXV) is the first sandfly-borne Phlebovirus isolated from Phlebotomus chinensis collected in China and has been established as a consistent viral presence in the local sandfly populations of both Wuxiang County and Yangquan City. However, its distribution in the Shanxi Province remains unclear. In this study, three novel WUXV strains were isolated from sandflies collected from Jiexiu City, Shanxi Province, China, in 2022. Subsequently, whole-genome sequences of these novel strains were generated using next-generation sequencing. The open reading frame (ORF) sequences of the WUXV strains from the three locations were subjected to gene analysis. Phylogenetic analysis revealed that WUXV belongs to two distinct clades with geographical differences. Strains from Wuxiang County and Yangquan City belonged to clade 1, whereas strains from Jiexiu City belonged to clade 2. Reassortment and recombination analyses indicated no gene reassortment or recombination between the two clades. However, four reassortments or recombination events could be detected in clade 1 strains. By aligning the amino acid sequences, eighty-seven mutation sites were identified between the two clades, with seventeen, sixty, nine, and one site(s) in the proteins RdRp, M, NSs, and N, respectively. Additionally, selection pressure analysis identified 17 positively selected sites across the entire genome of WUXV, with two, thirteen, one, and one site(s) in the proteins RdRp, M, NSs, and N, respectively. Notably, sites M-312 and M-340 in the M segment not only represented mutation sites but also showed positive selective pressure effects. These findings highlight the need for continuous nationwide surveillance of WUXV.
Collapse
Affiliation(s)
- Yuke Zheng
- Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Xiaodong Tian
- Shanxi Province Center for Disease Control and Prevention, Taiyuan 030012, China;
| | - Ruichen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Xiaohui Yao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weijia Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Qikai Yin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Kai Nie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Qianqian Cui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Songtao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Hao Li
- Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Jingxia Cheng
- Shanxi Province Center for Disease Control and Prevention, Taiyuan 030012, China;
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| |
Collapse
|
16
|
Shepard JJ, Armstrong PM. Jamestown Canyon virus comes into view: understanding the threat from an underrecognized arbovirus. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1242-1251. [PMID: 37862091 DOI: 10.1093/jme/tjad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 10/21/2023]
Abstract
This review examines the epidemiology, ecology, and evolution of Jamestown Canyon virus (JCV) and highlights new findings from the literature to better understand the virus, the vectors driving its transmission, and its emergence as an agent of arboviral disease. We also reanalyze data from the Connecticut Arbovirus Surveillance Program which represents the largest dataset on JCV infection in mosquitoes. JCV is a member of the California serogroup of the genus Orthobunyavirus, family Peribunyaviridae, and is found throughout much of temperate North America. This segmented, negative-sense RNA virus evolves predominately by genetic drift punctuated by infrequent episodes of genetic reassortment among novel strains. It frequently infects humans within affected communities and occasionally causes febrile illness and neuroinvasive disease in people. Reported human cases are relatively rare but are on the rise during the last 20 yr, particularly within the northcentral and northeastern United States. JCV appears to overwinter and reemerge each season by transovarial or vertical transmission involving univoltine Aedes (Diptera: Culicidae) species, specifically members of the Aedes communis (de Geer) and Ae. stimulans (Walker) Groups. The virus is further amplified in a mosquito-deer transmission cycle involving a diversity of mammalophilic mosquito species. Despite progress in our understanding of this virus, many aspects of the vector biology, virology, and human disease remain poorly understood. Remaining questions and future directions of research are discussed.
Collapse
Affiliation(s)
- John J Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Philip M Armstrong
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| |
Collapse
|
17
|
Gámbaro F, Pérez AB, Prot M, Agüera E, Baidaliuk A, Sánchez-Seco MP, Martínez-Martínez L, Vázquez A, Fernandez-Garcia MD, Simon-Loriere E. Untargeted metagenomic sequencing identifies Toscana virus in patients with idiopathic meningitis, southern Spain, 2015 to 2019. Euro Surveill 2023; 28:2200913. [PMID: 37943504 PMCID: PMC10636744 DOI: 10.2807/1560-7917.es.2023.28.45.2200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/15/2023] [Indexed: 11/10/2023] Open
Abstract
BackgroundVarious pathogens, including bacteria, fungi, parasites, and viruses can lead to meningitis. Among viruses causing meningitis, Toscana virus (TOSV), a phlebovirus, is transmitted through sandfly bites. TOSV infection may be suspected if patients with enterovirus- and herpesvirus-negative aseptic (non-bacterial) meningitis recall recent insect bites. Other epidemiological factors (season, rural area) may be considered. The broad range of possible meningitis aetiologies poses considerable diagnosis challenges. Untargeted metagenomic next-generation sequencing (mNGS) can potentially identify pathogens, which are not considered or detected in routine diagnostic panels.AimIn this retrospective, single-centre observational study, we investigated mNGS usefulness to understand the cause of meningitis when conventional approaches fail.MethodsCerebrospinal fluid (CSF) samples from patients hospitalised in southern Spain in 2015-2019 with aseptic meningitis and no aetiology found by conventional testing, were subjected to mNGS. Patients' demographic characteristics had been recorded and physicians had asked them about recent insect bites. Obtained viral genome sequences were phylogenetically analysed.ResultsAmong 23 idiopathic cases, TOSV was identified in eight (all male; median age: 39 years, range: 15-78 years). Five cases lived in an urban setting, three occurred in autumn and only one recalled insect bites. Phylogenetic analysis of TOSV segment sequences supported one intra-genotype reassortment event.ConclusionsOur study highlights the usefulness of mNGS for identifying viral pathogens directly in CSF. In southern Spain, TOSV should be considered regardless of recalling of insect bites or other epidemiological criteria. Detection of a disease-associated reassortant TOSV emphasises the importance of monitoring the spread and evolution of phleboviruses in Mediterranean countries.
Collapse
Affiliation(s)
- Fabiana Gámbaro
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ana Belén Pérez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Eduardo Agüera
- Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Artem Baidaliuk
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - María Paz Sánchez-Seco
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Martínez-Martínez
- Universidad de Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Ana Vázquez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Dolores Fernandez-Garcia
- These authors contributed equally to this work and share last authorship and correspondence
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Etienne Simon-Loriere
- These authors contributed equally to this work and share last authorship and correspondence
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
18
|
Lin Q, Goldberg EE, Leitner T, Molina-París C, King AA, Romero-Severson EO. Modeling the evolution of segment trees reveals deficiencies in current inferential methods for genomic reassortment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558687. [PMID: 37790507 PMCID: PMC10542121 DOI: 10.1101/2023.09.20.558687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Reassortment is an evolutionary process common in viruses with segmented genomes. These viruses can swap whole genomic segments during cellular co-infection, giving rise to new viral variants. Large-scale genome rearrangements, such as reassortment, have the potential to quickly generate new phenotypes, making the understanding of viral reassortment important to both evolutionary biology and public health research. In this paper, we argue that reassortment cannot be reliably inferred from incongruities between segment phylogenies using the established remove-and-rejoin or coalescent approaches. We instead show that reassortment must be considered in the context of a broader population process that includes the dynamics of the infected hosts. Using illustrative examples and simulation we identify four types of evolutionary events that are difficult or impossible to reconstruct with incongruence-based methods. Further, we show that these specific situations are very common and will likely occur even in small samples. Finally, we argue that existing methods can be augmented or modified to account for all the problematic situations that we identify in this paper. Robust assessment of the role of reassortment in viral evolution is difficult, and we hope to provide conceptual clarity on some important methodological issues that can arise in the development of the next generation of tools for studying reassortment.
