1
|
Kajita K, Ishii I, Mori I, Asano M, Fuwa M, Morita H. Sphingosine 1-Phosphate Regulates Obesity and Glucose Homeostasis. Int J Mol Sci 2024; 25:932. [PMID: 38256005 PMCID: PMC10816022 DOI: 10.3390/ijms25020932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
One of the major global health and welfare issues is the treatment of obesity and associated metabolic disorders, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease. Obesity, caused by the excessive accumulation of triglycerides in adipose tissues, induces adipocyte dysfunction, followed by inflammation, in adipose tissues and lipotoxicity in nonadipose tissues. Several studies have shown that obesity and glucose homeostasis are influenced by sphingolipid mediators, including ceramide and sphingosine 1-phosphate (S1P). Cellular accumulation of ceramide impairs pancreatic β-cell survival, confers insulin resistance in the liver and the skeletal muscle, and deteriorates adipose tissue inflammation via unknown molecular mechanisms. The roles of S1P are more complicated, because there are five cell-surface S1P receptors (S1PRs: S1P1-5) which have altered functions, different cellular expression patterns, and inapparent intracellular targets. Recent findings, including those by our group, support the notable concept that the pharmacological activation of S1P1 or S1P3 improves obesity and associated metabolic disorders, whereas that of S1P2 has the opposite effect. In addition, the regulation of S1P production by sphingosine kinase (SphK) is an essential factor affecting glucose homeostasis. This review summarizes the current knowledge on SphK/S1P/S1PR signaling in and against obesity, insulin resistance, and associated disorders.
Collapse
Affiliation(s)
- Kazuo Kajita
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women’s University, 80 Taromaru, Gifu 501-2592, Japan
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, 3-3165 Higashitamagawagakuen, Machida 194-8543, Japan
| | - Ichiro Mori
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Motochika Asano
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Masayuki Fuwa
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Hiroyuki Morita
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| |
Collapse
|
2
|
Gupta P, Ekbbal R. Liraglutide Improves Diabetic Cardiomyopathy by Downregulation of Cardiac Inflammatory and Apoptosis Markers. Curr Drug Res Rev 2024; 16:289-299. [PMID: 37966282 DOI: 10.2174/0125899775243787231103075804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is one of the leading causes of mortality for people with diabetes worldwide. The majority of the formalistic alterations in the heart associated with diabetic cardiomyopathy have been found to be primarily caused by the ongoing oxidative stress brought on by hyperglycemia, which leads to the dysfunctional reactions of apoptosis and inflammation. Liraglutide, a long-acting counterpart of glucagon-like peptide-1, has been demonstrated to have a number of therapeutic applications in medicine and other biological processes. METHODS The PubMed database was searched using the terms liraglutide, DCM, and all associated inflammatory markers. RESULTS There has been a lot of research on liraglutide's potential to protect the heart from cardiomyopathy brought on by diabetes. Liraglutide's therapeutic actions as an antioxidant, antihyperglycemic, anti-apoptotic, and anti-inflammatory medicine may help to lessen diabetic cardiomyopathy. CONCLUSION The most recent studies on the effects of liraglutide therapy on DCM are presented in this review, along with an explanation of the underlying mechanisms.
Collapse
Affiliation(s)
- Polly Gupta
- Department of Pharmaceutical Sciences, IIMT College of Medical Sciences (Pharmacy), IIMT University, Meerut, UP, India
| | - Rustam Ekbbal
- Department of Pharmacology, IIMT College of Medical Sciences (Pharmacy), IIMT University, Meerut, UP, India
| |
Collapse
|
3
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Luo Q, Ling Z, Huang X, Zuo Y. Association of IRS-1 and IRS-2 polymorphisms with predisposition to type-2 diabetes (T2D): a meta-analysis and trial sequential analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:837-851. [PMID: 37173295 DOI: 10.1080/15257770.2023.2211122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Background: Insulin Receptor Substrate (IRS) molecules play a major role in insulin signalling, and single nucleotide polymorphisms in the IRS-1 (rs1801278) and IRS-2 (rs1805097) gene has been associated with the predisposition to the development of type-2 diabetes (T2D) in some population. However, the observations remain contradictory. Discrepancies in the results have been attributed to several factors, and consideration of a smaller sample size is one of them. To reach a valid conclusion, we performed a meta-analysis of the genetic association between IRS-1 (rs1801278) and IRS-2 (rs1805097) polymorphism with a predisposition to T2D. Materials and Methods: The literature search was performed in different databases such as PubMed, Science Direct, and Scopus. All relevant articles were screened and based in inclusion and exclusion criteria eligible reports were identified. Baseline characteristics, genotype and allele frequencies were extracted from the eligible reports. The meta-analysis was performed by comprehensive meta-analysis software v3.3.070 and odds ratios, 95% confidence interval and probability values were calculated to find out association of IRS-1 and IRS-2 polymorphisms with rhinitis. Results: A total of seven studies comprising 1287 cases and 1638 control were considered for the present meta-analysis for the association of IRS-1 (rs1801278) polymorphism with T2D, and no significant association was observed. For IRS-2 (rs1805097) polymorphism, data from eight cohorts (cases: 1824, controls: 1786) were considered. The heterozygous genetic comparison models revealed a significant protective association against T2D predisposition (p = 0.017, OR = 0.841, 95% CI = 0.729 to 0.970). The trial sequential analysis revealed the requirement of additional case-control studies to draw a definitive conclusion for IRS-1 polymorphism. Conclusions: IRS-2 rs1805097 heterozygotes are protected from T2D development. However, IRS-1 (rs1801278) is not associated with a subject's proclivity for T2D.
Collapse
Affiliation(s)
- Qiaoyan Luo
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Zhifa Ling
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Xiaojia Huang
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Ying Zuo
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| |
Collapse
|
5
|
Chen N, Cao R, Zhang Z, Zhou S, Hu S. Sleeve Gastrectomy Improves Hepatic Glucose Metabolism by Downregulating FBXO2 and Activating the PI3K-AKT Pathway. Int J Mol Sci 2023; 24:5544. [PMID: 36982617 PMCID: PMC10052132 DOI: 10.3390/ijms24065544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), a chronic metabolic disease, is a public health concern that seriously endangers human health. Sleeve gastrectomy (SG) can relieve T2DM by improving glucose homeostasis and enhancing insulin sensitivity. However, its specific underlying mechanism remains elusive. SG and sham surgery were performed on mice fed a high-fat diet (HFD) for 16 weeks. Lipid metabolism was evaluated via histology and serum lipid analysis. Glucose metabolism was evaluated using the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Compared with the sham group, the SG group displayed a reduction in liver lipid accumulation and glucose intolerance, and western blot analysis revealed that the AMPK and PI3K-AKT pathways were activated. Furthermore, transcription and translation levels of FBXO2 were reduced after SG. After liver-specific overexpression of FBXO2, the improvement in glucose metabolism observed following SG was blunted; however, the remission of fatty liver was not influenced by the over expression of FBXO2. Our study explores the mechanism of SG in relieving T2DM, indicating that FBXO2 is a noninvasive therapeutic target that warrants further investigation.
Collapse
Affiliation(s)
- Ningyuan Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ruican Cao
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhao Zhang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Sai Zhou
- Graduate Faculty, Shandong First Medical University, Jinan 250117, China
| | - Sanyuan Hu
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Xu F, Zhang M, Wu H, Wang Y, Yang Y, Wang X. Study on the mechanism of lupenone for treating type 2 diabetes by integrating pharmacological evaluation and network pharmacology. PHARMACEUTICAL BIOLOGY 2022; 60:997-1010. [PMID: 35635284 PMCID: PMC9154797 DOI: 10.1080/13880209.2022.2067568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Lupenone (LUP) is the active ingredient of Musa basjoo Sieb. et Zucc. (Musaceae) with antidiabetes effects, but an unclear underlying mechanism of action. OBJECTIVE Animal experiments combined with network pharmacology were used to explore the mechanism of LUP for treating diabetes. MATERIALS AND METHODS Insulin resistance (IR) in male Sprague-Dawley rats with type 2 diabetic was induced using a high-fat diet and streptozotocin. The selected rats were divided into normal group, model group, positive group and LUP (2.0, 4.0 and 8.0 mg/kg) groups, and orally administrated twice daily with Tween 80, rosiglitazone or LUP. Fasting blood glucose (FBG), oxidative stress index, blood lipids and IR-related targets were detected. A network pharmacology analysis was performed. RESULTS Compared to the model group, LUP (8.0 mg/kg) significantly decreased the levels of FBG (22.3%), LEP (9.5%), HbA1c (14.9%) and MDA (12.3%), increased the ADPN (24.2%) levels and GSH-PX activity (12.4%) (p < 0.05), improved oxidative stress, lipid metabolism disorders and pancreas pathological changes, increased the mRNA and protein expression of InsR (3.7-fold and 1.3-fold), IRS-1 (3-fold and 2-fold), IRS-2 (2-fold and 1.6-fold), GLUT-4 (2-fold and 2.4-fold) in skeletal muscle and IRS-1 (6-fold and 1.6-fold), IRS-2 (5.8-fold and 1.5-fold), GLUT-4 (2.5-fold and 1.7-fold) and PPAR-γ (7-fold and 1.4-fold) in adipose tissue (p < 0.05). Network pharmacology analysis revealed that LUP improves IR by multiple targets and signal pathways. CONCLUSIONS The mechanism of LUP for treating diabetes is related to improving IR. LUP has the potential to be developed as a new drug for treating type 2 diabetes.
