1
|
Zhang Y, Liu R, Li M, Guo Y, Kong J, Hou K. A dopant-assisted iodide-adduct chemical ionization time-of-flight mass spectrometer based on VUV lamp photoionization for atmospheric low-molecular-weight organic acids analysis. J Environ Sci (China) 2025; 149:500-511. [PMID: 39181662 DOI: 10.1016/j.jes.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 08/27/2024]
Abstract
Formic and acetic acids are the most abundant gaseous organic acids and play the key role in the atmospheric chemistry. In iodine-adduct chemical ionization mass spectrometry (CIMS), the low utilization efficiency of methyl iodide and humidity interference are two major issues of the vacuum ultraviolet (VUV) lamp initiated CIMS for on-line gaseous formic and acetic acids analysis. In this work, we present a new CIMS based on VUV lamp, and the ion-molecular reactor is separated into photoionization and chemical ionization zones by a reducer electrode. Acetone was added to the photoionization zone, and the VUV photoionization acetone provided low-energy electrons for methyl iodide to generate I-, and the addition of acetone reduced the amount of methyl iodide by 2/3. In the chemical ionization zone, a headspace vial containing ultrapure water was added for humidity calibration, and the vial changes the sensitivity as a function of humidity from ambiguity to well linear correlation (R2 > 0.95). With humidity calibration, the CIMS can quantitatively measure formic and acetic acids in the humidity range of 0%-88% RH. In this mode, limits of detection of 10 and 50 pptv are obtained for formic and acetic acids, respectively. And the relative standard deviation (RSD) of quantitation stability for 6 days were less than 10.5%. This CIMS was successfully used to determine the formic and acetic acids in the underground parking and ambient environment of the Shandong University campus (Qingdao, China). In addition, we developed a simple model based formic acid concentration to assess vehicular emissions.
Collapse
Affiliation(s)
- Yonglei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ruidong Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Yingzhe Guo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jichuang Kong
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Keyong Hou
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Joshi S, Rastogi N, Singh A. Insights into the formation of secondary organic aerosols from agricultural residue burning emissions: A review of chamber-based studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175932. [PMID: 39218091 DOI: 10.1016/j.scitotenv.2024.175932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Organic aerosols (OA) are a significant component of fine particulate matter in the ambient air and are formed through primary and secondary processes. Primary organic aerosols (POA) are directly released from sources, while secondary organic aerosols (SOA) are formed through the oligomerization and/or oxidation of volatile organic compounds (VOCs) in the atmosphere. Recently, there has an increasing attention on the SOA budgets, their formation pathways, and photochemical evolution due to their impacts on climate and human health. Biomass burning (BB) is a significant source of OA, contributing around 5-30 % to the SOA burden globally. Agricultural residue burning (ARB) is a type of BB that contributes ∼10 % of total atmospheric OA mass worldwide, whereas it contributes higher in Asian regions like China and India. ARB emits a significant amount of air pollutants, including VOCs, into the atmosphere. However, there is inadequate information on the transformation of ARB emissions to SOA due to limited laboratory studies. The present review focuses on the formation mechanism of SOA from ARB emissions, summarizing the current state of the art about ARB precursors and their oxidation products from chamber-based studies, including measurement methods and analytical instrumentation. The review also discusses the role of different types of oxidants in OA mass enhancement, factors affecting the overall SOA yield, and the uncertainties involved in the process.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380 009, India.
| | - Atinderpal Singh
- Department of Environmental Studies, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
3
|
Li Y, Ma X, Lu K, Gao Y, Xu W, Yang X, Zhang Y. Investigation of the Cyclohexene Oxidation Mechanism Through the Direct Measurement of Organic Peroxy Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39445870 DOI: 10.1021/acs.est.4c06744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Monoterpenes, the second most abundant biogenic volatile organic compounds globally, are crucial in forming secondary organic aerosols, making their oxidation mechanisms vital for addressing climate change and air pollution. This study utilized cyclohexene as a surrogate to explore first-generation products from its ozonolysis through laboratory experiments and mechanistic modeling. We employed proton transfer reaction mass spectrometry with NH4+ ion sources (NH4+-CIMS) and a custom-built OH calibration source to quantify organic peroxy radicals (RO2) and closed-shell species. Under near-real atmospheric conditions in a Potential Aerosol Mass-Oxidation Flow Reactor, we identified 30 ozonolysis products, expanding previous data sets of low-oxygen compounds. Combined with simulations based on the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere and relevant literature, our results revealed that OH dominates over ozone in cyclohexene oxidation at typical atmospheric oxidant levels with H-abstraction contributing 30% of initial RO2 radicals. Highly oxidized molecules primarily arise from RO2 autoxidation initiated by ozone, and at least 15% of ozone oxidation products follow the overlooked nonvinyl hydroperoxides pathway. Gaps remain especially in understanding RO2 cross-reactions, and the structural complexity of monoterpenes further complicates research. As emissions decrease and afforestation increases, understanding these mechanisms becomes increasingly critical.
Collapse
Affiliation(s)
- Yang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yue Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weiguang Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
He S, Liu Y, Song M, Li X, Lou S, Ye C, Liu Y, Liu Y, Ye J, Lu S, Zhou W, Qiu X, Zhu T, Zeng L. Empirical Approach to Quantifying Sensitivity in Different Chemical Ionization Techniques for Organonitrates and Nitroaromatics Constrained by Ion-Molecule Reaction and Transmission Efficiency. Anal Chem 2024; 96:16882-16890. [PMID: 39388173 DOI: 10.1021/acs.analchem.4c03751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Accurate identification and quantification of nitro-containing species are of great significance to understanding their chemical behaviors in the atmosphere. By optimizing the operational conditions of the H3O+ and NO+ ionization modes in a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) and evaluating the performance of an iodide chemical ionization mass spectrometer (I- CIMS), this study leveraged the individual advantages of each ionization mode to effectively detect a diverse array of nitroaromatics and organonitrates (ONs). The H3O+ ionization mode largely fulfilled the criteria for real-time monitoring of gas-phase alkyl-, aryl-, and hydroxy-nitrates, and nitrophenols, albeit its reduced sensitivity toward ONs due to extensive fragmentation. In contrast, the NO+ mode demonstrated enhanced sensitivity for ONs with less fragmentation than the H3O+ mode. The I- CIMS featured distinguished sensitivity toward oxidized compounds containing polar functional groups, particularly increasing with the incorporation of hydroxyl, carboxyl, or nitrate groups. Further, we developed a calibration-based semiquantitative framework to enhance the accuracy of sensitivity estimation, constrained by ion-molecule reaction, transmission efficiency, along with possible decomposition of ion-clusters, with uncertainties ranging from 21% to 41% for H3O+ and 21-43% for NO+. Given considerable discrepancies (up to 1 order of magnitude) between measured and predicted sensitivity in I- CIMS using previously reported log-linear fitting, a declustering voltage (dV50)-based categorization approach was introduced, leading to a 5-fold improvement in measurement accuracy and an overall uncertainty of I- CIMS in quantifying nitro-containing species varying from 27% to 60%.
Collapse
Affiliation(s)
- Shuyu He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengdi Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chenshuo Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yingjun Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiarong Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenxin Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xinghua Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Lewandowski M, Riedel TP, Krug JD, Kleindienst TE, Meier MJ, Long AS, Warren SH, DeMarini DM. Molecular Compositions, Mutagenicity, and Mutation Spectra of Atmospheric Oxidation Products of Alkenes and Dienes Initiated by NOx + UV or Ozone: A Structure-Activity Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18846-18855. [PMID: 39374177 DOI: 10.1021/acs.est.4c04603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Photooxidation products resulting from volatile organic compounds (VOCs) reacting with sunlight are important contributors to gas-phase air pollution. We characterized the product-weighted mutagenic potencies (rev m3 mgC-1 h-1) in Salmonella TA100 of atmospheres resulting from the hydroxyl radical (OH)-initiated photochemical oxidation of 11 C4 or C5 alkenes or dienes in the presence of nitric oxide (NO) and from the ozonolysis of four VOCs without NO (isoprene; 1,3-pentadiene; 1,4-pentadiene; and 1,3-butadiene). Irradiated atmospheres from precursors with a single C═C bond (3-methyl-1-butene, 2-methyl-1-butene, cis/trans-2-pentene, 2-methyl-2-butene, 1-butene, and 1-pentene) had low potencies (<5), whereas linear dienes with terminal C═C bonds had high potencies (50-65). Dienes with a branched structure (isoprene) or internal C═C bonds (1,3-pentadiene) had intermediate potencies (15-20). No VOCs were mutagenic without photochemical oxidation. VOCs+O3 in the dark produced less mutagenic atmospheres than photochemistry in the presence of NO. Atmospheres induced primarily C to T and C to A mutations, the main base substitutions in nonsmoker lung cancer. Atmospheres from the photooxidation of isoprene and 1,3-pentadiene also induced GG to TT, the signature mutation of peroxyacetyl nitrate. Five molecular compositions identified by Chemical Ionization Mass Spectrometry (CIMS), most containing nitrogen, correlated (r = 0.76-0.85) with the mutagenic potencies of irradiated atmospheres; most had a likely nitrate functional group. Assessment of the mutagenicity of emitted VOCs should consider VOC photooxidation products, especially dienes with terminal C═C bonds, as these products likely contribute to overall health effects from ambient air pollution.
Collapse
Affiliation(s)
- Michael Lewandowski
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Theran P Riedel
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jonathan D Krug
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Tadeusz E Kleindienst
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Sarah H Warren
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David M DeMarini
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
6
|
Jensen AB, Elm J. Massive Assessment of the Geometries of Atmospheric Molecular Clusters. J Chem Theory Comput 2024; 20:8549-8558. [PMID: 39331672 DOI: 10.1021/acs.jctc.4c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Atmospheric molecular clusters are important for the formation of new aerosol particles in the air. However, current experimental techniques are not able to yield direct insight into the cluster geometries. This implies that to date there is limited information about how accurately the applied computational methods depict the cluster structures. Here we massively benchmark the molecular geometries of atmospheric molecular clusters. We initially assessed how well different DF-MP2 approaches reproduce the geometries of 45 dimer clusters obtained at a high DF-CCSD(T)-F12b/cc-pVDZ-F12 level of theory. Based on the results, we find that the DF-MP2/aug-cc-pVQZ level of theory best resembles the DF-CCSD(T)-F12b/cc-pVDZ-F12 reference level. We subsequently optimized 1283 acid-base cluster structures (up to tetramers) at the DF-MP2/aug-cc-pVQZ level of theory and assessed how more approximate methods reproduce the geometries. Out of the tested semiempirical methods, we find that the newly parametrized atmospheric molecular cluster extended tight binding method (AMC-xTB) is most reliable for locating the correct lowest energy configuration and yields the lowest root mean square deviation (RMSD) compared to the reference level. In addition, we find that the DFT-3c methods show similar performance as the usually employed ωB97X-D/6-31++G(d,p) level of theory at a potentially reduced computational cost. This suggests that these methods could prove to be valuable for large-scale screening of cluster structures in the future.
Collapse
Affiliation(s)
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Webb M, Morrison G, Baumann K, Li J, Ditto JC, Huynh HN, Yu J, Mayer K, Mael L, Vance ME, Farmer DK, Abbatt J, Poppendieck D, Turpin BJ. Dynamics of residential indoor gas- and particle-phase water-soluble organic carbon: measurements during the CASA experiment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39373709 DOI: 10.1039/d4em00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Previous time-integrated (2 h to 4 h) measurements show that total gas-phase water-soluble organic carbon (WSOCg) is 10 to 20 times higher inside homes compared to outside. However, concentration dynamics of WSOCg and total particle phase WSOC (WSOCp)-are not well understood. During the Chemical Assessment of Surfaces and Air (CASA) experiment, we measured concentration dynamics of WSOCg and WSOCp inside a residential test facility in the house background and during scripted activities. A total organic carbon (TOC) analyzer pulled alternately from a particle-into-liquid sampler (PILS) or a mist chamber (MC). WSOCg concentrations (215 ± 29 μg-C m-3) were generally 36× higher than WSOCp (6 ± 3 μg-C m-3) and 20× higher than outdoor levels. A building-specific emission factor (Ef) of 31 mg-C h-1 maintained the relatively high house WSOCg background, which was dominated by ethanol (46 μg-C m-3 to 82 μg-C m-3). When we opened the windows, WSOCg decayed slower (2.8 h-1) than the air change rate (21.2 h-1) and Ef increased (243 mg-C h-1). The response (increased Ef) suggests WSOCg concentrations are regulated by large near surface reservoirs rather than diffusion through surface materials. Cooking and ozone addition had a small impact on WSOC, whereas surface cleaning, volatile organic compound (VOC) additions, or wood smoke injections had significant impacts on WSOC concentrations. WSOCg concentration decay rates from these activities (0.4 h-1 to 4.0 h-1) were greater than the normal operating 0.24 h-1 air change rate, which is consistent with an important role for surface removal.
