1
|
Devlin A, Green F, Takats Z. Mass Spectrometry Imaging with Trapped Ion Mobility Spectrometry Enables Spatially Resolved Chondroitin, Dermatan, and Hyaluronan Glycosaminoglycan Oligosaccharide Analysis In Situ. Anal Chem 2024; 96:17969-17977. [PMID: 39476845 PMCID: PMC11561879 DOI: 10.1021/acs.analchem.4c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/13/2024]
Abstract
Previously, spatially resolved analysis of glycosaminoglycans (GAGs), by type and sulfation state, was unobtainable. Here, we describe a mass spectrometry imaging (MSI) approach which enables the detection, identification, localization, and profiling of GAG oligosaccharides directly from retinal tissue. Through in situ treatment of tissues with relevant chondroitinase enzymes, we liberate and spatially resolve chondroitin, dermatan, and hyaluronan from disaccharides through to hexasaccharides, directly from tissue sections. We demonstrate the separation of isomeric GAG oligosaccharide ions at different histologically relevant regions using trapped ion mobility spectrometry (TIMS). This paper describes the first spatially resolved analysis of multiple GAGs and their oligosaccharide sulfation state(s) directly from tissues.
Collapse
Affiliation(s)
- Anthony Devlin
- The
Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K.
| | - Felicia Green
- The
Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K.
| | - Zoltan Takats
- The
Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K.
- Faculty
of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
2
|
Werner T, Fahrner M, Schilling O. Advancements in mass spectrometry-based proteomics: a new era in pathology research and diagnostics. PATHOLOGIE (HEIDELBERG, GERMANY) 2024:10.1007/s00292-024-01390-x. [PMID: 39508868 DOI: 10.1007/s00292-024-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based proteomics is rapidly transforming pathology research and diagnostics by enabling comprehensive studies of protein expression and post-translational modifications (PTMs). OBJECTIVE This article discusses recent advancements in MS-based proteomics, focusing on emerging technologies in sample preparation, MS instrumentation, and data analysis. These developments are scrutinized for their applications in clinical cohort studies and molecular pathology diagnostics. MATERIALS AND METHODS The article reviews innovations in automated sample preparation, chromatography systems, advanced MS technologies, and proteomic data analysis in the context of pathology. Specific applications such as liquid biopsy, spike-in heavy peptide panels, immunopeptidomics, and PTM screening are highlighted alongside opportunities for data integration. RESULTS Recent technological improvements have significantly increased the throughput, precision, and scope of proteomic studies, enabling the analysis of large clinical cohorts and small specimens with unprecedented sensitivity. Advanced MS techniques have broadened applications, opening new avenues for discovery and diagnosis of marker proteins and therapeutic targets. CONCLUSION Advancements in MS-based proteomics have created new opportunities in clinical research and diagnostics. By facilitating more comprehensive and integrated analyses of proteomes, these technologies are set to play a pivotal role in the future of personalized medicine and pathology research.
Collapse
Affiliation(s)
- Tilman Werner
- Institut für klinische Pathologie, Universitätsklinikum Freiburg, Breisacher Straße 115a, 79106, Freiburg im Breisgau, Germany.
| | - Matthias Fahrner
- Institut für klinische Pathologie, Universitätsklinikum Freiburg, Breisacher Straße 115a, 79106, Freiburg im Breisgau, Germany
| | - Oliver Schilling
- Institut für klinische Pathologie, Universitätsklinikum Freiburg, Breisacher Straße 115a, 79106, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Ozturk E, Venkataraman A, Rivera Moctezuma FG, Coskun AF. Super Resolved Single-Cell Spatial Metabolomics from Multimodal Mass Spectrometry Imaging guided by Imaging Mass Cytometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619323. [PMID: 39484548 PMCID: PMC11526965 DOI: 10.1101/2024.10.21.619323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique for spatially resolved analysis of metabolites and other biomolecules within biological titissues. However, the inherent low spatial resolution of MSI often limits its ability to provide detailed cellular-level information. To address this limitation, we propose a guided super-resolution (GSR) approach that leverages high-resolution Imaging Mass Cytometry (IMC) images to enhance the spatial resolution of low-resolution MSI data. By using these detailed IMC images as guides, we improve the resolution of MSI images, creang high-resolution metabolite maps. This enhancement facilitates more precise analysis of cellular structures and tissue architectures, providing deeper insights into super-resolved spatial metabolomics at the single-cell level.
Collapse
Affiliation(s)
- Efe Ozturk
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA 30332
| | - Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix G. Rivera Moctezuma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
Zou Z, Peng Z, Bhusal D, Wije Munige S, Yang Z. MassLite: An integrated python platform for single cell mass spectrometry metabolomics data pretreatment with graphical user interface and advanced peak alignment method. Anal Chim Acta 2024; 1325:343124. [PMID: 39244309 PMCID: PMC11462640 DOI: 10.1016/j.aca.2024.343124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024]
Abstract
Mass spectrometry (MS) has been one of the most widely used tools for bioanalytical analysis due to its high sensitivity, capability of quantitative analysis, and compatibility with biomolecules. Among various MS techniques, single cell mass spectrometry (SCMS) is an advanced approach to molecular analysis of cellular contents in individual cells. In tandem with the creation of novel experimental techniques, the development of new SCMS data analysis tools is equally important. As most published software packages are not specifically designed for pretreatment of SCMS data, including peak alignment and background removal, their applicability on processing SCMS data is generally limited. Hereby we introduce a Python platform, MassLite, specifically designed for rapid SCMS metabolomics data pretreatment. This platform is made user-friendly with graphical user interface (GUI) and exports data in the forms of each individual cell for further analysis. A core function of this tool is to use a novel peak alignment method that avoids the intrinsic drawbacks of traditional binning method, allowing for more effective handling of MS data obtained from high resolution mass spectrometers. Other functions, such as void scan filtering, dynamic grouping, and advanced background removal, are also implemented in this tool to improve pretreatment efficiency.
Collapse
Affiliation(s)
- Zhu Zou
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Deepti Bhusal
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Shakya Wije Munige
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
5
|
Cavo I, Fresnedo O, Mosteiro L, López JI, Larrinaga G, Fernández JA. Lipid imaging mass spectrometry: Towards a new molecular histology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159568. [PMID: 39369885 DOI: 10.1016/j.bbalip.2024.159568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Lipid research is attracting greater attention, as these molecules are key components to understand cell metabolism and the connection between genotype and phenotype. The study of lipids has also been fueled by the development of new and powerful technologies, able to identify an increasing number of species in a single run and at decreasing concentrations. One of such key developments has been the image techniques that enable the visualization of lipid distribution over a tissue with cell resolution. Thanks to the spatial information reported by such techniques, it is possible to associate a lipidome trait to individual cells, in fixed metabolic stages, which greatly facilitates understanding the metabolic changes associated to diverse pathological conditions, such as cancer. Furthermore, the image of lipids is becoming a kind of new molecular histology that has great chances to make an impact in the diagnostic units of the hospitals. Here, we examine the current state of the technology and analyze what the next steps to bring it into the diagnosis units should be. To illustrate the potential and challenges of this technology, we present a case study on clear cell renal cell carcinoma, a good model for analyzing malignant tumors due to their significant cellular and molecular heterogeneity.