Collapse
Affiliation(s)
- Feng Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, PR China
| | - Mei Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, PR China
| | - Hongmei Wu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, PR China
| | - Yuanmin Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, PR China
| | - Ye Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, PR China
| | - Xiangpei Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, PR China
- College of Pharmacy, Guizhou Minzu University, Guiyang, PR China
- CONTACT Xiangpei Wang College of Pharmacy, Guizhou Minzu University, Huaxi District, Guizhou Province, Guiyang550025, PR China
| |
Collapse
|
7
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
8
|
Multi- and Transgenerational Effects of Developmental Exposure to Environmental Levels of PFAS and PFAS Mixture in Zebrafish ( Danio rerio). TOXICS 2022; 10:toxics10060334. [PMID: 35736942 PMCID: PMC9228135 DOI: 10.3390/toxics10060334] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment and are tied to myriad health effects. Despite the phasing out of the manufacturing of two types of PFASs (perfluorosulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)), chemical composition renders them effectively indestructible by ambient environmental processes, where they thus remain in water. Exposure via water can affect both human and aquatic wildlife. PFASs easily cross the placenta, exposing the fetus at critical windows of development. Little is known about the effects of low-level exposure during this period; even less is known about the potential for multi- and transgenerational effects. We examined the effects of ultra-low, very low, and low-level PFAS exposure (7, 70, and 700 ng/L PFOA; 24, 240, 2400 ng/L PFOS; and stepwise mixtures) from 0–5 days post-fertilization (dpf) on larval zebrafish (Danio rerio) mortality, morphology, behavior and gene expression and fecundity in adult F0 and F1 fish. As expected, environmentally relevant PFAS levels did not affect survival. Morphological abnormalities were not observed until the F1 and F2 generations. Behavior was affected differentially by each chemical and generation. Gene expression was increasingly perturbed in each generation but consistently showed lipid pathway disruption across all generations. Dysregulation of behavior and gene expression is heritable, even in larvae with no direct or indirect exposure. This is the first report of the transgenerational effects of PFOA, PFOS, and their mixture in terms of zebrafish behavior and untargeted gene expression.
Collapse
|
9
|
Cui F, He X. IGF-1 ameliorates streptozotocin-induced pancreatic β cell dysfunction and apoptosis via activating IRS1/PI3K/Akt/FOXO1 pathway. Inflamm Res 2022; 71:669-680. [PMID: 35333936 DOI: 10.1007/s00011-022-01557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes mellitus (T2DM) is an endocrine disorder with pancreatic β cell dysfunction and/or reduced insulin sensitivity. IGF-1 is critically involved in pancreatic β cell growth, differentiation, and insulin secretion. Insulin-mediated IRS1/PI3K/Akt/FOXO1 signaling has been proved to be closely associated with pancreatic β cell function, hepatic glucose metabolism, and the development of T2DM. This present work was designed to demonstrate the protective role of IGF-1 against pancreatic β cell dysfunction and to probe into the underlying mechanisms. METHODS Herein, cell viability, cell apoptosis, insulin secretion, oxidative stress, and glycolysis in STZ-treated INS-1 cells were measured, so as to determine the biological function of IGF-1 against pancreatic β cell dysfunction in T2DM. Additionally, whether IGF-1 could activate IRS1/PI3K/Akt/FOXO1 signaling pathway to manipulate the progression of T2DM was also investigated. RESULTS It was discovered that IGF-1 treatment enhanced the viability and suppressed the apoptosis of STZ-treated INS-1 cells. Besides, IGF-1 treatment augmented insulin secretion of INS-1 cells in response to STZ. Moreover, IGF-1 exerted protective role against oxidative damage and displayed inhibitory effect on glycolysis in STZ-treated INS-1 cells. Mechanistically, IGF-1 treatment markedly boosted the activation of IRS1/PI3K/Akt/FOXO1 pathway. Furthermore, treatment with AG1024 (an inhibitor of IGF-1R) partially abolished the actions of IGF-1 on cell viability, cell apoptosis, insulin secretion, oxidative stress, and glycolysis in STZ-treated INS-1 cells. CONCLUSION To conclude, IGF-1 could improve the viability and inhibit the apoptosis of STZ-treated pancreatic β cells, induce insulin secretion, alleviate oxidative damage, as well as arrest glycolysis by activating IRS1/PI3K/Akt/FOXO1 pathway.
Collapse
Affiliation(s)
- Fan Cui
- Department of Clinical Laboratory, The First People's Hospital of Wuhu, Wuhu, 241000, Anhui Province, China
| | - Xin He
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Tianhe District, No. 613 West Huangpu Avenue, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
10
|
Halperin F, Mezza T, Li P, Shirakawa J, Kulkarni RN, Goldfine AB. Insulin regulates arginine-stimulated insulin secretion in humans. Metabolism 2022; 128:155117. [PMID: 34999111 PMCID: PMC8821403 DOI: 10.1016/j.metabol.2021.155117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Abstract
AIMS Insulin potentiates glucose-stimulated insulin secretion. These effects are attenuated in beta cell-specific insulin receptor knockout mice and insulin resistant humans. This investigation examines whether short duration insulin exposure regulates beta cell responsiveness to arginine, a non-glucose secretagogue, in healthy humans. MATERIALS AND METHODS Arginine-stimulated insulin secretion was studied in 10 healthy humans. In each subject arginine was administered as a bolus followed by continuous infusion on two occasions one month apart, after sham/saline or hyperinsulinemic-isoglycemic clamp, respectively providing low and high insulin pre-exposure conditions. Arginine-stimulated insulin secretion was measured by C-peptide deconvolution, and by a selective immunogenic (DAKO) assay for direct measurement of endogenous but not exogenous insulin. RESULTS Pre-exposure to exogenous insulin augmented arginine-stimulated insulin secretion. The effect was seen acutely following arginine bolus (endogenous DAKO insulin incremental AUC240-255min 311.6 ± 208.1 (post-insulin exposure) versus 120.6 ± 42.2 μU/ml•min (sham/saline) (t-test P = 0.021)), as well as in response to continuous arginine infusion (DAKO insulin incremental AUC260-290min 1095.3 ± 592.1 (sham/saline) versus 564.8 ± 207.1 μU/ml•min (high insulin)(P = 0.009)). Findings were similar when beta cell response was assessed using C-peptide, insulin secretion rates by deconvolution, and the C-peptide to glucose ratio. CONCLUSIONS We demonstrate a physiologic role of insulin in regulation of the beta cell secretory response to arginine.
Collapse
Affiliation(s)
- Florencia Halperin
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Teresa Mezza
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ping Li
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Jun Shirakawa
- Joslin Diabetes Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Rohit N Kulkarni
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Allison B Goldfine
- Joslin Diabetes Center, Boston, MA, United States of America; Brigham and Women's Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
11
|
Li Y. Gypenoside A attenuates dysfunction of pancreatic β cells by activating PDX1 signal transduction via the inhibition of miR-150-3p both in vivo and in vitro. J Biochem Mol Toxicol 2022; 36:e23004. [PMID: 35191145 DOI: 10.1002/jbt.23004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Saponin gypenoside A (GP) has shown its potential to handle diabetes mellitus. MicroRNA-150-3p (miR-150-3p) is closely related to the dysfunction of pancreatic β cells by targeting PDX1. Given the function of GP is related to its regulation on different miRs, the current study assessed the role of miR-150-3p as a therapeutic target for the hypoglycemic effects of GP. Pancreatic β cell dysfunction was induced in mice using the high-fatty diet (HFD) method and then handled with GP. Changes in insulin release and resistance and the activity of the miR-150-3p/PDX1 axis were detected. The expression of miR-150-3p was induced to confirm its central in the effects of GP. The results of in vivo tests were then validated with in vitro assays. HFD administration suppressed glucose tolerance, delayed insulin release, and induced insulin resistance and pancreas apoptosis in mice, which was indicative of the dysfunction of β pancreatic cells. Changes in pancreatic β function were associated with the increased expression of miR-150-3p and suppressed expression of PDX1. After the administration of GP, the impairments of the pancreas were alleviated and the expression of miR-150-3p was inhibited, contributing to the restored level of PDX1. The injection of miR-150-3p agomir counteracted the protective effects of GP. In in vitro assays, the pretransfection of miR-150-3p mimetics also counteracted the protective effects of GP on pancreatic β cells against palmitic acid. Collectively, miR-150-3p played a key role in the protective effects of GP against pancreatic β cell dysfunction by inhibiting PDX1 expression.
Collapse
Affiliation(s)
- Yue Li
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Zasu A, Hishima F, Thauvin M, Yoneyama Y, Kitani Y, Hakuno F, Volovitch M, Takahashi SI, Vriz S, Rampon C, Kamei H. NADPH-Oxidase Derived Hydrogen Peroxide and Irs2b Facilitate Re-oxygenation-Induced Catch-Up Growth in Zebrafish Embryo. Front Endocrinol (Lausanne) 2022; 13:929668. [PMID: 35846271 PMCID: PMC9283716 DOI: 10.3389/fendo.2022.929668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Oxygen deprivation induces multiple changes at the cellular and organismal levels, and its re-supply also brings another special physiological status. We have investigated the effects of hypoxia/re-oxygenation on embryonic growth using the zebrafish model: hypoxia slows embryonic growth, but re-oxygenation induces growth spurt or catch-up growth. The mitogen-activated kinase (MAPK)-pathway downstream insulin-like growth factor (IGF/Igf) has been revealed to positively regulate the re-oxygenation-induced catch-up growth, and the role of reactive oxygen species generated by environmental oxygen fluctuation is potentially involved in the phenomenon. Here, we report the role of NADPH-oxidase (Nox)-dependent hydrogen peroxide (H2O2) production in the MAPK-activation and catch-up growth. The inhibition of Nox significantly blunted catch-up growth and MAPK-activity. Amongst two zebrafish insulin receptor substrate 2 genes (irs2a and irs2b), the loss of irs2b, but not its paralog irs2a, resulted in blunted MAPK-activation and catch-up growth. Furthermore, irs2b forcedly expressed in mammalian cells allowed IGF-MAPK augmentation in the presence of H2O2, and the irs2b deficiency completely abolished the somatotropic action of Nox in re-oxygenation condition. These results indicate that redox signaling alters IGF/Igf signaling to facilitate hypoxia/re-oxygenation-induced embryonic growth compensation.
