1
|
Gholami Farashah MS, Mohammadi A, Javadi M, Soleimani Rad J, Shakouri SK, Meshgi S, Roshangar L. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other sources of mesenchymal stem cells? Cell Tissue Bank 2023; 24:663-681. [PMID: 36622494 DOI: 10.1007/s10561-022-10066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Karimi T, Pan Z, Potaman VN, Alt EU. Conversion of Unmodified Stem Cells to Pacemaker Cells by Overexpression of Key Developmental Genes. Cells 2023; 12:1381. [PMID: 37408215 PMCID: PMC10216671 DOI: 10.3390/cells12101381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Arrhythmias of the heart are currently treated by implanting electronic pacemakers and defibrillators. Unmodified adipose tissue-derived stem cells (ASCs) have the potential to differentiate into all three germ layers but have not yet been tested for the generation of pacemaker and Purkinje cells. We investigated if-based on overexpression of dominant conduction cell-specific genes in ASCs-biological pacemaker cells could be induced. Here we show that by overexpression of certain genes that are active during the natural development of the conduction system, the differentiation of ASCs to pacemaker and Purkinje-like cells is feasible. Our study revealed that the most effective procedure consisted of short-term upregulation of gene combinations SHOX2-TBX5-HCN2, and to a lesser extent SHOX2-TBX3-HCN2. Single-gene expression protocols were ineffective. Future clinical implantation of such pacemaker and Purkinje cells, derived from unmodified ASCs of the same patient, could open up new horizons for the treatment of arrythmias.
Collapse
Affiliation(s)
- Tahereh Karimi
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
| | - Zhizhong Pan
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vladimir N. Potaman
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
| | - Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- Isar Klinikum Munich, Sonnenstr 24-26, 80331 Munich, Germany
| |
Collapse
|
3
|
Bhatti JS, Khullar N, Mishra J, Kaur S, Sehrawat A, Sharma E, Bhatti GK, Selman A, Reddy PH. Stem cells in the treatment of Alzheimer's disease - Promises and pitfalls. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166712. [PMID: 37030521 DOI: 10.1016/j.bbadis.2023.166712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Alzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-β and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Eva Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
4
|
Expansion of human amniotic epithelial cells using condition cell reprogramming technology. Hum Cell 2023; 36:602-611. [PMID: 36586053 PMCID: PMC9947022 DOI: 10.1007/s13577-022-00849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Human amniotic epithelial cells (hAECs) are non-immunogenic epithelial cells that can develop into cells of all three germline lineages. However, a refined clinically reliable method is required to optimize the preparation and banking procedures of hAECs for their successful translation into clinical studies. With the goal of establishing standardized clinically applicable hAECs cultured cells, we described the use of a powerful epithelial cell culture technique, termed Conditionally Reprogrammed Cells (CRC) for ex vivo expansion of hAECs. The well-established CRC culture method uses a Rho kinase inhibitor (Y-27632) and J2 mouse fibroblast feeder cells to drive the indefinite proliferation of all known epithelial cell types. In this study, we used an optimized CRC protocol to successfully culture hAECs in a CRC medium supplemented with xenogen-free human serum. We established that hAECs thrive under the CRC conditions for over 5 passages while still expressing pluripotent stem markers (OCT-4, SOX-2 and NANOG) and non-immunogenic markers (CD80, CD86 and HLA-G) suggesting that even late-passage hAECs retain their privileged phenotype. The hAECs-CRC cells were infected with a puromycin-selectable lentivirus expressing luciferase and GFP (green fluorescent protein) and stably selected with puromycin. The hAECs expressing GFP were injected subcutaneously into the flanks of Athymic and C57BL6 mice to check the tolerability and stability of cells against the immune system. Chemiluminescence imaging confirmed the presence and viability of cells at days 2, 5, and 42 without acute inflammation or any tumor formation. Collectively, these data indicate that the CRC approach offers a novel solution to expanding hAECs in humanized conditions for future clinical uses, while retaining their primary phenotype.
Collapse
|
5
|
Elzayat EM, Shahien SA, El-Sherif AA, Hosney M. miRNAs and Stem Cells as Promising Diagnostic and Therapeutic Targets for Alzheimer's Disease. J Alzheimers Dis 2023; 94:S203-S225. [PMID: 37212107 PMCID: PMC10473110 DOI: 10.3233/jad-221298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is a cumulative progressive neurodegenerative disease characterized mainly by impairment in cognitive functions accompanied by memory loss, disturbance in behavior and personality, and difficulties in learning. Although the main causes of AD pathogenesis are not fully understood yet, amyloid-β peptides and tau proteins are supposed to be responsible for AD onset and pathogenesis. Various demographic, genetic, and environmental risk factors are involved in AD onset and pathogenesis such as age, gender, several genes, lipids, malnutrition, and poor diet. Significant changes were observed in microRNA (miRNA) levels between normal and AD cases giving hope for a diagnostic procedure for AD through a simple blood test. As yet, only two classes of AD therapeutic drugs are approved by FDA. They are classified as acetylcholinesterase inhibitors and N-methyl-D-aspartate antagonists (NMDA). Unfortunately, they can only treat the symptoms but cannot cure AD or stop its progression. New therapeutic approaches were developed for AD treatment including acitretin due to its ability to cross blood-brain barrier in the brain of rats and mice and induce the expression of ADAM 10 gene, the α-secretase of human amyloid-β protein precursor, stimulating the non-amyloidogenic pathway for amyloid-β protein precursor processing resulting in amyloid-β reduction. Also stem cells may have a crucial role in AD treatment as they can improve cognitive functions and memory in AD rats through regeneration of damaged neurons. This review spotlights on promising diagnostic techniques such as miRNAs and therapeutic approaches such as acitretin and/or stem cells keeping in consideration AD pathogenesis, stages, symptoms, and risk factors.
Collapse
Affiliation(s)
- Emad M. Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sherif A. Shahien
- Biotechnology/Bimolecular Chemistry Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A. El-Sherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Pellegrini S, Zamarian V, Landi E, Cospito A, Lombardo MT, Manenti F, Citro A, Schiavo Lena M, Piemonti L, Sordi V. Treating iPSC-Derived β Cells with an Anti-CD30 Antibody-Drug Conjugate Eliminates the Risk of Teratoma Development upon Transplantation. Int J Mol Sci 2022; 23:ijms23179699. [PMID: 36077097 PMCID: PMC9456216 DOI: 10.3390/ijms23179699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-producing cells derived from induced pluripotent stem cells (iPSCs) are promising candidates for β cell replacement in type 1 diabetes. However, the risk of teratoma formation due to residual undifferentiated iPSCs contaminating the differentiated cells is still a critical concern for clinical application. Here, we hypothesized that pretreatment of iPSC-derived insulin-producing cells with an anti-CD30 antibody−drug conjugate could prevent in vivo teratoma formation by selectively killing residual undifferentiated cells. CD30 is expressed in all human iPSCs clones tested by flow cytometry (n = 7) but not in iPSC-derived β cells (iβs). Concordantly, anti-CD30 treatment in vitro for 24 h induced a dose-dependent cell death (up to 90%) in human iPSCs while it did not kill iβs nor had an impact on iβ identity and function, including capacity to secrete insulin in response to stimuli. In a model of teratoma assay associated with iβ transplantation, the pretreatment of cells with anti-CD30 for 24 h before the implantation into NOD-SCID mice completely eliminated teratoma development (0/10 vs. 8/8, p < 0.01). These findings suggest that short-term in vitro treatment with clinical-grade anti-CD30, targeting residual undifferentiated cells, eliminates the tumorigenicity of iPSC-derived β cells, potentially providing enhanced safety for iPSC-based β cell replacement therapy in clinical scenarios.
Collapse
Affiliation(s)
- Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Valentina Zamarian
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Elisa Landi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Cospito
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Marta Tiffany Lombardo
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Fabio Manenti
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Marco Schiavo Lena
- Department of Pathology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
- Correspondence:
| |
Collapse
|
8
|
Pellegrini S, Zamarian V, Sordi V. Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes. Transpl Int 2022; 35:10575. [PMID: 36090777 PMCID: PMC9448870 DOI: 10.3389/ti.2022.10575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022]
Abstract
Allogeneic islet transplantation allows for the re-establishment of glycemic control with the possibility of insulin independence, but is severely limited by the scarcity of organ donors. However, a new source of insulin-producing cells could enable the widespread use of cell therapy for diabetes treatment. Recent breakthroughs in stem cell biology, particularly pluripotent stem cell (PSC) techniques, have highlighted the therapeutic potential of stem cells in regenerative medicine. An understanding of the stages that regulate β cell development has led to the establishment of protocols for PSC differentiation into β cells, and PSC-derived β cells are appearing in the first pioneering clinical trials. However, the safety of the final product prior to implantation remains crucial. Although PSC differentiate into functional β cells in vitro, not all cells complete differentiation, and a fraction remain undifferentiated and at risk of teratoma formation upon transplantation. A single case of stem cell-derived tumors may set the field back years. Thus, this review discusses four approaches to increase the safety of PSC-derived β cells: reprogramming of somatic cells into induced PSC, selection of pure differentiated pancreatic cells, depletion of contaminant PSC in the final cell product, and control or destruction of tumorigenic cells with engineered suicide genes.