Collapse
|
19
|
Hover S, Charlton FW, Hellert J, Swanson JJ, Mankouri J, Barr JN, Fontana J. Organisation of the orthobunyavirus tripodal spike and the structural changes induced by low pH and K + during entry. Nat Commun 2023; 14:5885. [PMID: 37735161 PMCID: PMC10514341 DOI: 10.1038/s41467-023-41205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Following endocytosis, enveloped viruses employ the changing environment of maturing endosomes as cues to promote endosomal escape, a process often mediated by viral glycoproteins. We previously showed that both high [K+] and low pH promote entry of Bunyamwera virus (BUNV), the prototypical bunyavirus. Here, we use sub-tomogram averaging and AlphaFold, to generate a pseudo-atomic model of the whole BUNV glycoprotein envelope. We unambiguously locate the Gc fusion domain and its chaperone Gn within the floor domain of the spike. Furthermore, viral incubation at low pH and high [K+], reminiscent of endocytic conditions, results in a dramatic rearrangement of the BUNV envelope. Structural and biochemical assays indicate that pH 6.3/K+ in the absence of a target membrane elicits a fusion-capable triggered intermediate state of BUNV GPs; but the same conditions induce fusion when target membranes are present. Taken together, we provide mechanistic understanding of the requirements for bunyavirus entry.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Frank W Charlton
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Jan Hellert
- Centre for Structural Systems Biology, Leibniz-Institut für Virologie (LIV), Notkestraße 85, 22607, Hamburg, Germany
| | - Jessica J Swanson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - John N Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Leeds, United Kingdom.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| |
Collapse
|
20
|
Ren YT, Tian HP, Xu JL, Liu MQ, Cai K, Chen SL, Ni XB, Li YR, Hou W, Chen LJ. Extensive genetic diversity of severe fever with thrombocytopenia syndrome virus circulating in Hubei Province, China, 2018-2022. PLoS Negl Trop Dis 2023; 17:e0011654. [PMID: 37721962 PMCID: PMC10538666 DOI: 10.1371/journal.pntd.0011654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/28/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an etiological agent causing febrile human disease was identified as an emerging tick-borne bunyavirus. The clinical disease characteristics and case fatality rates of SFTSV may vary across distinct regions and among different variant genotypes. From 2018 to 2022, we surveyed and recruited 202 severe fever with thrombocytopenia syndrome (SFTS) patients in Hubei Province, a high-incidence area of the epidemic, and conducted timely and systematic research on the disease characteristics, SFTSV diversity, and the correlation between virus genome variation and clinical diseases. Our study identified at least 6 genotypes of SFTSV prevalent in Hubei Province based on the analysis of the S, M, and L genome sequences of 88 virus strains. Strikingly, the dominant genotype of SFTSV was found to change during the years, indicating a dynamic shift in viral genetic diversity in the region. Phylogenetic analysis revealed the genetic exchange of Hubei SFTSV strains was relatively frequent, including 3 reassortment strains and 8 recombination strains. Despite the limited sample size, SFTSV C1 genotype may be associated with higher mortality compared to the other four genotypes, and the serum amyloid A (SAA) level, an inflammatory biomarker, was significantly elevated in these patients. Overall, our data summarize the disease characteristics of SFTSV in Hubei Province, highlight the profound changes in viral genetic diversity, and indicate the need for in-depth monitoring and exploration of the relationship between viral mutations and disease severity.
Collapse
Affiliation(s)
- Yu-ting Ren
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-pan Tian
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jia-le Xu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Man-qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, Wuhan, China
| | - Shu-liang Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xue-bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yi-rong Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
- School of Public Health, Wuhan University, Wuhan, China
| | - Liang-jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Wang J, Chen D, Wei F, Deng J, Su J, Lin X, Wu S. Generation of Stable Cell Lines Expressing Akabane Virus N Protein and Insight into Its Function in Viral Replication. Pathogens 2023; 12:1058. [PMID: 37624018 PMCID: PMC10459709 DOI: 10.3390/pathogens12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Akabane virus (AKAV) is a world wide epidemic arbovirus belonging to the Bunyavirales order that predominantly infects livestock and causes severe congenital malformations. The nucleocapsid (N) protein of AKAV possesses multiple important functions in the virus life cycle, and it is an ideal choice for AKAV detection. In this study, we successfully constructed two stable BHK-21 cell lines (C8H2 and F7E5) that constitutively express the AKAV N protein using a lentivirus system combined with puromycin selection. RT-PCR analysis confirmed that the AKAV N gene was integrated into the BHK-21 cell genome and consistently transcribed. Indirect immunofluorescence (IFA) and Western blot (WB) assays proved that both C8H2 and F7E5 cells could react with the AKAV N protein mAb specifically, indicating potential applications in AKAV detection. Furthermore, we analyzed the growth kinetics of AKAV in the C8H2 and F7E5 cell lines and observed temporary inhibition of viral replication at 12, 24 and 36 h postinfection (hpi) compared to BHK-21 cells. Subsequent investigations suggested that the reduced viral replication was linked to the down-regulation of the viral mRNAs (Gc and RdRp). In summary, we have established materials for detecting AKAV and gained new insights into the function of the AKAV N protein.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.W.); (D.C.); (F.W.); (J.D.); (X.L.)
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.W.); (D.C.); (F.W.); (J.D.); (X.L.)
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.W.); (D.C.); (F.W.); (J.D.); (X.L.)
| | - Junhua Deng
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.W.); (D.C.); (F.W.); (J.D.); (X.L.)
| | - Jia Su
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Xiangmei Lin
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.W.); (D.C.); (F.W.); (J.D.); (X.L.)
| | - Shaoqiang Wu
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.W.); (D.C.); (F.W.); (J.D.); (X.L.)
| |
Collapse
|
22
|
Abbo SR, de Almeida JPP, Olmo RP, Balvers C, Griep JS, Linthout C, Koenraadt CJM, Silva BM, Fros JJ, Aguiar ERGR, Marois E, Pijlman GP, Marques JT. The virome of the invasive Asian bush mosquito Aedes japonicus in Europe. Virus Evol 2023; 9:vead041. [PMID: 37636319 PMCID: PMC10460169 DOI: 10.1093/ve/vead041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
The Asian bush mosquito Aedes japonicus is rapidly invading North America and Europe. Due to its potential to transmit multiple pathogenic arthropod-borne (arbo)viruses including Zika virus, West Nile virus, and chikungunya virus, it is important to understand the biology of this vector mosquito in more detail. In addition to arboviruses, mosquitoes can also carry insect-specific viruses that are receiving increasing attention due to their potential effects on host physiology and arbovirus transmission. In this study, we characterized the collection of viruses, referred to as the virome, circulating in Ae. japonicus populations in the Netherlands and France. Applying a small RNA-based metagenomic approach to Ae. japonicus, we uncovered a distinct group of viruses present in samples from both the Netherlands and France. These included one known virus, Ae. japonicus narnavirus 1 (AejapNV1), and three new virus species that we named Ae. japonicus totivirus 1 (AejapTV1), Ae. japonicus anphevirus 1 (AejapAV1) and Ae. japonicus bunyavirus 1 (AejapBV1). We also discovered sequences that were presumably derived from two additional novel viruses: Ae. japonicus bunyavirus 2 (AejapBV2) and Ae. japonicus rhabdovirus 1 (AejapRV1). All six viruses induced strong RNA interference responses, including the production of twenty-one nucleotide-sized small interfering RNAs, a signature of active replication in the host. Notably, AejapBV1 and AejapBV2 belong to different viral families; however, no RNA-dependent RNA polymerase sequence has been found for AejapBV2. Intriguingly, our small RNA-based approach identified an ∼1-kb long ambigrammatic RNA that is associated with AejapNV1 as a secondary segment but showed no similarity to any sequence in public databases. We confirmed the presence of AejapNV1 primary and secondary segments, AejapTV1, AejapAV1, and AejapBV1 by reverse transcriptase polymerase chain reaction (PCR) in wild-caught Ae. japonicus mosquitoes. AejapNV1 and AejapTV1 were found at high prevalence (87-100 per cent) in adult females, adult males, and larvae. Using a small RNA-based, sequence-independent metagenomic strategy, we uncovered a conserved and prevalent virome among Ae. japonicus mosquito populations. The high prevalence of AejapNV1 and AejapTV1 across all tested mosquito life stages suggests that these viruses are intimately associated with Ae. japonicus.