Collapse
Affiliation(s)
- Ayaka Zasu
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
| | - Futa Hishima
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Sorbonne Université, Ecole Doctorale 515-Complexité du Vivant, Paris, France
| | - Yosuke Yoneyama
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichiro Kitani
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Department of Biology, École Normale Supérieure, Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
- Université Paris-Cité, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre national de la recherche scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, Paris, France
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne Université, Centre national de la recherche scientifique (CNRS), Paris, France
- Université Paris-Cité, Faculty of Sciences, Paris, France
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Noto, Japan
- *Correspondence: Hiroyasu Kamei,
| |
Collapse
|
13
|
Prakash A, Saxena VK, Kumar R, Tomar S, Singh MK, Singh G. Differential gene expression in liver of colored broiler chicken divergently selected for residual feed intake. Trop Anim Health Prod 2021; 53:403. [PMID: 34268607 DOI: 10.1007/s11250-021-02844-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Feed constitutes about 60-70% of the total cost of poultry production. So maximizing the feed efficiency will reduce production cost. The rapid growth in the juvenile period is essential to achieve higher body weight. Therefore, identifying the genes and pathways involved in rapid growth at an early age with a lesser requirement of feed is of utmost importance to further economize the broiler production. The efficiency of feed utilization was measured using RFI (residual feed intake). The present study aimed to estimate the RFI (0-5 week) in a population of indigenously developed colored broiler sire line chicken as well as identifying the differentially expressed genes influencing RFI in high and low RFI groups. The liver samples of high and low RFI broiler chicken aged 35 days were used for microarray analysis. A total of 2798 differentially expressed genes (DEGs) were identified, out of which 913 genes were downregulated and 1885 were upregulated. The fold change varied from - 475.17 to 552.94. A subset of genes was confirmed by qRT-PCR, and outcomes were matched well with microarray data. In the functional annotation study of DEGs, the highest significant GO (Gene Ontology) terms in the biological process included protein transport, protein localization, regulation of apoptosis, and mitochondrial transport. Gene network analysis of these DEGs plays an important role to understand the interaction among genes. Study of the important genes which were differentially expressed and the related molecular pathways in this population may hold the potential for future breeding strategies for augmenting feed efficiency.
Collapse
Affiliation(s)
- A Prakash
- College of Veterinary Science, GADVASU, Rampura Phul, Bathinda, Punjab, India.
| | - V K Saxena
- Division of Avian Genetics and Breeding, Central Avian Research Institute - Indian Council of Agricultural Research, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Ravi Kumar
- Department of Animal Biotechnology, National Institute of Animal Biotechnology, Hyderabad, 500075, Telangana, India
| | - S Tomar
- Division of Avian Genetics and Breeding, Central Avian Research Institute - Indian Council of Agricultural Research, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - M K Singh
- COVS, DUVASU, Mathura, Uttar Pradesh, India
| | - Gagandeep Singh
- College of Veterinary Science, GADVASU, Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
14
|
White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab 2021; 52:101304. [PMID: 34274528 PMCID: PMC8551477 DOI: 10.1016/j.molmet.2021.101304] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of insulin 100 years ago and its application to the treatment of human disease in the years since have marked a major turning point in the history of medicine. The availability of purified insulin allowed for the establishment of its physiological role in the regulation of blood glucose and ketones, the determination of its amino acid sequence, and the solving of its structure. Over the last 50 years, the function of insulin has been applied into the discovery of the insulin receptor and its signaling cascade to reveal the role of impaired insulin signaling-or resistance-in the progression of type 2 diabetes. It has also become clear that insulin signaling can impact not only classical insulin-sensitive tissues, but all tissues of the body, and that in many of these tissues the insulin signaling cascade regulates unexpected physiological functions. Despite these remarkable advances, much remains to be learned about both insulin signaling and how to use this molecular knowledge to advance the treatment of type 2 diabetes and other insulin-resistant states.
Collapse
Affiliation(s)
- Morris F White
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
16
|
Omolaoye TS, Windvogel SL, Du Plessis SS. The Effect of Rooibos ( Aspalathus linearis), Honeybush ( Cyclopia intermedia) and Sutherlandia ( Lessertia frutescens) on Testicular Insulin Signalling in Streptozotocin-Induced Diabetes in Wistar Rats. Diabetes Metab Syndr Obes 2021; 14:1267-1280. [PMID: 33776463 PMCID: PMC7989961 DOI: 10.2147/dmso.s285025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Testicular insulin signalling is altered in diabetic (DM) males. While unravelling the mechanism through which DM exert these detrimental effects, studies have shown the importance of insulin regulation in glucose homeostasis, and how a lack in insulin secretion indirectly led to reduced male fertility. The current study aimed to investigate the role of rooibos, honeybush and Sutherlandia on insulin signalling in the testicular tissue of type I diabetic rats. METHODS Animals (n=60) were randomly divided into six groups. The groups include a control group, a vehicle group, and diabetes was induced in the remainder of animals via a single intraperitoneal injection of STZ at 45mg/kg. The remaining four groups included a diabetic control (DC), diabetic + rooibos (DRF), diabetic + honeybush (DHB) and diabetic + Sutherlandia group (DSL). Animals were sacrificed after seven weeks of treatment, and blood and testes were collected. RESULTS All diabetic groups (DC, DRF, DHB, DSL) presented with a significant increase in blood glucose levels after diabetes induction compared to the control and vehicle (p<0.001). The DC animals presented with decreased testicular protein expression of IRS-1, PkB/Akt and GLUT4 compared to controls. DRF and DHB animals displayed an acute upregulation in IRS-1, while the DSL group showed improvement in IRS-2 compared to DC. Although, DRF animals presented with a decrease in PkB/Akt, DHB and DSL animals displayed upregulation (22.3%, 48%) compared to controls, respectively. CONCLUSION The results taken together, it can be suggested that these infusions may enhance insulin signalling through diverse pathways.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Shantal Lynn Windvogel
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Stellenbosch University, Cape Town, South Africa
| | - Stefan S Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Correspondence: Stefan S Du Plessis Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box 505055, Dubai, 505055, United Arab Emirates Email
| |
Collapse
|
17
|
Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 2020; 11:5982. [PMID: 33239617 PMCID: PMC7689468 DOI: 10.1038/s41467-020-19657-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass. The proliferation of pancreatic beta cells decreases with age, partly due to systemic changes. Here the authors identify Wisp1 as a circulating factor enriched in young serum that induces adult beta cell proliferation, supporting the idea that young blood factors may be useful to expand beta cell mass.
Collapse
|
18
|
Toyoshima Y, Nakamura K, Tokita R, Teramoto N, Sugihara H, Kato H, Yamanouchi K, Minami S. Disruption of insulin receptor substrate-2 impairs growth but not insulin function in rats. J Biol Chem 2020; 295:11914-11927. [PMID: 32631952 DOI: 10.1074/jbc.ra120.013095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/01/2020] [Indexed: 11/06/2022] Open
Abstract
Insulin receptor substrate (IRS)-2, along with IRS-1, is a key signaling molecule that mediates the action of insulin and insulin-like growth factor (IGF)-I. The activated insulin and IGF-I receptors phosphorylate IRSs on tyrosine residues, leading to the activation of downstream signaling pathways and the induction of various physiological functions of insulin and IGF-I. Studies using IRS-2 knockout (KO) mice showed that the deletion of IRS-2 causes type 2 diabetes due to peripheral insulin resistance and impaired β-cell function. However, little is known about the roles of IRS-2 in other animal models. Here, we created IRS-2 KO rats to elucidate the physiological functions of IRS-2 in rats. The body weights of IRS-2 KO rats at birth were lower compared with those of their WT littermates. The postnatal growth of both male and female IRS-2 KO rats was also suppressed. Compared with male WT rats, the glucose and insulin tolerance of male IRS-2 KO rats were slightly enhanced, whereas a similar difference was not observed between female WT and IRS-2 KO rats. Besides the modestly increased insulin sensitivity, male IRS-2 KO rats displayed the enhanced insulin-induced activation of the mTOR complex 1 pathway in the liver compared with WT rats. Taken together, these results indicate that in rats, IRS-2 plays important roles in the regulation of growth but is not essential for the glucose-lowering effects of insulin.
Collapse
Affiliation(s)
- Yuka Toyoshima
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-machi, Nakahara-ku, Kawasaki, Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Reiko Tokita
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-machi, Nakahara-ku, Kawasaki, Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hisanori Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Shiro Minami
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kosugi-machi, Nakahara-ku, Kawasaki, Japan
| |
Collapse
|
19
|
Polymorphism analysis of the Gly972Arg IRS-1 and Gly1057Asp IRS-2 genes in obese pregnant women. Reprod Biol 2020; 20:365-370. [PMID: 32540195 DOI: 10.1016/j.repbio.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 11/21/2022]
Abstract
Genes encoding insulin receptor substrates IRS-1 and IRS-2 perform key functions in the insulin pathway. Numerous authors have suggested that single-nucleotide polymorphism (SNP) changes in the DNA sequence may be associated with the development of obesity, insulin resistance and type 2 diabetes. The Gly972Arg polymorphism of the IRS-1 gene and the Gly1057Asp polymorphism of the IRS-2 gene are believed to be associated with the occurrence of insulin resistance and obesity according to many sources. The aim of our study was to investigate the influence of these polymorphisms on the clinical parameters and to assess their correlations in obese Polish pregnant women. A total of 154 pregnant Caucasian women from the Wielkopolska region were analyzed: 78 diagnosed with overweight or obesity (study group) and 76 with normal body mass (controls). The analysis of the polymorphisms was performed using the PCR-restriction fragment length polymorphism (PCR-RFLP) method. The IRS-2 Gly1057Asp polymorphism revealed no significant correlations with excessive weight gain during pregnancy. The analysis of the IRS-1 Gly972Arg polymorphism showed an association with obesity between the study and control groups (GG-80.77%, GR-17.95%, RR-1.28% vs GG-94.74%, GR-5.26%; p = 0.023). We also observed slightly increased BMI values and higher values of the waist and hip circumference before pregnancy in the case of the IRS-1 Gly972Arg polymorphism. The analysis of the clinical and anthropometric parameters demonstrated no significant relationships between the genotypes of the polymorphic variants of the IRS-1 and IRS-2 genes but suggested an association between the IRS-1 Gly972Arg polymorphism and the risk for obesity.