Collapse
Affiliation(s)
- Ibai Cavo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain
| | - Olatz Fresnedo
- Lipids&Liver, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - José I López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Gorka Larrinaga
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain.
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| |
Collapse
|
6
|
Zhu E, Xie Q, Huang X, Zhang Z. Application of spatial omics in gastric cancer. Pathol Res Pract 2024; 262:155503. [PMID: 39128411 DOI: 10.1016/j.prp.2024.155503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
Gastric cancer (GC), a globally prevalent and lethal malignancy, continues to be a key research focus. However, due to its considerable heterogeneity and complex pathogenesis, the treatment and diagnosis of gastric cancer still face significant challenges. With the rapid development of spatial omics technology, which provides insights into the spatial information within tumor tissues, it has emerged as a significant tool in gastric cancer research. This technology affords new insights into the pathology and molecular biology of gastric cancer for scientists. This review discusses recent advances in spatial omics technology for gastric cancer research, highlighting its applications in the tumor microenvironment (TME), tumor heterogeneity, tumor genesis and development mechanisms, and the identification of potential biomarkers and therapeutic targets. Moreover, this article highlights spatial omics' potential in precision medicine and summarizes existing challenges and future directions. It anticipates spatial omics' continuing impact on gastric cancer research, aiming to improve diagnostic and therapeutic approaches for patients. With this review, we aim to offer a comprehensive overview to scientists and clinicians in gastric cancer research, motivating further exploration and utilization of spatial omics technology. Our goal is to improve patient outcomes, including survival rates and quality of life.
Collapse
Affiliation(s)
- Erran Zhu
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Qi Xie
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Xinqi Huang
- Excellent Class, Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan; Department of Pathology, Department of Pathology of Hengyang Medical College, University of South China; The First Affiliated Hospital of University of South China, China.
| |
Collapse
|
7
|
Shen X, Guan Z, Zhang C, Yan Z, Sun C. The multicellular compartmentation of plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102616. [PMID: 39142253 DOI: 10.1016/j.pbi.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
The phenomenon of multicellular compartmentation in biosynthetic pathways has been documented for only a limited subset of specialized metabolites, despite its hypothesized significance in facilitating plant survival and adaptation to environmental stress. Transporters that shuttle metabolic intermediates between cells are hypothesized to be integral components enabling compartmentalized biosynthesis. Nevertheless, our understanding of the multicellular compartmentation of plant specialized metabolism and the associated intermediate transporters remains incomplete. The emergence of single-cell and spatial multiomics techniques holds promise for shedding light on unresolved questions in this field, such as the prevalence of multicellular compartmentation across the plant kingdom and the specific types of specialized metabolites whose biosynthetic pathways are prone to compartmentation. Advancing our understanding of the mechanisms underlying multicellular compartmentation will contribute to improving the production of specialized target metabolites through metabolic engineering or synthetic biology.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| | - Zhijing Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chuyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhaojiu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
8
|
Sisnande T, Brum FL, Matias DO, de Sá Ribeiro F, Moulin TB, Mohana-Borges R, de Magalhães MTQ, Lima LMTR. Spatially resolved distribution of pancreatic hormones proteoforms by MALDI-imaging mass spectrometry. Anal Biochem 2024; 692:115570. [PMID: 38763320 DOI: 10.1016/j.ab.2024.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Zinc plays a crucial role both in the immune system and endocrine processes. Zinc restriction in the diet has been shown to lead to degeneration of the endocrine pancreas, resulting in hormonal imbalance within the β-cells. Proteostasismay vary depending on the stage of a pathophysiological process, which underscores the need for tools aimed at directly analyzing biological status. Among proteomics methods, MALDI-ToF-MS can serve as a rapid peptidomics tool for analyzing extracts or by histological imaging. Here we report the optimization of MALDI imaging mass spectrometry analysis of histological thin sections from mouse pancreas. This optimization enables the identification of the major islet peptide hormones as well as the major accumulated precursors and/or proteolytic products of peptide hormones. Cross-validation of the identified peptide hormones was performed by LC-ESI-MS from pancreatic islet extracts. Mice subjected to a zinc-restricted diet exhibited a relatively lower amount of peptide intermediates compared to the control group. These findings provide evidence for a complex modulation of proteostasis by micronutrients imbalance, a phenomenon directly accessed by MALDI-MSI.
Collapse
Affiliation(s)
- Tháyna Sisnande
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Química Biológica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Felipe Lopes Brum
- Laboratório de Biotecnologia e Bioengenharia Estrutural (LABGENEST), Instituto de Biofísica Carlos Chagas Filho (IBCCF), Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Daiane O Matias
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Química Biológica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Fernando de Sá Ribeiro
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Química Biológica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Thayana Beninatto Moulin
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural (LABGENEST), Instituto de Biofísica Carlos Chagas Filho (IBCCF), Rio de Janeiro, RJ, 21941-902, Brazil; Centro de Espectrometria de Massa de Biomoléculas (CEMBIO), Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Mariana T Q de Magalhães
- Laboratório de Biofísica de Macromoléculas (LBM), Instituto de Ciências Biomédicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Luís Maurício T R Lima
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Química Biológica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
9
|
Cochran D, Powers R. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Applications for Metabolomics. Biomedicines 2024; 12:1786. [PMID: 39200250 PMCID: PMC11351437 DOI: 10.3390/biomedicines12081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolomics is an interdisciplinary field that aims to study all metabolites < 1500 Da that are ubiquitously found within all organisms. Metabolomics is experiencing exponential growth and commonly relies on high-resolution mass spectrometry (HRMS). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a form of HRMS that is particularly well suited for metabolomics research due to its exceptionally high resolution (105-106) and sensitivity with a mass accuracy in parts per billion (ppb). In this regard, FT-ICR-MS can provide valuable insights into the metabolomics analysis of complex biological systems due to unique capabilities such as the easy separation of isobaric and isomeric species, isotopic fine structure analysis, spatial resolution of metabolites in cells and tissues, and a high confidence (<1 ppm mass error) in metabolite identification. Alternatively, the large and complex data sets, long acquisition times, high cost, and limited access mainly through national mass spectrometry facilities may impede the routine adoption of FT-ICR-MS by metabolomics researchers. This review examines recent applications of FT-ICR-MS metabolomics in the search for clinical and non-human biomarkers; for the analysis of food, beverage, and environmental samples; and for the high-resolution imaging of tissues and other biological samples. We provide recent examples of metabolomics studies that highlight the advantages of FT-ICR-MS for the detailed and reliable characterization of the metabolome. Additionally, we offer some practical considerations for implementing FT-ICR-MS into a research program by providing a list of FT-ICR-MS facilities and by identifying different high-throughput interfaces, varieties of sample types, analysis methods (e.g., van Krevelen diagrams, Kendrick mass defect plot, etc.), and sample preparation and handling protocols used in FT-ICR-MS experiments. Overall, FT-ICR-MS holds great promise as a vital research tool for advancing metabolomics investigations.