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João P P de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Roenick P Olmo
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Carlijn Balvers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Jet S Griep
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Charlotte Linthout
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Bruno M Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - Eric R G R Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Rod. Jorge Amado Km 16, Ilhéus 45662-900, Brazil
| | - Eric Marois
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen 6708 PB, The Netherlands
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
- Insect Models of Innate Immunity, Université de Strasbourg, CNRS UPR9022, INSERM U1257, 2 Allee Konrad Roentgen, Strasbourg 67000, France
| |
Collapse
|
23
|
Hellert J, Aebischer A, Haouz A, Guardado-Calvo P, Reiche S, Beer M, Rey FA. Structure, function, and evolution of the Orthobunyavirus membrane fusion glycoprotein. Cell Rep 2023; 42:112142. [PMID: 36827185 DOI: 10.1016/j.celrep.2023.112142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
La Crosse virus, responsible for pediatric encephalitis in the United States, and Schmallenberg virus, a highly teratogenic veterinary virus in Europe, belong to the large Orthobunyavirus genus of zoonotic arthropod-borne pathogens distributed worldwide. Viruses in this under-studied genus cause CNS infections or fever with debilitating arthralgia/myalgia syndromes, with no effective treatment. The main surface antigen, glycoprotein Gc (∼1,000 residues), has a variable N-terminal half (GcS) targeted by the patients' antibody response and a conserved C-terminal moiety (GcF) responsible for membrane fusion during cell entry. Here, we report the X-ray structure of post-fusion La Crosse and Schmallenberg virus GcF, revealing the molecular determinants for hairpin formation and trimerization required to drive membrane fusion. We further experimentally confirm the role of residues in the fusion loops and in a vestigial endoplasmic reticulum (ER) translocation sequence at the GcS-GcF junction. The resulting knowledge provides essential molecular underpinnings for future development of potential therapeutic treatments and vaccines.
Collapse
Affiliation(s)
- Jan Hellert
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France; Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Notkestraße 85, 22607 Hamburg, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany; Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Ahmed Haouz
- Crystallography Platform C2RT, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Dr. Roux, 75015 Paris, France
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany.
| | - Félix A Rey
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
24
|
Foster JE, López K, Eastwood G, Guzman H, Carrington CVF, Tesh RB, Auguste AJ. Phylogenetic characterization of Orthobunyaviruses isolated from Trinidad shows evidence of natural reassortment. Virus Genes 2023; 59:473-478. [PMID: 36763228 DOI: 10.1007/s11262-023-01973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
The genus Orthobunyavirus is a diverse group of viruses in the family Peribunyaviridae, recently classified into 20 serogroups, and 103 virus species. Although most viruses within these serogroups are phylogenetically distinct, the absence of complete genome sequences has left several viruses incompletely characterized. Here we report the complete genome sequences for 11 orthobunyaviruses isolated from Trinidad, French Guiana, Guatemala, and Panama that were serologically classified into six serogroups and 10 species. Phylogenetic analyses of these 11 newly derived sequences indicate that viruses belonging to the Patois, Capim, Guama, and Group C serocomplexes all have a close genetic origin. We show that three of the 11 orthobunyaviruses characterized (belonging to the Group C and Bunyamwera serogroups) have evidence of histories of natural reassortment through the M genome segment. Our data also suggests that two distinct lineages of Group C viruses concurrently circulate in Trinidad and are transmitted by the same mosquito vectors. This study also highlights the importance of complementing serological identification with nucleotide sequencing when characterizing orthobunyaviruses.
Collapse
Affiliation(s)
- Jerome E Foster
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Gillian Eastwood
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.,Global Change Center at Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hilda Guzman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. .,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
25
|
New Isolation of Ponticelli III Virus ( Bunyavirales: Phenuiviridae) in Emilia-Romagna Region, Italy. Viruses 2023; 15:v15020422. [PMID: 36851636 PMCID: PMC9964127 DOI: 10.3390/v15020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The number of newly described sandfly-borne phleboviruses has been steadily growing in recent years. Some phleboviruses are human pathogens, but their health relevance is largely uncharacterized. We aimed to investigate the circulation of these viruses in the Emilia-Romagna region where several have already been described. A total of 482 sandflies were collected in a site in Reggio Emilia in 2019 and 2020. Sandflies collected in 2020 were grouped in 21 pools with a maximum of 25 sandflies per pool, submitted to real time PCR, and isolated in Vero cell culture. Complete genome sequencing showed the isolation of a strain of a Ponticelli III virus. This virus, which belongs to the species Adana phlebovirus, differed in the M segment from the Ponticelli I and Ponticelli II viruses. Analysis performed on the genomic segments of the newly isolated virus compared with other phleboviruses highlighted a strong purifying selection in the L segments, and different substitution saturation, highest in the M segments. Future research should address the ecological processes driving the occurrence of these novel phleboviruses and their possible impact on public health.
Collapse
|
26
|
Whole-genome sequence analysis of a novel orthobunyavirus isolated in Japan in the 1980s. Arch Virol 2023; 168:67. [PMID: 36653513 DOI: 10.1007/s00705-022-05639-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/28/2022] [Indexed: 01/20/2023]
Abstract
Two viruses isolated from Culicoides biting midges in Japan and preserved in a frozen state for over three decades were genetically characterized by next-generation sequencing. The viruses have a tripartite RNA genome with the typical coding strategy of orthobunyaviruses. They also share a high level of genetic similarity and are thus regarded as isolates of the same virus. Pairwise sequence comparisons and phylogenetic analysis including viruses of the Simbu serogroup demonstrated that the new viruses are members of clade A of this serogroup. In addition, a discrepancy in the phylogenetic trees indicated that a genetic reassortment had occurred in the evolution of the studied viruses. The L protein of the virus reported here showed no more than 94.6% amino acid sequence identity to that of any other Simbu serogroup virus, indicating that it should be regarded as a novel virus according to a criterion for species definition in the genus Orthobunyavirus. Therefore, this novel virus is tentatively named 'Taniyama virus' based on the location where the infected midges were collected.
Collapse
|
27
|
Costa ACD, Morais VDS, Azevedo RMD, Nuevo KMB, Cunha MS. Genetic characterization of the rare Bruconha virus (Bunyavirales: Orthobunyavirus) isolated in Vale do Ribeira (Atlantic Forest biome), Southeastern Brazil. Rev Inst Med Trop Sao Paulo 2023; 65:e17. [PMID: 36921205 PMCID: PMC10013467 DOI: 10.1590/s1678-9946202365017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/17/2023] Open
Abstract
Brazil is a great source of arbovirus diversity, mainly in the Amazon region. However, other biomes, especially the Atlantic Forest, may also be a hotspot for emerging viruses, including Bunyaviruses (Negarnaviricota: Bunyavirales). For instance, Vale do Ribeira, located in the Southeastern region, has been widely studied for virus surveillance, where Flavivirus, Alphavirus and Bunyaviruses were isolated during the last decades, including Bruconha virus (BRCV), a member of Orthobunyavirus genus Group C, in 1976. Recently, a new isolate of BRCV named Span321532 was obtained from an adult sentinel mouse placed in Iguape city in 2011, and a full-length genome was generated with nucleotide differences ranging between 1.5%, 5.3% and 5% (L, M and S segments, respectively) from the prototype isolated 35 years earlier. In addition, each segment placed BRCV into different clusters, showing the high variety within Bunyavirales. Although no evidence for reassortants was detected, this finding reiterates the need for new surveillance and genomic studies in the area considering the high mutation rates of arbovirus, and also to identify the hosts capable of supporting the continuous circulation of Orthobunyavirus.