Collapse
|
20
|
Hudish LI, Reusch JE, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2020; 129:4001-4008. [PMID: 31424428 DOI: 10.1172/jci129188] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a society where physical activity is limited and food supply is abundant, metabolic diseases are becoming a serious epidemic. Metabolic syndrome (MetS) represents a cluster of metabolically related symptoms such as obesity, hypertension, dyslipidemia, and carbohydrate intolerance, and significantly increases type 2 diabetes mellitus risk. Insulin resistance and hyperinsulinemia are consistent characteristics of MetS, but which of these features is the initiating insult is still widely debated. Regardless, both of these conditions trigger adverse responses from the pancreatic β cell, which is responsible for producing, storing, and releasing insulin to maintain glucose homeostasis. The observation that the degree of β cell dysfunction correlates with the severity of MetS highlights the need to better understand β cell dysfunction in the development of MetS. This Review focuses on the current understanding from rodent and human studies of the progression of β cell responses during the development of MetS, as well as recent findings addressing the complexity of β cell identity and heterogeneity within the islet during disease progression. The differential responses observed in β cells together with the heterogeneity in disease phenotypes within the patient population emphasize the need to better understand the mechanisms behind β cell adaptation, identity, and dysfunction in MetS.
Collapse
Affiliation(s)
| | - Jane Eb Reusch
- Division of Endocrinology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | | |
Collapse
|
21
|
Rachdaoui N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21051770. [PMID: 32150819 PMCID: PMC7084909 DOI: 10.3390/ijms21051770] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin, a hormone produced by pancreatic β-cells, has a primary function of maintaining glucose homeostasis. Deficiencies in β-cell insulin secretion result in the development of type 1 and type 2 diabetes, metabolic disorders characterized by high levels of blood glucose. Type 2 diabetes mellitus (T2DM) is characterized by the presence of peripheral insulin resistance in tissues such as skeletal muscle, adipose tissue and liver and develops when β-cells fail to compensate for the peripheral insulin resistance. Insulin resistance triggers a rise in insulin demand and leads to β-cell compensation by increasing both β-cell mass and insulin secretion and leads to the development of hyperinsulinemia. In a vicious cycle, hyperinsulinemia exacerbates the metabolic dysregulations that lead to β-cell failure and the development of T2DM. Insulin and IGF-1 signaling pathways play critical roles in maintaining the differentiated phenotype of β-cells. The autocrine actions of secreted insulin on β-cells is still controversial; work by us and others has shown positive and negative actions by insulin on β-cells. We discuss findings that support the concept of an autocrine action of secreted insulin on β-cells. The hypothesis of whether, during the development of T2DM, secreted insulin initially acts as a friend and contributes to β-cell compensation and then, at a later stage, becomes a foe and contributes to β-cell decompensation will be discussed.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Department of Animal Sciences, Room 108, Foran Hall, Rutgers, the State University of New Jersey, 59 Dudley Rd, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Jara MA, Werneck-De-Castro JP, Lubaczeuski C, Johnson JD, Bernal-Mizrachi E. Pancreatic and duodenal homeobox-1 (PDX1) contributes to β-cell mass expansion and proliferation induced by Akt/PKB pathway. Islets 2020; 12:32-40. [PMID: 32876522 PMCID: PMC7527019 DOI: 10.1080/19382014.2020.1762471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Maintenance of pancreatic β-cell mass and function is fundamental to glucose homeostasis and to prevent diabetes. The PI3 K-Akt-mTORC1 pathway is critical for β-cells mass and function, while PDX1 has been implicated in β-cell development, maturation, and function. Here we tested whether Akt signaling requires PDX1 expression to regulate β-cell mass, proliferation, and glucose homeostasis. In order to address that, we crossed a mouse model overexpressing constitutively active Akt mutant in β-cells (β-caAkt) with mice lacking one allele of PDX1gene (β-caAkt/pdx1+/-). While the β-caAkt mice exhibit higher plasma insulin levels, greater β-cell mass and improved glucose tolerance compared to control mice, the β-caAkt/pdx1+/- mice are hyperglycemic and intolerant to glucose. The changes in glucose homeostasis in β-caAkt/pdx1+/- were associated with a 60% reduction in β-cell mass compared to β-caAkt mice. The impaired β-cell mass in the β-caAkt/pdx1+/- mice can be explained by a lesser β-cell proliferation measured by the number of Ki67 positive β-cells. We did not observe any differences in apoptosis between β-caAkt/pdx1+/- and β-caAkt mice. In conclusion, PDX1 contributes to β-cell mass expansion and glucose metabolism induced by activation of Akt signaling.
Collapse
Affiliation(s)
- Mark Anthony Jara
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joao Pedro Werneck-De-Castro
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami VA Health Care System, Miami, FL, USA
| | - Camila Lubaczeuski
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami VA Health Care System, Miami, FL, USA
- CONTACT Ernesto Bernal-Mizrachi Department Of Internal Medicine, Division Of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL33136, USA
| |
Collapse
|
23
|
Li Y, Wang K, Zhang P, Huang J, Liu Y, Wang Z, Lu Y, Tan S, Yang F, Tan Y. Pyrosequencing analysis of IRS1 methylation levels in schizophrenia with tardive dyskinesia. Mol Med Rep 2020; 21:1702-1708. [PMID: 32319643 PMCID: PMC7057828 DOI: 10.3892/mmr.2020.10984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Tardive dyskinesia (TD) is a serious side effect of certain antipsychotic medications that are used to treat schizophrenia (SCZ) and other mental illnesses. The methylation status of the insulin receptor substrate 1 (IRS1) gene is reportedly associated with SCZ; however, no study, to the best of the authors' knowledge, has focused on the quantitative DNA methylation levels of the IRS1 gene using pyrosequencing in SCZ with or without TD. The present study aimed to quantify DNA methylation levels of 4 CpG sites in the IRS1 gene using a Chinese sample including SCZ patients with TD and without TD (NTD) and healthy controls (HCs). The general linear model (GLM) was used to detect DNA methylation levels among the 3 proposed groups (TD vs. NTD vs. HC). Mean DNA methylation levels of 4 CpG sites demonstrated normal distribution. Pearson's correlation analysis did not reveal any significant correlations between the DNA methylation levels of the 4 CpG sites and the severity of SCZ. GLM revealed significant differences between the 3 groups for CpG site 1 and the average of the 4 CpG sites (P=0.0001 and P=0.0126, respectively). Furthermore, the TD, NTD and TD + NTD groups demonstrated lower methylation levels in CpG site 1 (P=0.0003, P<0.0001 and P<0.0001, respectively) and the average of 4 CpG sites (P=0.0176, P=0.0063 and P=0.003, respectively) compared with the HC group. The results revealed that both NTD and TD patients had significantly decreased DNA methylation levels compared with healthy controls, which indicated a significant association between the DNA methylation levels of the IRS1 gene with SCZ and TD.
Collapse
Affiliation(s)
- Yanli Li
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Ping Zhang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Junchao Huang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, P.R. China
| |
Collapse
|
24
|
Nagai N, Ayaki M, Yanagawa T, Hattori A, Negishi K, Mori T, Nakamura TJ, Tsubota K. Suppression of Blue Light at Night Ameliorates Metabolic Abnormalities by Controlling Circadian Rhythms. Invest Ophthalmol Vis Sci 2020; 60:3786-3793. [PMID: 31504080 DOI: 10.1167/iovs.19-27195] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Light-emitting diodes that emit high-intensity blue light are associated with blue-light hazard. Here, we report that blue light disturbs circadian rhythms by interfering with the clock gene in the suprachiasmatic nucleus (SCN) and that suppression of blue light at night ameliorates metabolic abnormalities by controlling circadian rhythms. Methods C57BL/6J mice were exposed to 10-lux light for 30 minutes at Zeitgeber time 14 for light pulse with blue light or blue-light cut light to induce phase shift of circadian rhythms. Phase shift, clock gene expression in SCN, and metabolic parameters were analyzed. In the clinical study, healthy participants wore blue-light shield eyewear for 2 to 3 hours before bed. Anthropometric data analyses, laboratory tests, and sleep quality questionnaires were performed before and after the study. Results In mice, phase shift induced with a blue-light cut light pulse was significantly shorter than that induced with a white light pulse. The phase of Per2 expression in the SCN was also delayed after a white light pulse. Moreover, blood glucose levels 48 hours after the white light pulse were higher than those after the blue-cut light pulse. Irs2 expression in the liver was decreased with white light but significantly recovered with the blue-cut light pulse. In a clinical study, after 1 month of wearing blue-light shield eyeglasses, there were improvements in fasting plasma glucose levels, insulin resistance, and sleep quality. Conclusions Our results suggest that suppression of blue light at night effectively maintains circadian rhythms and metabolism.