Collapse
|
9
|
Zhao H, Wei J, Du Y, Chen P, Liu X, Liu H. Improved cognitive impairments by silencing DMP1 via enhancing the proliferation of neural progenitor cell in Alzheimer-like mice. Aging Cell 2022; 21:e13601. [PMID: 35366382 PMCID: PMC9124312 DOI: 10.1111/acel.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is age-related progressive neurological dysfunction. Limited clinical benefits for current treatments indicate an urgent need for novel therapeutic strategies. Previous transcriptomic analysis showed that DMP1 expression level was increased in AD model animals whereas it can induce cell-cycle arrest in several cell lines. However, whether the cell-cycle arrest of neural progenitor cell induced by DMP1 affects cognitive function in Alzheimer-like mice still remains unknown. The objective of our study is to explore the issue. We found that DMP1 is correlated with cognitive function based on the clinical genomic analysis of ADNI database. The negative role of DMP1 on neural progenitor cell (NPC) proliferation was revealed by silencing and overexpressing DMP1 in vitro. Furthermore, silencing DMP1 could increase the number of NPCs and improve cognitive function in Alzheimer-like mice, through decreasing P53 and P21 levels, which suggested that DMP1-induced cell-cycle arrest could influence cognitive function.
Collapse
Affiliation(s)
- Huimin Zhao
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Wei
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Yanan Du
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Peipei Chen
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xiaoquan Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Haochen Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | | |
Collapse
|
10
|
Babajani A, Moeinabadi-Bidgoli K, Niknejad F, Rismanchi H, Shafiee S, Shariatzadeh S, Jamshidi E, Farjoo MH, Niknejad H. Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation. Stem Cell Res Ther 2022; 13:126. [PMID: 35337387 PMCID: PMC8949831 DOI: 10.1186/s13287-022-02794-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin–angiotensin–aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Adult Stem Cell Therapy as Regenerative Medicine for End-Stage Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:57-72. [DOI: 10.1007/5584_2022_719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Tsai LW, Lu YH, Dubey R, Chiou JF. Reenvisioning Traditional to Regenerative Therapeutic Advances in Managing Nonalcoholic Fatty Liver Disease in Diabetes Mellitus. J Diabetes Res 2021; 2021:7692447. [PMID: 34805412 PMCID: PMC8601846 DOI: 10.1155/2021/7692447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 12/07/2022] Open
Abstract
Reports indicate the increasing prevalence of liver disorders in diabetes mellitus (DM) patients. Clinically, it has also been revealed that the existence of nonalcoholic fatty liver disease (NAFLD) enhances the incidence of type 2 diabetes mellitus (T2DM), while T2DM exacerbates NAFLD to extremely severe forms of steatohepatitis, cirrhosis, and hepatocellular carcinoma. This implies the coexistence and bidirectional nature of NAFLD and T2DM, which function synergistically to drive adverse consequences in clinical practice. For treatment of such comorbid state, though the existing practices such as lifestyle management, traditional Chinese medicines (TCM), and pharmaceuticals have offered somewhat relief, the debate continues about the optimal therapeutic impacts. Recent developments in the field of tissue engineering have led to a renewed interest in novel biomaterial alternatives such as stem cells. This might be attributable to their differentiation potential towards hepatic and pancreatic lineage. These cellular therapies could be further complemented by platelet-derived biomaterials, TCM formulations, or any specific drug. Based on these abovementioned approaches, we aimed to comprehensively analyze various preclinical and clinical studies from traditional to regenerative therapeutic approaches in managing concomitant NAFLD and T2DM.
Collapse
Affiliation(s)
- Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Hsiang Lu
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Bittenglova K, Habart D, Saudek F, Koblas T. The Potential of Pancreatic Organoids for Diabetes Research and Therapy. Islets 2021; 13:85-105. [PMID: 34523383 PMCID: PMC8528407 DOI: 10.1080/19382014.2021.1941555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/04/2021] [Indexed: 10/20/2022] Open
Abstract
The success of clinical transplantation of pancreas or isolated pancreatic islets supports the concept of cell-based cure for diabetes. One limitation is the shortage of cadaver human pancreata. The demand-supply gap could potentially be bridged by harnessing the self-renewal capacity of stem cells. Pluripotent stem cells and adult pancreatic stem cells have been explored as possible cell sources. Recently, a system for long-term culture of proposed adult pancreatic stem cells in a form of organoids was developed. Generated organoids partially mimic the architecture and cell-type composition of pancreatic tissue. Here, we review the attempts over the past decade, to utilize the organoid cell culture principles in order to identify, expand, and differentiate the adult pancreatic stem cells from different compartments of mouse and human pancreata. The development of the culture conditions, effects of specific growth factors and small molecules is discussed. The potential utility of the adult pancreatic stem cells is considered in the context of other cell sources.
Collapse
Affiliation(s)
- Katerina Bittenglova
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Habart
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frantisek Saudek
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Koblas
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
14
|
Liu H, Li R, Liao HK, Min Z, Wang C, Yu Y, Shi L, Dan J, Hayek A, Martinez Martinez L, Nuñez Delicado E, Izpisua Belmonte JC. Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional β cells. Nat Commun 2021; 12:3330. [PMID: 34099664 PMCID: PMC8184986 DOI: 10.1038/s41467-021-23525-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/02/2021] [Indexed: 11/09/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived pancreatic β cells are an attractive cell source for treating diabetes. However, current derivation methods remain inefficient, heterogeneous, and cell line dependent. To address these issues, we first devised a strategy to efficiently cluster hPSC-derived pancreatic progenitors into 3D structures. Through a systematic study, we discovered 10 chemicals that not only retain the pancreatic progenitors in 3D clusters but also enhance their potentiality towards NKX6.1+/INS+ β cells. We further systematically screened signaling pathway modulators in the three steps from pancreatic progenitors toward β cells. The implementation of all these strategies and chemical combinations resulted in generating β cells from different sources of hPSCs with high efficiency. The derived β cells are functional and can reverse hyperglycemia in mice within two weeks. Our protocol provides a robust platform for studying human β cells and developing hPSC-derived β cells for cell replacement therapy.
Collapse
Affiliation(s)
- Haisong Liu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronghui Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hsin-Kai Liao
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zheying Min
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chao Wang
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yang Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lei Shi
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jiameng Dan
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Alberto Hayek
- Department of Pediatrics, UCSD-Medical School, La Jolla, California, USA
| | | | | | | |
Collapse
|
15
|
Hu S, Martinez-Garcia FD, Moeun BN, Burgess JK, Harmsen MC, Hoesli C, de Vos P. An immune regulatory 3D-printed alginate-pectin construct for immunoisolation of insulin producing β-cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112009. [PMID: 33812628 DOI: 10.1016/j.msec.2021.112009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Different bioinks have been used to produce cell-laden alginate-based hydrogel constructs for cell replacement therapy but some of these approaches suffer from issues with print quality, long-term mechanical instability, and bioincompatibility. In this study, new alginate-based bioinks were developed to produce cell-laden grid-shaped hydrogel constructs with stable integrity and immunomodulating capacity. Integrity and printability were improved by including the co-block-polymer Pluronic F127 in alginate solutions. To reduce inflammatory responses, pectin with a low degree of methylation was included and tested for inhibition of Toll-Like Receptor 2/1 (TLR2/1) dimerization and activation and tissue responses under the skin of mice. The viscoelastic properties of alginate-Pluronic constructs were unaffected by pectin incorporation. The tested pectin protected printed insulin-producing MIN6 cells from inflammatory stress as evidenced by higher numbers of surviving cells within the pectin-containing construct following exposure to a cocktail of the pro-inflammatory cytokines namely, IL-1β, IFN-γ, and TNF-α. The results suggested that the cell-laden construct bioprinted with pectin-alginate-Pluronic bioink reduced tissue responses via inhibiting TLR2/1 and support insulin-producing β-cell survival under inflammatory stress. Our study provides a potential novel strategy to improve long-term survival of pancreatic islet grafts for Type 1 Diabetes (T1D) treatment.