Collapse
Affiliation(s)
- Antônio Charlys da Costa
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Vanessa Dos Santos Morais
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Roberta Marcatti de Azevedo
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Mariana Sequetin Cunha
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil.,Instituto Adolfo Lutz, Núcleo de Doenças de Transmissão Vetorial, São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Dai ZN, Peng XF, Li JC, Zhao J, Wu YX, Yang X, Yang T, Zhang SF, Dai K, Guan XG, Yuan C, Yang ZD, Cui N, Lu QB, Huang Y, Fan H, Zhang XA, Xiao GF, Peng K, Zhang LK, Liu W, Li H. Effect of genomic variations in severe fever with thrombocytopenia syndrome virus on the disease lethality. Emerg Microbes Infect 2022; 11:1672-1682. [PMID: 35603493 PMCID: PMC9225783 DOI: 10.1080/22221751.2022.2081617] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging tick-borne bunyavirus, causes mild-to-moderate infection to critical illness or even death in human patients. The effect of virus variations on virulence and related clinical significance is unclear. We prospectively recruited SFTSV-infected patients in a hotspot region of SFTS endemic in China from 2011 to 2020, sequenced whole genome of SFTSV, and assessed the association of virus genomic variants with clinical data, viremia, and inflammatory response. We identified seven viral clades (I-VII) based on phylogenetic characterization of 805 SFTSV genome sequences. A significantly increased case fatality rate (32.9%) was revealed in one unique clade (IV) that possesses a specific co-mutation pattern, compared to other three common clades (I, 16.7%; II, 13.8%; and III, 11.8%). The phenotype-genotype association (hazard ratios ranged 1.327-2.916) was confirmed by multivariate regression adjusting age, sex, and hospitalization delay. We revealed a pronounced inflammation response featured by more production of CXCL9, IL-10, IL-6, IP-10, M-CSF, and IL-1β, in clade IV, which was also related to severe complications. We observed enhanced cytokine expression from clade IV inoculated PBMCs and infected mice. Moreover, the neutralization activity of convalescent serum from patients infected with one specified clade was remarkably reduced to other viral clades. Together, our findings revealed a significant association between one specific viral clade and SFTS fatality, highlighting the need for molecular surveillance for highly lethal strains in endemic regions and unravelled the importance of evaluating cross-clade effect in development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Zi-Niu Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Xue-Fang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Jia-Chen Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Yong-Xiang Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Shao-Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Ke Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiu-Gang Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Chun Yuan
- The People's Liberation Army 990 Hospital, Xinyang, People's Republic of China
| | - Zhen-Dong Yang
- The People's Liberation Army 990 Hospital, Xinyang, People's Republic of China
| | - Ning Cui
- The People's Liberation Army 990 Hospital, Xinyang, People's Republic of China
| | - Qing-Bin Lu
- School of Public Health, Peking University, Beijing, People's Republic of China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Geng-Fu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| |
Collapse
|
29
|
Botella L, Jung MH, Rost M, Jung T. Natural Populations from the Phytophthora palustris Complex Show a High Diversity and Abundance of ssRNA and dsRNA Viruses. J Fungi (Basel) 2022; 8:1118. [PMID: 36354885 PMCID: PMC9698713 DOI: 10.3390/jof8111118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
We explored the virome of the "Phytophthora palustris complex", a group of aquatic specialists geographically limited to Southeast and East Asia, the native origin of many destructive invasive forest Phytophthora spp. Based on high-throughput sequencing (RNAseq) of 112 isolates of "P. palustris" collected from rivers, mangroves, and ponds, and natural forests in subtropical and tropical areas in Indonesia, Taiwan, and Japan, 52 putative viruses were identified, which, to varying degrees, were phylogenetically related to the families Botybirnaviridae, Narnaviridae, Tombusviridae, and Totiviridae, and the order Bunyavirales. The prevalence of all viruses in their hosts was investigated and confirmed by RT-PCR. The rich virus composition, high abundance, and distribution discovered in our study indicate that viruses are naturally infecting taxa from the "P. palustris complex" in their natural niche, and that they are predominant members of the host cellular environment. Certain Indonesian localities are the viruses' hotspots and particular "P. palustris" isolates show complex multiviral infections. This study defines the first bi-segmented bunya-like virus together with the first tombus-like and botybirna-like viruses in the genus Phytophthora and provides insights into the spread and evolution of RNA viruses in the natural populations of an oomycete species.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Marília Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Michael Rost
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| |
Collapse
|
30
|
Thoner TW, Meloy MM, Long JM, Diller JR, Slaughter JC, Ogden KM. Reovirus Efficiently Reassorts Genome Segments during Coinfection and Superinfection. J Virol 2022; 96:e0091022. [PMID: 36094315 PMCID: PMC9517712 DOI: 10.1128/jvi.00910-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reassortment, or genome segment exchange, increases diversity among viruses with segmented genomes. Previous studies on the limitations of reassortment have largely focused on parental incompatibilities that restrict generation of viable progeny. However, less is known about whether factors intrinsic to virus replication influence reassortment. Mammalian orthoreovirus (reovirus) encapsidates a segmented, double-stranded RNA (dsRNA) genome, replicates within cytoplasmic factories, and is susceptible to host antiviral responses. We sought to elucidate the influence of infection multiplicity, timing, and compartmentalized replication on reovirus reassortment in the absence of parental incompatibilities. We used an established post-PCR genotyping method to quantify reassortment frequency between wild-type and genetically barcoded type 3 reoviruses. Consistent with published findings, we found that reassortment increased with infection multiplicity until reaching a peak of efficient genome segment exchange during simultaneous coinfection. However, reassortment frequency exhibited a substantial decease with increasing time to superinfection, which strongly correlated with viral transcript abundance. We hypothesized that physical sequestration of viral transcripts within distinct virus factories or superinfection exclusion also could influence reassortment frequency during superinfection. Imaging revealed that transcripts from both wild-type and barcoded viruses frequently co-occupied factories, with superinfection time delays up to 16 h. Additionally, primary infection progressively dampened superinfecting virus transcript levels with greater time delay to superinfection. Thus, in the absence of parental incompatibilities and with short times to superinfection, reovirus reassortment proceeds efficiently and is largely unaffected by compartmentalization of replication and superinfection exclusion. However, reassortment may be limited by superinfection exclusion with greater time delays to superinfection. IMPORTANCE Reassortment, or genome segment exchange between viruses, can generate novel virus genotypes and pandemic virus strains. For viruses to reassort their genome segments, they must replicate within the same physical space by coinfecting the same host cell. Even after entry into the host cell, many viruses with segmented genomes synthesize new virus transcripts and assemble and package their genomes within cytoplasmic replication compartments. Additionally, some viruses can interfere with subsequent infection of the same host or cell. However, spatial and temporal influences on reassortment are only beginning to be explored. We found that infection multiplicity and transcript abundance are important drivers of reassortment during coinfection and superinfection, respectively, for reovirus, which has a segmented, double-stranded RNA genome. We also provide evidence that compartmentalization of transcription and packaging is unlikely to influence reassortment, but the length of time between primary and subsequent reovirus infection can alter reassortment frequency.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline M. Meloy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M. Long
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
32
|
Viral Hyperparasitism in Bat Ectoparasites: Implications for Pathogen Maintenance and Transmission. Microorganisms 2022; 10:microorganisms10061230. [PMID: 35744747 PMCID: PMC9230612 DOI: 10.3390/microorganisms10061230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Humans continue to encroach on the habitats of wild animals, potentially bringing different species into contact that would not typically encounter each other under natural circumstances, and forcing them into stressful, suboptimal conditions. Stressors from unsustainable human land use changes are suspected to dramatically exacerbate the probability of zoonotic spillover of pathogens from their natural reservoir hosts to humans, both by increasing viral load (and shedding) and the interface between wildlife with livestock, pets and humans. Given their known role as reservoir hosts, bats continue to be investigated for their possible role as the origins of many viral outbreaks. However, the participation of bat-associated ectoparasites in the spread of potential pathogens requires further work to establish. Here, we conducted a comprehensive review of viruses, viral genes and other viral sequences obtained from bat ectoparasites from studies over the last four decades. This review summarizes research findings of the seven virus families in which these studies have been performed, including Paramyxoviridae, Reoviridae, Flaviviridae, Peribunyaviridae, Nairoviridae, Rhabdoviridae and Filoviridae. We highlight that bat ectoparasites, including dipterans and ticks, are often found to have medically important viruses and may have a role in the maintenance of these pathogens within bat populations.