Collapse
Affiliation(s)
- Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jenna C Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Han N Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Liora Mael
- Department of Mechanical Engineering, Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Marina E Vance
- Department of Mechanical Engineering, Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jonathan Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | | | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Zhang W, Xu L, Zhang H. Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecular-level. MASS SPECTROMETRY REVIEWS 2024; 43:1091-1134. [PMID: 37439762 DOI: 10.1002/mas.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Lu Xu
- NOAA Chemical Sciences Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
9
|
Wang L, Wang Y, Yang G, Li Y, Liu Y, Lu Y, Yao L, Wang L. Measurements of Atmospheric HO 2 Radicals Using Br-CIMS with Elimination of Potential Interferences from Ambient Peroxynitric Acid. Anal Chem 2024. [PMID: 39151028 DOI: 10.1021/acs.analchem.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
As a promising direct measurement method of atmospheric hydroperoxyl radicals (HO2), bromide chemical ionization mass spectrometry (Br-CIMS) has been first demonstrated by Sanchez et al. (Atmos. Meas. Tech. 2016, 9, 3851-3861). However, field application of this method is currently still sparse, and there is still a gap between measured HO2 concentrations and calculated ones derived from the atmospheric equilibrium between HO2 and peroxynitric acid (HO2NO2). In this work, we constructed an improved Br-CIMS with optimizations of custom-built front-end devices, chamber pressures, and instrumental voltages to achieve a 3σ detection limit of 0.5 ppt at an integration time of 60 s and a sensitivity of 1-3 cps ppt-1 under a total reagent ion signal of 0.2 MHz for HO2 detection. HO2NO2, a product from atmospheric reactions between HO2 and NO2, can also be detected by Br-CIMS, whose interference on the HO2 measurement was found but nearly eliminated by regulating key CIMS voltages to minimize the decomposition of (BrHO2NO2)- ions in the MS. In addition, a 2 week field campaign was carried out in urban Shanghai, demonstrating that the interference of HO2 from ambient HO2NO2 was less than 10% of the true HO2 signal under our optimized CIMS voltage setting. Our study suggests that Br-CIMS is a reliable technique for atmospheric HO2 measurements.
Collapse
Affiliation(s)
- Lihong Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
| | - Yuwei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
| | - Gan Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
| | - Yueyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
| | - Yiliang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
| | - Yiqun Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
| | - Lei Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China
- Collaborative Innovation Center of Climate Change, Nanjing 210023, China
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Mattila JM, Offenberg JH. Measuring short-chain per- and polyfluoroalkyl substances in Central New Jersey air using chemical ionization mass spectrometry. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:531-539. [PMID: 38905230 PMCID: PMC11412083 DOI: 10.1080/10962247.2024.2366491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Real-time measurements of short-chain (C < 8) per- and polyfluoroalkyl substances (PFAS) were performed in Central New Jersey air using chemical ionization mass spectrometry (CIMS). The CIMS was calibrated for C2-C6 perfluorinated carboxylic acids, and 4:2 and 6:2 fluorotelomer alcohols. Of these, only trifluoroacetic acid (TFA) was detected in ambient air above instrumental detection limits. However, instrumental sensitivities (and thus ambient mixing ratios) were estimated for other detected PFAS including C3H2F6O and C6HF11O3. TFA mixing ratios reached up to 0.7 parts-per-trillion by volume (pptv). Estimated C3H2F6O and C6HF11O3 mixing ratios reached the single pptv level. These latter two formulas are consistent with hexafluoroisopropanol (HFIP) and hexafluoropropylene oxide dimer acid (HFPO-DA), respectively, though they may potentially represent multiple isomers. Diel profiles of detected PFAS along with local meteorological data can provide information on potential local sources of these compounds. However, only limited discussion of potential sources was provided here given the sparse detection of these compounds above instrument detection limits. These results demonstrate the potential of online CIMS instrumentation for measuring certain PFAS in ambient outdoor air in real time at or below the pptv level. This technique also has potential for fenceline monitoring and other near-source applications.Implications: Online chemical ionization mass spectrometry (CIMS) has potential for fast, real-time measurements of certain airborne per- and polyfluoroalkyl substances (PFAS). Three short-chain (C < 8) PFAS were detected by CIMS in Central New Jersey ambient air near or above the parts-per-trillion by volume (pptv) level. This technique also has potential for fenceline monitoring and other near-source applications for airborne PFAS.
Collapse
Affiliation(s)
- James M Mattila
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
- Office of Air Quality Planning and Standards, Office of Air and Radiation, U.S. Environmental Protection Agency, Durham, NC, USA
| | - John H Offenberg
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
11
|
Davern MJ, West GV, Eichler CMA, Turpin BJ, Zhang Y, Surratt JD. External liquid calibration method for iodide chemical ionization mass spectrometry enables quantification of gas-phase per- and polyfluoroalkyl substances (PFAS) dynamics in indoor air. Analyst 2024; 149:3405-3415. [PMID: 38712891 DOI: 10.1039/d4an00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are manufactured chemicals that have been detected across the globe. Fluorotelomer alcohols (FTOHs) are one PFAS class commonly found in indoor air due to emissions from consumer products (e.g., textiles and food packaging) and are human metabolic, atmospheric oxidative, and industrial precursors of perfluoroalkyl carboxylic acids (PFCAs). We developed a quantitative method for real-time analysis of gas-phase FTOHs, perfluoroalkyl acids (PFCAs and GenX), one perfluorooctane sulfonamide (EtFOSA), one fluorotelomer diol (FTdiOH), and one fluorinated ether (E2) using high-resolution time-of-flight chemical ionization mass spectrometry equipped with iodide reagent ion chemistry (I-HR-ToF-CIMS). Herein, we present a direct liquid injection method for external calibration, providing detection limits of 0.19-3.1 pptv for 3 s averaging and 0.02-0.44 pptv for 120 s averaging, with the exception of E2, which had detection limits of 1700 and 220 pptv for 3- and 120 s averaging, respectively. These calibrations enabled real-time gas-phase quantification of 6 : 2 FTOH in room air while microwaving popcorn, with an average peak air concentration of 31.6 ± 4.5 pptv measured 2 meters from a closed microwave. Additionally, 8 : 2 and 10 : 2 FTOH concentrations in indoor air were measured in the presence and absence of a rain jacket, with observed peak concentrations of 110 and 25 pptv, respectively. Our work demonstrates the ability of I-HR-ToF-CIMS to provide real-time air measurements of PFAS relevant to indoor human exposure settings and allow for PFAS source identification. We expect that real-time quantification of other gas-phase PFAS classes is possible, enabling advances in understanding PFAS sources, chemistry, and partitioning.
Collapse
Affiliation(s)
- Michael J Davern
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 27514.
| | - Gabrielle V West
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 27514.
| | - Clara M A Eichler
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 27599
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 27599
| | - Yue Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA 77843.
| | - Jason D Surratt
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 27514.
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA 27599
| |
Collapse
|
12
|
Wallace MAG, Smeltz MG, Mattila JM, Liberatore HK, Jackson SR, Shields EP, Xhani X, Li EY, Johansson JH. A review of sample collection and analytical methods for detecting per- and polyfluoroalkyl substances in indoor and outdoor air. CHEMOSPHERE 2024; 358:142129. [PMID: 38679180 PMCID: PMC11513671 DOI: 10.1016/j.chemosphere.2024.142129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a unique class of chemicals synthesized to aid in industrial processes, fire-fighting products, and to benefit consumer products such as clothing, cosmetics, textiles, carpets, and coatings. The widespread use of PFAS and their strong carbon-fluorine bonds has led to their ubiquitous presence throughout the world. Airborne transport of PFAS throughout the atmosphere has also contributed to environmental pollution. Due to the potential environmental and human exposure concerns of some PFAS, research has extensively focused on water, soil, and organismal detection, but the presence of PFAS in the air has become an area of growing concern. Methods to measure polar PFAS in various matrices have been established, while the investigation of polar and nonpolar PFAS in air is still in its early development. This literature review aims to present the last two decades of research characterizing PFAS in outdoor and indoor air, focusing on active and passive air sampling and analytical methods. The PFAS classes targeted and detected in air samples include fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sulfonamido ethanols (FASEs), perfluorinated carboxylic acids (PFCAs), and perfluorinated sulfonic acids (PFSAs). Although the manufacturing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) has been largely phased out, these two PFAS are still often detected in air samples. Additionally, recent estimates indicate that there are thousands of PFAS that are likely present in the air that are not currently monitored in air methods. Advances in air sampling methods are needed to fully characterize the atmospheric transport of PFAS.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Marci G Smeltz
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - James M Mattila
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Hannah K Liberatore
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Stephen R Jackson
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Erin P Shields
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Xhensila Xhani
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA; Johnston Community College, 245 College Road, Smithfield, NC, 27577, USA.
| | - Emily Y Li
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Jana H Johansson
- Department of Thematic Studies, Environmental Change, Linköping University, Linköping, Sweden.
| |
Collapse
|
13
|
Cai R, Mikkilä J, Bengs A, Koirala M, Mikkilä J, Holm S, Juuti P, Meder M, Partovi F, Shcherbinin A, Worsnop D, Ehn M, Kangasluoma J. Extending the Range of Detectable Trace Species with the Fast Polarity Switching of Chemical Ionization Orbitrap Mass Spectrometry. Anal Chem 2024; 96:8604-8612. [PMID: 38691094 PMCID: PMC11393793 DOI: 10.1021/acs.analchem.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Chemical ionization (CI) atmospheric pressure interface mass spectrometry is a unique analytical technique for its low detection limits, softness to preserve molecular information, and selectivity for particular classes of species. Here, we present a fast polarity switching approach for highly sensitive online analysis of a wide range of trace species in complex samples using selective CI chemistries and high-resolution mass spectrometry. It is achieved by successfully coupling a multischeme chemical ionization inlet (MION) and an Orbitrap Fourier transform mass spectrometer. The capability to flexibly combine ionization chemistries from both polarities effectively extends the detectability compared to using only one ionization chemistry, as commonly used positive and negative reagent ions tend to be sensitive to different classes of species. We tested the performance of the MION-Orbitrap using reactive gaseous organic species generated by α-pinene ozonolysis in an environmental chamber and a standard mixture of 71 pesticides. Diethylammonium and nitrate are used as reagent ions in positive and negative polarities. We show that with a mass resolving power of 280,000, the MION-Orbitrap can switch and measure both polarities within 1 min, which is sufficiently fast and stable to follow the temporal evolution of reactive organic species and the thermal desorption profile of pesticides. We detected 23 of the 71 pesticides in the mixture using only nitrate as the reagent ion. Facilitated by polarity switching, we also detected 47 pesticides using diethylammonium, improving the total number of detected species to 59. For reactive organic species generated by α-pinene ozonolysis, we show that combining diethylammonium and nitrate addresses the need to measure oxygenated molecules in atmospheric environments with a wide range of oxidation states. These results indicate that the polarity switching MION-Orbitrap can promisingly serve as a versatile tool for the nontargeted chemical analysis of trace species in various applications.