Collapse
Affiliation(s)
- Shuxian Hu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands.
| | - Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Brenden N Moeun
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Corinne Hoesli
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
16
|
Madsen SD, Giler MK, Bunnell BA, O'Connor KC. Illuminating the Regenerative Properties of Stem Cells In Vivo with Bioluminescence Imaging. Biotechnol J 2020; 16:e2000248. [PMID: 33089922 DOI: 10.1002/biot.202000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Preclinical animal studies are essential to the development of safe and effective stem cell therapies. Bioluminescence imaging (BLI) is a powerful tool in animal studies that enables the real-time longitudinal monitoring of stem cells in vivo to elucidate their regenerative properties. This review describes the application of BLI in preclinical stem cell research to address critical challenges in producing successful stem cell therapeutics. These challenges include stem cell survival, proliferation, homing, stress response, and differentiation. The applications presented here utilize bioluminescence to investigate a variety of stem and progenitor cells in several different in vivo models of disease and implantation. An overview of luciferase reporters is provided, along with the advantages and disadvantages of BLI. Additionally, BLI is compared to other preclinical imaging modalities and potential future applications of this technology are discussed in emerging areas of stem cell research.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
17
|
Deinsberger J, Reisinger D, Weber B. Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. NPJ Regen Med 2020; 5:15. [PMID: 32983575 PMCID: PMC7486930 DOI: 10.1038/s41536-020-00100-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) hold great potential for novel therapeutic approaches to regenerate or replace functionally impaired tissues. Since the introduction of the induced pluripotent stem cell technology in 2006, the number of scientific publications on this topic has constantly been increasing. However, so far no therapy based on PSCs has found its way into routine clinical use. In this study, we examined research trends related to clinical trials involving PSCs based on data obtained from ClinicalTrials.gov, the ICTRP database from the World Health Organization, as well as from a search of all individual databases that are included in the ICTRP using a multistep search algorithm. Following a stringent inclusion/exclusion procedure 131 studies remained that could be classified as clinical trials involving PSCs. The magnitude of these studies (77.1%) was observational, which implies that no cells were transplanted into patients, and only a minority of studies (22.9%) were of an interventional study type. The number of clinical trials involving induced pluripotent stem cells (iPSCs, 74.8%) was substantially higher than the one involving embryonic stem cells (ESCs, 25.2%). However, the picture changes completely when focusing on interventional studies, where in the majority (73.3%) of cases ESCs were used. Interestingly, also the study duration was significantly shorter for interventional versus observational trials (p = 0.002). When focusing on the geographical study regions, it became obvious that the greatest part of all observational trials was performed in the USA (41.6%) and in France (16.8%), while the magnitude of interventional studies was performed in Asian countries (China 36.7%, Japan 13.3%, South Korea 10.0%) and in the field of ophthalmology. In summary, these results indicate that only a limited number of trials were focusing on the actual transplantation of PSCs into patients in a rather narrow field of diagnoses. The future will tell us, if the iPSC technology will ultimately overcome the current challenges and will finally make its way into routine clinical use.
Collapse
Affiliation(s)
- Julia Deinsberger
- Disease Modeling and Organoid Technology (DMOT) Research Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - David Reisinger
- Disease Modeling and Organoid Technology (DMOT) Research Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Weber
- Disease Modeling and Organoid Technology (DMOT) Research Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer's disease. World J Stem Cells 2020; 12:787-802. [PMID: 32952859 PMCID: PMC7477654 DOI: 10.4252/wjsc.v12.i8.787] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell-derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.
Collapse
Affiliation(s)
- Xin-Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lin-Po Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
19
|
Arutyunyan IV, Fatkhudinov TK, Makarov AV, Elchaninov AV, Sukhikh GT. Regenerative medicine of pancreatic islets. World J Gastroenterol 2020; 26:2948-2966. [PMID: 32587441 PMCID: PMC7304103 DOI: 10.3748/wjg.v26.i22.2948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The pancreas became one of the first objects of regenerative medicine, since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted. The number of people living with diabetes mellitus is currently approaching half a billion, hence the crucial relevance of new methods to stimulate regeneration of the insulin-secreting β-cells of the islets of Langerhans. Natural restrictions on the islet regeneration are very tight; nevertheless, the islets are capable of physiological regeneration via β-cell self-replication, direct differentiation of multipotent progenitor cells and spontaneous α- to β- or δ- to β-cell conversion (trans-differentiation). The existing preclinical models of β-cell dysfunction or ablation (induced surgically, chemically or genetically) have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation. The ultimate goal, sufficient level of functional activity of β-cells or their substitutes can be achieved by two prospective broad strategies: β-cell replacement and β-cell regeneration. The “regeneration” strategy aims to maintain a preserved population of β-cells through in situ exposure to biologically active substances that improve β-cell survival, replication and insulin secretion, or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-β- to β-cell conversion. The “replacement” strategy implies transplantation of β-cells (as non-disintegrated pancreatic material or isolated donor islets) or β-like cells obtained ex vivo from progenitors or mature somatic cells (for example, hepatocytes or α-cells) under the action of small-molecule inducers or by genetic modification. We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally active β-cells, the innermost hope of millions of people globally.
Collapse
Affiliation(s)
- Irina V Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| | - Timur Kh Fatkhudinov
- Research Institute of Human Morphology, Moscow 117418, Russia
- Peoples Friendship University of Russia, Moscow 117198, Russia
| | - Andrey V Makarov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
| |
Collapse
|
20
|
Georgakopoulos N, Prior N, Angres B, Mastrogiovanni G, Cagan A, Harrison D, Hindley CJ, Arnes-Benito R, Liau SS, Curd A, Ivory N, Simons BD, Martincorena I, Wurst H, Saeb-Parsy K, Huch M. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC DEVELOPMENTAL BIOLOGY 2020; 20:4. [PMID: 32098630 PMCID: PMC7043048 DOI: 10.1186/s12861-020-0209-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/03/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pancreatic organoid systems have recently been described for the in vitro culture of pancreatic ductal cells from mouse and human. Mouse pancreatic organoids exhibit unlimited expansion potential, while previously reported human pancreas organoid (hPO) cultures do not expand efficiently long-term in a chemically defined, serum-free medium. We sought to generate a 3D culture system for long-term expansion of human pancreas ductal cells as hPOs to serve as the basis for studies of human pancreas ductal epithelium, exocrine pancreatic diseases and the development of a genomically stable replacement cell therapy for diabetes mellitus. RESULTS Our chemically defined, serum-free, human pancreas organoid culture medium supports the generation and expansion of hPOs with high efficiency from both fresh and cryopreserved primary tissue. hPOs can be expanded from a single cell, enabling their genetic manipulation and generation of clonal cultures. hPOs expanded for months in vitro maintain their ductal morphology, biomarker expression and chromosomal integrity. Xenografts of hPOs survive long-term in vivo when transplanted into the pancreas of immunodeficient mice. Notably, mouse orthotopic transplants show no signs of tumorigenicity. Crucially, our medium also supports the establishment and expansion of hPOs in a chemically defined, modifiable and scalable, biomimetic hydrogel. CONCLUSIONS hPOs can be expanded long-term, from both fresh and cryopreserved human pancreas tissue in a chemically defined, serum-free medium with no detectable tumorigenicity. hPOs can be clonally expanded, genetically manipulated and are amenable to culture in a chemically defined hydrogel. hPOs therefore represent an abundant source of pancreas ductal cells that retain the characteristics of the tissue-of-origin, which opens up avenues for modelling diseases of the ductal epithelium and increasing understanding of human pancreas exocrine biology as well as for potentially producing insulin-secreting cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Nikitas Georgakopoulos
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Nicole Prior
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | | | - Gianmarco Mastrogiovanni
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Daisy Harrison
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Christopher J Hindley
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physics, The Cavendish Laboratory, University of Cambridge, Thompson Avenue, Cambridge, JJ, CB3 0HE, UK
| | - Robert Arnes-Benito
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Siong-Seng Liau
- Hepatopancreatobiliary Surgical Unit, Addenbrooke's Hospital and MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Abbie Curd
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Natasha Ivory
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Benjamin D Simons
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Physics, The Cavendish Laboratory, University of Cambridge, Thompson Avenue, Cambridge, JJ, CB3 0HE, UK
| | | | | | - Kourosh Saeb-Parsy
- Cambridge Biorepository for Translational Medicine & Department of Surgery, University o.f Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.
| | - Meritxell Huch
- The Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
| |
Collapse
|
21
|
Tan HL, Choo A. Opportunities for Antibody Discovery Using Human Pluripotent Stem Cells: Conservation of Oncofetal Targets. Int J Mol Sci 2019; 20:E5752. [PMID: 31731794 PMCID: PMC6888136 DOI: 10.3390/ijms20225752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology, (iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for regenerative medicine, thus expediting the route to the clinics.