Collapse
|
33
|
Dolgova AS, Safonova MV, Faye O, Dedkov VG. Current View on Genetic Relationships within the Bunyamwera Serological Group. Viruses 2022; 14:v14061135. [PMID: 35746607 PMCID: PMC9227251 DOI: 10.3390/v14061135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The Bunyamwera serological group includes a number of geographically widespread viruses that are related but not identical and have serological cross-reactivity. As the first group members were obtained in the pre-sequencing era, their classifications (group attribution, species differentiation) were originally based on serological reactions. At the same time, the accuracy of the typing in each case depended on the variety of viruses that the researcher had as a comparison panel. With the advent of sequencing techniques, it has become customary to use identity thresholds (nucleotide or amino acid composition) as demarcation criteria for the interspecific differentiation of viral species. Identity thresholds are determined by the International Committee on Taxonomy of Viruses (ICTV) and are regularly reviewed. Similar criteria were established for the Orthobunyavirus genus, which includes members of the Bunyamwera serological group. On the basis of these criteria, the species attributions of some members of the serological group need to be clarified. For this purpose, we analyzed sequences (available in NCBI GenBank) of viruses belonging to the Bunyamwera serological group in order to clarify their phylogenetic positions on the basis of the current demarcation criteria established by the ICTV.
Collapse
Affiliation(s)
- Anna S. Dolgova
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 Saint Petersburg, Russia;
- Correspondence: ; Tel.: +7-812-233-2149
| | - Marina V. Safonova
- Anti-Plague Center, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 127490 Moscow, Russia;
| | - Oumar Faye
- Department of Virology, Institute Pasteur de Dakar, Dakar BP 220, Senegal;
| | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 Saint Petersburg, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
34
|
Dieme C, Maffei JG, Diarra M, Koetzner CA, Kuo L, Ngo KA, Dupuis AP, Zink SD, Bryon Backenson P, Kramer LD, Ciota AT. Aedes albopictus and Cache Valley virus: a new threat for virus transmission in New York State. Emerg Microbes Infect 2022; 11:741-748. [PMID: 35179429 PMCID: PMC8903793 DOI: 10.1080/22221751.2022.2044733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7–62.1% transmission rates) and CVV 15041084 (27.3–48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.
Collapse
Affiliation(s)
- Constentin Dieme
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Joseph G Maffei
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Maryam Diarra
- Institut Pasteur de Dakar, Dakar, Senegal (M. Diarra)
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Kiet A Ngo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Steven D Zink
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York (P.B. Backenson)
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota).,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA (L.D. Kramer, and A.T. Ciota)
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota).,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA (L.D. Kramer, and A.T. Ciota)
| |
Collapse
|
35
|
Kopanke J, Carpenter M, Lee J, Reed K, Rodgers C, Burton M, Lovett K, Westrich JA, McNulty E, McDermott E, Barbera C, Cavany S, Rohr JR, Perkins TA, Mathiason CK, Stenglein M, Mayo C. Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annu Rev Anim Biosci 2022; 10:303-324. [PMID: 35167317 DOI: 10.1146/annurev-animal-051721-023724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, Washington, USA;
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Justin Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Kierra Lovett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Erin McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Emily McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| |
Collapse
|
36
|
Dieme C, Ngo KA, Tyler S, Maffei JG, Zink SD, Dupuis AP, Koetzner CA, Shultis C, Stout J, Payne AF, Backenson PB, Kuo L, Drebot MA, Ciota AT, Kramer LD. Role of Anopheles Mosquitoes in Cache Valley Virus Lineage Displacement, New York, USA. Emerg Infect Dis 2022; 28:303-313. [PMID: 35075998 PMCID: PMC8798675 DOI: 10.3201/eid2802.203810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cache Valley virus (CVV) is a mosquitoborne virus that infects livestock and humans. We report results of surveillance for CVV in New York, USA, during 2000–2016; full-genome analysis of selected CVV isolates from sheep, horse, humans, and mosquitoes from New York and Canada; and phenotypic characterization of selected strains. We calculated infection rates by using the maximum-likelihood estimation method by year, region, month, and mosquito species. The highest maximum-likelihood estimations were for Anopheles spp. mosquitoes. Our phylogenetic analysis identified 2 lineages and found evidence of segment reassortment. Furthermore, our data suggest displacement of CVV lineage 1 by lineage 2 in New York and Canada. Finally, we showed increased vector competence of An. quadrimaculatus mosquitoes for lineage 2 strains of CVV compared with lineage 1 strains.
Collapse
|
37
|
Laurito M, Ayala AM, Arias-Builes DL, Almirón WR. Improving the DNA Barcode Library of Mosquito Species With New Identifications and Discoveries in North-Central Argentina. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:173-183. [PMID: 34661674 DOI: 10.1093/jme/tjab160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The family Culicidae is represented by 244 species in Argentina, many of them with epidemiological importance. DNA barcodes are effective tools for identifying mosquito species, for knowing genetic variability, and for establishing phylogenetic relationships. This work aims to explore mosquito diversity employing different species delimitation approaches and to establish formally a DNA barcode library for the Argentinian mosquito fauna. Barcode fragments of 80 specimens of Argentinian mosquitoes of 28 species of the genera Aedeomyia Theobald (Diptera: Culicidae), Anopheles Meigen (Diptera: Culicidae), Coquillettidia Dyar (Diptera: Culicidae), Culex L. (Diptera: Culicidae), Haemagogus Williston (Diptera: Culicidae), Mansonia Blanchard (Diptera: Culicidae), Nyssorhynchus Blanchard (Diptera: Culicidae), Ochlerotatus Lynch-Arribálzaga (Diptera: Culicidae), Psorophora Robinneau-Desvoidy (Diptera: Culicidae) and Uranotaenia Lynch-Arribálzaga (Diptera: Culicidae) were sequenced. Another 82 sequences were obtained from public databases to establish the phylogenetic relationships using Maximum Likelihood and Bayesian Inference, and the species boundaries based on three approaches (ABGD, GMYC, and mPTP). Sixteen of the 28 species sequenced were recovered as monophyletic, of which 12 were also recognized as molecular operational taxonomic units according to the three methodologies. The disparity between morphology and barcode-based identifications could be explained by synonymy, species complexes occurrence, hybridization, incomplete lineage sorting, or the effect of the geographical scale of sampling. Twenty of the 28 sequenced species are new barcodes for Argentina and 11 are the first for science. This increases from 31 to 52 (12.7 to 21.31%) and from six to 10 (28.57 to 47.62%) the number of species and genera, respectively, with barcode sequences in Argentina. New species records are provided.