Collapse
Affiliation(s)
- Runlong Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Joona Mikkilä
- Karsa Ltd., A. I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Anna Bengs
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Mrisha Koirala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Jyri Mikkilä
- Karsa Ltd., A. I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Sebastian Holm
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Paxton Juuti
- Karsa Ltd., A. I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Melissa Meder
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Fariba Partovi
- Karsa Ltd., A. I. Virtasen aukio 1, 00560 Helsinki, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | | | - Douglas Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerodyne Research, Inc., 45 Manning Road, Billerica, Massachusetts 01821, United States
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Karsa Ltd., A. I. Virtasen aukio 1, 00560 Helsinki, Finland
| |
Collapse
|
14
|
Gramlich Y, Siegel K, Haslett SL, Cremer RS, Lunder C, Kommula SM, Buchholz A, Yttri KE, Chen G, Krejci R, Zieger P, Virtanen A, Riipinen I, Mohr C. Impact of Biomass Burning on Arctic Aerosol Composition. ACS EARTH & SPACE CHEMISTRY 2024; 8:920-936. [PMID: 38774360 PMCID: PMC11103700 DOI: 10.1021/acsearthspacechem.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/24/2024]
Abstract
Emissions from biomass burning (BB) occurring at midlatitudes can reach the Arctic, where they influence the remote aerosol population. By using measurements of levoglucosan and black carbon, we identify seven BB events reaching Svalbard in 2020. We find that most of the BB events are significantly different to the rest of the year (nonevents) for most of the chemical and physical properties. Aerosol mass and number concentrations are enhanced by up to 1 order of magnitude during the BB events. During BB events, the submicrometer aerosol bulk composition changes from an organic- and sulfate-dominated regime to a clearly organic-dominated regime. This results in a significantly lower hygroscopicity parameter κ for BB aerosol (0.4 ± 0.2) compared to nonevents (0.5 ± 0.2), calculated from the nonrefractory aerosol composition. The organic fraction in the BB aerosol showed no significant difference for the O:C ratios (0.9 ± 0.3) compared to the year (0.9 ± 0.6). Accumulation mode particles were present during all BB events, while in the summer an additional Aitken mode was observed, indicating a mixture of the advected air mass with locally produced particles. BB tracers (vanillic, homovanillic, and hydroxybenzoic acid, nitrophenol, methylnitrophenol, and nitrocatechol) were significantly higher when air mass back trajectories passed over active fire regions in Eastern Europe, indicating agricultural and wildfires as sources. Our results suggest that the impact of BB on the Arctic aerosol depends on the season in which they occur, and agricultural and wildfires from Eastern Europe have the potential to disturb the background conditions the most.
Collapse
Affiliation(s)
- Yvette Gramlich
- Department
of Environmental Science, Stockholm University, Stockholm 11418, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 11418 Sweden
| | - Karolina Siegel
- Department
of Environmental Science, Stockholm University, Stockholm 11418, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 11418 Sweden
- Department
of Meteorology, Stockholm University, Stockholm 11418, Sweden
| | - Sophie L. Haslett
- Department
of Environmental Science, Stockholm University, Stockholm 11418, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 11418 Sweden
| | - Roxana S. Cremer
- Department
of Environmental Science, Stockholm University, Stockholm 11418, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 11418 Sweden
| | | | - Snehitha M. Kommula
- Department
of Technical Physics, University of Eastern
Finland, Kuopio 70210, Finland
| | - Angela Buchholz
- Department
of Technical Physics, University of Eastern
Finland, Kuopio 70210, Finland
| | | | - Gang Chen
- MRC
Centre
for Environment and Health, Environmental Research Group, Imperial College London, London W12 0BZ, United Kingdom
| | - Radovan Krejci
- Department
of Environmental Science, Stockholm University, Stockholm 11418, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 11418 Sweden
| | - Paul Zieger
- Department
of Environmental Science, Stockholm University, Stockholm 11418, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 11418 Sweden
| | - Annele Virtanen
- Department
of Technical Physics, University of Eastern
Finland, Kuopio 70210, Finland
| | - Ilona Riipinen
- Department
of Environmental Science, Stockholm University, Stockholm 11418, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 11418 Sweden
| | - Claudia Mohr
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, Villigen PSI 5232, Switzerland
- Department
of Environmental System Science, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
15
|
Abue P, Bhattacharyya N, Tang M, Jahn LG, Blomdahl D, Allen DT, Corsi RL, Novoselac A, Mistzal PK, Hildebrandt Ruiz L. Emissions from Hydrogen Peroxide Disinfection and Their Interaction with Mask Surfaces. ACS ENGINEERING AU 2024; 4:204-212. [PMID: 38646518 PMCID: PMC11027093 DOI: 10.1021/acsengineeringau.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 04/23/2024]
Abstract
A rise in the disinfection of spaces occurred as a result of the COVID-19 pandemic as well as an increase in people wearing facial coverings. Hydrogen peroxide was among the recommended disinfectants for use against the virus. Previous studies have investigated the emissions of hydrogen peroxide associated with the disinfection of spaces and masks; however, those studies did not focus on the emitted byproducts from these processes. Here, we simulate the disinfection of an indoor space with H2O2 while a person wearing a face mask is present in the space by using an environmental chamber with a thermal manikin wearing a face mask over its breathing zone. We injected hydrogen peroxide to disinfect the space and utilized a chemical ionization mass spectrometer (CIMS) to measure the primary disinfectant (H2O2) and a Vocus proton transfer reaction time-of-flight mass spectrometer (Vocus PTR-ToF-MS) to measure the byproducts from disinfection, comparing concentrations inside the chamber and behind the mask. Concentrations of the primary disinfectant and the byproducts inside the chamber and behind the mask remained elevated above background levels for 2-4 h after disinfection, indicating the possibility of extended exposure, especially when continuing to wear the mask. Overall, our results point toward the time-dependent impact of masks on concentrations of disinfectants and their byproducts and a need for regular mask change following exposure to high concentrations of chemical compounds.
Collapse
Affiliation(s)
- Pearl Abue
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Nirvan Bhattacharyya
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Mengjia Tang
- Department
of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G. Jahn
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel Blomdahl
- Department
of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - David T. Allen
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard L. Corsi
- College
of Engineering, University of California,
Davis, Davis, California 95616, United States
| | - Atila Novoselac
- Department
of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pawel K. Mistzal
- Department
of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Liu G, Ma X, Li W, Chen J, Ji Y, An T. Pollution characteristics, source appointment and environmental effect of oxygenated volatile organic compounds in Guangdong-Hong Kong-Macao Greater Bay Area: Implication for air quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170836. [PMID: 38346658 DOI: 10.1016/j.scitotenv.2024.170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Same as other bay areas, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is also suffering atmospheric composite pollution. Even a series of atmospheric environment management policies have been conducted to win the "blue sky defense battle", the atmospheric secondary pollutants (e.g., O3) originated from oxygenated volatile organic compounds (OVOCs) still threaten the air quality in GBA. However, there lacks a systematic summary on the emission, formation, pollution and environmental effects of OVOCs in this region for further air quality management. This review focused on the researches related to OVOCs in GBA, including their pollution characteristics, detection methods, source distributions, secondary formations, and impacts on the atmosphere. Pollution profile of OVOCs in GBA revealed that the concentration percentage among total VOCs from Guangzhou and Dongguan cities exceeded 50 %, while methanol, formaldehyde, acetone, and acetaldehyde were the top four highest concentrated OVOCs. The detection technique on regional atmospheric OVOCs (e.g., oxygenated organic molecules (OOMs)) underwent an evolution of off-line derivatization method, on-line spectroscopic method and on-line mass spectrometry method. The OVOCs in GBA were mainly from primary emissions (up to 80 %), including vehicle emissions and biomass combustion. The anthropogenic alkenes and aromatics in urban area, and natural isoprene in rural area also made a significant contribution to the secondary emission (e.g., photochemical formation) of OVOCs. About 20 % in average of ROx radicals was produced from photolysis of formaldehyde in comparison with O3, nitrous acid and rest OVOCs, while the reaction between OVOCs and free radical accelerated the NOx-O3 cycle, contributing to 15 %-60 % cumulative formation of O3 in GBA. Besides, the heterogeneous reactions of dicarbonyls generated 21 %-53 % of SOA. This review also provided suggestions for future research on OVOCs in terms of regional observation, analytical method and mechanistic study to support the development of a control and management strategy on OVOCs in GBA and China.
Collapse
Affiliation(s)
- Guanyong Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
Zhang Y, Xu W, Zhou W, Li Y, Zhang Z, Du A, Qiao H, Kuang Y, Liu L, Zhang Z, He X, Cheng X, Pan X, Fu Q, Wang Z, Ye P, Worsnop DR, Sun Y. Characterization of organic vapors by a Vocus proton-transfer-reaction mass spectrometry at a mountain site in southeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170633. [PMID: 38340865 DOI: 10.1016/j.scitotenv.2024.170633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Biogenic and anthropogenic organic vapors are crucial precursors of ozone and secondary organic aerosol (SOA) in the atmosphere. Here we conducted real-time measurements of gaseous organic compounds using a Vocus proton-transfer-reaction mass spectrometer (Vocus PTR-MS) at the Shanghuang mountain site (1128 m a.s.l.) in southeastern China during November 2022. Our results revealed a substantial impact of mixed biogenic and anthropogenic compounds at the mountain site, with oxygenated volatile organic compounds (OVOCs) comprising 74 % of the organic vapors. Two distinct periods, characterized by sunny days (P1) and persistent cloud events (P2), were observed. P1 exhibited higher concentrations of biogenic-related emissions compared to P2. For instance, isoprene, monoterpenes, and sesquiterpenes during P1 were 2.4-2.9 times higher than those during P2. OVOCs such as acetaldehyde, MVK + MACR, acetone, and MEK also showed higher concentrations during P1, indicating a dominant source from the photochemical oxidation of biogenic VOCs. Anthropogenic-related VOCs like benzene and toluene had higher concentrations during P2, displaying different diurnal cycles compared to P1. Our analysis identified four biogenic-related factors dominated by isoprene and sesquiterpene oxidation products, and two anthropogenic-related factors. During P1, biogenic sources contributed approximately 80 % to total organic compounds, while during P2, anthropogenic sources, particularly the aromatic-related factor, increased from 16 % to 35 %. Furthermore, a unique factor characterized by C2 amines and C3 amides and periodic plumes indicated the influence of industrial emissions from regional transport. The study highlights the significant variations in sources and compositions of gaseous organic compounds at regional mountain sites due to changes in meteorology and photochemical processing, potentially impacting regional ozone and SOA formation.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijun Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aodong Du
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqin Qiao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Lanzhong Liu
- Shanghuang Atmospheric Boundary Layer and Eco-Environment Observatory, Institute of Atmospheric Physics, Chinese Academy of Sciences, Jinhua 321203, China
| | - Zhiqiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xueling Cheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake, Shanghai 200235, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penglin Ye
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland; Aerodyne Research Inc., Billerica, MA 01821, USA
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Liu Y, Jia Y, Chu B, Li S, Cao Q, Liu J, Ma W, Li Y, Wang L, Nie W, Ma Q, He H. An Alternative Calibration Method for Measuring N 2O 5 with an Iodide-Chemical Ionization Mass Spectrometer and Influencing Factors. Anal Chem 2024; 96:4048-4056. [PMID: 38373182 DOI: 10.1021/acs.analchem.3c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
In this work, we developed an alternative calibration method for measuring N2O5 with an iodide adduct mass spectrometer (I-CIMS). In this calibration method, N2O5 is heated and then quantified based on the decrease in the amount of NO due to its reaction with the pyrolysis product (NO3). This alternative calibration method was compared with the commonly used method utilizing NOx analyzers equipped with a photolytic converter, which gauge NO2 reduction as a result of its reaction with O3 to quantify N2O5. It is notable that the two methodologies demonstrate favorable consistency in terms of calibrating N2O5, with a variance of less than 10 %. The alternative calibration method is a more reliable way to quantify N2O5 with CIMS, considering the instability of the NO2 conversion efficiency of photolytic converters in NOx analyzers and the loss of N2O5 in the sampling line. The effects of O3 and relative humidity (RH) on the sensitivity toward N2O5 were further examined. There was minimal perturbation of N2O5 quantification upon exposure to O3 even at high concentrations. The N2O5 sensitivity exhibited a nonlinear dependence on RH as it initially rose and then fell. Besides I(N2O5)-, the collisional interaction between I(H2O)- and N2O5 also forms I(HNO3)-, which may interfere with the accurate quantification of HNO3. As a consequence of the pronounced dependence on humidity, it is advisable to implement humidity correction procedures when conducting measurements of N2O5.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongcheng Jia
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuying Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Li
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Lei Wang
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023 Jiangsu Province, China
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023 Jiangsu Province, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Guo Y, Gong D, Wang H, Li Q, Wu G, Wang Y, Cai H, Yuan B, Wang B, Liu SC. Sources of elevated organic acids in the mountainous background atmosphere of southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169673. [PMID: 38199347 DOI: 10.1016/j.scitotenv.2023.169673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Formic acid (FA) and acetic acid (AA) are pivotal organic acids in the troposphere, significantly influencing atmospheric chemistry. However, their abundance and sources in the mountainous background atmosphere remain underexplored. We undertook continuous measurements of FA and AA in Nanling mountains, southern China, during autumn 2020 using a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS). Both acids registered higher concentrations than in other global high-altitude or forested locations, averaging at 0.89 (max: 3.91) and 0.95 (max: 3.52) ppbv for FA and AA, respectively. High concentrations of FA and AA in this forested background area arose from secondary formation and biomass burning, collectively contributing 71 % to 89 %. During episodes, FA and AA concentrations surged 2-3 times, owing to the enhanced atmospheric oxidation capacity. The secondary FA production was predominantly due to isoprene oxidation among the VOC precursors studied. However, observed inconsistencies between calculated and actual FA concentrations suggest overlooked precursors or mechanisms warranting further investigation. Our findings can enhance the understanding of organic acid characteristics and the interplay of biogenic and anthropogenic sources in the background atmosphere.