Collapse
Affiliation(s)
- Darcy Cochran
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA;
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA;
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
10
|
Schurman CA, Bons J, Woo JJ, Yee C, Tao N, Alliston T, Angel PM, Schilling B. Mass Spectrometry Imaging of the Subchondral Bone in Osteoarthritis Reveals Tissue Remodeling of Extracellular Matrix Proteins that Precede Cartilage Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606482. [PMID: 39211075 PMCID: PMC11361078 DOI: 10.1101/2024.08.03.606482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis (OA) of the knee is a degenerative condition of the skeletal extracellular matrix (ECM) marked by the loss of articular cartilage and subchondral bone homeostasis. Treatments for OA in the knee beyond full joint replacement are lacking primarily due to gaps in molecular knowledge of the biological drivers of disease. Here, Mass Spectrometry Imaging (MSI) enabled molecular spatial mapping of the proteomic landscape of human knee tissues. Histologic sections of human tibial plateaus from OA patients and cadaveric controls were treated with collagenase III to target ECM proteins prior to imaging using a timsTOF fleX mass spectrometer (Bruker) for matrix-assisted laser desorption ionization (MALDI)-MSI of bone and cartilage proteins in human knees. Spatial MSI data of the knee, using sections of the tibial plateau from non-arthritic, cadaveric donors or from knee replacement patients with medial OA were processed and automatically segmented identifying distinct areas of joint damage. ECM peptide markers compared either OA to cadaveric tissues or OA medial to OA lateral. Not only did candidate peptides distinguish OA relative to intact cartilage, but also emphasized a significant spatial difference between OA and intact subchondral bone (AUROC >0.85). Overall, 31 peptide candidates from ECM proteins, including COL1A1, COL3A1, and unanticipated detection of collagens COL6A1 and COL6A3 in adult bone, exhibited significantly elevated abundance in diseased tissue. Highly specific hydroxyproline-containing collagens dominated OA subchondral bone directly under regions of lost cartilage revealing dramatic tissue remodeling providing molecular details on the progression of joint degeneration in OA. The identification of specific spatial markers for the progression of subchondral bone degeneration in OA advances our molecular understanding of coupled deterioration of joint tissues.
Collapse
|
11
|
Maehashi S, Arora K, Fisher AL, Schweitzer DR, Akefe IO. Neurolipidomic insights into anxiety disorders: Uncovering lipid dynamics for potential therapeutic advances. Neurosci Biobehav Rev 2024; 163:105741. [PMID: 38838875 DOI: 10.1016/j.neubiorev.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Anxiety disorders constitute a spectrum of psychological conditions affecting millions of individuals worldwide, imposing a significant health burden. Historically, the development of anxiolytic medications has been largely focused on neurotransmitter function and modulation. However, in recent years, neurolipids emerged as a prime target for understanding psychiatric pathogenesis and developing novel medications. Neurolipids influence various neural activities such as neurotransmission and cellular functioning, as well as maintaining cell membrane integrity. Therefore, this review aims to elucidate the alterations in neurolipids associated with an anxious mental state and explore their potential as targets of novel anxiolytic medications. Existing evidence tentatively associates dysregulated neurolipid levels with the etiopathology of anxiety disorders. Notably, preclinical investigations suggest that several neurolipids, including endocannabinoids and polyunsaturated fatty acids, may hold promise as potential pharmacological targets. Overall, the current literature tentatively suggests the involvement of lipids in the pathogenesis of anxiety disorders, hinting at potential prospects for future pharmacological interventions.
Collapse
Affiliation(s)
- Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
12
|
Zivko C, Hahm TH, Tressler C, Brown D, Glunde K, Mahairaki V. Mass Spectrometry Imaging of Organoids to Improve Preclinical Research. Adv Healthc Mater 2024; 13:e2302499. [PMID: 38247228 DOI: 10.1002/adhm.202302499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Preclinical models are essential research tools before novel therapeutic or diagnostic methods can be applied to humans. These range from in vitro cell monocultures to vastly more complex animal models, but clinical translation to humans often fails to deliver significant results. Three-dimensional (3D) organoid systems are being increasingly studied to establish physiologically relevant in vitro platforms in a trade-off between the complexity of the research question and the complexity of practical experimental setups. The sensitivity and precision of analytical tools are yet another limiting factors in what can be investigated, and mass spectrometry (MS) is one of the most powerful analytical techniques available to the scientific community. Its innovative use to spatially resolve biological samples has opened many research avenues in the field of MS imaging (MSI). Here, this work aims to explore the current scientific landscape in the application of MSI on organoids, with an emphasis on their combined potential to facilitate and improve preclinical studies.
Collapse
Affiliation(s)
- Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tae-Hun Hahm
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Cay Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dalton Brown
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
13
|
Hu H, Qiu K, Hao Q, He X, Qin L, Chen L, Yang C, Dai X, Liu H, Xu H, Guo H, Li J, Wu R, Feng J, Zhou Y, Han J, Xiao C, Wang X. Electromagnetic Field-Assisted Frozen Tissue Planarization Enhances MALDI-MSI in Plant Spatial Omics. Anal Chem 2024; 96:11809-11822. [PMID: 38975729 DOI: 10.1021/acs.analchem.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.
Collapse
Affiliation(s)
- Hao Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Kaidi Qiu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing 100038, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Chenyu Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaoyan Dai
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Haiqiang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hualei Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hua Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinrong Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Ran Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jun Han
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
14
|
Cen X, Fang Y, Chen Z, Zhu X. Development of benzimidazole derivatives as efficient matrices for the analysis of acidic small-molecule compounds using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry in negative ion mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9751. [PMID: 38680091 DOI: 10.1002/rcm.9751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
RATIONALE With the development of matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) in spatial localisation omics research on small molecules, the detection sensitivity of the matrix must increase. However, the types of matrices suitable for detecting acidic small molecules in (-) MALDI-MS mode are very limited and are either not sensitive enough or difficult to obtain. METHODS More than 10 commercially available benzimidazole and benzothiazole derivatives were selected as MALDI matrices in negative ion mode. MALDI-MS analysis was performed on 38 acidic small molecules and mouse serum, and the matrix effects were compared with those of the common commercial matrices 9-aminoacridine (9AA), 1,5-naphthalenediamine (DAN) and 3-aminoquinoline (3AQ). Moreover, the proton affinity (PA) of the selected potential matrix was calculated, and the relationships among the compound structure, PA value and matrix effect were discussed. RESULTS In (-) MALDI-MS mode, a higher PA value generally indicates a better matrix effect. Amino-substituted 2-phenyl-1H-benzo[d]imidazole derivatives had well-defined matrix effects on all analytes and were generally superior to the commonly used matrices 9AA, DAN and 3AQ. Among them, 2-(4-(dimethylamino-phenyl)-1H-benzo[d]imidazole-5-amine (E-4) has the best sensitivity and versatility for detecting different analytes and has the best ability to detect fatty acids in mouse serum; moreover, the limit of detection (LOD) of some analytes can reach as low as ng/L. CONCLUSIONS Compared to 9AA, DAN and 3AQ, matrix E-4 is more effective at detecting low-molecular-weight acidic compounds in (-) MALDI-MS mode, with higher sensitivity and better versatility. In addition, there is a clear correlation between compound structure, PA and matrix effects, which provides a basis for designing more efficient matrices.