Collapse
Affiliation(s)
- Norihiro Nagai
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiko Ayaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuo Yanagawa
- Department of Medicine, Nerima General Hospital, Tokyo, Japan.,Public Interest Incorporated Foundation, Tokyo Healthcare Foundation, Institute of Healthcare Quality Improvement, Tokyo, Japan
| | - Atsuhiko Hattori
- Department of Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Takuro Mori
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Takahiro J Nakamura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan.,Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Human Fetal Bone Marrow-Derived Mesenchymal Stem Cells Promote the Proliferation and Differentiation of Pancreatic Progenitor Cells and the Engraftment Function of Islet-Like Cell Clusters. Int J Mol Sci 2019; 20:ijms20174083. [PMID: 31438545 PMCID: PMC6747176 DOI: 10.3390/ijms20174083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic progenitor cells (PPCs) are the primary source for all pancreatic cells, including beta-cells, and thus the proliferation and differentiation of PPCs into islet-like cell clusters (ICCs) opens an avenue to providing transplantable islets for diabetic patients. Meanwhile, mesenchymal stem cells (MSCs) can enhance the development and function of different cell types of interest, but their role on PPCs remains unknown. We aimed to explore the mechanism-of-action whereby MSCs induce the in vitro and in vivo PPC/ICC development by means of our established co-culture system of human PPCs with human fetal bone marrow-derived MSCs. We examined the effect of MSC-conditioned medium on PPC proliferation and survival. Meanwhile, we studied the effect of MSC co-culture enhanced PPC/ICC function in vitro and in vivo co-/transplantation. Furthermore, we identified IGF1 as a critical factor responsible for the MSC effects on PPC differentiation and proliferation via IGF1-PI3K/Akt and IGF1-MEK/ERK1/2, respectively. In conclusion, our data indicate that MSCs stimulated the differentiation and proliferation of human PPCs via IGF1 signaling, and more importantly, promoted the in vivo engraftment function of ICCs. Taken together, our protocol may provide a mechanism-driven basis for the proliferation and differentiation of PPCs into clinically transplantable islets.
Collapse
|
26
|
Román CL, Maiztegui B, Mencucci MV, Ahrtz L, Algañarás M, Del Zotto H, Gagliardino JJ, Flores LE. Effects of islet neogenesis associated protein depend on vascular endothelial growth factor gene expression modulated by hypoxia-inducible factor 1-alpha. Peptides 2019; 117:170090. [PMID: 31121197 DOI: 10.1016/j.peptides.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pharmacology has provided efficient tools to improve insulin effect/secretion but the decrease in β-cell mass remains elusive. INGAP-PP could provide a therapeutic alternative to meet that challenge. AIM To further understand the mechanism that links INGAP-PP effects upon β-cell mass and function with islet angiogenesis. METHODOLOGY Normal male Wistar rats were divided into 2 groups and injected with a single dose of 100 mg/Kg suramin or saline. Both groups were divided into 2 subgroups that received daily doses of 2 mg/kg INGAP-PP or saline for ten days. Plasma glucose, triacylglycerol, TBARS, and insulin levels were measured. Pancreas immunomorphometric analyses were also performed. Pancreatic islets were isolated to measure glucose-stimulated insulin secretion (GSIS). Specific islet mRNA levels were studied by qRT-PCR. Statistical analysis was done using ANOVA. RESULTS No differences were recorded in body weight, food intake, or any other plasma parameter measured in all groups. Islets from INGAP-PP-treated rats significantly increased GSIS, β-cell mass, and mRNA levels of Bcl-2, Ngn-3, VEGF-A, VEGF-R2, CD31, Ang1 and Ang2, Laminin β-1, and Integrin β-1, and decreased mRNA levels of Caspase-8, Bad, and Bax. Islets from suramin-treated rats showed significant opposite effects, but INGAPP-PP administration rescued most of the suramin effects in animals treated with both compounds. CONCLUSION Our results reinforce the concept that INGAP-PP enhances insulin secretion and β-cell mass, acting through PI3K/Akt/mTOR pathways and simultaneously activating angiogenesis through HIF-1α-mediated VEGF-A secretion. Therefore, INGAP-PP might be a suitable antidiabetic agent able to overcome two major alterations present in T2D.
Collapse
Affiliation(s)
- C L Román
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - B Maiztegui
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - M V Mencucci
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - L Ahrtz
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - M Algañarás
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - H Del Zotto
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - J J Gagliardino
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina
| | - L E Flores
- CENEXA. Centro de Endocrinología Experimental y Aplicada (UNLP-CONICETLa Plata), Facultad de Ciencias Médicas UNLP. 60 y 120 (s/n) 4to piso 1900 La Plata, Argentina.
| |
Collapse
|
27
|
Iglesias-Osma MC, Blanco EJ, Carretero-Hernandez M, Catalano-Iniesta L, Sanchez-Robledo V, Garcia-Barrado MJ, Vicente-Garcia T, Burks DJ, Carretero J. The influence of the lack of insulin receptor substrate 2 (IRS2) on the thyroid gland. Sci Rep 2019; 9:5673. [PMID: 30952933 PMCID: PMC6450905 DOI: 10.1038/s41598-019-42198-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
Involvement of IRS2 in the proliferative effects of IGF-I of follicular thyroid cells has been described, but there are no evidences for in vivo participation of IRS2. This study aimed to analyse the in vivo relevance of IRS2 in the proliferation and apoptosis of thyroid cells by immunocytochemical studies for PCNA, Ki67, and active-caspase-3 in thyroid cells of IRS2 knockout (IRS2-KO) mice, jointly to TUNEL assay. Thyroid hormones were lower in IRS2-KO mice than in their wild-type (WT) counterparts. Increases in the area, perimeter and diameter of thyroid follicles of IRS2-KO mice were observed, which also showed increased proliferation rate of follicular cells and decreased percentage of apoptotic cells that was more evident in the central than in the marginal region of the gland. Sex-related differences were also found, since the follicular epithelium height was higher in male than in female mice. The percentage of proliferating cells showed significant changes in male but not in female mice, and apoptotic cells were more abundant in female than in male IRS2-KO animals, without significant differences between WT-animals. Therefore, our results suggest that IRS2 could be involved in the maintenance of thyroid cells population and in the normal physiology of the thyroid gland.
Collapse
Affiliation(s)
- Maria Carmen Iglesias-Osma
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain. .,Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| | - Enrique J Blanco
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Marta Carretero-Hernandez
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Leonardo Catalano-Iniesta
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Virginia Sanchez-Robledo
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Maria Jose Garcia-Barrado
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Teresa Vicente-Garcia
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Deborah J Burks
- Laboratory of Molecular Neuroendocrinology, Principe Felipe Research Center (CIPF), Valencia, Spain
| | - Jose Carretero
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain. .,Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
28
|
Ye R, Onodera T, Scherer PE. Lipotoxicity and β Cell Maintenance in Obesity and Type 2 Diabetes. J Endocr Soc 2019; 3:617-631. [PMID: 30834357 PMCID: PMC6391718 DOI: 10.1210/js.2018-00372] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity and diabetes are often associated with lipotoxic conditions in multiple tissues. The insulin-producing β cells are susceptible to elevated lipid levels and the ensuing lipotoxicity. The preservation of β cell mass and function is one of the main goals of diabetes management under these metabolically stressful conditions. However, the adverse effects from the adaptive signaling pathways that β cells use to counteract lipotoxic stress have secondary negative effects in their own right. Antilipotoxic signaling cascades in β cells can contribute to their eventual failure. Such dual roles are seen for many other biological adaptive processes as well.
Collapse
Affiliation(s)
- Risheng Ye
- Department of Medical Education, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, Texas
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
29
|
Rached MT, Millership SJ, Pedroni SMA, Choudhury AI, Costa ASH, Hardy DG, Glegola JA, Irvine EE, Selman C, Woodberry MC, Yadav VK, Khadayate S, Vidal-Puig A, Virtue S, Frezza C, Withers DJ. Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. Mol Metab 2019; 20:38-50. [PMID: 30553769 PMCID: PMC6358539 DOI: 10.1016/j.molmet.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Sympathetic nervous system and immune cell interactions play key roles in the regulation of metabolism. For example, recent convergent studies have shown that macrophages regulate obesity through brown adipose tissue (BAT) activation and beiging of white adipose tissue (WAT) via effects upon local catecholamine availability. However, these studies have raised issues about the underlying mechanisms involved including questions regarding the production of catecholamines by macrophages, the role of macrophage polarization state and the underlying intracellular signaling pathways in macrophages that might mediate these effects. METHODS To address such issues we generated mice lacking Irs2, which mediates the effects of insulin and interleukin 4, specifically in LyzM expressing cells (Irs2LyzM-/- mice). RESULTS These animals displayed obesity resistance and preservation of glucose homeostasis on high fat diet feeding due to increased energy expenditure via enhanced BAT activity and WAT beiging. Macrophages per se did not produce catecholamines but Irs2LyzM-/- mice displayed increased sympathetic nerve density and catecholamine availability in adipose tissue. Irs2-deficient macrophages displayed an anti-inflammatory transcriptional profile and alterations in genes involved in scavenging catecholamines and supporting increased sympathetic innervation. CONCLUSIONS Our studies identify a critical macrophage signaling pathway involved in the regulation of adipose tissue sympathetic nerve function that, in turn, mediates key neuroimmune effects upon systemic metabolism. The insights gained may open therapeutic opportunities for the treatment of obesity.