Collapse
Affiliation(s)
- Heng Liang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138668, Singapore;
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138668, Singapore;
- Department of Biochemical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
22
|
Zhang T, Wang H, Wang T, Wei C, Jiang H, Jiang S, Yang J, Shao J, Ma L. Pax4 synergistically acts with Pdx1, Ngn3 and MafA to induce HuMSCs to differentiate into functional pancreatic β-cells. Exp Ther Med 2019; 18:2592-2598. [PMID: 31572507 PMCID: PMC6755441 DOI: 10.3892/etm.2019.7854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
It has been indicated that the combination of pancreatic and duodenal homeobox 1 (Pdx1), MAF bZIP transcription factor A (MafA) and neurogenin 3 (Ngn3) was able to reprogram various cell types towards pancreatic β-like cells (pβLCs). Paired box 4 (Pax4), a transcription factor, has a key role in regulating the maturation of pancreatic β-cells (pβCs). In the present study, it was investigated whether Pax4 is able to synergistically act with Pdx1, Ngn3 and MafA to induce human umbilical cord mesenchymal stem cells (HuMSCs) to differentiate into functional pβCs in vitro. HuMSCs were isolated, cultured and separately transfected with adenovirus (Ad) expressing enhanced green fluorescence protein, Pax4 (Ad-Pax4), Pdx1+MafA+Ngn3 (Ad-3F) or Ad-Pxa4 + Ad-3F. The expression of C-peptide, insulin and glucagon was detected by immunofluorescence. The transcription of a panel of genes was determined by reverse transcription-quantitative PCR, including glucagon (GCG), insulin (INS), NK6 homeobox 1 (NKX6-1), solute carrier family 2 member 2 (SLC2A2), glucokinase (GCK), proprotein convertase subtilisin/kexin type 1 (PCSK1), neuronal differentiation 1 (NEUROD1), ISL LIM homeobox 1 (ISL 1), Pax6 and PCSK type 2 (PCSK2). Insulin secretion stimulated by glucose was determined using ELISA. The results suggested that, compared with Ad-3F alone, cells co-transfected with Ad-Pax4 and Ad-3F expressed higher levels of INS and C-peptide, as well as genes expressed in pancreatic β precursor cells, and secreted more insulin in response to high glucose. Furthermore, the expression of GCG in cells transfected with Ad-3F was depressed by Ad-Pax4. The present study demonstrated that Pax4 was able to synergistically act with the transcription factors Pdx1, Ngn3 and MafA to convert HuMSCs to functional pβLCs. HuMSCs may be potential seed cells for generating functional pβLCs in the therapy of diabetes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Tianyou Wang
- Hematological Tumor Center, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, P.R. China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P.R. China
| | - Hui Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Shayi Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingwei Yang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingbo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
- Correspondence to: Dr Jingbo Shao, Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Luding Road, Shanghai 200062, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, Guangdong 518038, P.R. China
- Dr Lian Ma, Department of Hematology and Oncology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, Guangdong 518038, P.R. China, E-mail:
| |
Collapse
|
23
|
Winnier GE, Valenzuela N, Peters-Hall J, Kellner J, Alt C, Alt EU. Isolation of adipose tissue derived regenerative cells from human subcutaneous tissue with or without the use of an enzymatic reagent. PLoS One 2019; 14:e0221457. [PMID: 31479463 PMCID: PMC6719836 DOI: 10.1371/journal.pone.0221457] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Freshly isolated, uncultured, autologous adipose derived regenerative cells (ADRCs) have emerged as a promising tool for regenerative cell therapy. The Transpose RT system (InGeneron, Inc., Houston, TX, USA) is a system for isolating ADRCs from adipose tissue, commercially available in Europe as a CE-marked medical device and under clinical evaluation in the United States. This system makes use of the proprietary, enzymatic Matrase Reagent for isolating cells. The present study addressed the question whether the use of Matrase Reagent influences cell yield, cell viability, live cell yield, biological characteristics, physiological functions or structural properties of the ADRCs in final cell suspension. Identical samples of subcutaneous adipose tissue from 12 subjects undergoing elective lipoplasty were processed either with or without the use of Matrase Reagent. Then, characteristics of the ADRCs in the respective final cell suspensions were evaluated. Compared to non-enzymatic isolation, enzymatic isolation resulted in approximately twelve times higher mean cell yield (i.e., numbers of viable cells/ml lipoaspirate) and approximately 16 times more colony forming units. Despite these differences, cells isolated from lipoaspirate both with and without the use of Matrase Reagent were independently able to differentiate into cells of all three germ layers. This indicates that biological characteristics, physiological functions or structural properties relevant for the intended use were not altered or induced using Matrase Reagent. A comprehensive literature review demonstrated that isolation of ADRCs from lipoaspirate using the Transpose RT system and the Matrase Reagent results in the highest viable cell yield among published data regarding isolation of ADRCs from lipoaspirate.
Collapse
Affiliation(s)
| | | | | | | | | | - Eckhard U. Alt
- InGeneron, Inc., Houston, TX, United States of America
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, United States of America
- Sanford Health, University of South Dakota, Sioux Falls, SD, United States of America
- Isar Klinikum Munich, Munich, Germany
- * E-mail: ,
| |
Collapse
|
24
|
Neurodegeneration and Neuro-Regeneration-Alzheimer's Disease and Stem Cell Therapy. Int J Mol Sci 2019; 20:ijms20174272. [PMID: 31480448 PMCID: PMC6747457 DOI: 10.3390/ijms20174272] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aging causes many changes in the human body, and is a high risk for various diseases. Dementia, a common age-related disease, is a clinical disorder triggered by neurodegeneration. Brain damage caused by neuronal death leads to cognitive decline, memory loss, learning inabilities and mood changes. Numerous disease conditions may cause dementia; however, the most common one is Alzheimer’s disease (AD), a futile and yet untreatable illness. Adult neurogenesis carries the potential of brain self-repair by an endogenous formation of newly-born neurons in the adult brain; however it also declines with age. Strategies to improve the symptoms of aging and age-related diseases have included different means to stimulate neurogenesis, both pharmacologically and naturally. Finally, the regulatory mechanisms of stem cells neurogenesis or a functional integration of newborn neurons have been explored to provide the basis for grafted stem cell therapy. This review aims to provide an overview of AD pathology of different neural and glial cell types and summarizes current strategies of experimental stem cell treatments and their putative future use in clinical settings.
Collapse
|
25
|
Tan HL, Tan BZ, Goh WXT, Cua S, Choo A. In vivo surveillance and elimination of teratoma-forming human embryonic stem cells with monoclonal antibody 2448 targeting annexin A2. Biotechnol Bioeng 2019; 116:2996-3005. [PMID: 31388993 PMCID: PMC6790577 DOI: 10.1002/bit.27135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody‐dependent cell‐mediated cytotoxicity (ADCC) and/or antibody‐drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post‐transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell‐derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC‐derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma‐forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.
Collapse
Affiliation(s)
- Heng Liang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Bao Zhu Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Winfred Xi Tai Goh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Simeon Cua
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
26
|
Human Fetal Bone Marrow-Derived Mesenchymal Stem Cells Promote the Proliferation and Differentiation of Pancreatic Progenitor Cells and the Engraftment Function of Islet-Like Cell Clusters. Int J Mol Sci 2019; 20:ijms20174083. [PMID: 31438545 PMCID: PMC6747176 DOI: 10.3390/ijms20174083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic progenitor cells (PPCs) are the primary source for all pancreatic cells, including beta-cells, and thus the proliferation and differentiation of PPCs into islet-like cell clusters (ICCs) opens an avenue to providing transplantable islets for diabetic patients. Meanwhile, mesenchymal stem cells (MSCs) can enhance the development and function of different cell types of interest, but their role on PPCs remains unknown. We aimed to explore the mechanism-of-action whereby MSCs induce the in vitro and in vivo PPC/ICC development by means of our established co-culture system of human PPCs with human fetal bone marrow-derived MSCs. We examined the effect of MSC-conditioned medium on PPC proliferation and survival. Meanwhile, we studied the effect of MSC co-culture enhanced PPC/ICC function in vitro and in vivo co-/transplantation. Furthermore, we identified IGF1 as a critical factor responsible for the MSC effects on PPC differentiation and proliferation via IGF1-PI3K/Akt and IGF1-MEK/ERK1/2, respectively. In conclusion, our data indicate that MSCs stimulated the differentiation and proliferation of human PPCs via IGF1 signaling, and more importantly, promoted the in vivo engraftment function of ICCs. Taken together, our protocol may provide a mechanism-driven basis for the proliferation and differentiation of PPCs into clinically transplantable islets.
Collapse
|
27
|
Rhee YH, Puspita L, Sulistio YA, Kim SW, Vidyawan V, Elvira R, Chang MY, Shim JW, Lee SH. Efficient Neural Differentiation of hPSCs by Extrinsic Signals Derived from Co-cultured Neural Stem or Precursor Cells. Mol Ther 2019; 27:1299-1312. [PMID: 31043343 DOI: 10.1016/j.ymthe.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, we found that undifferentiated human pluripotent stem cells (hPSCs; up to 30% of total cells) present in the cultures of neural stem or precursor cells (NPCs) completely disappeared within several days when cultured under neural differentiation culture conditions. Intriguingly, the disappearance of undifferentiated cells was not due to cell death but was instead mediated by neural conversion of hPSCs. Based on these findings, we propose pre-conditioning of donor NPC cultures under terminal differentiation culture conditions as a simple but efficient method of eliminating undifferentiated cells to treat neurologic disorders. In addition, we could establish a new neural differentiation protocol, in which undifferentiated hPSCs co-cultured with NPCs become differentiated neurons or NPCs in an extremely efficient, fast, and reproducible manner across the hESC and human-induced pluripotent stem cell (hiPSC) lines.
Collapse
Affiliation(s)
- Yong-Hee Rhee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Yanuar Alan Sulistio
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Seung Won Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Vincencius Vidyawan
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea.