Collapse
Affiliation(s)
- Xianyi Cen
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yuhao Fang
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Zilong Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Larenas-Muñoz F, Sánchez-Carvajal JM, Ruedas-Torres I, Álvarez-Delgado C, Fristiková K, Pallarés FJ, Carrasco L, Chicano-Gálvez E, Rodríguez-Gómez IM, Gómez-Laguna J. Proteomic analysis of granulomas from cattle and pigs naturally infected with Mycobacterium tuberculosis complex by MALDI imaging. Front Immunol 2024; 15:1369278. [PMID: 39021575 PMCID: PMC11252589 DOI: 10.3389/fimmu.2024.1369278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has recently gained prominence for its ability to provide molecular and spatial information in tissue sections. This technology has the potential to uncover novel insights into proteins and other molecules in biological and immunological pathways activated along diseases with a complex host-pathogen interaction, such as animal tuberculosis. Thus, the present study conducted a data analysis of protein signature in granulomas of cattle and pigs naturally infected with the Mycobacterium tuberculosis complex (MTC), identifying biological and immunological signaling pathways activated throughout the disease. Lymph nodes from four pigs and four cattle, positive for the MTC by bacteriological culture and/or real-time PCR, were processed for histopathological examination and MALDI-MSI. Protein identities were assigned using the MaTisse database, and protein-protein interaction networks were visualized using the STRING database. Gene Ontology (GO) analysis was carried out to determine biological and immunological signaling pathways in which these proteins could participate together with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Distinct proteomic profiles between cattle and pig granulomas were displayed. Noteworthy, the GO analysis revealed also common pathways among both species, such as "Complement activation, alternative pathway" and "Tricarboxylic acid cycle", which highlight pathways that are conserved among different species infected by the MTC. In addition, species-specific terms were identified in the current study, such as "Natural killer cell degranulation" in cattle or those related to platelet and neutrophil recruitment and activation in pigs. Overall, this study provides insights into the immunopathogenesis of tuberculosis in cattle and pigs, opening new areas of research and highlighting the importance, among others, of the complement activation pathway and the regulation of natural killer cell- and neutrophil-mediated immunity in this disease.
Collapse
Affiliation(s)
- Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
- Pathology Group, United Kingdom Health Security Agency (UKHSA), Salisbury, United Kingdom
| | - Carmen Álvarez-Delgado
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Karola Fristiková
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC) Mass Spectrometry and Molecular Imaging Unit (IMSMI), Maimónides Biomedical Research Institute of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| |
Collapse
|
16
|
Huang HX, Inglese P, Tang J, Yagoubi R, Correia GDS, Horneffer-van der Sluis VM, Camuzeaux S, Wu V, Kopanitsa MV, Willumsen N, Jackson JS, Barron AM, Saito T, Saido TC, Gentlemen S, Takats Z, Matthews PM. Mass spectrometry imaging highlights dynamic patterns of lipid co-expression with Aβ plaques in mouse and human brains. J Neurochem 2024; 168:1193-1214. [PMID: 38372586 DOI: 10.1111/jnc.16042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 02/20/2024]
Abstract
Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aβ) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aβ plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aβ plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aβ-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aβ plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.
Collapse
Affiliation(s)
- Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Paolo Inglese
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jiabin Tang
- Department of Brain Sciences, Imperial College London, London, UK
| | - Riad Yagoubi
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Gonçalo D S Correia
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Stephane Camuzeaux
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Maksym V Kopanitsa
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Nanet Willumsen
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Johanna S Jackson
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Steve Gentlemen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Paul M Matthews
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
17
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
18
|
Tressler CM, Wadsworth B, Carriero S, Dillman N, Crawford R, Hahm TH, Glunde K, Cadieux CL. Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI. Int J Mol Sci 2024; 25:5624. [PMID: 38891812 PMCID: PMC11172367 DOI: 10.3390/ijms25115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Organophosphoate (OP) chemicals are known to inhibit the enzyme acetylcholinesterase (AChE). Studying OP poisoning is difficult because common small animal research models have serum carboxylesterase, which contributes to animals' resistance to OP poisoning. Historically, guinea pigs have been used for this research; however, a novel genetically modified mouse strain (KIKO) was developed with nonfunctional serum carboxylase (Es1 KO) and an altered acetylcholinesterase (AChE) gene, which expresses the amino acid sequence of the human form of the same protein (AChE KI). KIKO mice were injected with 1xLD50 of an OP nerve agent or vehicle control with or without atropine. After one to three minutes, animals were injected with 35 mg/kg of the currently fielded Reactivator countermeasure for OP poisoning. Postmortem brains were imaged on a Bruker RapifleX ToF/ToF instrument. Data confirmed the presence of increased acetylcholine in OP-exposed animals, regardless of treatment or atropine status. More interestingly, we detected a small amount of Reactivator within the brain of both exposed and unexposed animals; it is currently debated if reactivators can cross the blood-brain barrier. Further, we were able to simultaneously image acetylcholine, the primary affected neurotransmitter, as well as determine the location of both Reactivator and acetylcholine in the brain. This study, which utilized sensitive MALDI-MSI methods, characterized KIKO mice as a functional model for OP countermeasure development.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Wadsworth
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Samantha Carriero
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Natalie Dillman
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Crawford
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-Hun Hahm
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristine Glunde
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - C. Linn Cadieux
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| |
Collapse
|
19
|
Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O'Byrne K, Kulasinghe A. Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Med Res Rev 2024; 44:1121-1146. [PMID: 38146814 DOI: 10.1002/med.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Naomi Berrell
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Bidgood
- APCRC-Q, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graham R Leggatt
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Scoggins TR, Specker JT, Prentice BM. Multiple ion isolation and accumulation events for selective chemical noise reduction and dynamic range enhancement in MALDI imaging mass spectrometry. Analyst 2024; 149:2459-2468. [PMID: 38525787 PMCID: PMC11149414 DOI: 10.1039/d4an00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Abundant chemical noise in MALDI imaging mass spectrometry experiments can impede the detection of less abundant compounds of interest. This chemical noise commonly originates from the MALDI matrix as well as other endogenous compounds present in high concentrations and/or with high ionization efficiencies. MALDI imaging mass spectrometry of biological tissues measures numerous biomolecular compounds that exist in a wide range of concentrations in vivo. When ion trapping instruments are used, highly abundant ions can dominate the charge capacity and lead to space charge effects that hinder the dynamic range and detection of lowly abundant compounds of interest. Gas-phase fractionation has been previously utilized in mass spectrometry to isolate and enrich target analytes. Herein, we have characterized the use of multiple continuous accumulations of selected ions (Multi CASI) to reduce the abundance of chemical noise and diminish the effects of space charge in MALDI imaging mass spectrometry experiments. Multi CASI utilizes the mass-resolving capability of a quadrupole mass filter to perform multiple sequential ion isolation events prior to a single mass analysis of the combined ion population. Multi CASI was used to improve metabolite and lipid detection in the MALDI imaging mass spectrometry analysis of rat brain tissue.