Collapse
Affiliation(s)
- M Laurito
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Avenida Velez Sarsfield 299, X5000JJC, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Avenida Velez Sarsfield 1611, X5016GCA, Córdoba, Argentina
| | - A M Ayala
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Avenida Velez Sarsfield 299, X5000JJC, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Diversidad y Ecología Animal (IDEA), Avenida Velez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - D L Arias-Builes
- Centro de Investigación e Innovación Tecnológica (CENIIT), CONICET, Universidad Nacional de La Rioja. Gdor. Luis Vernet and Apostol Felipe, La Rioja, Argentina
| | - W R Almirón
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Avenida Velez Sarsfield 299, X5000JJC, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Avenida Velez Sarsfield 1611, X5016GCA, Córdoba, Argentina
| |
Collapse
|
38
|
Ren F, Shen S, Wang Q, Wei G, Huang C, Wang H, Ning YJ, Zhang DY, Deng F. Recent Advances in Bunyavirus Reverse Genetics Research: Systems Development, Applications, and Future Perspectives. Front Microbiol 2021; 12:771934. [PMID: 34950119 PMCID: PMC8689132 DOI: 10.3389/fmicb.2021.771934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bunyaviruses are members of the Bunyavirales order, which is the largest group of RNA viruses, comprising 12 families, including a large group of emerging and re-emerging viruses. These viruses can infect a wide variety of species worldwide, such as arthropods, protozoans, plants, animals, and humans, and pose substantial threats to the public. In view of the fact that a better understanding of the life cycle of a highly pathogenic virus is often a precondition for developing vaccines and antivirals, it is urgent to develop powerful tools to unravel the molecular basis of the pathogenesis. However, biosafety level −3 or even −4 containment laboratory is considered as a necessary condition for working with a number of bunyaviruses, which has hampered various studies. Reverse genetics systems, including minigenome (MG), infectious virus-like particle (iVLP), and infectious full-length clone (IFLC) systems, are capable of recapitulating some or all steps of the viral replication cycle; among these, the MG and iVLP systems have been very convenient and effective tools, allowing researchers to manipulate the genome segments of pathogenic viruses at lower biocontainment to investigate the viral genome transcription, replication, virus entry, and budding. The IFLC system is generally developed based on the MG or iVLP systems, which have facilitated the generation of recombinant infectious viruses. The MG, iVLP, and IFLC systems have been successfully developed for some important bunyaviruses and have been widely employed as powerful tools to investigate the viral replication cycle, virus–host interactions, virus pathogenesis, and virus evolutionary process. The majority of bunyaviruses is generally enveloped negative-strand RNA viruses with two to six genome segments, of which the viruses with bipartite and tripartite genome segments have mostly been characterized. This review aimed to summarize current knowledge on reverse genetic studies of representative bunyaviruses causing severe diseases in humans and animals, which will contribute to the better understanding of the bunyavirus replication cycle and provide some hints for developing designed antivirals.
Collapse
Affiliation(s)
- Fuli Ren
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiongya Wang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Gang Wei
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Chaolin Huang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ding-Yu Zhang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
39
|
Ayhan N, Alten B, Ivovic V, Cvetkovikj A, Stefanovska J, Martinkovic F, Piorkowski G, Moureau G, Gould EA, Pettersson JHO, de Lamballerie X, Charrel RN. Field surveys in Croatia and North Macedonia reveal two novel phleboviruses circulating in sandflies. J Gen Virol 2021; 102. [PMID: 34797756 DOI: 10.1099/jgv.0.001674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sandfly-borne phleboviruses are distributed widely throughout the Mediterranean Basin, presenting a threat to public health in areas where they circulate. However, the true diversity and distribution of pathogenic and apathogenic sandfly-borne phleboviruses remains a key issue to be studied. In the Balkans, most published data rely on serology-based studies although virus isolation has occasionally been reported. Here, we report the discovery of two novel sandfly-borne phleboviruses, provisionally named Zaba virus (ZABAV) and Bregalaka virus (BREV), which were isolated in Croatia and North Macedonia, respectively. This constitutes the first isolation of phleboviruses in both countries. Genetic analysis based on complete coding sequences indicated that ZABAV and BREV are distinct from each other and belong to the genus Phlebovirus, family Phenuiviridae. Phylogenetic and amino acid modelling of viral polymerase shows that ZABAV and BREV are new members of the Salehabad phlebovirus species and the Adana phlebovirus species, respectively. Moreover, sequence-based vector identification suggests that ZABAV is mainly transmitted by Phlebotomus neglectus and BREV is mainly transmitted by Phlebotomus perfiliewi. BREV neutralizing antibodies were detected in 3.3% of human sera with rates up to 16.7% in certain districts, demonstrating that BREV frequently infects humans in North Macedonia. In vitro viral growth kinetics experiments demonstrated viral replication of both viruses in mammalian and mosquito cells. In vivo experimental studies in mice suggest that ZABAV and BREV exhibit characteristics making them possible human pathogens.
Collapse
Affiliation(s)
- Nazli Ayhan
- Unite des Virus Emergents (Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Mediterranee Infection), Marseille, France
| | - Bulent Alten
- Faculty of Science, Department of Biology, Ecology Division, VERG Labs, Hacettepe University, Beytepe, Ankara, Turkey
| | - Vladimir Ivovic
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Koper, Slovenia
| | - Aleksandar Cvetkovikj
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop-Trajkov 5-7, 1000 Skopje, Republic of North Macedonia
| | - Jovana Stefanovska
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Lazar Pop-Trajkov 5-7, 1000 Skopje, Republic of North Macedonia
| | - Franjo Martinkovic
- Faculty of Veterinary Medicine, Department of Parasitology and Parasitic Diseases with Clinics, University of Zagreb, Zagreb, Croatia
| | - Geraldine Piorkowski
- Unite des Virus Emergents (Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Mediterranee Infection), Marseille, France
| | - Gregory Moureau
- Unite des Virus Emergents (Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Mediterranee Infection), Marseille, France
| | - Ernest A Gould
- Unite des Virus Emergents (Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Mediterranee Infection), Marseille, France
| | - John H-O Pettersson
- Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Xavier de Lamballerie
- Unite des Virus Emergents (Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Mediterranee Infection), Marseille, France
| | - Remi N Charrel
- Unite des Virus Emergents (Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Mediterranee Infection), Marseille, France
| |
Collapse
|
40
|
Chen D, Wang D, Wei F, Kong Y, Deng J, Lin X, Wu S. Characterization and reverse genetic establishment of cattle derived Akabane virus in China. BMC Vet Res 2021; 17:349. [PMID: 34781948 PMCID: PMC8591888 DOI: 10.1186/s12917-021-03054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Akabane virus (AKAV) is an important insect-borne virus which is widely distributed throughout the world except the Europe and is considered as a great threat to herbivore health. RESULTS An AKAV strain defined as TJ2016 was firstly isolated from the bovine sera in China in 2016. Sequence analysis of the S and M segments suggested that the isolated AKAV strain was closely related to the AKAV strains JaGAr39 and JaLAB39, which belonged to AKAV genogroup II. To further study the pathogenic mechanism of AKAV, the full-length cDNA clone of TJ2016 S, M, and L segment was constructed separately into the TVT7R plasmid at the downsteam of T7 promoter and named as TVT7R-S, TVT7R-M, and TVT7R-L, respectively. The above three plasmids were further transfected into the BSR-T7/5 cells simultaneously with a ratio of 1:1:1 to produce the rescued virus AKAV. Compared with the parental wild type AKAV (wtAKAV), the rescued virus (rAKAV) was proved to be with similar cytopathic effects (CPE), plaque sizes and growth kinetics in BHK-21 cells. CONCLUSION We successfully isolated a AKAV strain TJ2016 from the sera of cattle and established a reverse genetic platform for AKAV genome manipulation. The established reverse genetic system is also a powerful tool for further research on AKAV pathogenesis and even vaccine studies.