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
28
|
Senior PA, Pettus JH. Stem cell therapies for Type 1 diabetes: current status and proposed road map to guide successful clinical trials. Diabet Med 2019; 36:297-307. [PMID: 30362170 DOI: 10.1111/dme.13846] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Many people with Type 1 diabetes struggle with the burden of self-management and are unable to achieve optimal glycaemic control without risk of hypoglycaemia. Future therapies with the potential to reduce the risk for short- and long-term complications while simultaneously reducing the burden of diabetes are therefore attractive. β-cell replacement is one strategy which might achieve this. Islet transplantation is limited by organ supply and the risks of long-term immunosuppression. Encapsulated stem-cell-derived β cells have the potential to address both of these issues and phase I/II clinical trials of encapsulated pancreatic progenitors have begun. A significant risk associated with the translation of stem-cell science to the clinical management of Type 1 diabetes is an underestimation of the complexity of the process and a mismatch between the hype and the expectations of both people with Type 1 diabetes and the public. We provide an update on progress in clinical trials of encapsulated stem-cell-derived β cells and propose a road map for the design and conduct of future trials to facilitate the translation of this exciting science to clinical care.
Collapse
Affiliation(s)
- P A Senior
- Division of Endocrinology, University of Alberta, Edmonton, Alberta, Canada
| | - J H Pettus
- Division of Endocrinology, University of California, San Diego, CA, USA
| |
Collapse
|
29
|
A Double Fail-Safe Approach to Prevent Tumorigenesis and Select Pancreatic β Cells from Human Embryonic Stem Cells. Stem Cell Reports 2019; 12:611-623. [PMID: 30773486 PMCID: PMC6409439 DOI: 10.1016/j.stemcr.2019.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
The transplantation of human embryonic stem cell (hESC)-derived insulin-producing β cells for the treatment of diabetes is finally approaching the clinical stage. However, even with state-of-the-art differentiation protocols, a significant percentage of undefined non-endocrine cell types are still generated. Most importantly, there is the potential for carry-over of non-differentiated cell types that may produce teratomas. We sought to modify hESCs so that their differentiated progeny could be selectively devoid of tumorigenic cells and enriched for cells of the desired phenotype (in this case, β cells). Here we report the generation of a modified hESC line harboring two suicide gene cassettes, whose expression results in cell death in the presence of specific pro-drugs. We show the efficacy of this system at enriching for β cells and eliminating tumorigenic ones both in vitro and in vivo. Our approach is innovative inasmuch as it allows for the preservation of the desired cells while eliminating those with the potential to develop teratomas. hESCs were engineered with suicide genes for safety and differentiation efficiency One cassette is exclusively expressed in teratogenic cells (safety) Another is selectively excised out in hESC-derived pancreatic β cells (selectivity) Our strategy allows for hESC-derived tumors to be prevented or ablated in vivo
Collapse
|
30
|
Paving the way for successful islet encapsulation. Drug Discov Today 2019; 24:737-748. [PMID: 30738185 DOI: 10.1016/j.drudis.2019.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disorder that decimates pancreatic β-cells which produce insulin. Direct pancreatic islet transplantation cannot serve as a widespread therapeutic modality owing to the need for lifelong immunosuppression and donor shortage. Therefore, several encapsulation techniques have been developed to enclose the islets in semipermeable vehicles that will allow oxygen and nutrient input as well as insulin, other metabolites and waste output, while accomplishing immunoisolation. Although encapsulation technology continues to face significant obstacles, recent advances in material science, stem cell biology and immunology potentially serve as pathways to success. This review summarizes the accomplishments of the past 5 years.
Collapse
|
31
|
Dougherty JA, Kumar N, Noor M, Angelos MG, Khan M, Chen CA, Khan M. Extracellular Vesicles Released by Human Induced-Pluripotent Stem Cell-Derived Cardiomyocytes Promote Angiogenesis. Front Physiol 2018; 9:1794. [PMID: 30618806 PMCID: PMC6302004 DOI: 10.3389/fphys.2018.01794] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Although cell survival post-transplantation is very low, emerging evidence using stem cell therapy for myocardial repair points toward a primary role of paracrine signaling mechanisms as the basis for improved cardiac function, decreased fibrosis, and increased angiogenesis. Recent studies have demonstrated that extracellular vesicles (EVs) such as exosomes secreted by stem cells stimulate angiogenesis, provide cytoprotection, and modulate apoptosis. However, the angiogenic potential of EVs secreted from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), a terminally differentiated cell type, has not been elucidated yet. Therefore, the main objective of this study is to isolate, characterize, and evaluate the in vitro angiogenic potential of EVs collected from hiPSC-CM conditioned media. The hiPSC-CM were cultured for 2 weeks and EVs were isolated from cell culture medium. Isolated EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis, and immunoblotting. Furthermore, the angiogenic potential of these EVs was evaluated by tube formation, wound-healing, and cell-proliferation assays in bovine aortic endothelial cells (BAEC). In addition, gene expression levels of growth factors was evaluated in hiPSC-derived endothelial cells (hiPSC-EC) treated with hiPSC-CM-derived EV (CM-EVs) to assess their role in promoting angiogenesis. TEM imaging of CM-EVs showed a presence of a double-membrane bound structure, which is a characteristic of EV. Nanoparticle tracking analysis further confirmed the size and shape of the secreted particles to be consistent with EVs. Furthermore, EV-specific markers (CD63 and HSP70) were enriched in these particles as illustrated by immunoblotting. Most importantly, BAEC treated with 100 μg/ml of CM-EVs showed significant increases in tube formation, wound closure, and cell proliferation as compared to control (no-EVs). Finally, treatment of hiPSC-EC with CM-EVs induced increased expression of pro-angiogenic growth factors by the endothelial cells. Overall, our results demonstrated that EVs isolated from hiPSC-CM enhance angiogenesis in endothelial cells. This acellular/cell-free approach constitutes a potential translational therapeutic to induce angiogenesis in patients with myocardial infarction.
Collapse
Affiliation(s)
- Julie A Dougherty
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Naresh Kumar
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mohammad Noor
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mark G Angelos
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Chun-An Chen
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mahmood Khan
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
32
|
Kamaldinov T, Erndt-Marino J, Diaz-Rodriguez P, Chen H, Gharat T, Munoz-Pinto D, Arduini B, Hahn MS. Tuning Forkhead Box D3 overexpression to promote specific osteogenic differentiation of human embryonic stem cells while reducing pluripotency in a three-dimensional culture system. J Tissue Eng Regen Med 2018; 12:2256-2265. [PMID: 30350469 DOI: 10.1002/term.2757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Clinical use of human embryonic stem cells (hESCs) in bone regeneration applications requires that their osteogenic differentiation be highly controllable as well as time- and cost-effective. The main goals of the current work were thus (a) to assess whether overexpression of pluripotency regulator Forkhead Box D3 (FOXD3) can enhance the osteogenic commitment of hESCs seeded in three-dimensional (3D) scaffolds and (b) to evaluate if the degree of FOXD3 overexpression regulates the strength and specificity of hESC osteogenic commitment. In conducting these studies, an interpenetrating hydrogel network consisting of poly(ethylene glycol) diacrylate and collagen I was utilized as a 3D culture platform. Expression of osteogenic, chondrogenic, pluripotency, and germ layer markers by encapsulated hESCs was measured after 2 weeks of culture in osteogenic medium in the presence or absence doxycycline-induced FOXD3 transgene expression. Towards the first goal, FOXD3 overexpression initiated 24 hr prior to hESC encapsulation, relative to unstimulated controls, resulted in upregulation of osteogenic markers and enhanced calcium deposition, without promoting off-target effects. However, when initiation of FOXD3 overexpression was increased from 24 to 48 hr prior to encapsulation, hESC osteogenic commitment was not further enhanced and off-target effects were noted. Specifically, relative to 24-hr prestimulation, initiation of FOXD3 overexpression 48 hr prior to encapsulation yielded increased expression of pluripotency markers while reducing mesodermal but increasing endodermal germ layer marker expression. Combined, the current results indicate that the controlled overexpression of FOXD3 warrants further investigation as a mechanism to guide enhanced hESC osteogenic commitment.