Collapse
Affiliation(s)
- Yan Guo
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| | - Qinqin Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Gengchen Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Yu Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Huang Cai
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Shaw Chen Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| |
Collapse
|
20
|
Mattila JM, Krug JD, Roberson WR, Burnette RP, McDonald S, Virtaranta L, Offenberg JH, Linak WP. Characterizing Volatile Emissions and Combustion Byproducts from Aqueous Film-Forming Foams Using Online Chemical Ionization Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3942-3952. [PMID: 38350647 PMCID: PMC10985785 DOI: 10.1021/acs.est.3c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Aqueous film-forming foams (AFFFs) are used in firefighting applications and often contain per- and polyfluoroalkyl substances (PFAS), which can detrimentally impact environmental and biological health. Incineration is a potential disposal method for AFFFs, which may produce secondary PFAS and other air pollutants. We used online chemical ionization mass spectrometry (CIMS) to measure volatile PFAS emissions from incinerating AFFF concentrate solutions. We quantified perfluorinated carboxylic acids (PFCAs) during the incineration of legacy and contemporary AFFFs. These included trifluoroacetic acid, which reached mg m-3 quantities in the incinerator exhaust. These PFCAs likely arose as products of incomplete combustion of AFFF fluorosurfactants with lower peak furnace temperatures yielding higher PFCA concentrations. We also detected other short-chain PFAS, and other novel chemical products in AFFF combustion emissions. The volatile headspace above AFFF solutions contained larger (C ≥ 8), less oxidized PFAS detected by CIMS. We identified neutral PFAS resembling fluorotelomer surfactants (e.g., fluorotelomer sulfonamide alkylbetaines and fluorotelomer thioether amido sulfonates) and fluorotelomer alcohols in contemporary AFFF headspaces. Directly comparing the distinct chemical spaces of AFFF volatile headspace and combustion byproducts as measured by CIMS provides insight toward the chemistry of PFAS during thermal treatment of AFFFs.
Collapse
Affiliation(s)
- James M. Mattila
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Jonathan D. Krug
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - William R. Roberson
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| | | | - Stella McDonald
- Jacobs Technology Inc., Cary, North Carolina 27518, United States
| | - Larry Virtaranta
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - John H. Offenberg
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - William P. Linak
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| |
Collapse
|
21
|
Hass-Mitchell T, Joo T, Rogers M, Nault BA, Soong C, Tran M, Seo M, Machesky JE, Canagaratna M, Roscioli J, Claflin MS, Lerner BM, Blomdahl DC, Misztal PK, Ng NL, Dillner AM, Bahreini R, Russell A, Krechmer JE, Lambe A, Gentner DR. Increasing Contributions of Temperature-Dependent Oxygenated Organic Aerosol to Summertime Particulate Matter in New York City. ACS ES&T AIR 2024; 1:113-128. [PMID: 39309979 PMCID: PMC11415007 DOI: 10.1021/acsestair.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 09/25/2024]
Abstract
As part of the summer 2022 NYC-METS (New York City metropolitan Measurements of Emissions and TransformationS) campaign and the ASCENT (Atmospheric Science and Chemistry mEasurement NeTwork) observational network, speciated particulate matter was measured in real time in Manhattan and Queens, NY, with additional gas-phase measurements. Largely due to observed reductions in inorganic sulfate aerosol components over the 21st century, summertime aerosol composition in NYC has become predominantly organic (80-83%). Organic aerosol source apportionment via positive matrix factorization showed that this is dominated by secondary production as oxygenated organic aerosol (OOA) source factors comprised 73-76% of OA. Primary factors, including cooking-related organic aerosol (COA) and hydrocarbon-like organic aerosol (HOA) comprised minor fractions of OA, only 13-15% and 10-11%, respectively. The two sites presented considerable spatiotemporal variations in OA source factor concentrations despite similar average PM2.5 concentrations. The less- and more-oxidized OOA factors exhibited clear temperature dependences at both sites with increased concentrations and greater degrees of oxidation at higher temperatures, including during a heatwave. With strong temperature sensitivity and minimal changes in summertime concentrations since 2001, secondary OA poses a particular challenge for air quality policy in NYC that will very likely be exacerbated by continued climate change and extreme heat events.
Collapse
Affiliation(s)
- Tori Hass-Mitchell
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Taekyu Joo
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mitchell Rogers
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Benjamin A. Nault
- Center
for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Catelynn Soong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mia Tran
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Minguk Seo
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jo Ellen Machesky
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Manjula Canagaratna
- Center
for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Joseph Roscioli
- Center
for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Megan S. Claflin
- Center
for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Brian M. Lerner
- Center
for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Daniel C. Blomdahl
- Department
of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pawel K. Misztal
- Department
of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nga L. Ng
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ann M. Dillner
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Roya Bahreini
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Armistead Russell
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jordan E. Krechmer
- Center
for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Andrew Lambe
- Center
for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Drew R. Gentner
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
22
|
Chan JK, Parasurama S, Atlas R, Xu R, Jongebloed UA, Alexander B, Langenhan JM, Thornton JA, Riffell JA. Olfaction in the Anthropocene: NO 3 negatively affects floral scent and nocturnal pollination. Science 2024; 383:607-611. [PMID: 38330103 DOI: 10.1126/science.adi0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
There is growing concern about sensory pollutants affecting ecological communities. Anthropogenically enhanced oxidants [ozone (O3) and nitrate radicals (NO3)] rapidly degrade floral scents, potentially reducing pollinator attraction to flowers. However, the physiological and behavioral impacts on pollinators and plant fitness are unknown. Using a nocturnal flower-moth system, we found that atmospherically relevant concentrations of NO3 eliminate flower visitation by moths, and the reaction of NO3 with a subset of monoterpenes is what reduces the scent's attractiveness. Global atmospheric models of floral scent oxidation reveal that pollinators in certain urban areas may have a reduced ability to perceive and navigate to flowers. These results illustrate the impact of anthropogenic pollutants on an animal's olfactory ability and indicate that such pollutants may be critical regulators of global pollination.
Collapse
Affiliation(s)
- J K Chan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - S Parasurama
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - R Atlas
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - R Xu
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
- Center for Earth System Science, Tsinghua University, Beijing 100084, China
| | - U A Jongebloed
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - B Alexander
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - J M Langenhan
- Department of Chemistry, Seattle University, Seattle, WA 98122, USA
| | - J A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - J A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Li L, Thomsen D, Wu C, Priestley M, Iversen EM, Tygesen Sko̷nager J, Luo Y, Ehn M, Roldin P, Pedersen HB, Bilde M, Glasius M, Hallquist M. Gas-to-Particle Partitioning of Products from Ozonolysis of Δ 3-Carene and the Effect of Temperature and Relative Humidity. J Phys Chem A 2024; 128:918-928. [PMID: 38293769 PMCID: PMC10860141 DOI: 10.1021/acs.jpca.3c07316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Formation of oxidized products from Δ3-carene (C10H16) ozonolysis and their gas-to-particle partitioning at three temperatures (0, 10, and 20 °C) under dry conditions (<2% RH) and also at 10 °C under humid (78% RH) conditions were studied using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) combined with a filter inlet for gases and aerosols (FIGAERO). The Δ3-carene ozonolysis products detected by the FIGAERO-ToF-CIMS were dominated by semivolatile organic compounds (SVOCs). The main effect of increasing temperature or RH on the product distribution was an increase in fragmentation of monomer compounds (from C10 to C7 compounds), potentially via alkoxy scission losing a C3 group. The equilibrium partitioning coefficient estimated according to equilibrium partitioning theory shows that the measured SVOC products distribute more into the SOA phase as the temperature decreases from 20 to 10 and 0 °C and for most products as the RH increases from <2 to 78%. The temperature dependency of the saturation vapor pressure (above an assumed liquid state), derived from the partitioning method, also allows for a direct way to obtain enthalpy of vaporization for the detected species without accessibility of authentic standards of the pure substances. This method can provide physical properties, beneficial for, e.g., atmospheric modeling, of complex multifunctional oxidation products.
Collapse
Affiliation(s)
- Linjie Li
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41296, Sweden
| | - Ditte Thomsen
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Cheng Wu
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41296, Sweden
| | - Michael Priestley
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41296, Sweden
| | | | | | - Yuanyuan Luo
- Institute
for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
| | - Mikael Ehn
- Institute
for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
| | - Pontus Roldin
- Department
of Physics, Lund University, Lund 22100, Sweden
- IVL
Swedish Environmental Institute, Malmö21119, Sweden
| | - Henrik B. Pedersen
- Department
of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Merete Bilde
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Marianne Glasius
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Mattias Hallquist
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41296, Sweden
| |
Collapse
|
24
|
Ikeda E, Hamilton J, Wood C, Chatzidiakou L, Warburton T, Ruangkanit A, Shao Y, Genes D, Waiblinger D, Yang TC, Giorio C, McFiggans G, O'Meara SP, Edwards P, Bates E, Shaw DR, Jones RL, Carslaw N, McEachan R. Understanding the patterns and health impact of indoor air pollutant exposures in Bradford, UK: a study protocol. BMJ Open 2023; 13:e081099. [PMID: 38056942 PMCID: PMC10711829 DOI: 10.1136/bmjopen-2023-081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Relative to outdoor air pollution, there is little evidence examining the composition and concentrations of indoor air pollution and its associated health impacts. The INGENIOUS project aims to provide the comprehensive understanding of indoor air pollution in UK homes. METHODS AND ANALYSIS 'Real Home Assessment' is a cross-sectional, multimethod study within INGENIOUS. This study monitors indoor air pollutants over 2 weeks using low-cost sensors placed in three rooms in 300 Born in Bradford (BiB) households. Building audits are completed by researchers, and participants are asked to complete a home survey and a health and behaviour questionnaire, in addition to recording household activities and health symptoms on at least 1 weekday and 1 weekend day. A subsample of 150 households will receive more intensive measurements of volatile organic compound and particulate matter for 3 days. Qualitative interviews conducted with 30 participants will identify key barriers and enablers of effective ventilation practices. Outdoor air pollution is measured in 14 locations across Bradford to explore relationships between indoor and outdoor air quality. Data will be analysed to explore total concentrations of indoor air pollutants, how these vary with building characteristics, and whether they are related to health symptoms. Interviews will be analysed through content and thematic analysis. ETHICS AND DISSEMINATION Ethical approval has been obtained from the NHS Health Research Authority Yorkshire and the Humber (Bradford Leeds) Research Ethics Committee (22/YH/0288). We will disseminate findings using our websites, social media, publications and conferences. Data will be open access through the BiB, the Open Science Framework and the UK Data Service.