Collapse
Affiliation(s)
- Troy R Scoggins
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| | | | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Klein D, Rivera ES, Caprioli RM, Spraggins JM. Imaging Mass Spectrometry of Isotopically Resolved Intact Proteins on a Trapped Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2024; 96:5065-5070. [PMID: 38517028 PMCID: PMC10993197 DOI: 10.1021/acs.analchem.3c05252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
In this work, we demonstrate rapid, high spatial, and high spectral resolution imaging of intact proteins by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) on a hybrid quadrupole-reflectron time-of-flight (qTOF) mass spectrometer equipped with trapped ion mobility spectrometry (TIMS). Historically, untargeted MALDI IMS of proteins has been performed on TOF mass spectrometers. While advances in TOF instrumentation have enabled rapid, high spatial resolution IMS of intact proteins, TOF mass spectrometers generate relatively low-resolution mass spectra with limited mass accuracy. Conversely, the implementation of MALDI sources on high-resolving power Fourier transform (FT) mass spectrometers has allowed IMS experiments to be conducted with high spectral resolution with the caveat of increasingly long data acquisition times. As illustrated here, qTOF mass spectrometers enable protein imaging with the combined advantages of TOF and FT mass spectrometers. Protein isotope distributions were resolved for both a protein standard mixture and proteins detected from a whole-body mouse pup tissue section. Rapid (∼10 pixels/s) 10 μm lateral spatial resolution IMS was performed on a rat brain tissue section while maintaining isotopic spectral resolution. Lastly, proof-of-concept MALDI-TIMS data was acquired from a protein mixture to demonstrate the ability to differentiate charge states by ion mobility. These experiments highlight the advantages of qTOF and timsTOF platforms for resolving and interpreting complex protein spectra generated from tissue by IMS.
Collapse
Affiliation(s)
- Dustin
R. Klein
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Emilio S. Rivera
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M. Spraggins
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
22
|
Wang J, Sun N, Kunzke T, Shen J, Feuchtinger A, Wang Q, Meixner R, Gleut RL, Haffner I, Luber B, Lordick F, Walch A. Metabolic heterogeneity affects trastuzumab response and survival in HER2-positive advanced gastric cancer. Br J Cancer 2024; 130:1036-1045. [PMID: 38267634 PMCID: PMC10951255 DOI: 10.1038/s41416-023-02559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Trastuzumab is the only first-line treatment targeted against the human epidermal growth factor receptor 2 (HER2) approved for patients with HER2-positive advanced gastric cancer. The impact of metabolic heterogeneity on trastuzumab treatment efficacy remains unclear. METHODS Spatial metabolomics via high mass resolution imaging mass spectrometry was performed in pretherapeutic biopsies of patients with HER2-positive advanced gastric cancer in a prospective multicentre observational study. The mass spectra, representing the metabolic heterogeneity within tumour areas, were grouped by K-means clustering algorithm. Simpson's diversity index was applied to compare the metabolic heterogeneity level of individual patients. RESULTS Clustering analysis revealed metabolic heterogeneity in HER2-positive gastric cancer patients and uncovered nine tumour subpopulations. High metabolic heterogeneity was shown as a factor indicating sensitivity to trastuzumab (p = 0.008) and favourable prognosis at trend level. Two of the nine tumour subpopulations associated with favourable prognosis and trastuzumab sensitivity, and one subpopulation associated with poor prognosis and trastuzumab resistance. CONCLUSIONS This work revealed that tumour metabolic heterogeneity associated with prognosis and trastuzumab response based on tissue metabolomics of HER2-positive gastric cancer. Tumour metabolic subpopulations may provide an association with trastuzumab therapy efficacy. CLINICAL TRIAL REGISTRATION The patient cohort was conducted from a multicentre observational study (VARIANZ;NCT02305043).
Collapse
Affiliation(s)
- Jun Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jian Shen
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Raphael Meixner
- Core Facility Statistical Consulting, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ivonne Haffner
- University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Birgit Luber
- Technische Universität München, Fakultät für Medizin, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, München, Germany
| | - Florian Lordick
- University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
23
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
25
|
Péter B, Szekacs I, Horvath R. Label-free biomolecular and cellular methods in small molecule epigallocatechin-gallate research. Heliyon 2024; 10:e25603. [PMID: 38371993 PMCID: PMC10873674 DOI: 10.1016/j.heliyon.2024.e25603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Small molecule natural compounds are gaining popularity in biomedicine due to their easy access to wide structural diversity and their proven health benefits in several case studies. Affinity measurements of small molecules below 100 Da molecular weight in a label-free and automatized manner using small amounts of samples have now become a possibility and reviewed in the present work. We also highlight novel label-free setups with excellent time resolution, which is important for kinetic measurements of biomolecules and living cells. We summarize how molecular-scale affinity data can be obtained from the in-depth analysis of cellular kinetic signals. Unlike traditional measurements, label-free biosensors have made such measurements possible, even without the isolation of specific cellular receptors of interest. Throughout this review, we consider epigallocatechin gallate (EGCG) as an exemplary compound. EGCG, a catechin found in green tea, is a well-established anti-inflammatory and anti-cancer agent. It has undergone extensive examination in numerous studies, which typically rely on fluorescent-based methods to explore its effects on both healthy and tumor cells. The summarized research topics range from molecular interactions with proteins and biological films to the kinetics of cellular adhesion and movement on novel biomimetic interfaces in the presence of EGCG. While the direct impact of small molecules on living cells and biomolecules is relatively well investigated in the literature using traditional biological measurements, this review also highlights the indirect influence of these molecules on the cells by modifying their nano-environment. Moreover, we underscore the significance of novel high-throughput label-free techniques in small molecular measurements, facilitating the investigation of both molecular-scale interactions and cellular processes in one single experiment. This advancement opens the door to exploring more complex multicomponent models that were previously beyond the reach of traditional assays.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| |
Collapse
|
26
|
Schrader M, Fricker LD. Current Challenges and Future Directions in Peptidomics. Methods Mol Biol 2024; 2758:485-498. [PMID: 38549031 DOI: 10.1007/978-1-0716-3646-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| | - Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
27
|
Abstract
Major advances in scientific discovery and insights that stem from the development and use of new techniques and models can bring remarkable progress to conventional toxicology. Although animal testing is still considered as the "gold standard" in traditional toxicity testing, there is a necessity for shift from animal testing to alternative methods regarding the drug safety testing owing to the emerging state-of-art techniques and the proposal of 3Rs (replace, reduce, and refine) towards animal welfare. This review describes some recent research methods in drug discovery toxicology, including in vitro cell and organ-on-a-chip, imaging systems, model organisms (C. elegans, Danio rerio, and Drosophila melanogaster), and toxicogenomics in modern toxicology testing.