Collapse
Affiliation(s)
- Timothy Kamaldinov
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Tanmay Gharat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Dany Munoz-Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Brigitte Arduini
- Rensselaer Center for Stem Cell Research, Rensselaer Polytechnic Institute, Troy, New York
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
33
|
Smink AM, de Haan BJ, Lakey JRT, de Vos P. Polymer scaffolds for pancreatic islet transplantation - Progress and challenges. Am J Transplant 2018; 18:2113-2119. [PMID: 29790274 DOI: 10.1111/ajt.14942] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic-islet transplantation is a safe and noninvasive therapy for type 1 diabetes. However, the currently applied site for transplantation, ie, the liver, is not the optimal site for islet survival. Because the human body has shortcomings in providing an optimal site, artificial transplantation sites have been proposed. Such an artificial site could consist of a polymeric scaffold that mimics the pancreatic microenvironment and supports islet function. Recently, remarkable progress has been made in the technology of engineering scaffolds. The polymer-islet interactions, the site of implantation, and scaffold prevascularization are critical factors for success or failure of the scaffolds. This article critically reviews these factors while also discussing translation of experimental studies to human application as well as the steps required to create a clinically applicable prevascularized, retrievable scaffold for implantation of insulin-producing cells for treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Peloso A, Citro A, Zoro T, Cobianchi L, Kahler-Quesada A, Bianchi CM, Andres A, Berishvili E, Piemonti L, Berney T, Toso C, Oldani G. Regenerative Medicine and Diabetes: Targeting the Extracellular Matrix Beyond the Stem Cell Approach and Encapsulation Technology. Front Endocrinol (Lausanne) 2018; 9:445. [PMID: 30233489 PMCID: PMC6127205 DOI: 10.3389/fendo.2018.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
According to the Juvenile Diabetes Research Foundation (JDRF), almost 1. 25 million people in the United States (US) have type 1 diabetes, which makes them dependent on insulin injections. Nationwide, type 2 diabetes rates have nearly doubled in the past 20 years resulting in more than 29 million American adults with diabetes and another 86 million in a pre-diabetic state. The International Diabetes Ferderation (IDF) has estimated that there will be almost 650 million adult diabetic patients worldwide at the end of the next 20 years (excluding patients over the age of 80). At this time, pancreas transplantation is the only available cure for selected patients, but it is offered only to a small percentage of them due to organ shortage and the risks linked to immunosuppressive regimes. Currently, exogenous insulin therapy is still considered to be the gold standard when managing diabetes, though stem cell biology is recognized as one of the most promising strategies for restoring endocrine pancreatic function. However, many issues remain to be solved, and there are currently no recognized treatments for diabetes based on stem cells. In addition to stem cell resesarch, several β-cell substitutive therapies have been explored in the recent era, including the use of acellular extracellular matrix scaffolding as a template for cellular seeding, thus providing an empty template to be repopulated with β-cells. Although this bioengineering approach still has to overcome important hurdles in regards to clinical application (including the origin of insulin producing cells as well as immune-related limitations), it could theoretically provide an inexhaustible source of bio-engineered pancreases.
Collapse
Affiliation(s)
- Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Zoro
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Arianna Kahler-Quesada
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Carlo M. Bianchi
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Axel Andres
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Here we summarize recent advancements in β cell replacement as a therapy for type 1 diabetes. RECENT FINDINGS β cell replacement therapy has been proposed as a cure for type 1 diabetes with the introduction of the Edmonton protocol for cadaveric islet transplantation. To allow widespread use of this approach, efforts have focused on establishing an abundant source of insulin-producing β cells, protecting transplanted cells from ischemia-mediated death, immune rejection, and re-occurring autoimmunity. Recent developments addressing these issues include generation of insulin-producing cells from human pluripotent stem cells, different encapsulation strategies and prevention of ischemia upon transplant. SUMMARY Despite significant advances in generating functional β cells from human pluripotent stem cells, several key challenges remain in regard to the survival of β cell grafts, protection from (auto-) immune destruction and implementation of additional safety mechanisms before a stem cell-based cell replacement therapy approach can be widely applied. Taking current findings into consideration, we outline a multilayered approach to design immune-privileged β cells from stem cells using state of the art genome editing technologies that if successfully incorporated could result in great benefit for diabetic patients and improve clinical results for cell replacement therapy.
Collapse
Affiliation(s)
- Roberto Castro-Gutierrez
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
36
|
Biological characterization of human amniotic epithelial cells in a serum-free system and their safety evaluation. Acta Pharmacol Sin 2018; 39:1305-1316. [PMID: 29565036 DOI: 10.1038/aps.2018.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/01/2018] [Indexed: 12/16/2022] Open
Abstract
Human amniotic epithelial cells (hAECs), derived from the innermost layer of the term placenta closest to the fetus, have been shown to be potential seed cells for allogeneic cell therapy. Previous studies have shown a certain therapeutic effect of hAECs. However, no appropriate isolation and culture system for hAECs has been developed for clinical applications. In the present study, we established a serum-free protocol for hAEC isolation and cultivation, in which better cell growth was observed compared with that in a traditional culture system with serum. In addition to specific expression of cell surface markers (CD29, CD166 and CD90), characterization of the biological features of hAECs revealed expression of the pluripotent markers SSEA4, OCT4 and NANOG, which was greater than that in human mesenchymal stem cells, whereas very low levels of HLA-DR and HLA-DQ were detected, suggesting the weak immunogenicity of hAECs. Intriguingly, CD90+ hAECs were identified as a unique population with a powerful immunoregulatory capacity. In a systemic safety evaluation, intravenous administration of hAEC did not result in hemolytic, allergy, toxicity issues or, more importantly, tumorigenicity. Finally, the therapeutic effect of hAECs was demonstrated in mice with radiation-induced damage. The results revealed a novel function of hAECs in systemic injury recovery. Therefore, the current study provides an applicable and safe strategy for hAEC cell therapy administration in the clinical setting.
Collapse
|
37
|
Ohta Y, Takenaga M, Hamaguchi A, Ootaki M, Takeba Y, Kobayashi T, Watanabe M, Iiri T, Matsumoto N. Isolation of Adipose-Derived Stem/Stromal Cells from Cryopreserved Fat Tissue and Transplantation into Rats with Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19071963. [PMID: 29976859 PMCID: PMC6073880 DOI: 10.3390/ijms19071963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue contains multipotent cells known as adipose-derived stem/stromal cells (ASCs), which have therapeutic potential for various diseases. Although the demand for adipose tissue for research use remains high, no adipose tissue bank exists. In this study, we attempted to isolate ASCs from cryopreserved adipose tissue with the aim of developing a banking system. ASCs were isolated from fresh and cryopreserved adipose tissue of rats and compared for proliferation (doubling time), differentiation capability (adipocytes), and cytokine (hepatocyte growth factor and vascular endothelial growth factor) secretion. Finally, ASCs (2.5 × 106) were intravenously infused into rats with spinal cord injury, after which hindlimb motor function was evaluated. Isolation and culture of ASCs from cryopreserved adipose tissue were possible, and their characteristics were not significantly different from those of fresh tissue. Transplantation of ASCs derived from cryopreserved tissue significantly promoted restoration of hindlimb movement function in injured model rats. These results indicate that cryopreservation of adipose tissue may be an option for clinical application.
Collapse
Affiliation(s)
- Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan.
| | - Akemi Hamaguchi
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan.
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| |
Collapse
|
38
|
Yang KC, Yanai G, Yang SY, Canning P, Satou Y, Kawagoe M, Sumi S. Low-adhesive ethylene vinyl alcohol-based packaging to xenogeneic islet encapsulation for type 1 diabetes treatment. Biotechnol Bioeng 2018; 115:2341-2355. [PMID: 29777589 DOI: 10.1002/bit.26730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/17/2018] [Accepted: 05/16/2018] [Indexed: 01/16/2023]
Abstract
Transplantation of encapsulated porcine islets is proposed to treat type 1 diabetes. However, the envelopment of fibrous tissue and the infiltration of immune cells impair islet function and eventually cause implant failure. It is known that hemodialysis using an ethylene vinyl alcohol (EVOH) membrane results in minor tissue responses. Therefore, we hypothesized that using a low-adhesive EVOH membrane for encapsulation may prevent host cell accumulation and fibrous capsule formation. In this study, rat islets suspended in chitosan gel were encapsulated in bags made from highly porous EVOH membranes, and their in vitro insulin secretion function as well as in vivo performance was evaluated. The results showed that the EVOH bag did not affect islet survival or glucose-stimulated insulin secretion. Whereas naked islets were dysfunctional after 7 days of culture in vitro, islets within the EVOH bag produced insulin continuously for 30 days. Streptozotocin-induced diabetic mice were given islets-chitosan gel-EVOH implants intraperitoneally (650-800 islets equivalent) and exhibited lower blood glucose levels and regained body weight during a 4-week observation period. The transplanted mice had higher levels of serum insulin and C-peptide, with an improved blood glucose disappearance rate. Retrieved implants had minor tissue adhesion, and histology showed a limited number of mononuclear cells and fibroblasts surrounding the implants. No invasion of host cells into the EVOH bags was noticed, and the encapsulated islets were intact and positive for insulin-glucagon immunostaining. In conclusion, an EVOH bag can protect encapsulated islets, limit fibrous capsule formation, and extend graft function.