Collapse
Affiliation(s)
- Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Di Wang
- School of Agroforestry and Medicine, Open University of China, Beijing, 100039, China
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yufang Kong
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Junhua Deng
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiangmei Lin
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Shaoqiang Wu
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
41
|
Soniya K, Yadav S, Boora S, Kaushik S, Yadav JP, Kaushik S. The Cat Que Virus: a resurfacing orthobunyavirus could lead to epidemics. Virusdisease 2021; 32:635-641. [PMID: 34642639 PMCID: PMC8497146 DOI: 10.1007/s13337-021-00745-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
The newly emerging and re-emerging of viral contagion in the present scenario are of more extensive health concern. After a long calm of many years, an unexpected eruption of the Cat Que Virus in China is a source of our concern. Cat Que Virus is an Arbovirus and belongs to the Simbu serogroup of the Orthobunyavirus genus of the Bunyaviridae family. The Simbu serogroup is an extremely diverse group of Arbovirus. The arboviruses are causing the infection in multiple hosts including humans and various livestock. They can cause mild to life-threatening infections. Arboviruses expand their spectrum and are more observable in recent times. Human actions have the most significant geophysical impact on the environment. Changes in rainfall patterns, floods, and the risk of extreme weather events are all consequences of climate change. These events may be connected to the extension of permissive vectors, geographic ranges, and therefore provide more chance of growth and spread of potential vector. Arboviruses are responsible for the health hazard to millions of people globally. It is critical to concentrate research and surveillance on these emerging and re-emerging viruses, particularly arthropod-borne viral infections. The appropriate research and surveillance on them will help us for the development of effective control and treatment strategies and also reduce health problems. The present review summarizes the current broad outline of discovery, evolution and dispersal of this unknown virus.
Collapse
Affiliation(s)
- Kumari Soniya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak (Hr), India
| | - Suman Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak (Hr), India
| | - Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak (Hr), India
| | - Sulochana Kaushik
- Department of Genetics, Maharshi Dayanand University, Rohtak (Hr), India
| | - Jaya Parkash Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak (Hr), India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak (Hr), India
| |
Collapse
|
42
|
Cho S, Kim WK, No JS, Lee SH, Jung J, Yi Y, Park HC, Lee GY, Park K, Kim JA, Kim J, Lee J, Lee D, Song DH, Gu SH, Jeong ST, Song JW. Urinary genome detection and tracking of Hantaan virus from hemorrhagic fever with renal syndrome patients using multiplex PCR-based next-generation sequencing. PLoS Negl Trop Dis 2021; 15:e0009707. [PMID: 34582439 PMCID: PMC8478167 DOI: 10.1371/journal.pntd.0009707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. Methodology/Principal findings We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. Conclusion/Significance Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS. Hantavirus transmission to humans occurs via inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. Currently, no report for the etiological evidence associated with urinary Hantaan virus (HTNV) from patients with hemorrhagic fever with renal syndrome (HFRS) is available. Here, we conducted multiplex PCR-based next-generation sequencing (NGS) using urine and serum specimens from four Republic of Korea Army (ROKA) patients with HFRS. The epidemiological and phylogenetic analyses using whole or partial genome sequences of HTNV from urine and serum demonstrated homogenous genetic clustering with HTNV from clinical specimens, circulating at highly endemic sites of patient infection. Among the sequences from ROKA patients, the genomic configuration of ROKA16-10 demonstrated occurrences of the genetic reassortment. Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This result provides new insights into presence of HTNV in the urine of patients with HFRS among physicians.
Collapse
Affiliation(s)
- Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin Sun No
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jaehun Jung
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yongjin Yi
- Division of Nephrology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Republic of Korea
| | - Hayne Cho Park
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Ah Kim
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jingyeong Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Mammals Preferred: Reassortment of Batai and Bunyamwera orthobunyavirus Occurs in Mammalian but Not Insect Cells. Viruses 2021; 13:v13091702. [PMID: 34578285 PMCID: PMC8473249 DOI: 10.3390/v13091702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Reassortment is a viral genome-segment recomposition known for many viruses, including the orthobunyaviruses. The co-infection of a host cell with two viruses of the same serogroup, such as the Bunyamwera orthobunyavirus and the Batai orthobunyavirus, can give rise to novel viruses. One example is the Ngari virus, which has caused major outbreaks of human infections in Central Africa. This study aimed to investigate the potential for reassortment of Bunyamwera orthobunyavirus and the Batai orthobunyavirus during co-infection studies and the replication properties of the reassortants in different mammalian and insect cell lines. In the co-infection studies, a Ngari-like virus reassortant and a novel reassortant virus, the Batunya virus, arose in BHK-21 cells (Mesocricetus auratus). In contrast, no reassortment was observed in the examined insect cells from Aedes aegypti (Aag2) and Aedes albopictus (U4.4 and C6/36). The growth kinetic experiments show that both reassortants are replicated to higher titers in some mammalian cell lines than the parental viruses but show impaired growth in insect cell lines.
Collapse
|
44
|
Amaro F, Zé-Zé L, Lourenço J, Giovanetti M, Becker SC, Alves MJ. Phylogenetic Analysis of Massilia phlebovirus in Portugal. Viruses 2021; 13:v13071412. [PMID: 34372617 PMCID: PMC8310352 DOI: 10.3390/v13071412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, molecular surveys of arboviruses have enabled the identification of several new viruses, contributing to the knowledge of viral diversity and providing important epidemiological data regarding possible new emerging viruses. A combination of diagnostic assays, Illumina sequencing and phylogenetic inference are here used to characterize two new Massilia phlebovirus strains isolated from sandflies collected in the Arrábida region, Portugal. Whole genome sequence analysis enabled their identification as reassortants and the recognition of genomic variants co-circulating in Portugal. Much is still unknown about the life cycle, geographic range, evolutionary forces and public health importance of these viruses in Portugal and elsewhere, and more studies are needed.
Collapse
Affiliation(s)
- Fátima Amaro
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n. 5, 2965-575 Águas de Moura, Portugal; (L.Z.-Z.); (M.J.A.)
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisbon, Portugal
- Correspondence:
| | - Líbia Zé-Zé
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n. 5, 2965-575 Águas de Moura, Portugal; (L.Z.-Z.); (M.J.A.)
- Campus da FCUL, Biosystems and Integrative Sciences Institute, Edificio TecLabs, Campo Grande, 1749-016 Lisbon, Portugal
| | - José Lourenço
- Department of Zoology, University of Oxford, Mansfield Road, Oxford OX1 3SZ, UK;
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz Fiocruz, Avenida Brasil, Manguinhos, Rio de Janeiro 21045-900, Brazil;
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Avenida Antônio Carlos n. 6627, Pampula, Belo Horizonte 31270-901, Brazil
| | - Stefanie Christine Becker
- Centre for Infection Medicine, Institute of Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Maria João Alves
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n. 5, 2965-575 Águas de Moura, Portugal; (L.Z.-Z.); (M.J.A.)
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
45
|
Calisher CH, Calzolari M. Taxonomy of Phleboviruses, Emphasizing Those That Are Sandfly-Borne. Viruses 2021; 13:v13050918. [PMID: 34063467 PMCID: PMC8156068 DOI: 10.3390/v13050918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022] Open
Abstract
Sandfly-borne phleboviruses (phylum Negarnavaricota, realm Riboviria, kingdom Orthornavirae, genus Phlebovirus) comprise three genome segments of ribonucleic acid (RNA) and which encode an RNA-dependent RNA polymerase, which they use to transcribe the viral RNA genome into messenger RNA and to replicate the genome. At least some of these viruses cause mild 3-day fevers in humans but some also have been associated with more severe illnesses in humans. The 67 recognized phleboviruses are listed here in a table composed by the authors from International Committee on Taxonomy of Viruses reports as well as the scientific literature.