Collapse
Affiliation(s)
- Erika Ikeda
- Bradford Institute for Health Research, Born in Bradford, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Jacqueline Hamilton
- Department of Chemistry, Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
| | - Chantelle Wood
- Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Lia Chatzidiakou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Thomas Warburton
- Department of Chemistry, Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
| | - Athina Ruangkanit
- Department of Chemistry, Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
| | - Yunqi Shao
- Department of Earth and Environmental Science, School of Natural Sciences, Centre for Atmospheric Science, The University of Manchester, Manchester, UK
| | - Denisa Genes
- Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Dagmar Waiblinger
- Bradford Institute for Health Research, Born in Bradford, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Born in Bradford, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Gordon McFiggans
- Department of Earth and Environmental Science, School of Natural Sciences, Centre for Atmospheric Science, The University of Manchester, Manchester, UK
- National Centre for Atmospheric Science, University of York, York, UK
| | - Simon P O'Meara
- Department of Earth and Environmental Science, School of Natural Sciences, Centre for Atmospheric Science, The University of Manchester, Manchester, UK
- National Centre for Atmospheric Science, University of York, York, UK
| | - Pete Edwards
- Department of Chemistry, Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
- National Centre for Atmospheric Science, University of York, York, UK
| | - Elizabeth Bates
- City of Bradford Metropolitan District Council, Bradford, UK
| | - David R Shaw
- Department of Environment and Geography, University of York, York, UK
| | - Roderic L Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK
| | - Rosemary McEachan
- Bradford Institute for Health Research, Born in Bradford, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| |
Collapse
|
25
|
Masoud C, Modi M, Bhattacharyya N, Jahn LG, McPherson KN, Abue P, Patel K, Allen DT, Hildebrandt Ruiz L. High Chlorine Concentrations in an Unconventional Oil and Gas Development Region and Impacts on Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15454-15464. [PMID: 37783466 PMCID: PMC10586373 DOI: 10.1021/acs.est.3c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Growth in unconventional oil and gas development (UOGD) in the United States has increased airborne emissions, raising environmental and human health concerns. To assess the potential impacts on air quality, we deployed instrumentation in Karnes City, Texas, a rural area in the middle of the Eagle Ford Shale. We measured several episodes of elevated Cl2 levels, reaching maximum hourly averages of 800 ppt, the highest inland Cl2 concentration reported to date. Concentrations peak during the day, suggesting a strong local source (given the short photolysis lifetime of Cl2) and/or a photoinitiated production mechanism. Well preproduction activity near the measurement site is a plausible source of these high Cl2 levels via direct emission and photoactive chemistry. ClNO2 is also observed, but it peaks overnight, consistent with well-known nocturnal formation processes. Observations of organochlorines in the gas and particle phases reflect the contribution of chlorine chemistry to the formation of secondary pollutants in the area. Box modeling results suggest that the formation of ozone at this location is influenced by chlorine chemistry. These results suggest that UOGD can be an important source of reactive chlorine in the atmosphere, impacting radical budgets and the formation of secondary pollutants in these regions.
Collapse
Affiliation(s)
- Catherine
G. Masoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mrinali Modi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nirvan Bhattacharyya
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G. Jahn
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kristi N. McPherson
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pearl Abue
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kanan Patel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David T. Allen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Li J, Link MF, Pandit S, Webb MH, Mayer KJ, Garofalo LA, Rediger KL, Poppendieck DG, Zimmerman SM, Vance ME, Grassian VH, Morrison GC, Turpin BJ, Farmer DK. The persistence of smoke VOCs indoors: Partitioning, surface cleaning, and air cleaning in a smoke-contaminated house. SCIENCE ADVANCES 2023; 9:eadh8263. [PMID: 37831770 PMCID: PMC10575580 DOI: 10.1126/sciadv.adh8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8 to 21.2 hours) that describes the time for indoor ventilation to overtake adsorption-desorption equilibria in controlling the air concentration. These rates imply that vapor pressure controls partitioning behavior and that house ventilation plays a minor role in removing smoke VOCs. However, surface cleaning activities (vacuuming, mopping, and dusting) physically removed surface reservoirs and thus reduced indoor smoke VOC concentrations more effectively than portable air cleaners and more persistently than window opening.
Collapse
Affiliation(s)
- Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael F. Link
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc H. Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn J. Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Lauren A. Garofalo
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Katelyn L. Rediger
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Marina E. Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Glenn C. Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barbara J. Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
27
|
Liu F, Joo T, Ditto JC, Saavedra MG, Takeuchi M, Boris AJ, Yang Y, Weber RJ, Dillner AM, Gentner DR, Ng NL. Oxidized and Unsaturated: Key Organic Aerosol Traits Associated with Cellular Reactive Oxygen Species Production in the Southeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14150-14161. [PMID: 37699525 PMCID: PMC10538939 DOI: 10.1021/acs.est.3c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.
Collapse
Affiliation(s)
- Fobang Liu
- Department
of Environmental Science and Engineering, School of Energy and Power
Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Taekyu Joo
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jenna C. Ditto
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Maria G. Saavedra
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Masayuki Takeuchi
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandra J. Boris
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ann M. Dillner
- Air
Quality Research Center, University of California
Davis, Davis, California 95618, United States
| | - Drew R. Gentner
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Nga L. Ng
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
Ye C, Liu Y, Yuan B, Wang Z, Lin Y, Hu W, Chen W, Li T, Song W, Wang X, Lv D, Gu D, Shao M. Low-NO-like Oxidation Pathway Makes a Significant Contribution to Secondary Organic Aerosol in Polluted Urban Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13912-13924. [PMID: 37669221 DOI: 10.1021/acs.est.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Anthropogenic pollutants can greatly mediate formation pathways and chemical compositions of secondary organic aerosol (SOA) in urban atmospheres. We investigated the molecular tracers for different types of SOA in PM2.5 under varying NO/NO2 conditions in Guangzhou using source analysis of particle-phase speciated organics obtained from an iodide chemical ionization mass spectrometer with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS). Results show that low-NO-like pathways (when NO/NO2 < 0.2) explained ∼75% of the total measured FIGAERO-OA during regional transport periods, which was enriched in more-oxidized C4-C6 non-nitrogenous compounds over ozone accumulation. Daytime high-NO chemistry played larger roles (38%) in local pollution episodes, with organic nitrates (ONs) and nitrophenols increasing with enhanced aerosol water content and nitrate fraction. Nighttime NO3-initiated oxidation, characterized by monoterpene-derived ONs, accounted for comparable percentages (10-12%) of FIGAERO-OA for both two periods. Furthermore, the presence of organosulfates (OSs) improves the understanding of the roles of aqueous-phase processes in SOA production. Carbonyl-derived OSs exhibited a preferential formation under conditions of high aerosol acidity and/or abundant sulfate, which correlated well with low-NO-like SOA. Our results demonstrate the importance of NO/NO2 ratios in controlling SOA compositions, as well as interactions between water content, aerosol acidity, and inorganic salts in gas-to-particle partitioning of condensable organics.
Collapse
Affiliation(s)
- Chenshuo Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Ying Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Zelong Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yi Lin
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Weiwei Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tiange Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Daqi Lv
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dasa Gu
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| |
Collapse
|
29
|
Dam M, Thomas AE, Smith JN. Formation of Highly Oxidized Organic Compounds and Secondary Organic Aerosol from α-Thujene Ozonolysis. J Phys Chem A 2023; 127:6989-6998. [PMID: 37582247 DOI: 10.1021/acs.jpca.3c02584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
We conducted laboratory chamber experiments to probe the gas- and particle-phase composition of oxidized organics and secondary organic aerosol (SOA) formed from α-thujene ozonolysis under different chemical regimes. The formation of low-volatility compounds was observed using chemical ionization mass spectrometry with nitrate (NO3-) and iodide (I-) reagent ions. The contribution of measured low-volatility compounds to particle growth was predicted using a simple condensational growth model and found to underpredict the measured growth rates in our chamber (on the order of several nm min-1). The yields of low-volatility compounds and SOA mass were similar to those of other monoterpene ozonolysis systems. While semivolatile compounds C10H14-16O3-7 were measured most abundantly with I- reagent ion, a large fraction of products measured with NO3- were C5-7 fragments with predicted intermediate volatility. Additionally, particle composition was measured with ultrahigh-performance liquid chromatography with high-resolution mass spectrometry and compared to particle composition from α-pinene ozonolysis. Structural isomers were identified from tandem mass spectrometry analysis of two abundant product ions (C8H13O5-, C19H27O7-). Our results indicate that although this system efficiently generates low-volatility organics and SOA under the conditions studied, fragmentation pathways that produce more highly volatile products effectively compete with these processes.
Collapse
Affiliation(s)
- Michelia Dam
- Department of Chemistry, University of California Irvine, 1120 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Adam E Thomas
- Department of Chemistry, University of California Irvine, 1120 Natural Sciences II, Irvine, California 92697-2025, United States
| | - James N Smith
- Department of Chemistry, University of California Irvine, 1120 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
30
|
Tiusanen A, Ruiz-Jimenez J, Hartonen K, Wiedmer SK. Analytical methodologies for oxidized organic compounds in the atmosphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1263-1287. [PMID: 37491999 DOI: 10.1039/d3em00163f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Oxidized compounds in the atmosphere can occur as emitted primary compounds or as secondary products when volatile emitted precursors react with various oxidants. Due to the presence of polar functional groups, their vapor pressures decrease, and they condense onto small particles. Thereby, they have an effect on climate change by the formation of clouds and scattering solar radiation. The particles and oxidized compounds themselves can cause serious health problems when inhaled. Therefore, it is of utmost importance to study oxidized compounds in the atmosphere. Much ongoing research is focused on the discovery of new oxidized substances and on the evaluation of their sources and factors influencing their formation. Monitoring biogenic and anthropogenic primary oxidized compounds or secondary oxidized products in chamber experiments or field campaigns is common. New discoveries have been reported, including various oxidized compounds and a new group of compounds called highly oxidized organic molecules (HOMs). Analytics of HOMs are mainly focused on chromatography and high-resolution mass spectrometry employing chemical ionization for identifying and quantifying compounds at low concentrations. Oxidized compounds can also be monitored by spectrophotometric methods in which the determinations of total amounts are based on functional groups. This review highlights recent findings on oxidized organic compounds in the atmosphere and analytical methodologies used for their detection and quantification. The discussion includes gas and liquid chromatographic methods, sampling, extraction, concentration, and derivatization procedures involved, as well as mass spectrometric and spectrophotometric methods.
Collapse
Affiliation(s)
- Aleksi Tiusanen
- Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland.
| | - Jose Ruiz-Jimenez
- Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland.
- Institute for Atmospheric and Earth System Research, Chemistry, Faculty of Science, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Kari Hartonen
- Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland.
- Institute for Atmospheric and Earth System Research, Chemistry, Faculty of Science, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
31
|
Yang X, Ren S, Wang Y, Yang G, Li Y, Li C, Wang L, Yao L, Wang L. Volatility Parametrization of Low-Volatile Components of Ambient Organic Aerosols Based on Molecular Formulas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11595-11604. [PMID: 37494566 DOI: 10.1021/acs.est.3c02073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Evaluating the volatility of organic compounds based solely on their molecular formulas would avoid tough demands in deriving molecular structures. Here, we deployed an iodide-adduct Long Time-of-Flight Chemical Ionization Mass Spectrometry (LToF-CIMS) combined with a Filter Inlet for Gases and AEROsols (FIGAERO) to investigate molecular formulas and thermograms of organic compounds on ambient particulate samples collected in the summer of 2021 in a suburban site of Shanghai and to estimate saturation vapor pressures of low- and semivolatile components of ambient organic aerosols. Then, a hierarchical cluster analysis and a subsequent classification of obtained clusters by similarity calculation were applied to the measured data set of molecular formulas and saturation vapor pressures of organic aerosols with at least a 2/3 appearance frequency, together with a similar data set collected at a rural site in the Beijing-Tianjin-Hebei region during the winter of 2018 (Ren et al., 2018), to classify all compounds into multiple groups. For each group of compounds, parametrizations between volatility and elemental composition were derived, and then relationships between each group of parameters and the mean O:C were established to achieve a volatility-molecular formula parametrization with the O:C as a key input. Statistical comparison of estimated volatilities of low-volatile organic compounds shows a much better performance of our parametrization than previous molecular formula-based ones.