Collapse
Affiliation(s)
- Kai-Chiang Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Goichi Yanai
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sin-Yu Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Priyadarshini Canning
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshio Satou
- Molding Component Business Department, Kuraray Co., Ltd, Tokyo, Japan
| | - Masako Kawagoe
- Molding Component Business Department, Kuraray Co., Ltd, Tokyo, Japan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Wang G, Spassieva SD, Bieberich E. Ceramide and S1P Signaling in Embryonic Stem Cell Differentiation. Methods Mol Biol 2018; 1697:153-171. [PMID: 28540559 PMCID: PMC5815858 DOI: 10.1007/7651_2017_43] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bioactive sphingolipids are important regulators for stem cell survival and differentiation. Most recently, we have coined the term "morphogenetic lipids" for sphingolipids that regulate stem cells during embryonic and postnatal development. The sphingolipid ceramide and its derivative, sphingosine-1-phosphate (S1P), can act synergistically as well as antagonistically on embryonic stem (ES) cell differentiation. We show here simple as well as state-of-the-art methods to analyze sphingolipids in differentiating ES cells and discuss new protocols to use ceramide and S1P analogs for the guided differentiation of mouse ES cells toward neuronal and glial lineage.
Collapse
Affiliation(s)
- Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Stefka D Spassieva
- Department of Molecular and Cellular Medicine, Texas A&M Medical Health Sciences Center, Bryan, TX, USA
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street Room CA4012, Augusta, GA, 30912, USA.
| |
Collapse
|
40
|
Potential Role of Exosomes in Mending a Broken Heart: Nanoshuttles Propelling Future Clinical Therapeutics Forward. Stem Cells Int 2017; 2017:5785436. [PMID: 29163642 PMCID: PMC5662033 DOI: 10.1155/2017/5785436] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation therapy is a promising adjunct for regenerating damaged heart tissue; however, only modest improvements in cardiac function have been observed due to poor survival of transplanted cells in the ischemic heart. Therefore, there remains an unmet need for therapies that can aid in attenuating cardiac damage. Recent studies have demonstrated that exosomes released by stem cells could serve as a potential cell-free therapeutic for cardiac repair. These exosomes/nanoshuttles, once thought to be merely a method of waste disposal, have been shown to play a crucial role in physiological functions including short- and long-distance intercellular communication. In this review, we have summarized studies demonstrating the potential role of exosomes in improving cardiac function, attenuating cardiac fibrosis, stimulating angiogenesis, and modulating miRNA expression. Furthermore, exosomes carry an important cargo of miRNAs and proteins that could play an important role as a diagnostic marker for cardiovascular disease post-myocardial infarction. Although there is promising evidence from preclinical studies that exosomes released by stem cells could serve as a potential cell-free therapeutic for myocardial repair, there are several challenges that need to be addressed before exosomes could be fully utilized as off-the-shelf therapeutics for cardiac repair.
Collapse
|
41
|
A Retrievable, Efficacious Polymeric Scaffold for Subcutaneous Transplantation of Rat Pancreatic Islets. Ann Surg 2017; 266:149-157. [PMID: 27429018 DOI: 10.1097/sla.0000000000001919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We aim on developing a polymeric ectopic scaffold in a readily accessible site under the skin. SUMMARY BACKGROUND DATA The liver as transplantation site for pancreatic islets is associated with significant loss of islets. Several extrahepatic sites were tested in experimental animals, but many have practical limitations in the clinical setting and do not have the benefit of easy accessibility. METHODS AND RESULTS Functional survival of rat islets was tested during 7 days of culture in the presence of poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. Tissue responses were studied in vivo after subcutaneous implantation in rats. Culture on PEOT/PBT and polysulfone profoundly disturbed function of islets, and induced severe tissue responses in vivo. Modification of their hydrophilicity did not change the suitability of the polymers. PDLLCL was the only polymer that promoted functional survival of rat islets in vitro and was associated with minor tissue reactions after 28 days. Rat islets were transplanted in the PDLLCL scaffold in a diabetic rat model. Before islet seeding, the scaffold was allowed to engraft for 28 days to allow the tissue response to dampen and to allow blood vessel growth into the device. Islet transplantation into the scaffold resulted in normoglycemia within 3 days and for the duration of the study period of 16 weeks. CONCLUSIONS In conclusion, we found that some polymers such as PEOT/PBT and polysulfone interfere with islet function. PDLLCL is a suitable polymer to create an artificial islet transplantation site under the skin and supports islet survival.
Collapse
|
42
|
Sharma A, Rani R. Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells. Stem Cell Res Ther 2017; 8:167. [PMID: 28701182 PMCID: PMC5508489 DOI: 10.1186/s13287-017-0615-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/16/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where pancreatic beta cells are lost before the clinical manifestations of the disease. Administration of mesenchymal stem cells (MSCs) or MSCs differentiated into insulin-producing cells (IPCs) have yielded limited success when used therapeutically. We have evaluated the immunoprophylactic potentials of precursors to insulin-producing cells (pIPCs) and IPCs in nonobese diabetic (NOD) mice to ask a basic question: do we need to differentiate MSCs into IPCs or will pIPCs suffice to attenuate autoimmune responses in T1D? METHODS Bone marrow-derived MSCs from Balb/c mice were characterized following the International Society for Cellular Therapy (ISCT) guidelines. MSCs cultured in high-glucose media for 11 to 13 passages were characterized for the expression of pancreatic lineage genes using real-time polymerase chain reaction. Expression of the PDX1 gene in pIPCs was assessed using Western blot and fluorescence-activated cell sorting (FACS). Triple-positive MSCs were differentiated into IPCs using a three-step protocol after sorting them for cell surface markers, i.e. CD29, CD44, and SCA-1. Nonobese diabetic mice were administered pIPCs, IPCs, or phosphate-buffered saline (PBS) into the tail vein at weeks 9 or 10 and followed-up for 29-30 weeks for fasting blood glucose levels. Two consecutive blood sugar levels of more than 250 mg/dl were considered diabetic. RESULTS MSCs grown in high-glucose media for 11 to 13 passages expressed genes of the pancreatic lineage such as PDX1, beta2, neurogenin, PAX4, Insulin, and glucagon. Furthermore, Western blot and FACS analysis for PDX-1, a transcription factor necessary for beta cell maturation, confirmed that these cells were precursors of insulin-producing cells (pIPCs). NOD mice administered with pIPCs were better protected from developing diabetes with a protective efficacy of 78.4% (p < 0.009); however, administration of IPCs gave protective efficacy of 55% at the end of 28-30 weeks. CONCLUSIONS Precursors to insulin-producing cells seem to have better potential to arrest autoimmune response in type 1 diabetes when administered before the onset of the disease in NOD mice. When translated to humans, autologous mesenchymal stem cells grown in high-glucose media for 10 to 13 passages may have beneficial effects in individuals at high risk of developing type 1 diabetes.
Collapse
Affiliation(s)
- Anshu Sharma
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, 110067, India
| | - Rajni Rani
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, 110067, India. .,Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.
| |
Collapse
|
43
|
Ohta Y, Hamaguchi A, Ootaki M, Watanabe M, Takeba Y, Iiri T, Matsumoto N, Takenaga M. Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy 2017; 19:839-848. [DOI: 10.1016/j.jcyt.2017.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/05/2023]
|
44
|
Jeong HC, Cho SJ, Lee MO, Cha HJ. Technical approaches to induce selective cell death of pluripotent stem cells. Cell Mol Life Sci 2017; 74:2601-2611. [PMID: 28246701 PMCID: PMC11107638 DOI: 10.1007/s00018-017-2486-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 01/24/2023]
Abstract
Despite the recent promising results of clinical trials using human pluripotent stem cell (hPSC)-based cell therapies for age-related macular degeneration (AMD), the risk of teratoma formation resulting from residual undifferentiated hPSCs remains a serious and critical hurdle for broader clinical implementation. To mitigate the tumorigenic risk of hPSC-based cell therapy, a variety of approaches have been examined to ablate the undifferentiated hPSCs based on the unique molecular properties of hPSCs. In the present review, we offer a brief overview of recent attempts at selective elimination of undifferentiated hPSCs to decrease the risk of teratoma formation in hPSC-based cell therapy.
Collapse
Affiliation(s)
- Ho-Chang Jeong
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea
| | - Seung-Ju Cho
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,, 305-806, Republic of Korea
| | - Hyuk-Jin Cha
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea.