Collapse
Affiliation(s)
- Marie-Therese Rached
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Silvia M A Pedroni
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Darran G Hardy
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Justyna A Glegola
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Elaine E Irvine
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Megan C Woodberry
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Vijay K Yadav
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK; Department of Genetics and Development, Columbia University, New York, 10032, USA
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK; University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
30
|
Çelik S, Baysal B, Şen S. Resveratrol Attenuates Benzo(a)pyrene-Induced Dysfunctions, Oxidative Stress and Apoptosis in Pancreatic Beta-Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/abb.2019.1011029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Nagpal A, Chauhan M. Quantitative structure–activity relationship analysis of thiophene derivatives to explore the structural requirements for c-Jun NH 2-terminal kinase 1 inhibitory activity. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2019. [DOI: 10.4103/jrptps.jrptps_32_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Xiao D, Kou H, Gui S, Ji Z, Guo Y, Wu Y, Wang H. Age-Characteristic Changes of Glucose Metabolism, Pancreatic Morphology and Function in Male Offspring Rats Induced by Prenatal Ethanol Exposure. Front Endocrinol (Lausanne) 2019; 10:34. [PMID: 30778335 PMCID: PMC6369175 DOI: 10.3389/fendo.2019.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023] Open
Abstract
Intrauterine growth restricted offspring suffer from abnormal glucose homeostasis and β cell dysfunction. In this study, we observed the dynamic changes of glucose metabolic phenotype, pancreatic morphology, and insulin synthesis in prenatal ethanol exposure (PEE) male offspring rats, and to explore the potential intrauterine programming mechanism of the glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis. Ethanol (4 g/kg·d) was administered through oral gavage during gestational day (GD) 9-20. Serum glucose and insulin levels, pancreatic β cell mass, and expression of glucocorticoid receptor (GR), IGF1 and insulin were determined on GD20, postnatal week (PW) 6, PW12 with/without chronic stress (CS), and PW24, respectively. Both intraperitoneal glucose and insulin tolerance tests were conducted at PW12 and PW24. Results showed that the serum glucose and insulin levels as well as pancreatic β cell mass were reduced on GD20 in PEE males compared with the controls, while pancreatic GR expression was enhanced but IGF1 and INS1/2 expression were suppressed. After birth, compared with the controls, β cell mass in the PEE males was initially decreased at PW6 and gradually recovered from PW12 to PW24, which was accompanied by increased serum glucose/insulin levels and insulin resistance index (IRI) at PW6 and decreased serum glucose contents at PW12, as well as unchanged serum glucose/insulin concentrations at PW24. In addition, both improved glucose tolerance and impaired insulin sensitivity of the PEE males at PW12 were inversed at PW24. Moreover, at PW6 and PW12, pancreatic GR expression in the PEE group was decreased, while IGF1 expression was reversely increased, resulting in a compensatory increase of insulin expression. Moreover, CS induced pancreatic GR activation and inhibited IGF1 expression, resulting in impaired insulin biosynthesis. Conclusively, the above changes were associated with age and the intrauterine programming alteration of GC-IGF1 axis may be involved in prenatal and postnatal pancreatic dysplasia and impaired insulin biosynthesis in PEE male offspring.
Collapse
Affiliation(s)
- Di Xiao
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| | - Shuxia Gui
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
| | - Zhenyu Ji
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| | - Yin Wu
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
- *Correspondence: Hui Wang
| |
Collapse
|
33
|
Xu H, Li X, Adams H, Kubena K, Guo S. Etiology of Metabolic Syndrome and Dietary Intervention. Int J Mol Sci 2018; 20:ijms20010128. [PMID: 30602666 PMCID: PMC6337367 DOI: 10.3390/ijms20010128] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
The growing prevalence of metabolic syndrome (MetS) in the U.S. and even worldwide is becoming a serious health problem and economic burden. MetS has become a crucial risk factor for the development of type 2 diabetes mellitus (T2D) and cardiovascular diseases (CVD). The rising rates of CVD and diabetes, which are the two leading causes of death, simultaneously exist. To prevent the progression of MetS to diabetes and CVD, we have to understand how MetS occurs and how it progresses. Too many causative factors interact with each other, making the investigation and treatment of metabolic syndrome a very complex issue. Recently, a number of studies were conducted to investigate mechanisms and interventions of MetS, from different aspects. In this review, the proposed and demonstrated mechanisms of MetS pathogenesis are discussed and summarized. More importantly, different interventions are discussed, so that health practitioners can have a better understanding of the most recent research progress and have available references for their daily practice.
Collapse
Affiliation(s)
- Hang Xu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Xiaopeng Li
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hannah Adams
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Karen Kubena
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Shaodong Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
34
|
Vassilakos G, Barton ER. Insulin-Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. Compr Physiol 2018; 9:413-438. [PMID: 30549022 DOI: 10.1002/cphy.c180010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) pathway is essential for promoting growth and survival of virtually all tissues. It bears high homology to its related protein insulin, and as such, there is an interplay between these molecules with regard to their anabolic and metabolic functions. Skeletal muscle produces a significant proportion of IGF-1, and is highly responsive to its actions, including increased muscle mass and improved regenerative capacity. In this overview, the regulation of IGF-1 production, stability, and activity in skeletal muscle will be described. Second, the physiological significance of the forms of IGF-1 produced will be discussed. Last, the interaction of IGF-1 with other pathways will be addressed. © 2019 American Physiological Society. Compr Physiol 9:413-438, 2019.
Collapse
Affiliation(s)
- Georgios Vassilakos
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
Wen HJ, Liu GF, Xiao LZ, Wu YG. Involvement of endothelial nitric oxide synthase pathway in IGF‑1 protects endothelial progenitor cells against injury from oxidized LDLs. Mol Med Rep 2018; 19:660-666. [PMID: 30431094 DOI: 10.3892/mmr.2018.9633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
A high level of oxidized low‑density lipoproteins (oxLDLs) is an independent risk factor for cardiovascular disease. The aim of the present study was to investigate whether insulin‑like growth factor‑1 (IGF‑1) protected endothelial progenitor cells (EPCs) from injury caused by ox‑LDLs, and whether the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway was involved in this process. EPCs were isolated from human peripheral blood and characterized. In order to evaluate the effect of IGF‑1 on EPCs, cells were incubated with ox‑LDLs (100 mg/ml) for 24 h to induce a model of EPC dysfunction in vitro, which demonstrated a decrease in the number of EPCs, concomitant with increased apoptosis and decreased proliferation rates. IGF‑1 dose‑dependently increased the number of EPCs. Concurrently, IGF‑1 decreased the levels of apoptosis of EPCs and improved EPCs proliferation following ox‑LDLs challenge. In addition, IGF‑1 significantly increased NO levels in ox‑LDLs‑treated EPCs, accompanied by an upregulation in eNOS expression. The protective effects of IGF‑1 on EPCs and NO production were abolished by L‑NAME, a specific eNOS inhibitor. These results suggested that IGF‑1 protects EPCs from dysfunction induced by oxLDLs through a mechanism involving the eNOS/NO pathway.
Collapse
Affiliation(s)
- Hao-Jing Wen
- Positron Emission Tomography‑Computed Tomography Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Guo-Feng Liu
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Li-Zhi Xiao
- Positron Emission Tomography‑Computed Tomography Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yong-Gang Wu
- Positron Emission Tomography‑Computed Tomography Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
36
|
Rachdaoui N, Polo-Parada L, Ismail-Beigi F. Prolonged Exposure to Insulin Inactivates Akt and Erk 1/2 and Increases Pancreatic Islet and INS1E β-Cell Apoptosis. J Endocr Soc 2018; 3:69-90. [PMID: 30697602 PMCID: PMC6344346 DOI: 10.1210/js.2018-00140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic hyperinsulinemia, in vivo, increases the resistance of peripheral tissues to insulin by desensitizing insulin signaling. Insulin, in a heterologous manner, can also cause IGF-1 resistance. The aim of the current study was to investigate whether insulin-mediated insulin and IGF-1 resistance develops in pancreatic β-cells and whether this resistance results in β-cell decompensation. Chronic exposure of rat islets or INS1E β-cells to increasing concentrations of insulin decreased AktS473 phosphorylation in response to subsequent acute stimulation with 10 nM insulin or IGF-1. Prolonged exposure to high insulin levels not only inhibited AktS473 phosphorylation, but it also resulted in a significant inhibition of the phosphorylation of P70S6 kinase and Erk1/2 phosphorylation in response to the acute stimulation by glucose, insulin, or IGF-1. Decreased activation of Akt, P70S6K, and Erk1/2 was associated with decreased insulin receptor substrate 2 tyrosine phosphorylation and insulin receptor β-subunit abundance; neither IGF receptor β-subunit content nor its phosphorylation were affected. These signaling impairments were associated with decreased SERCA2 expression, perturbed plasma membrane calcium current and intracellular calcium handling, increased endoplasmic reticulum stress markers such as eIF2αS51 phosphorylation and Bip (GRP78) expression, and increased islet and β-cell apoptosis. We demonstrate that prolonged exposure to high insulin levels induces not only insulin resistance, but in a heterologous manner causes resistance to IGF-1 in rat islets and insulinoma cells resulting in decreased cell survival. These findings suggest the possibility that chronic exposure to hyperinsulinemia may negatively affect β-cell mass by increasing β-cell apoptosis.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Division of Clinical and Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Faramarz Ismail-Beigi
- Division of Clinical and Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
37
|
Lei L, Han F, Cui Q, Liao W, Liu H, Guan G, Yang L. IRS2 depletion inhibits cell proliferation and decreases hormone secretion in mouse granulosa cells. J Reprod Dev 2018; 64:409-416. [PMID: 29998910 PMCID: PMC6189576 DOI: 10.1262/jrd.2018-055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin receptor substrate 2 (IRS2) is a component of the insulin/insulin-like growth factor 1 (IGF1) signaling cascade, which plays an important role in mouse hypothalamic and ovarian
functions. The present study was conducted to investigate the role of IRS2 in steroidogenesis, apoptosis, cell cycle and proliferation in mouse granulosa cells (GCs). Flow cytometry and CCK8
assay showed that IRS2 knockdown inhibited cell proliferation, reduced cell viability, and increased apoptosis in GCs. The study also revealed that the expression of Cyclin A1, Cyclin B1 and
Bcl2 was downregulated, while the expression of Bax, Cyclin D1 and Cyclin D2 was upregulated. ELISA analysis showed that IRS2 knockdown decreased the concentrations of estradiol
(E2) and progesterone (P4), which was further validated by the decreased expression of Star, Cyp11a1, and Cyp19a1. Moreover, IRS2 knockdown altered the expression of
Has2 and Ptgs2, which are essential for folliculogenesis. In addition, we found that IRS2-mediated cell viability and hormone secretion are dependent on the PI3K/AKT signaling pathway.