Collapse
Affiliation(s)
- Xueyan Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
| | - Siman Ren
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
| | - Yuwei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
| | - Gan Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
| | - Yueyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
| | - Chuang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
| | - Lihong Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
| | - Lei Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Jiangwan Campus, Shanghai 200438, China
- Collaborative Innovation Center of Climate Change, Nanjing 210023, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| |
Collapse
|
32
|
Mattila JM, Li EY, Offenberg JH. Tubing material considerably affects measurement delays of gas-phase oxygenated per- and polyfluoroalkyl substances. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:335-344. [PMID: 36803440 DOI: 10.1080/10962247.2023.2174612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants associated with negative health impacts. Assessments of tubing-related measurement bias for volatile PFAS are lacking, as gas-wall interactions with tubing can delay quantification of gas-phase analytes. We use online iodide chemical ionization mass spectrometry measurements to characterize tubing delays for three gas-phase oxygenated PFAS - 4:2 fluorotelomer alcohol (4:2 FTOH), perfluorobutanoic acid (PFBA), and hexafluoropropylene oxide dimer acid (HFPO-DA). Perfluoroalkoxy alkane and high-density polyethylene tubing yielded relatively short absorptive measurement delays, with no clear dependence on tubing temperature or sampled humidity. Sampling through stainless steel tubing led to prolonged measurement delays due to reversible adsorption of PFAS to the tubing surface, with strong dependence on tubing temperature and sample humidification. Silcosteel tubing afforded shorter measurement delays than stainless steel due to diminished surface adsorption of PFAS. Characterizing and mitigating these tubing delays is crucial for reliable quantification of airborne PFAS.Implications: Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants. Many PFAS are sufficiently volatile to exist as airborne pollutants. Measurements and quantification of airborne PFAS can be biased from material-dependent gas-wall interactions with sampling inlet tubing. Thus, characterizing these gas-wall interactions are crucial for reliably investigating emissions, environmental transport, and fates of airborne PFAS.
Collapse
Affiliation(s)
- James M Mattila
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - Emily Y Li
- Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| | - John H Offenberg
- Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
33
|
Bhattacharyya N, Tang M, Blomdahl DC, Jahn LG, Abue P, Allen DT, Corsi RL, Novoselac A, Misztal PK, Hildebrandt Ruiz L. Bleach Emissions Interact Substantially with Surgical and KN95 Mask Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6589-6598. [PMID: 37061949 DOI: 10.1021/acs.est.2c07937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mask wearing and bleach disinfectants became commonplace during the COVID-19 pandemic. Bleach generates toxic species including hypochlorous acid (HOCl), chlorine (Cl2), and chloramines. Their reaction with organic species can generate additional toxic compounds. To understand interactions between masks and bleach disinfection, bleach was injected into a ventilated chamber containing a manikin with a breathing system and wearing a surgical or KN95 mask. Concentrations inside the chamber and behind the mask were measured by a chemical ionization mass spectrometer (CIMS) and a Vocus proton transfer reaction mass spectrometer (Vocus PTRMS). HOCl, Cl2, and chloramines were observed during disinfection and concentrations inside the chamber are 2-20 times greater than those behind the mask, driven by losses to the mask surface. After bleach injection, many species decay more slowly behind the mask by a factor of 0.5-0.7 as they desorb or form on the mask. Mass transfer modeling confirms the transition of the mask from a sink during disinfection to a source persisting >4 h after disinfection. Humidifying the mask increases reactive formation of chloramines, likely related to uptake of ammonia and HOCl. These experiments indicate that masks are a source of chemical exposure after cleaning events occur.
Collapse
Affiliation(s)
- Nirvan Bhattacharyya
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mengjia Tang
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel C Blomdahl
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G Jahn
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pearl Abue
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David T Allen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard L Corsi
- College of Engineering, University of California at Davis, Davis, California 95616, United States
| | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pawel K Misztal
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Assaf E, Finewax Z, Marshall P, Veres PR, Neuman JA, Burkholder JB. Measurement of the Intramolecular Hydrogen-Shift Rate Coefficient for the CH 3SCH 2OO Radical between 314 and 433 K. J Phys Chem A 2023; 127:2336-2350. [PMID: 36862996 DOI: 10.1021/acs.jpca.2c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The intramolecular hydrogen-shift rate coefficient of the CH3SCH2O2 (methylthiomethylperoxy, MSP) radical, a product formed in the oxidation of dimethyl sulfide (DMS), was measured using a pulsed laser photolysis flow tube reactor coupled to a high-resolution time-of-flight chemical ionization mass spectrometer that measured the formation of the DMS degradation end product HOOCH2SCHO (hydroperoxymethyl thioformate). Measurements performed over the temperature range of 314-433 K yielded a hydrogen-shift rate coefficient of k1(T) = (2.39 ± 0.7) × 109 exp(-(7278 ± 99)/T) s-1 Arrhenius expression and a value extrapolated to 298 K of 0.06 s-1. The potential energy surface and the rate coefficient have also been theoretically investigated using density functional theory at the M06-2X/aug-cc-pVTZ level combined with approximate CCSD(T)/CBS energies yielding k1(273-433 K) = 2.4 × 1011 × exp(-8782/T) s-1 and k1(298 K) = 0.037 s-1 in fair agreement with the experimental results. Present results are compared with the previously reported values of k1(293-298 K).
Collapse
Affiliation(s)
- Emmanuel Assaf
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Zachary Finewax
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Paul Marshall
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Patrick R Veres
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| | - J Andrew Neuman
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| | - James B Burkholder
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305-3327, United States
| |
Collapse
|
35
|
Kregel SJ, Derrah TF, Moon S, Limmer DT, Nathanson GM, Bertram TH. Weak Temperature Dependence of the Relative Rates of Chlorination and Hydrolysis of N 2O 5 in NaCl-Water Solutions. J Phys Chem A 2023; 127:1675-1685. [PMID: 36787538 DOI: 10.1021/acs.jpca.2c06543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We have measured the temperature dependence of the ClNO2 product yield in competition with hydrolysis following N2O5 uptake to aqueous NaCl solutions. For NaCl-D2O solutions spanning 0.0054-0.21 M, the ClNO2 product yield decreases on average by only 4 ± 3% from 5 to 25 °C. Less reproducible measurements at 0.54-2.4 M NaCl also fall within this range. The ratio of the rate constants for chlorination and hydrolysis of N2O5 in D2O is determined on average to be 1150 ± 90 at 25 °C up to 0.21 M NaCl, favoring chlorination. This ratio is observed to decrease significantly at the two highest concentrations. An Arrhenius analysis reveals that the activation energy for hydrolysis is just 3.0 ± 1.5 kJ/mol larger than for chlorination up to 0.21 M, indicating that Cl- and D2O attack on N2O5 has similar energetic barriers despite the differences in charge and complexity of these reactants. In combination with the measured preexponential ratio favoring chlorination of 300-200+400, we conclude that the strong preference of N2O5 to undergo chlorination over hydrolysis is driven by dynamic and entropic, rather than enthalpic, factors. Molecular dynamics simulations elucidate the distinct solvation between strongly hydrated Cl- and the hydrophobically solvated N2O5. Combining this molecular picture with the Arrhenius analysis implicates the role of water in mediating interactions between such distinctly solvated species and suggests a role for diffusion limitations on the chlorination reaction.
Collapse
Affiliation(s)
- Steven J Kregel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas F Derrah
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Seokjin Moon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
36
|
Schneider SR, Lakey PSJ, Shiraiwa M, Abbatt JPD. Iodine emission from the reactive uptake of ozone to simulated seawater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:254-263. [PMID: 35838601 DOI: 10.1039/d2em00111j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The heterogeneous reaction of ozone and iodide is both an important source of atmospheric iodine and dry deposition pathway of ozone in marine environments. While the iodine generated from this reaction is primarily in the form of HOI and I2, there is also evidence of volatile organoiodide compound emissions in the presence of organics without biological activity occuring [M. Martino, G. P. Mills, J. Woeltjen and P. S. Liss, A new source of volatile organoiodine compounds in surface seawater, Geophys. Res. Lett., 2009, 36, L01609, L. Tinel, T. J. Adams, L. D. J. Hollis, A. J. M. Bridger, R. J. Chance, M. W. Ward, S. M. Ball and L. J. Carpenter, Influence of the Sea Surface Microlayer on Oceanic Iodine Emissions, Environ. Sci. Technol., 2020, 54, 13228-13237]. In this study, we evaluate our fundamental understanding of the ozonolysis of iodide which leads to gas-phase iodine emissions. To do this, we compare experimental measurements of ozone-driven gas-phase I2 formation in a flow tube to predictions made with the kinetic multilayer model for surface and bulk chemistry (KM-SUB). The KM-SUB model uses literature rate coefficients used in current atmospheric chemistry models to predict I2(g) formation in pH-buffered solutions of marine composition containing chloride, bromide, and iodide compared to solutions containing only iodide. Experimentally, I2(g) formation was found to be suppressed in solutions containing seawater levels of chloride compared to solutions containing only iodide, but the model does not predict this effect using literature rate constants. However, the model is able to predict this trend upon adjustment of two specific reaction rate constants. To more closely represent true oceanic conditions, we add an organic component to the proxy seawater solutions using material generated from Thalassiosira pseudonana phytoplankton cultures. Whereas the rate of ozone deposition is unaffected, the formation rate of I2(g) is strongly suppressed in the presence of biological organic material, indicative of a sink or reduction of reactive iodine formed during the oxidation process.
Collapse
Affiliation(s)
- Stephanie R Schneider
- Department of Chemistry, University of Toronto, 80 St. George Street Toronto, Ontario, Canada.
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine 92697, California, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine 92697, California, USA
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Bowers BB, Thornton JA, Sullivan RC. Evaluation of iodide chemical ionization mass spectrometry for gas and aerosol-phase per- and polyfluoroalkyl substances (PFAS) analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:277-287. [PMID: 36189623 DOI: 10.1039/d2em00275b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of ultra-persistent anthropogenic contaminants. PFAS are ubiquitous in environmental and built systems, but very few online methods exist for their characterization in atmospheric gases and aerosols. Iodide time-of-flight chemical ionization mass spectrometry (iodide-ToF-CIMS) is a promising technology for online characterization of PFAS in the atmosphere. Previous work using iodide-ToF-CIMS was successful in measuring gas-phase perfluoroalkyl carboxylic acids and fluorotelomer alcohols, but those are just two of the myriad classes of PFAS that are atmospherically relevant. Therefore, our first objective was to test other sample introduction methods coupled to iodide-TOF-CIMS to evaluate its ability to measure a wider suite of PFAS in both gas and aerosol phases. Using a variety of sample introduction techniques, we successfully measured gas-phase fluorotelomer alcohols (FTOHs), gas and aerosol-phase perfluoroalkyl carboxylic acids (PFCAs), and aerosol-phase perfluoroalkyl sulfonic acids and polyfluoroalkyl phosphoric acid diesters (PFSAs and diPAPs). We also determined iodide-ToF-CIMS response factors for these compounds by introducing known quantities using a Filter Inlet for Gases and AEROsols (FIGAERO). These response factors ranged from 400 to 6 × 104 ions per nanogram, demonstrating low limits of detection. Furthermore, PFAS are a poorly understood diverse class of molecules that exhibit unusual and often unexpected physicochemical properties due to their highly fluorinated nature. Since detection of PFAS with iodide-ToF-CIMS relies on the analyte molecule to either undergo proton transfer or adduct formation with iodide, understanding PFAS behavior during chemical ionization gives rise to a more fundamental understanding of these compounds. Through voltage scanning experiments and DFT calculations, we found that PFCAs and FTOHs readily form iodide adducts, while PFSAs and diPAPs preferentially undergo proton transfer to iodide. Generally, binding energy increased with increasing linear chain length, and PFCAs had stronger binding than FTOHs. Overall, our results suggest that iodide-ToF-CIMS can be used to measure even nonvolatile PFAS such as PFSAs and diPAPs in the aerosol phase in a semi-continuous online fashion.