Collapse
Affiliation(s)
- Bowen Tang
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | - Vijay More
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| |
Collapse
|
28
|
Skerniskyte J, Mulet C, André AC, Anderson MC, Injarabian L, Buck A, Prade VM, Sansonetti PJ, Reibel-Foisset S, Walch AK, Lebel M, Lykkesfeldt J, Marteyn BS. Ascorbate deficiency increases progression of shigellosis in guinea pigs and mice infection models. Gut Microbes 2023; 15:2271597. [PMID: 37876025 PMCID: PMC10730169 DOI: 10.1080/19490976.2023.2271597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Shigella spp. are the causative agents of bacterial dysentery and shigellosis, mainly in children living in developing countries. The study of Shigella entire life cycle in vivo and the evaluation of vaccine candidates' protective efficacy have been hampered by the lack of a suitable animal model of infection. None of the studies evaluated so far (rabbit, guinea pig, mouse) allowed the recapitulation of full shigellosis symptoms upon Shigella oral challenge. Historical reports have suggested that dysentery and scurvy are both metabolic diseases associated with ascorbate deficiency. Mammals, which are susceptible to Shigella infection (humans, non-human primates and guinea pigs) are among the few species unable to synthesize ascorbate. We optimized a low-ascorbate diet to induce moderate ascorbate deficiency, but not scurvy, in guinea pigs to investigate whether poor vitamin C status increases the progression of shigellosis. Moderate ascorbate deficiency increased shigellosis symptom severity during an extended period of time (up to 48 h) in all strains tested (Shigella sonnei, Shigella flexneri 5a, and 2a). At late time points, an important influx of neutrophils was observed both within the disrupted colonic mucosa and in the luminal compartment, although Shigella was able to disseminate deep into the organ to reach the sub-mucosal layer and the bloodstream. Moreover, we found that ascorbate deficiency also increased Shigella penetration into the colon epithelium layer in a Gulo-/- mouse infection model. The use of these new rodent models of shigellosis opens new doors for the study of both Shigella infection strategies and immune responses to Shigella infection.
Collapse
Affiliation(s)
- Jurate Skerniskyte
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
| | - Céline Mulet
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Antonin C. André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Mark C. Anderson
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Louise Injarabian
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Verena M. Prade
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
- Collège de France, Paris, France
| | | | - Axel K. Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec, Canada
| | - Jens Lykkesfeldt
- Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University Copenhagen, Copenhagen, Denmark
| | - Benoit S. Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
- Unité de Pathogenèse des Infections Vasculaires, Institut Pasteur, INSERM U1225, Paris, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
29
|
Yang E, Shen XE, West‐Foyle H, Hahm T, Siegler MA, Brown DR, Johnson CC, Kim JH, Roker LA, Tressler CM, Barman I, Kuo SC, Glunde K. FluoMALDI Microscopy: Matrix Co-Crystallization Simultaneously Enhances Fluorescence and MALDI Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304343. [PMID: 37908150 PMCID: PMC10724403 DOI: 10.1002/advs.202304343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Indexed: 11/02/2023]
Abstract
Here, the authors report that co-crystallization of fluorophores with matrix-assisted laser desorption/ionization (MALDI) imaging matrices significantly enhances fluorophore brightness up to 79-fold, enabling the amplification of innate tissue autofluorescence. This discovery facilitates FluoMALDI, the imaging of the same biological sample by both fluorescence microscopy and MALDI imaging. The approach combines the high spatial resolution and specific labeling capabilities of fluorescence microscopy with the inherently multiplexed, versatile imaging capabilities of MALDI imaging. This new paradigm simplifies registration by avoiding physical changes between fluorescence and MALDI imaging, allowing to image the exact same cells in tissues with both modalities. Matrix-fluorophore co-crystallization also facilitates applications with insufficient fluorescence brightness. The authors demonstrate feasibility of FluoMALDI imaging with endogenous and exogenous fluorophores and autofluorescence-based FluoMALDI of brain and kidney tissue sections. FluoMALDI will advance structural-functional microscopic imaging in cell biology, biomedicine, and pathology.
Collapse
Affiliation(s)
- Ethan Yang
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Xinyi Elaine Shen
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Hoku West‐Foyle
- Microscope FacilityJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Tae‐Hun Hahm
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | | | - Dalton R. Brown
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Cole C. Johnson
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Jeong Hee Kim
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - LaToya Ann Roker
- Microscope FacilityJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Caitlin M. Tressler
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Ishan Barman
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Sidney Kimmel Comprehensive Cancer CancerJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Scot C. Kuo
- Microscope FacilityJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21218USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Applied Imaging Mass Spectrometry CoreJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Sidney Kimmel Comprehensive Cancer CancerJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
30
|
Guilbaud A, Ghanegolmohammadi F, Wang Y, Leng J, Kreymerman A, Gamboa Varela J, Garbern J, Elwell H, Cao F, Ricci-Blair E, Liang C, Balamkundu S, Vidoudez C, DeMott M, Bedi K, Margulies K, Bennett D, Palmer A, Barkley-Levenson A, Lee R, Dedon P. Discovery adductomics provides a comprehensive portrait of tissue-, age- and sex-specific DNA modifications in rodents and humans. Nucleic Acids Res 2023; 51:10829-10845. [PMID: 37843128 PMCID: PMC10639045 DOI: 10.1093/nar/gkad822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.