Collapse
Affiliation(s)
- Charles H. Calisher
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, 3195 Rampart Rd., Foothills Campus, Colorado State University, Fort Collins, CO 80523-1690, USA
- Correspondence:
| | - Mattia Calzolari
- Laboratorio Entomologia Sanitaria, Sede Territoriale di Reggio Emilia, Istituto Zooprofilattico Sperimentale della Lombardia e dell′Emilia Romagna “B. Ubertini” via Pitagora 2, 42124 Reggio Emilia, Italy;
| |
Collapse
|
46
|
Bermúdez-Méndez E, Katrukha EA, Spruit CM, Kortekaas J, Wichgers Schreur PJ. Visualizing the ribonucleoprotein content of single bunyavirus virions reveals more efficient genome packaging in the arthropod host. Commun Biol 2021; 4:345. [PMID: 33753850 PMCID: PMC7985392 DOI: 10.1038/s42003-021-01821-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Bunyaviruses have a genome that is divided over multiple segments. Genome segmentation complicates the generation of progeny virus, since each newly formed virus particle should preferably contain a full set of genome segments in order to disseminate efficiently within and between hosts. Here, we combine immunofluorescence and fluorescence in situ hybridization techniques to simultaneously visualize bunyavirus progeny virions and their genomic content at single-molecule resolution in the context of singly infected cells. Using Rift Valley fever virus and Schmallenberg virus as prototype tri-segmented bunyaviruses, we show that bunyavirus genome packaging is influenced by the intracellular viral genome content of individual cells, which results in greatly variable packaging efficiencies within a cell population. We further show that bunyavirus genome packaging is more efficient in insect cells compared to mammalian cells and provide new insights on the possibility that incomplete particles may contribute to bunyavirus spread as well.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cindy M Spruit
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
47
|
Kapuscinski ML, Bergren NA, Russell BJ, Lee JS, Borland EM, Hartman DA, King DC, Hughes HR, Burkhalter KL, Kading RC, Stenglein MD. Genomic characterization of 99 viruses from the bunyavirus families Nairoviridae, Peribunyaviridae, and Phenuiviridae, including 35 previously unsequenced viruses. PLoS Pathog 2021; 17:e1009315. [PMID: 33647063 PMCID: PMC7951987 DOI: 10.1371/journal.ppat.1009315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/11/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Bunyaviruses (Negarnaviricota: Bunyavirales) are a large and diverse group of viruses that include important human, veterinary, and plant pathogens. The rapid characterization of known and new emerging pathogens depends on the availability of comprehensive reference sequence databases that can be used to match unknowns, infer evolutionary relationships and pathogenic potential, and make response decisions in an evidence-based manner. In this study, we determined the coding-complete genome sequences of 99 bunyaviruses in the Centers for Disease Control and Prevention's Arbovirus Reference Collection, focusing on orthonairoviruses (family Nairoviridae), orthobunyaviruses (Peribunyaviridae), and phleboviruses (Phenuiviridae) that either completely or partially lacked genome sequences. These viruses had been collected over 66 years from 27 countries from vertebrates and arthropods representing 37 genera. Many of the viruses had been characterized serologically and through experimental infection of animals but were isolated in the pre-sequencing era. We took advantage of our unusually large sample size to systematically evaluate genomic characteristics of these viruses, including reassortment, and co-infection. We corroborated our findings using several independent molecular and virologic approaches, including Sanger sequencing of 197 genome segments, and plaque isolation of viruses from putative co-infected virus stocks. This study contributes to the described genetic diversity of bunyaviruses and will enhance the capacity to characterize emerging human pathogenic bunyaviruses.
Collapse
Affiliation(s)
- Marylee L. Kapuscinski
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nicholas A. Bergren
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brandy J. Russell
- Arboviral Diseases Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Justin S. Lee
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin M. Borland
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Daniel A. Hartman
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David C. King
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Holly R. Hughes
- Arboviral Diseases Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Kristen L. Burkhalter
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Arboviral Diseases Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Rebekah C. Kading
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
48
|
Baker M, Hughes HR, Naqvi SH, Yates K, Velez JO, McGuirk S, Schroder B, Lambert AJ, Kosoy OI, Pue H, Turabelidze G, Staples JE. Reassortant Cache Valley virus associated with acute febrile, non-neurologic illness, Missouri. Clin Infect Dis 2021; 73:1700-1702. [PMID: 33630998 DOI: 10.1093/cid/ciab175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
An adult male from Missouri sought care for fever, fatigue, and gastrointestinal symptoms. He had leukopenia and thrombocytopenia and was treated for a presumed tickborne illness. His condition deteriorated with respiratory and renal failure, lactic acidosis, and hypotension. Next-generation sequencing and phylogenetic analysis identified a reassortant Cache Valley virus.
Collapse
Affiliation(s)
- Molly Baker
- Missouri Department of Health and Senior Services, Jefferson City and St Louis, Missouri, USA
| | - Holly R Hughes
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - S Hasan Naqvi
- University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Karen Yates
- Missouri Department of Health and Senior Services, Jefferson City and St Louis, Missouri, USA
| | - Jason O Velez
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sophia McGuirk
- University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Barb Schroder
- Missouri Department of Health and Senior Services, Jefferson City and St Louis, Missouri, USA
| | - Amy J Lambert
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Olga I Kosoy
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Howard Pue
- Missouri Department of Health and Senior Services, Jefferson City and St Louis, Missouri, USA
| | - George Turabelidze
- Missouri Department of Health and Senior Services, Jefferson City and St Louis, Missouri, USA
| | - J Erin Staples
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
49
|
Borrego B, Brun A. A Hyper-Attenuated Variant of Rift Valley Fever Virus Generated by a Mutagenic Drug (Favipiravir) Unveils Potential Virulence Markers. Front Microbiol 2021; 11:621463. [PMID: 33633696 PMCID: PMC7900410 DOI: 10.3389/fmicb.2020.621463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes Rift Valley fever (RVF), a zoonotic disease of wild and domestic ruminants, causing serious economic losses and a threat to human health that could be controlled by vaccination. Though RVF vaccines are available for livestock, no RVF vaccines have been licensed for veterinary use in non-endemic countries nor for human populations in RVF risk areas. In a recent work, we showed that favipiravir, a promising drug with antiviral activity against a number of RNA viruses, led to the extinction of RVFV from infected cell cultures. Nevertheless, certain drug concentrations allowed the recovery of a virus variant showing increased resistance to favipiravir. In this work, we characterized this novel resistant variant both at genomic and phenotypic level in vitro and in vivo. Interestingly, the resistant virus displayed reduced growth rates in C6/36 insect cells but not in mammalian cell lines, and was highly attenuated but still immunogenic in vivo. Some amino acid substitutions were identified in the viral RNA-dependent RNA-polymerase (RdRp) gene and in the virus encoded type I-interferon (IFN-I) antagonist NSs gene, in catalytic core motifs and nuclear localization associated positions, respectively. These data may help to characterize novel potential virulence markers, offering additional strategies for further safety improvements of RVF live attenuated vaccine candidates.
Collapse
Affiliation(s)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
50
|
Discovery and genetic characterization of a novel orthonairovirus in Ixodes ricinus ticks from Danube Delta. INFECTION GENETICS AND EVOLUTION 2021; 88:104704. [PMID: 33418146 DOI: 10.1016/j.meegid.2021.104704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Different arthropod species are vectors of a wide array of arboviruses (arthropod-borne viruses) and have likely been central to viral evolution. To better understand the extent of arthropod-borne pathogens, as well as their origin and evolutionary history, it is crucial to uncover the full range of microbial agents, including viruses associated with arthropods. In this study, a collection of ticks obtained in 2016 directly from mammal and bird hosts from several rural and natural sites of Danube Delta was subjected to transcriptome sequencing and amplification assays. Vector surveillance revealed the presence of a novel orthonairovirus species, designated Sulina virus, in Ixodes ricinus ticks. Phylogenetic clustering of each viral protein consistently placed the new virus in the Orthonairovirus genus as a new genogroup closely related to Tamdy orthonairovirus, a genogroup comprising both pathogenic and tick-associated orthonairoviruses. The serological testing of engorged ticks and blood of infected hosts, along with the inoculation of vertebrate cells and mice found no specific antibodies or viral replication, suggesting that Sulina virus is an orthonairovirus associated with the virome of Ixodes ricinus. Finally, the characterization of a novel orthonairovirus identified using high throughput sequencing will advance our knowledge of interactions between viruses and tick vectors, expanding our perspective on fundamental questions regarding orthonairovirus evolution, diversity, ecology and potential of emergence as pathogens.
Collapse
|