Collapse
Affiliation(s)
- Bailey B Bowers
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Ryan C Sullivan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Womack CC, Chace WS, Wang S, Baasandorj M, Fibiger DL, Franchin A, Goldberger L, Harkins C, Jo DS, Lee BH, Lin JC, McDonald BC, McDuffie EE, Middlebrook AM, Moravek A, Murphy JG, Neuman JA, Thornton JA, Veres PR, Brown SS. Midlatitude Ozone Depletion and Air Quality Impacts from Industrial Halogen Emissions in the Great Salt Lake Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1870-1881. [PMID: 36695819 DOI: 10.1021/acs.est.2c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report aircraft observations of extreme levels of HCl and the dihalogens Cl2, Br2, and BrCl in an industrial plume near the Great Salt Lake, Utah. Complete depletion of O3 was observed concurrently with halogen enhancements as a direct result of photochemically produced halogen radicals. Observed fluxes for Cl2, HCl, and NOx agreed with facility-reported emissions inventories. Bromine emissions are not required to be reported in the inventory, but are estimated as 173 Mg year-1 Br2 and 949 Mg year-1 BrCl, representing a major uncounted oxidant source. A zero-dimensional photochemical box model reproduced the observed O3 depletions and demonstrated that bromine radical cycling was principally responsible for the rapid O3 depletion. Inclusion of observed halogen emissions in both the box model and a 3D chemical model showed significant increases in oxidants and particulate matter (PM2.5) in the populated regions of the Great Salt Lake Basin, where winter PM2.5 is among the most severe air quality issues in the U.S. The model shows regional PM2.5 increases of 10%-25% attributable to this single industrial halogen source, demonstrating the impact of underreported industrial bromine emissions on oxidation sources and air quality within a major urban area of the western U.S.
Collapse
Affiliation(s)
- Caroline C Womack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Wyndom S Chace
- Department of Chemistry, Williams College, Williamstown, Massachusetts01267, United States
| | - Siyuan Wang
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Munkhbayar Baasandorj
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah84112, United States
| | - Dorothy L Fibiger
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Alessandro Franchin
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Lexie Goldberger
- Department of Atmospheric Science, University of Washington, Seattle, Washington98195, United States
| | - Colin Harkins
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Duseong S Jo
- Atmospheric Chemistry Observations and Modeling Laboratory, NCAR, Boulder, Colorado80307, United States
| | - Ben H Lee
- Department of Atmospheric Science, University of Washington, Seattle, Washington98195, United States
| | - John C Lin
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah84112, United States
| | - Brian C McDonald
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Erin E McDuffie
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado80309, United States
| | - Ann M Middlebrook
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Alexander Moravek
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A1, Canada
| | - Jennifer G Murphy
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A1, Canada
| | - J Andrew Neuman
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Joel A Thornton
- Department of Atmospheric Science, University of Washington, Seattle, Washington98195, United States
| | - Patrick R Veres
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| |
Collapse
|
39
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
40
|
Gao Y, Lu K, Zhang Y. Review of technologies and their applications for the speciated detection of RO 2 radicals. J Environ Sci (China) 2023; 123:487-499. [PMID: 36522008 DOI: 10.1016/j.jes.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Peroxy radicals (RO2), which are formed during the oxidation of volatile organic compounds, play an important role in atmospheric oxidation reactions. Therefore, the measurement of RO2, especially distinct species of RO2 radicals, is important and greatly helps the exploration of atmospheric chemistry mechanisms. Although the speciated detection of RO2 radicals remains challenging, various methods have been developed to study them in detail. These methods can be divided into spectroscopy and mass spectrometry technologies. The spectroscopy methods contain laser-induced fluorescence (LIF), UV-absorption spectroscopy, cavity ring-down spectroscopy (CRDS) and matrix isolation and electron spin resonance (MIESR). The mass spectrometry methods contain chemical ionization atmospheric pressure interface time-of-flight mass spectrometry (CI-APi-TOF), chemical ionization mass spectrometry (CIMS), CI-Orbitrap-MS and the third-generation proton transfer reaction-time-of-flight mass spectrometer (PTR3). This article reviews technologies for the speciated detection of RO2 radicals and the applications of these methods. In addition, a comparison of these techniques and the reaction mechanisms of some key species are discussed. Finally, possible gaps are proposed that could be filled by future research into speciated RO2 radicals.
Collapse
Affiliation(s)
- Yue Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Takeuchi M, Berkemeier T, Eris G, Ng NL. Non-linear effects of secondary organic aerosol formation and properties in multi-precursor systems. Nat Commun 2022; 13:7883. [PMID: 36550126 PMCID: PMC9780343 DOI: 10.1038/s41467-022-35546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Secondary organic aerosol (SOA) contributes significantly to ambient fine particulate matter that affects climate and human health. Monoterpenes represent an important class of biogenic volatile organic compounds (VOCs) and their oxidation by nitrate radicals poses a substantial source of SOA globally. Here, we investigate the formation and properties of SOA from nitrate radical oxidation of two common monoterpenes, α-pinene and limonene. When two monoterpenes are oxidized simultaneously, we observe a ~50% enhancement in the formation of SOA from α-pinene and a ~20% reduction in limonene SOA formation. The change in SOA yields is accompanied by pronounced changes in aerosol chemical composition and volatility. These non-linear effects are not observed in a sequential oxidation experiment. Our results highlight that unlike currently assumed in atmospheric models, the interaction of products formed from individual VOCs should be accounted for to accurately describe SOA formation and its climate and health impacts.
Collapse
Affiliation(s)
- Masayuki Takeuchi
- grid.213917.f0000 0001 2097 4943School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Thomas Berkemeier
- grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA ,grid.419509.00000 0004 0491 8257Present Address: Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128 Germany
| | - Gamze Eris
- grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Nga Lee Ng
- grid.213917.f0000 0001 2097 4943School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA ,grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA ,grid.213917.f0000 0001 2097 4943School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
42
|
Moravek A, VandenBoer TC, Finewax Z, Pagonis D, Nault BA, Brown WL, Day DA, Handschy AV, Stark H, Ziemann P, Jimenez JL, de Gouw JA, Young CJ. Reactive Chlorine Emissions from Cleaning and Reactive Nitrogen Chemistry in an Indoor Athletic Facility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15408-15416. [PMID: 36326040 DOI: 10.1021/acs.est.2c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Indoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources. Use of a chlorine-based cleaner was a source of several photolabile reactive chlorine compounds, including ClNO2 and Cl2. During cleaning events, photolysis rates for these two compounds were up to 0.0023 pptv min-1, acting as a source of chlorine atoms even in this low-light indoor environment. Unrelated to cleaning events, elevated ClNO2 was often observed during daytime and lost to ventilation. The nitrate radical (NO3), which is rapidly photolyzed outdoors during daytime, may persist in low-light indoor environments. With negligible photolysis, loss rates of NO3 indoors were dominated by bimolecular reactions. At times with high NO2 and O3 ventilated from outdoors, N2O5 was observed. Elevated ClNO2 measured concurrently suggests the formation through heterogeneous reactions, acting as an additional source of reactive chlorine within the athletic facility and outdoors.
Collapse
Affiliation(s)
- Alexander Moravek
- Department of Chemistry, York University, Toronto, OntarioM3J 1P3, Canada
| | | | - Zachary Finewax
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Demetrios Pagonis
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Benjamin A Nault
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Wyatt L Brown
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Douglas A Day
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Anne V Handschy
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Harald Stark
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Aerodyne Research, Inc., Billerica, Massachusetts01821, United States
| | - Paul Ziemann
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Cora J Young
- Department of Chemistry, York University, Toronto, OntarioM3J 1P3, Canada
| |
Collapse
|
43
|
Siegel K, Neuberger A, Karlsson L, Zieger P, Mattsson F, Duplessis P, Dada L, Daellenbach K, Schmale J, Baccarini A, Krejci R, Svenningsson B, Chang R, Ekman AML, Riipinen I, Mohr C. Using Novel Molecular-Level Chemical Composition Observations of High Arctic Organic Aerosol for Predictions of Cloud Condensation Nuclei. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13888-13899. [PMID: 36112784 PMCID: PMC9535938 DOI: 10.1021/acs.est.2c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Predictions of cloud droplet activation in the late summertime (September) central Arctic Ocean are made using κ-Köhler theory with novel observations of the aerosol chemical composition from a high-resolution time-of-flight chemical ionization mass spectrometer with a filter inlet for gases and aerosols (FIGAERO-CIMS) and an aerosol mass spectrometer (AMS), deployed during the Arctic Ocean 2018 expedition onboard the Swedish icebreaker Oden. We find that the hygroscopicity parameter κ of the total aerosol is 0.39 ± 0.19 (mean ± std). The predicted activation diameter of ∼25 to 130 nm particles is overestimated by 5%, leading to an underestimation of the cloud condensation nuclei (CCN) number concentration by 4-8%. From this, we conclude that the aerosol in the High Arctic late summer is acidic and therefore highly cloud active, with a substantial CCN contribution from Aitken mode particles. Variability in the predicted activation diameter is addressed mainly as a result of uncertainties in the aerosol size distribution measurements. The organic κ was on average 0.13, close to the commonly assumed κ of 0.1, and therefore did not significantly influence the predictions. These conclusions are supported by laboratory experiments of the activation potential of seven organic compounds selected as representative of the measured aerosol.
Collapse
Affiliation(s)
- Karolina Siegel
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
- Department
of Meteorology, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | - Almuth Neuberger
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | - Linn Karlsson
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | - Paul Zieger
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | - Fredrik Mattsson
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | - Patrick Duplessis
- Department
of Physics and Atmospheric Science, Dalhousie
University, Halifax CA-B3H 4R2, Canada
| | - Lubna Dada
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, Villigen CH-5232, Switzerland
- Extreme
Environments
Research Laboratory, École Polytechnique
Fédérale de Lausanne, Sion CH-1951, Switzerland
| | - Kaspar Daellenbach
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, Villigen CH-5232, Switzerland
| | - Julia Schmale
- Extreme
Environments
Research Laboratory, École Polytechnique
Fédérale de Lausanne, Sion CH-1951, Switzerland
| | - Andrea Baccarini
- Extreme
Environments
Research Laboratory, École Polytechnique
Fédérale de Lausanne, Sion CH-1951, Switzerland
| | - Radovan Krejci
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Rachel Chang
- Department
of Physics and Atmospheric Science, Dalhousie
University, Halifax CA-B3H 4R2, Canada
| | - Annica M. L. Ekman
- Department
of Meteorology, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | - Ilona Riipinen
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | - Claudia Mohr
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| |
Collapse
|
44
|
Liu J, D'Ambro EL, Lee BH, Schobesberger S, Bell DM, Zaveri RA, Zelenyuk A, Thornton JA, Shilling JE. Monoterpene Photooxidation in a Continuous-Flow Chamber: SOA Yields and Impacts of Oxidants, NO x, and VOC Precursors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12066-12076. [PMID: 35976919 DOI: 10.1021/acs.est.2c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monoterpene photooxidation plays an important role in secondary organic aerosol (SOA) formation in the atmosphere. The low-volatility products can enhance new particle formation and particle growth and thus influence climate feedback. Here, we present the results of α-pinene and Δ-3-carene photooxidation experiments conducted in continuous-flow mode in an environmental chamber under several reaction conditions. The roles of oxidants, addition of NO, and VOC molecular structure in influencing SOA yield are illustrated. SOA yield from α-pinene photooxidation shows a weak dependence on H2O2 concentration, which is a proxy for HO2 concentration. The high O/C ratios observed in the α-pinene photooxidation products suggest the production of highly oxygenated organic molecules (HOM). Addition of ozone to the chamber during low-NOx photooxidation experiments leads to higher SOA yield. With the addition of NO, the production of N-containing HOMs is enhanced and the SOA yield shows a modest, nonlinear dependence on the input NO concentration. Carene photooxidation leads to higher SOA yield than α-pinene under similar reaction conditions, which agrees with the lower volatility retrieved from evaporation kinetics experiments. These results improve the understanding of SOA formation from monoterpene photooxidation and could be applied to refine the representation of biogenic SOA formation in models.