Collapse
Affiliation(s)
- Axel Guilbaud
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yijun Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jacqueline Gamboa Varela
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jessica Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hannah Elwell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fang Cao
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cui Liang
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Seetharamsing Balamkundu
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kenneth Bedi
- University of Pennsylvania Cardiovascular Institute, Philadelphia, PA, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
31
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
32
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
33
|
Feucherolles M, Le W, Bour J, Jacques C, Duplan H, Frache G. A Comprehensive Comparison of Tissue Processing Methods for High-Quality MALDI Imaging of Lipids in Reconstructed Human Epidermis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2469-2480. [PMID: 37843012 PMCID: PMC10623569 DOI: 10.1021/jasms.3c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has become an important tool for skin analysis, as it allows the simultaneous detection and localization of diverse molecular species within a sample. The use of in vivo and ex vivo human skin models is costly and presents ethical issues; therefore, reconstructed human epidermis (RHE) models, which mimic the upper part of native human skin, represent a suitable alternative to investigate adverse effects of chemicals applied to the skin. However, there are few publications investigating the feasibility of using MALDI MSI on RHE models. Therefore, the aim of this study was to investigate the effect of sample preparation techniques, i.e., substrate, sample thickness, washing, and matrix recrystallization, on the quality of MALDI MSI for lipids analysis of the SkinEthic RHE model. Images were generated using an atmospheric pressure MALDI source coupled to a high-resolution mass spectrometer with a pixel size of 5 μm. Masses detected in a defined region of interest were analyzed and annotated using the LipostarMSI platform. The results indicated that the combination of (1) coated metallic substrates, such as APTES-coated stainless-steel plates, (2) tissue sections of 6 μm thickness, and (3) aqueous washing before HCCA matrix spraying (without recrystallization), resulted in images with a significant signal intensity as well as numerous m/z values. This refined methodology using AP-MALDI coupled to a high-resolution mass spectrometer should improve the current sample preparation workflow to evaluate changes in skin composition after application of dermatocosmetics.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - William Le
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Jérôme Bour
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Carine Jacques
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Hélène Duplan
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| |
Collapse
|
34
|
Akbari B, Huber BR, Sherman JH. Unlocking the Hidden Depths: Multi-Modal Integration of Imaging Mass Spectrometry-Based and Molecular Imaging Techniques. Crit Rev Anal Chem 2023:1-30. [PMID: 37847593 DOI: 10.1080/10408347.2023.2266838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Multimodal imaging (MMI) has emerged as a powerful tool in clinical research, combining different imaging modes to acquire comprehensive information and enabling scientists and surgeons to study tissue identification, localization, metabolic activity, and molecular discovery, thus aiding in disease progression analysis. While multimodal instruments are gaining popularity, challenges such as non-standardized characteristics, custom software, inadequate commercial support, and integration issues with other instruments need to be addressed. The field of multimodal imaging or multiplexed imaging allows for simultaneous signal reproduction from multiple imaging strategies. Intraoperatively, MMI can be integrated into frameless stereotactic surgery. Recent developments in medical imaging modalities such as magnetic resonance imaging (MRI), and Positron Emission Topography (PET) have brought new perspectives to multimodal imaging, enabling early cancer detection, molecular tracking, and real-time progression monitoring. Despite the evidence supporting the role of MMI in surgical decision-making, there is a need for comprehensive studies to validate and perform integration at the intersection of multiple imaging technologies. They were integrating mass spectrometry-based technologies (e.g., imaging mass spectrometry (IMS), imaging mass cytometry (IMC), and Ion mobility mass spectrometry ((IM-IM) with medical imaging modalities, offering promising avenues for molecular discovery and clinical applications. This review emphasizes the potential of multi-omics approaches in tissue mapping using MMI integrated into desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI), allowing for sequential analyses of the same section. By addressing existing knowledge gaps, this review encourages future research endeavors toward multi-omics approaches, providing a roadmap for future research and enhancing the value of MMI in molecular pathology for diagnosis.
Collapse
Affiliation(s)
- Behnaz Akbari
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Bertrand Russell Huber
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Boston, Massachusetts USA
- US Department of Veterans Affairs, National Center for PTSD, Boston, Massachusetts USA
| | - Janet Hope Sherman
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Strotton M, Hosogane T, di Michiel M, Moch H, Varga Z, Bodenmiller B. Multielement Z-tag imaging by X-ray fluorescence microscopy for next-generation multiplex imaging. Nat Methods 2023; 20:1310-1322. [PMID: 37653120 PMCID: PMC10482696 DOI: 10.1038/s41592-023-01977-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
Rapid, highly multiplexed, nondestructive imaging that spans the molecular to the supra-cellular scale would be a powerful tool for tissue analysis. However, the physical constraints of established imaging methods limit the simultaneous improvement of these parameters. Whole-organism to atomic-level imaging is possible with tissue-penetrant, picometer-wavelength X-rays. To enable highly multiplexed X-ray imaging, we developed multielement Z-tag X-ray fluorescence (MEZ-XRF) that can operate at kHz speeds when combined with signal amplification by exchange reaction (SABER)-amplified Z-tag reagents. We demonstrated parallel imaging of 20 Z-tag or SABER Z-tag reagents at subcellular resolution in cell lines and multiple human tissues. We benchmarked MEZ-XRF against imaging mass cytometry and demonstrated the nondestructive multiscale repeat imaging capabilities of MEZ-XRF with rapid tissue overview scans, followed by slower, more sensitive imaging of low-abundance markers such as immune checkpoint proteins. The unique multiscale, nondestructive nature of MEZ-XRF, combined with SABER Z-tags for high sensitivity or enhanced speed, enables highly multiplexed bioimaging across biological scales.
Collapse
Affiliation(s)
- Merrick Strotton
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| | - Tsuyoshi Hosogane
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. MASS SPECTROMETRY REVIEWS 2023; 42:1848-1875. [PMID: 35719114 PMCID: PMC9763553 DOI: 10.1002/mas.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Manveen K Sethi
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Maciel LÍL, Bernardo RA, Martins RO, Batista Junior AC, Oliveira JVA, Chaves AR, Vaz BG. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04783-8. [PMID: 37329466 DOI: 10.1007/s00216-023-04783-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
38
|
Bhargava R. Digital Histopathology by Infrared Spectroscopic Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:205-230. [PMID: 37068745 PMCID: PMC10408309 DOI: 10.1146/annurev-anchem-101422-090956] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Infrared (IR) spectroscopic imaging records spatially resolved molecular vibrational spectra, enabling a comprehensive measurement of the chemical makeup and heterogeneity of biological tissues. Combining this novel contrast mechanism in microscopy with the use of artificial intelligence can transform the practice of histopathology, which currently relies largely on human examination of morphologic patterns within stained tissue. First, this review summarizes IR imaging instrumentation especially suited to histopathology, analyses of its performance, and major trends. Second, an overview of data processing methods and application of machine learning is given, with an emphasis on the emerging use of deep learning. Third, a discussion on workflows in pathology is provided, with four categories proposed based on the complexity of methods and the analytical performance needed. Last, a set of guidelines, termed experimental and analytical specifications for spectroscopic imaging in histopathology, are proposed to help standardize the diversity of approaches in this emerging area.