Collectively, this study demonstrated that IRS2 plays an important role in the regulation of cell proliferation and steroidogenesis in mouse GCs via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lanjie Lei
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang University, Jiangxi 332000, China
| | - Feng Han
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang University, Jiangxi 332000, China
| | - Qiuyan Cui
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang University, Jiangxi 332000, China
| | - Weifang Liao
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang University, Jiangxi 332000, China
| | - Hui Liu
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang University, Jiangxi 332000, China
| | - Gaopeng Guan
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, China
| | - Lei Yang
- College of Basic Medical, Jiujiang University, Jiangxi 332000, China.,Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, China
| |
Collapse
|
38
|
Abstract
Insulin-like growth factors (IGFs) bind specifically to the IGF1 receptor on the cell surface of targeted tissues. Ligand binding to the α subunit of the receptor leads to a conformational change in the β subunit, resulting in the activation of receptor tyrosine kinase activity. Activated receptor phosphorylates several substrates, including insulin receptor substrates (IRSs) and Src homology collagen (SHC). Phosphotyrosine residues in these substrates are recognized by certain Src homology 2 (SH2) domain-containing signaling molecules. These include, for example, an 85 kDa regulatory subunit (p85) of phosphatidylinositol 3-kinase (PI 3-kinase), growth factor receptor-bound 2 (GRB2) and SH2-containing protein tyrosine phosphatase 2 (SHP2/Syp). These bindings lead to the activation of downstream signaling pathways, PI 3-kinase pathway and Ras-mitogen-activated protein kinase (MAP kinase) pathway. Activation of these signaling pathways is known to be required for the induction of various bioactivities of IGFs, including cell proliferation, cell differentiation and cell survival. In this review, the well-established IGF1 receptor signaling pathways required for the induction of various bioactivities of IGFs are introduced. In addition, we will discuss how IGF signals are modulated by the other extracellular stimuli or by themselves based on our studies.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Keegan AD, Zamorano J, Keselman A, Heller NM. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View. Front Immunol 2018; 9:1037. [PMID: 29868002 PMCID: PMC5962649 DOI: 10.3389/fimmu.2018.01037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.
Collapse
Affiliation(s)
- Achsah D Keegan
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States.,Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jose Zamorano
- Unidad Investigacion, Complejo Hospitalario Universitario, Caceres, Spain
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Turaihi AH, Bakker W, van Hinsbergh VWM, Serné EH, Smulders YM, Niessen HWM, Eringa EC. Insulin Receptor Substrate 2 Controls Insulin-Mediated Vasoreactivity and Perivascular Adipose Tissue Function in Muscle. Front Physiol 2018; 9:245. [PMID: 29628894 PMCID: PMC5876319 DOI: 10.3389/fphys.2018.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/06/2018] [Indexed: 11/16/2022] Open
Abstract
Introduction: Insulin signaling in adipose tissue has been shown to regulate insulin's effects in muscle. In muscle, perivascular adipose tissue (PVAT) and vascular insulin signaling regulate muscle perfusion. Insulin receptor substrate (IRS) 2 has been shown to control adipose tissue function and glucose metabolism, and here we tested the hypothesis that IRS2 mediates insulin's actions on the vessel wall as well as the vasoactive properties of PVAT. Methods: We studied PVAT and muscle resistance arteries (RA) from littermate IRS2+/+ and IRS2−/− mice and vasoreactivity by pressure myography, vascular insulin signaling, adipokine expression, and release and PVAT morphology. As insulin induced constriction of IRS2+/+ RA in our mouse model, we also exposed RA's of C57/Bl6 mice to PVAT from IRS2+/+ and IRS2−/− littermates to evaluate vasodilator properties of PVAT. Results: IRS2−/− RA exhibited normal vasomotor function, yet a decreased maximal diameter compared to IRS2+/+ RA. IRS2+/+ vessels unexpectedly constricted endothelin-dependently in response to insulin, and this effect was absent in IRS2−/− RA due to reduced ERK1/2activation. For evaluation of PVAT function, we also used C57/Bl6 vessels with a neutral basal effect of insulin. In these experiments insulin (10.0 nM) increased diameter in the presence of IRS2+/+ PVAT (17 ± 4.8, p = 0.014), yet induced a 10 ± 7.6% decrease in diameter in the presence of IRS2−/− PVAT. Adipocytes in IRS2−/− PVAT (1314 ± 161 μm2) were larger (p = 0.0013) than of IRS2+/+ PVAT (915 ± 63 μm2). Adiponectin, IL-6, PAI-1 secretion were similar between IRS2+/+ and IRS2−/− PVAT, as were expression of pro-inflammatory genes (TNF-α, CCL2) and adipokines (adiponectin, leptin, endothelin-1). Insulin-induced AKT phosphorylation in RA was similar in the presence of IRS2−/− and IRS2+/+ PVAT. Conclusion: In muscle, IRS2 regulates both insulin's vasoconstrictor effects, mediating ERK1/2-ET-1 activation, and its vasodilator effects, by mediating the vasodilator effect of PVAT. The regulatory role of IRS2 in PVAT is independent from adiponectin secretion.
Collapse
Affiliation(s)
- Alexander H Turaihi
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Wineke Bakker
- Department of Internal Medicine, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Erik H Serné
- Department of Internal Medicine, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Yvo M Smulders
- Department of Internal Medicine, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
41
|
Fang J, Wang X, Lu M, He X, Yang X. Recent advances in polysaccharides from Ophiopogon japonicus and Liriope spicata var. prolifera. Int J Biol Macromol 2018; 114:1257-1266. [PMID: 29634971 DOI: 10.1016/j.ijbiomac.2018.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
O. japonicus and L. spicata var. prolifera are distinguished as sources of highly promising yin-tonifying medicinals, namely Ophiopogonis Radix and Liriopes Radix. Liriopes Radix is generally medicinally used as a substitute for Ophiopogonis Radix in various prescriptions due to their extremely similar nature. Ophiopogonis Radix and Liriopes Radix are both very rich in bioactive polysaccharides, especially β‑fructans. Over the past twelve years, except for work on physical entrapment and chemical modification of obtained β‑fructans, the vast majority of studies are carried out to investigate the bioactivities of O. japonicus polysaccharides (OJP) and L. spicata var. prolifera polysaccharides (LSP), mainly including anti-diabetes, immunomodulation, anti-inflammation, antioxidation, anti-obesity, cardiovascular protection, etc. In addition, OJP and LSP are considered to have the potential to regulate intestinal flora. The main purpose of this review is to provide systematically reorganized information on structural characteristics and bioactivities of OJP and LSP to support their further therapeutic potentials and sanitarian functions.
Collapse
Affiliation(s)
- Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China.
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Mengxin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Xirui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China; Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Xinhua Yang
- Chongqing Jiangbei Hospital of Traditional Chinese Medicine, Chongqing 400020, PR China
| |
Collapse
|
42
|
He X, Fang J, Ruan Y, Wang X, Sun Y, Wu N, Zhao Z, Chang Y, Ning N, Guo H, Huang L. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chem 2018; 245:899-910. [DOI: 10.1016/j.foodchem.2017.11.084] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
|
43
|
Ye R, Gordillo R, Shao M, Onodera T, Chen Z, Chen S, Lin X, SoRelle JA, Li X, Tang M, Keller MP, Kuliawat R, Attie AD, Gupta RK, Holland WL, Beutler B, Herz J, Scherer PE. Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. J Clin Invest 2018; 128:1178-1189. [PMID: 29457786 DOI: 10.1172/jci97702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The compensatory proliferation of insulin-producing β cells is critical to maintaining glucose homeostasis at the early stage of type 2 diabetes. Failure of β cells to proliferate results in hyperglycemia and insulin dependence in patients. To understand the effect of the interplay between β cell compensation and lipid metabolism upon obesity and peripheral insulin resistance, we eliminated LDL receptor-related protein 1 (LRP1), a pleiotropic mediator of cholesterol, insulin, energy metabolism, and other cellular processes, in β cells. Upon high-fat diet exposure, LRP1 ablation significantly impaired insulin secretion and proliferation of β cells. The diminished insulin signaling was partly contributed to by the hypersensitivity to glucose-induced, Ca2+-dependent activation of Erk and the mTORC1 effector p85 S6K1. Surprisingly, in LRP1-deficient islets, lipotoxic sphingolipids were mitigated by improved lipid metabolism, mediated at least in part by the master transcriptional regulator PPARγ2. Acute overexpression of PPARγ2 in β cells impaired insulin signaling and insulin secretion. Elimination of Apbb2, a functional regulator of LRP1 cytoplasmic domain, also impaired β cell function in a similar fashion. In summary, our results uncover the double-edged effects of intracellular lipid metabolism on β cell function and viability in obesity and type 2 diabetes and highlight LRP1 as an essential regulator of these processes.