Collapse
Affiliation(s)
- Jiumeng Liu
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Emma L D'Ambro
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ben Hwan Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Siegfried Schobesberger
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - David M Bell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rahul A Zaveri
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alla Zelenyuk
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joel A Thornton
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John E Shilling
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
45
|
Xia M, Wang T, Wang Z, Chen Y, Peng X, Huo Y, Wang W, Yuan Q, Jiang Y, Guo H, Lau C, Leung K, Yu A, Lee S. Pollution-Derived Br 2 Boosts Oxidation Power of the Coastal Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12055-12065. [PMID: 35948027 DOI: 10.1021/acs.est.2c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bromine atom (Br•) has been known to destroy ozone (O3) and accelerate the deposition of toxic mercury (Hg). However, its abundance and sources outside the polar regions are not well-known. Here, we report significant levels of molecular bromine (Br2)─a producer of Br•─observed at a coastal site in Hong Kong, with an average noontime mixing ratio of 5 ppt. Given the short lifetime of Br2 (∼1 min at noon), this finding reveals a large Br2 daytime source. On the basis of laboratory and field evidence, we show that the observed daytime Br2 is generated by the photodissociation of particulate nitrate (NO3-) and that the reactive uptake of dinitrogen pentoxide (N2O5) on aerosols is an important nighttime source. Model-calculated Br• concentrations are comparable with that of the OH radical─the primary oxidant in the troposphere, accounting for 24% of the oxidation of isoprene, a 13% increase in net O3 production, and a nearly 10-fold increase in the production rate of toxic HgII. Our findings reveal that reactive bromines play a larger role in the atmospheric chemistry and air quality of polluted coastal and maritime areas than previously thought. Our results also suggest that tightening the control of emissions of two conventional pollutants (NOx and SO2)─thereby decreasing the levels of nitrate and aerosol acidity─would alleviate halogen radical production and its adverse impact on air quality.
Collapse
Affiliation(s)
- Men Xia
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Zhe Wang
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Yi Chen
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Xiang Peng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- China National Environmental Monitoring Centre, Beijing 100020, China
| | - Yunxi Huo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Weihao Wang
- Hangzhou PuYu Technology Development Co Ltd, Hangzhou 311305, Zhejiang, China
| | - Qi Yuan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Yifan Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Chiho Lau
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Kenneth Leung
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Alfred Yu
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
46
|
Wang DS, Masoud CG, Modi M, Hildebrandt Ruiz L. Isoprene-Chlorine Oxidation in the Presence of NO x and Implications for Urban Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9251-9264. [PMID: 35700480 DOI: 10.1021/acs.est.1c07048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is a key indicator of urban air quality. Secondary organic aerosol (SOA) contributes substantially to the PM2.5 concentration. Discrepancies between modeling and field measurements of SOA indicate missing sources and formation mechanisms. Recent studies report elevated concentrations of reactive chlorine species in inland and urban regions, which increase the oxidative capacity of the atmosphere and serve as sources for SOA and particulate chlorides. Chlorine-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon, is known to produce SOA under pristine conditions, but the effects of anthropogenic influences in the form of nitrogen oxides (NOx) remain unexplored. Here, we investigate chlorine-isoprene reactions under low- and high-NOx conditions inside an environmental chamber. Organic chlorides including C5H11ClO3, C5H9ClO3, and C5H9ClO4 are observed as major gas- and particle-phase products. Modeling and experimental results show that the secondary OH-isoprene chemistry is significantly enhanced under high-NOx conditions, accounting for up to 40% of all isoprene oxidized and leading to the suppression of organic chloride formation. Chlorine-initiated oxidation of isoprene could serve as a source for multifunctional (chlorinated) organic oxidation products and SOA in both pristine and anthropogenically influenced environments.
Collapse
Affiliation(s)
- Dongyu S Wang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Catherine G Masoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mrinali Modi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
47
|
Tsiligiannis E, Wu R, Lee BH, Salvador CM, Priestley M, Carlsson PTM, Kang S, Novelli A, Vereecken L, Fuchs H, Mayhew AW, Hamilton JF, Edwards PM, Fry JL, Brownwood B, Brown SS, Wild RJ, Bannan TJ, Coe H, Allan J, Surratt JD, Bacak A, Artaxo P, Percival C, Guo S, Hu M, Wang T, Mentel TF, Thornton JA, Hallquist M. A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL097366. [PMID: 35859850 PMCID: PMC9285747 DOI: 10.1029/2021gl097366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%-17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme.
Collapse
Affiliation(s)
| | - Rongrong Wu
- Institute of Energy and Climate Research, IEK‐8: TroposphereForschungszentrum Jülich GmbHJülichGermany
- State Key Joint Laboratory of Environmental Simulation and Pollution ControlInternational Joint Laboratory for Regional Pollution ControlMinistry of Education (IJRC)College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
| | - Ben H. Lee
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Christian Mark Salvador
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
- Now at Balik Scientist ProgramDepartment of Science and Technology – Philippine Council for IndustryEnergy and Emerging Technology Research and DevelopmentTaguigPhilippines
| | - Michael Priestley
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Philip T. M. Carlsson
- Institute of Energy and Climate Research, IEK‐8: TroposphereForschungszentrum Jülich GmbHJülichGermany
| | - Sungah Kang
- Institute of Energy and Climate Research, IEK‐8: TroposphereForschungszentrum Jülich GmbHJülichGermany
| | - Anna Novelli
- Institute of Energy and Climate Research, IEK‐8: TroposphereForschungszentrum Jülich GmbHJülichGermany
| | - Luc Vereecken
- Institute of Energy and Climate Research, IEK‐8: TroposphereForschungszentrum Jülich GmbHJülichGermany
| | - Hendrik Fuchs
- Institute of Energy and Climate Research, IEK‐8: TroposphereForschungszentrum Jülich GmbHJülichGermany
| | - Alfred W. Mayhew
- Wolfson Atmospheric Chemistry LaboratoriesDepartment of ChemistryUniversity of YorkYorkUK
| | - Jacqueline F. Hamilton
- Wolfson Atmospheric Chemistry LaboratoriesDepartment of ChemistryUniversity of YorkYorkUK
| | - Peter M. Edwards
- Wolfson Atmospheric Chemistry LaboratoriesDepartment of ChemistryUniversity of YorkYorkUK
| | - Juliane L. Fry
- Department of ChemistryReed CollegePortlandORUSA
- Now at Department of Meteorology and Air QualityWageningen UniversityWageningenThe Netherlands
| | | | - Steven S. Brown
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
- Department of ChemistryUniversity of ColoradoBoulderCOUSA
| | - Robert J. Wild
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
- Now at Institute for Ion and PhysicsUniversity of InnsbruckInnsbruckAustria
| | - Thomas J. Bannan
- Centre for Atmospheric ScienceSchool of Earth and Environmental ScienceUniversity of ManchesterManchesterUK
| | - Hugh Coe
- Centre for Atmospheric ScienceSchool of Earth and Environmental ScienceUniversity of ManchesterManchesterUK
| | - James Allan
- Centre for Atmospheric ScienceSchool of Earth and Environmental ScienceUniversity of ManchesterManchesterUK
| | - Jason D. Surratt
- Department of Environmental Sciences and EngineeringGillings School of Global Public HealthThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Asan Bacak
- Centre for Atmospheric ScienceSchool of Earth and Environmental ScienceUniversity of ManchesterManchesterUK
- Now at Turkish Accelerator & Radiation LaboratoryAnkara University Institute of Accelerator TechnologiesAtmospheric and Environmental Chemistry LaboratoryGölbaşı CampusAnkaraTurkey
| | - Paul Artaxo
- Institute of PhysicsUniversity of Sao PauloSao PauloBrazil
| | | | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution ControlInternational Joint Laboratory for Regional Pollution ControlMinistry of Education (IJRC)College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution ControlInternational Joint Laboratory for Regional Pollution ControlMinistry of Education (IJRC)College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
| | - Tao Wang
- Department of Civil and Environmental EngineeringHong Kong Polytechnic UniversityHong KongChina
| | - Thomas F. Mentel
- Institute of Energy and Climate Research, IEK‐8: TroposphereForschungszentrum Jülich GmbHJülichGermany
| | - Joel A. Thornton
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Mattias Hallquist
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
48
|
D’Ambro EL, Hyttinen N, Møller KH, Iyer S, Otkjær RV, Bell DM, Liu J, Lopez-Hilfiker FD, Schobesberger S, Shilling JE, Zelenyuk A, Kjaergaard HG, Thornton JA, Kurtén T. Pathways to Highly Oxidized Products in the Δ3-Carene + OH System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2213-2224. [PMID: 35119266 PMCID: PMC8956127 DOI: 10.1021/acs.est.1c06949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.
Collapse
Affiliation(s)
- Emma L. D’Ambro
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Noora Hyttinen
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| | - Kristian H. Møller
- Department
of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Siddharth Iyer
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| | - Rasmus V. Otkjær
- Department
of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - David M. Bell
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jiumeng Liu
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Felipe D. Lopez-Hilfiker
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Siegfried Schobesberger
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - John E. Shilling
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Alla Zelenyuk
- Atmospheric
Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Joel A. Thornton
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- Institute
for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
49
|
Mattila JM, Arata C, Abeleira A, Zhou Y, Wang C, Katz EF, Goldstein AH, Abbatt JPD, DeCarlo PF, Vance ME, Farmer DK. Contrasting Chemical Complexity and the Reactive Organic Carbon Budget of Indoor and Outdoor Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:109-118. [PMID: 34910454 DOI: 10.1021/acs.est.1c03915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reactive organic carbon (ROC) comprises a substantial fraction of the total atmospheric carbon budget. Emissions of ROC fuel atmospheric oxidation chemistry to produce secondary pollutants including ozone, carbon dioxide, and particulate matter. Compared to the outdoor atmosphere, the indoor organic carbon budget is comparatively understudied. We characterized indoor ROC in a test house during unoccupied, cooking, and cleaning scenarios using various online mass spectrometry and gas chromatography measurements of gaseous and particulate organics. Cooking greatly impacted indoor ROC concentrations and bulk physicochemical properties (e.g., volatility and oxidation state), while cleaning yielded relatively insubstantial changes. Additionally, cooking enhanced the reactivities of hydroxyl radicals and ozone toward indoor ROC. We observed consistently higher median ROC concentrations indoors (≥223 μg C m-3) compared to outdoors (54 μg C m-3), demonstrating that buildings can be a net source of reactive carbon to the outdoor atmosphere, following its removal by ventilation. We estimate the unoccupied test house emitted 0.7 g C day-1 from ROC to outdoors. Indoor ROC emissions may thus play an important role in air quality and secondary pollutant formation outdoors, particularly in urban and suburban areas, and indoors during the use of oxidant-generating air purifiers.
Collapse
Affiliation(s)
- James M Mattila
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Caleb Arata
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Andrew Abeleira
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yong Zhou
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Chen Wang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Erin F Katz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Peter F DeCarlo
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
50
|
Kenagy HS, Romer Present PS, Wooldridge PJ, Nault BA, Campuzano-Jost P, Day DA, Jimenez JL, Zare A, Pye HOT, Yu J, Song CH, Blake DR, Woo JH, Kim Y, Cohen RC. Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16326-16338. [PMID: 34870986 PMCID: PMC8759034 DOI: 10.1021/acs.est.1c05521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.
Collapse
Affiliation(s)
- Hannah S Kenagy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Paul S Romer Present
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Paul J Wooldridge
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin A Nault
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Pedro Campuzano-Jost
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Douglas A Day
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Jose L Jimenez
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Azimeh Zare
- Department of Chemistry, University of California, Berkeley, California 94710, United States
| | - Havala O T Pye
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Jinhyeok Yu
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61105, Republic of Korea
| | - Chul H Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61105, Republic of Korea
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jung-Hun Woo
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Younha Kim
- Energy, Climate, and Environment (ECE) Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria
| | - Ronald C Cohen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Earth & Planetary Sciences, University of California, Berkeley CA 94 720, United States
| |
Collapse
|