| |
Collapse
|
45
|
Kang SJ, Park YI, Hwang SR, Yi H, Tham N, Ku HO, Song JY, Kang HG. Hepatic population derived from human pluripotent stem cells is effectively increased by selective removal of undifferentiated stem cells using YM155. Stem Cell Res Ther 2017; 8:78. [PMID: 28412976 PMCID: PMC5392904 DOI: 10.1186/s13287-017-0517-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/29/2023] Open
Abstract
Background Pluripotent stem cells (PSCs) such as embryonic stem cells and induced pluripotent stem cells are promising target cells for cell regenerative medicine together with recently advanced technology of in-vitro differentiation. However, residual undifferentiated stem cells (USCs) during in-vitro differentiation are considered a potential risk for development of cancer cells and nonspecific lineage cell types. In this study we observed that USCs still exist during hepatic differentiation, consequently resulting in poor quality of the hepatic population and forming teratoma in vivo. Therefore, we hypothesized that effectively removing USCs from in-vitro differentiation could improve the quality of the hepatic population and guarantee safety from risk of teratoma formation. Methods Human PSCs were differentiated to hepatocytes via four steps. YM155, a known BIRC5 inhibitor, was applied for removing the residual USCs on the hepatic differentiation. After YM155 treatment, hepatocyte development was evaluated by measuring gene expression, immunostaining and hepatic functions at each stage of differentiation, and forming teratomas were confirmed by cell transplantation with or without YM155. Results The selected concentrations of YM155 removed USCs (NANOG+ and OCT4+) in a dose-dependent manner. As a result, expression of endodermal markers (SOX17, FOXA2 and CXCR4) at stage II of differentiation and hepatic markers (ALB, AFP and HNF4A) at stage III was up-regulated by YM155 treatment as well as the hepatic population (ALB+), and functions (ALB/urea secretion and CYP450 enzyme activity) were enhanced at the final stage of differentiation (stage IV). Furthermore, we demonstrated that NANOG and OCT4 expression remaining until stage III (day 15 of differentiation) completely disappeared when treated with YM155 and teratoma formation was effectively prevented by YM155 pretreatment in the in-vitro study. Conclusions We suggest that the removal of USCs using YM155 could improve the quantity and quality of induced hepatocytes and eliminate the potential risk of teratoma formation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0517-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Vet Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Young-Il Park
- Vet Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - So-Ryeon Hwang
- Vet Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Hee Yi
- Vet Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Nga Tham
- Vet Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Hyun-Ok Ku
- Vet Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jae-Young Song
- Vet Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Hwan-Goo Kang
- Vet Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea.
| |
Collapse
|
46
|
Kang L, Yao C, Khodadadi-Jamayran A, Xu W, Zhang R, Banerjee NS, Chang CW, Chow LT, Townes T, Hu K. The Universal 3D3 Antibody of Human PODXL Is Pluripotent Cytotoxic, and Identifies a Residual Population After Extended Differentiation of Pluripotent Stem Cells. Stem Cells Dev 2016; 25:556-68. [PMID: 26886504 DOI: 10.1089/scd.2015.0321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Podocalyxin-like protein (PODXL) is a member of CD34 family proteins. It is the protein that carries many post-translational epitopes responsible for various pluripotent surface markers including TRA-1-60, TRA-1-81, GCTM2, GP200, and mAb84. However, PODXL has not attracted the attention of stem cell biologists. Here, we report several features of PODXL mRNA and protein in pluripotent stem cells. Similar to the modification-dependent pluripotent epitopes, PODXL transcripts and carrier protein are also features of pluripotency. PODXL is highly expressed in early human embryos from oocytes up to four-cell stages. During reprogramming of human cells to pluripotency, in contrast to TRA-1-60 and TRA-1-81, PODXL is activated by KLF4 at a very early time of reprogramming. Although TRA-1-60 and TRA-1-81 are completely lost upon differentiation, a residual PODXL(+) population exists even after extended differentiation and they were identified by the universal human PODXL epitope 3D3. Unlike TRA-1-60 and TRA-1-81 epitopes that are unique to primate pluripotent stem cells (PSCs), PODXL carrier protein can be used as a murine surface marker. Most importantly, antibody to 3D3 epitope causes massive necrosis and apoptosis of human PSCs (hPSCs). We suggest that 3D3 antibody could be employed to eliminate the tumorigenic pluripotent cells in hPSC-derived cells for cell transplantation.
Collapse
Affiliation(s)
- Lei Kang
- 1 Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chunping Yao
- 1 Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,3 Department of Radiation Oncology, Shandong Cancer Hospital & Institute , Jinan, China
| | - Alireza Khodadadi-Jamayran
- 1 Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Weihua Xu
- 1 Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,4 Longyan University , Fujian, China
| | - Ruowen Zhang
- 1 Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Nilam Sanjib Banerjee
- 2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chia-Wei Chang
- 1 Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Louise T Chow
- 2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Tim Townes
- 1 Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kejin Hu
- 1 Stem Cell Institute, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
47
|
Cho SJ, Kim SY, Park SJ, Song N, Kwon HY, Kang NY, Moon SH, Chang YT, Cha HJ. Photodynamic Approach for Teratoma-Free Pluripotent Stem Cell Therapy Using CDy1 and Visible Light. ACS CENTRAL SCIENCE 2016; 2:604-607. [PMID: 27725957 PMCID: PMC5043430 DOI: 10.1021/acscentsci.6b00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 05/03/2023]
Abstract
Pluripotent stem cells (PSC) are promising resources for regeneration therapy, but teratoma formation is one of the critical problems for safe clinical application. After differentiation, the precise detection and subsequent elimination of undifferentiated PSC is essential for teratoma-free stem cell therapy, but a practical procedure is yet to be developed. CDy1, a PSC specific fluorescent probe, was investigated for the generation of reactive oxygen species (ROS) and demonstrated to induce selective death of PSC upon visible light irradiation. Importantly, the CDy1 and/or light irradiation did not negatively affect differentiated endothelial cells. The photodynamic treatment of PSC with CDy1 and visible light irradiation confirmed the inhibition of teratoma formation in mice, and suggests a promising new approach to safe PSC-based cell therapy.
Collapse
Affiliation(s)
- Seung-Ju Cho
- Department
of Life Sciences, Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
- Research
Institute for Basic Sciences, Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - So-Yeon Kim
- Department
of Life Sciences, Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Soon-Jung Park
- Department
of Medicine, School of Medicine, Konkuk
University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Naree Song
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haw-Young Kwon
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Nam-Young Kang
- Singapore
Bioimaging Consortium (SBIC) Agency for Science, Technology and Research
(A-STAR) 11 Biopolis
Way, #02-02 Helios, 138667, Singapore
| | - Sung-Hwan Moon
- Department
of Medicine, School of Medicine, Konkuk
University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young-Tae Chang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Singapore
Bioimaging Consortium (SBIC) Agency for Science, Technology and Research
(A-STAR) 11 Biopolis
Way, #02-02 Helios, 138667, Singapore
- E-mail:
| | - Hyuk-Jin Cha
- Department
of Life Sciences, Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
- E-mail:
| |
Collapse
|
48
|
Bukys MA, Bakos B, Afelik S, Zimmerman B, Barbaro B, Lin DL, Vaca P, Goldman T, Rotem A, Damaser M, Oberholzer J, Barkai U, Jensen J. Xeno-Transplantation of macro-encapsulated islets and Pluripotent Stem Cell-Derived Pancreatic Progenitors without Immunosuppression. ACTA ACUST UNITED AC 2016; 2. [PMID: 31660541 DOI: 10.19104/jorm.2017.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Islet transplantation effectively treats diabetes but relies on immune suppression and is practically limited by the number of cadaveric islets available. An alternative cellular source is insulin-producing cells derived from pluripotent cell sources. Three animal cohorts were used in the current study to evaluate whether an oxygen-providing macro-encapsulation device, 'βAIR', could function in conjunction with human embryonic stem cells (hESCs) and their derivatives. The first cohort received macro-encapsulated undifferentiated hESCs, a second cohort received hESCs differentiated to a pancreatic progenitor state with limited endocrine differentiation. A reference cohort received human islets. Macro-encapsulation devices were implanted subcutaneously and monitored for up to 4 months. Undifferentiated pluripotent stem cells did not form teratoma but underwent cell death following implantation. Human C-peptide (hC- peptide) was detectable in host serum one week after implantation for both other cohorts. hC-peptide levels decreasing over time but remained detectable up to the end of the study. Key factors associated with mature endocrine cells were observed in grafts recovered from cohorts containing islets and hESC-derivatives including C-peptide, insulin, glucagon and urocortin 3. We conclude that the 'βAIR' macroencapsulation device is compatible with both human islets and pluripotent derivatives, but has a limited capability of sustaining undifferentiated pluripotent cells.
Collapse
Affiliation(s)
- Michael A Bukys
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation
| | - Brandon Bakos
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation
| | - Solomon Afelik
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation
| | | | - Barbara Barbaro
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago
| | - Dan Li Lin
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Pilar Vaca
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago
| | | | - Avi Rotem
- Beta-O2 Technologies, Rosh-HaAyin, Israel
| | - Margot Damaser
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| | - Jose Oberholzer
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago
| | | | - Jan Jensen
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation
| |
Collapse
|
49
|
Wu N, Wang Y, Yang L, Cho KS. Signaling Networks of Retinal Ganglion Cell Formation and the Potential Application of Stem Cell–Based Therapy in Retinal Degenerative Diseases. Hum Gene Ther 2016; 27:609-20. [PMID: 27466076 DOI: 10.1089/hum.2016.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Nan Wu
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Yi Wang
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Lanbo Yang
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| | - Kin-Sang Cho
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
50
|
Gao M, Yao H, Dong Q, Zhang H, Yang Z, Yang Y, Zhu J, Xu M, Xu R. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain. Sci Rep 2016; 6:29955. [PMID: 27417157 PMCID: PMC4945932 DOI: 10.1038/srep29955] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/24/2016] [Indexed: 01/08/2023] Open
Abstract
Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Hui Yao
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Hongtian Zhang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Zhijun Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Yang Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Jianwei Zhu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Ruxiang Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| |
Collapse
|