Collapse
Affiliation(s)
- Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA.,Department of Medical Education, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Zhe Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA.,Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Xiaoli Lin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Jeffrey A SoRelle
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Regina Kuliawat
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, and Center for Translational Neurodegeneration Research, UTSW Medical Center, Dallas, Texas, USA.,Center for Neuroscience, Department of Neuroanatomy, Albert Ludwig University, Freiburg, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
44
|
Peng J, He L. IRS posttranslational modifications in regulating insulin signaling. J Mol Endocrinol 2018; 60:R1-R8. [PMID: 29093014 PMCID: PMC5732852 DOI: 10.1530/jme-17-0151] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022]
Abstract
Insulin resistance is the hallmark of type 2 diabetes; however, the mechanism underlying the development of insulin resistance is still not completely understood. Previous reports showed that posttranslational modifications of IRS play a critical role in insulin signaling, especially the phosphorylation of IRS by distinct kinases. While it is known that increasing Sirtuin1 deacetylase activity improves insulin sensitivity in the liver, the identity of its counterpart, an acetyl-transferase, remains unknown. Our recent study shows that elevated endotoxin (LPS) levels in the liver of obese mice lead to the induction of the acetyl-transferase P300 through the IRE1-XBP1s pathway. Subsequently, induced P300 impairs insulin signaling by acetylating IRS1 and IRS2 in the insulin signaling pathway. Therefore, the P300 acetyl-transferase activity appears to be a promising therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Jinghua Peng
- Division of Metabolism and EndocrinologyDepartments of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling He
- Division of Metabolism and EndocrinologyDepartments of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Danilova IG, Bulavintceva TS, Gette IF, Medvedeva SY, Emelyanov VV, Abidov MT. Partial recovery from alloxan-induced diabetes by sodium phthalhydrazide in rats. Biomed Pharmacother 2017; 95:103-110. [DOI: 10.1016/j.biopha.2017.07.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
|
46
|
Nagasaka H, Morioka I, Takuwa M, Nakacho M, Yoshida M, Ishida A, Hirayama S, Miida T, Tsukahara H, Yorifuji T, Iijima K. Blood asymmetric dimethylarginine and nitrite/nitrate concentrations in short-stature children born small for gestational age with and without growth hormone therapy. J Int Med Res 2017; 46:761-772. [PMID: 28974136 PMCID: PMC5971506 DOI: 10.1177/0300060517723183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective
To investigate the basal amino acid metabolism and impact of growth hormone (GH) therapy in short-stature children born small for gestational age (short SGA children). Methods In this age-matched case-control study, the basal blood levels of amino acids, asymmetric dimethylarginine (ADMA), and nitrite/nitrate (NOx) were compared between 24 short SGA children and 25 age-matched normal children. Changes in these parameters were assessed for 12 months in 12 short SGA children initiating GH therapy (Group A) and 12 age-matched short SGA children without GH therapy (Group B). Results The arginine levels were significantly lower in the short SGA than in normal children. The ADMA levels were significantly higher and NOx levels were significantly lower in the short SGA than normal children. In Group A, the ADMA level was significantly lower and NOx level was significantly higher at 6 months than at baseline. At 12 months, the ADMA level in Group A began to increase, but the NOx level remained the same. Group B showed no significant changes. Conclusions This study is the first to show that ADMA is promoted and nitric oxide is suppressed in short SGA children and that GH therapy affects the production of ADMA and nitric oxide.
Collapse
Affiliation(s)
- Hironori Nagasaka
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Ichiro Morioka
- 2 Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mayuko Takuwa
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Mariko Nakacho
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Mayumi Yoshida
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Akihito Ishida
- 3 Kobe Children's Primary Emergency Medical Center, Kobe, Japan
| | - Satoshi Hirayama
- 4 Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Miida
- 4 Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirokazu Tsukahara
- 5 Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tohru Yorifuji
- 6 Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Kazumoto Iijima
- 2 Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
47
|
Ambasta RK, Kohli H, Kumar P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. J Transl Med 2017; 15:185. [PMID: 28859673 PMCID: PMC5580204 DOI: 10.1186/s12967-017-1280-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reduced levels of endothelial progenitor cells (EPCs) counts have been reported in diabetic mellitus (DM) patients and other diabetes-related disorder. EPCs are a circulating, bone marrow-derived cell population that appears to participate in vasculogenesis, angiogenesis and damage repair. These EPC may revert the damage caused in diabetic condition. We aim to identify several existing drugs and signaling molecule, which could alleviate or improve the diabetes condition via mobilizing and increasing EPC number as well as function. MAIN BODY Accumulated evidence suggests that dysregulation of EPC phenotype and function may be attributed to several signaling molecules and cytokines in DM patients. Hyperglycemia alone, through the overproduction of reactive oxygen species (ROS) via eNOS and NOX, can induce changes in gene expression and cellular behavior in diabetes. Furthermore, reports suggest that EPC telomere shortening via increased oxidative DNA damage may play an important role in the pathogenesis of coronary artery disease in diabetic patients. In this review, different type of EPC derived from different sources has been discussed along with cell-surface marker. The reduced number and immobilized EPC in diabetic condition have been mobilized for the therapeutic purpose via use of existing, and novel drugs have been discussed. Hence, evidence list of all types of drugs that have been reported to target the same pathway which affect EPC number and function in diabetes has been reviewed. Additionally, we highlight that proteins are critical in diabetes via polymorphism and inhibitor studies. Ultimately, a lucid pictorial explanation of diabetic and normal patient signaling pathways of the collected data have been presented in order to understand the complex signaling mystery underlying in the diseased and normal condition. CONCLUSION Finally, we conclude on eNOS-metformin-HSp90 signaling and its remedial effect for controlling the EPC to improve the diabetic condition for delaying diabetes-related complication. Altogether, the review gives a holistic overview about the elaborate therapeutic effect of EPC regulated by novel and existing drugs in diabetes and diabetes-related disorder.
Collapse
Affiliation(s)
- Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| | - Harleen Kohli
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| |
Collapse
|
48
|
Muhammad AB, Xing B, Liu C, Naji A, Ma X, Simmons RA, Hua X. Menin and PRMT5 suppress GLP1 receptor transcript and PKA-mediated phosphorylation of FOXO1 and CREB. Am J Physiol Endocrinol Metab 2017; 313:E148-E166. [PMID: 28270438 PMCID: PMC5582886 DOI: 10.1152/ajpendo.00241.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/23/2022]
Abstract
Menin is a scaffold protein that interacts with several epigenetic mediators to regulate gene transcription, and suppresses pancreatic β-cell proliferation. Tamoxifen-inducible deletion of multiple endocrine neoplasia type 1 (MEN1) gene, which encodes the protein menin, increases β-cell mass in multiple murine models of diabetes and ameliorates diabetes. Glucagon-like-peptide-1 (GLP1) is another key physiological modulator of β-cell mass and glucose homeostasis. However, it is not clearly understood whether menin crosstalks with GLP1 signaling. Here, we show that menin and protein arginine methyltransferase 5 (PRMT5) suppress GLP1 receptor (GLP1R) transcript levels. Notably, a GLP1R agonist induces phosphorylation of forkhead box protein O1 (FOXO1) at S253, and the phosphorylation is mediated by PKA. Interestingly, menin suppresses GLP1-induced and PKA-mediated phosphorylation of both FOXO1 and cAMP response element binding protein (CREB), likely through a protein arginine methyltransferase. Menin-mediated suppression of FOXO1 and CREB phosphorylation increases FOXO1 levels and suppresses CREB target genes, respectively. A small-molecule menin inhibitor reverses menin-mediated suppression of both FOXO1 and CREB phosphorylation. In addition, ex vivo treatment of both mouse and human pancreatic islets with a menin inhibitor increases levels of proliferation marker Ki67. In conclusion, our results suggest that menin and PRMT5 suppress GLP1R transcript levels and PKA-mediated phosphorylation of FOXO1 and CREB, and a menin inhibitor may reverse this suppression to induce β-cell proliferation.
Collapse
Affiliation(s)
- Abdul Bari Muhammad
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bowen Xing
- Shenzen University School of Medicine, Institute of Diabetes Research, Shenzhen, Guangdong, China
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaosong Ma
- Shenzen University School of Medicine, Institute of Diabetes Research, Shenzhen, Guangdong, China
| | - Rebecca A Simmons
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xianxin Hua
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Muñoz AM, Velásquez CM, Agudelo GM, Uscátegui RM, Estrada A, Patiño FA, Parra BE, Parra MV, Bedoya G. Examining for an association between candidate gene polymorphisms in the metabolic syndrome components on excess weight and adiposity measures in youth: a cross-sectional study. GENES AND NUTRITION 2017; 12:19. [PMID: 28690685 PMCID: PMC5496328 DOI: 10.1186/s12263-017-0567-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/28/2017] [Indexed: 01/14/2023]
Abstract
Background A polymorphism in a gene may exert its effects on multiple phenotypes. The aim of this study is to explore the association of 10 metabolic syndrome candidate genes with excess weight and adiposity and evaluate the effect of perinatal and socioeconomic factors on these associations. Methods The anthropometry, socioeconomic and perinatal conditions and 10 polymorphisms were evaluated in 1081 young people between 10 and 18 years old. Genotypic associations were calculated using logistic and linear models adjusted by age, gender, and pubertal maturation, and a genetic risk score (GRS) was calculated by summing the number of effect alleles. Results We found that AGT-rs699 and the IRS2-rs1805097 variants were significantly associated with excess weight, OR = 1.25 (CI 95% 1.01–1.54; p = 0.034); OR = 0.77 (CI 95% 0.62–0.96; p = 0.022), respectively. AGT-rs699 and FTO-rs17817449 variants were significantly and directly associated with body mass index (BMI) (p = 0.036 and p = 0.031), while IRS2-rs1805097 and UCP3-rs1800849 were significantly and negatively associated with BMI and waist circumference, correspondingly. Each additional effect allele in GRS was associated with an increase of 0.020 log(BMI) (p = 0.004). No effects from the socioeconomic and perinatal factors evaluated on the association of the candidate genes with the phenotypes were detected. Conclusions Our observation suggests that AGT-rs699 and FTO-rs17817449 variants may contribute to the risk development of excess weight and an increase in the BMI, while IRS2-rs1805097 showed a protector effect; in addition, UCP3- rs1800849 showed a decreasing waist circumference. Socioeconomic and perinatal factors had no effect on the associations of the candidate gene. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0567-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angélica María Muñoz
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Claudia María Velásquez
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia.,Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UdeA), Calle 62 No. 52-59, Laboratorio 413, Medellin, Colombia
| | - Gloria María Agudelo
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia.,Vidarium Research Group, Nutrition, Health and Wellness Research Center, Nutresa Business Group (Grupo Empresarial Nutresa), Calle 8 Sur No. 50-67, Medellin, Colombia
| | | | - Alejandro Estrada
- Research Group on Demography and Health, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Fredy Alonso Patiño
- Research Group of Sciences Applied to Physical Activity and Sports, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Beatriz Elena Parra
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - María Victoria Parra
- Molecular Genetics Group, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Gabriel Bedoya
- Molecular Genetics Group, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| |
Collapse
|
50
|
Al-Salam A, Irwin DM. Evolution of the vertebrate insulin receptor substrate (Irs) gene family. BMC Evol Biol 2017; 17:148. [PMID: 28645244 PMCID: PMC5482937 DOI: 10.1186/s12862-017-0994-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. RESULTS Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. CONCLUSIONS The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.
Collapse
Affiliation(s)
- Ahmad Al-Salam
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|