Collapse
Affiliation(s)
- Rohit Bhargava
- Department of Bioengineering; Department of Electrical and Computer Engineering; Department of Mechanical Science and Engineering; Department of Chemical and Biomolecular Engineering; Department of Chemistry; Cancer Center at Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
39
|
Li N, Li S, Wang Q, Yang S, Hou Y, Gao Y, Zhang X, Zhang M, Chen H. A novel visualization method for the composition analysis of processed garlic by MALDI-TOF imaging mass spectrometry (MSI) and Q-TOF LC-MS/MS. Food Res Int 2023; 168:112746. [PMID: 37120200 DOI: 10.1016/j.foodres.2023.112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Laba garlic is a kind of vinegar processed garlic (Allium sativum L.) product with multiple health effects. This study applied matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-TOF MSI) and Q-TOF LC-MS/MS for the first time to investigate the garlic tissue spatial distribution changes of low molecular weight compounds during the Laba garlic processing. The distribution characteristics of the compounds were observed in processed and unprocessed garlic including amino acids and derivatives, organosulfur compounds, pigment precursors, polysaccharides and saponins. During Laba garlic processing, some bioactive compounds such as alliin and saponins were lost because they were transformed into other compounds or leached into the acetic acid solution, and some new compounds including pigments-related compounds occurred. This study provided a basis for the spatial distributions and changes of compounds in garlic tissue during Laba garlic processing, which suggested that the bioactivities of garlic might be changed after processing owing to the transformation and change of the constituents.
Collapse
|
40
|
Lohani V, A.R A, Kundu S, Akhter MDQ, Bag S. Single-Cell Proteomics with Spatial Attributes: Tools and Techniques. ACS OMEGA 2023; 8:17499-17510. [PMID: 37251119 PMCID: PMC10210017 DOI: 10.1021/acsomega.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Now-a-days, the single-cell proteomics (SCP) concept is attracting interest, especially in clinical research, because it can identify the proteomic signature specific to diseased cells. This information is very essential when dealing with the progression of certain diseases, such as cancer, diabetes, Alzheimer's, etc. One of the major drawbacks of conventional destructive proteomics is that it gives an average idea about the protein expression profile in the disease condition. During the extraction of the protein from a biopsy or blood sample, proteins may come from both diseased cells and adjacent normal cells or any other cells from the disease environment. Again, SCP along with spatial attributes is utilized to learn about the heterogeneous function of a single protein. Before performing SCP, it is necessary to isolate single cells. This can be done by various techniques, including fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), laser capture microdissection (LCM), microfluidics, manual cell picking/micromanipulation, etc. Among the different approaches for proteomics, mass spectrometry-based proteomics tools are widely used for their high resolution as well as sensitivity. This Review mainly focuses on the mass spectrometry-based approaches for the study of single-cell proteomics.
Collapse
Affiliation(s)
- Vartika Lohani
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- PG Scholar, Department of Pharmacy, Banasthali
Vidyapith, Jaipur, Rajasthan 302001, India
| | - Akhiya A.R
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- PG Scholar, Department of Computational
Biology and Bioinformatics, University of
Kerala, Thiruvananthapuram, Kerala 695034, India
| | - Soumen Kundu
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - MD Quasid Akhter
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
| | - Swarnendu Bag
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
41
|
Sharman K, Patterson NH, Weiss A, Neumann EK, Guiberson ER, Ryan DJ, Gutierrez DB, Spraggins JM, Van de Plas R, Skaar EP, Caprioli RM. Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. J Proteome Res 2023; 22:1394-1405. [PMID: 35849531 PMCID: PMC9845430 DOI: 10.1021/acs.jproteome.2c00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Spatially targeted proteomics analyzes the proteome of specific cell types and functional regions within tissue. While spatial context is often essential to understanding biological processes, interpreting sub-region-specific protein profiles can pose a challenge due to the high-dimensional nature of the data. Here, we develop a multivariate approach for rapid exploration of differential protein profiles acquired from distinct tissue regions and apply it to analyze a published spatially targeted proteomics data set collected from Staphylococcus aureus-infected murine kidney, 4 and 10 days postinfection. The data analysis process rapidly filters high-dimensional proteomic data to reveal relevant differentiating species among hundreds to thousands of measured molecules. We employ principal component analysis (PCA) for dimensionality reduction of protein profiles measured by microliquid extraction surface analysis mass spectrometry. Subsequently, k-means clustering of the PCA-processed data groups samples by chemical similarity. Cluster center interpretation revealed a subset of proteins that differentiate between spatial regions of infection over two time points. These proteins appear involved in tricarboxylic acid metabolomic pathways, calcium-dependent processes, and cytoskeletal organization. Gene ontology analysis further uncovered relationships to tissue damage/repair and calcium-related defense mechanisms. Applying our analysis in infectious disease highlighted differential proteomic changes across abscess regions over time, reflecting the dynamic nature of host-pathogen interactions.
Collapse
Affiliation(s)
- Kavya Sharman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - Elizabeth K Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Emma R Guiberson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J Ryan
- Pfizer Inc., Chesterfield, Missouri 63017, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
42
|
Wang F, Ma S, Chen P, Han Y, Liu Z, Wang X, Sun C, Yu Z. Imaging the metabolic reprograming of fatty acid synthesis pathway enables new diagnostic and therapeutic opportunity for breast cancer. Cancer Cell Int 2023; 23:83. [PMID: 37120513 PMCID: PMC10149015 DOI: 10.1186/s12935-023-02908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Reprogrammed metabolic network is a key hallmark of cancer. Profiling cancer metabolic alterations with spatial signatures not only provides clues for understanding cancer biochemical heterogeneity, but also helps to decipher the possible roles of metabolic reprogramming in cancer development. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was used to characterize the expressions of fatty acids in breast cancer tissues. Specific immunofluorescence staining was further carried out to investigate the expressions of fatty acid synthesis-related enzymes. RESULTS The distributions of 23 fatty acids in breast cancer tissues have been mapped, and the levels of most fatty acids in cancer tissues are significantly higher than those in adjacent normal tissues. Two metabolic enzymes, fatty acid synthase (FASN) and acetyl CoA carboxylase (ACC), which being involved in the de novo synthesis of fatty acid were found to be up-regulated in breast cancer. Targeting the up-regulation of FASN and ACC is an effective approach to limiting the growth, proliferation, and metastasis of breast cancer cells. CONCLUSIONS These spatially resolved findings enhance our understanding of cancer metabolic reprogramming and give an insight into the exploration of metabolic vulnerabilities for better cancer treatment.
Collapse
Affiliation(s)
- Fukai Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Shuangshuang Ma
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Panpan Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhaoyun Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinzhao Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Zhiyong Yu
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
43
|
Liu Z, Hui Mingalone CK, Gnanatheepam E, Hollander JM, Zhang Y, Meng J, Zeng L, Georgakoudi I. Label-free, multi-parametric assessments of cell metabolism and matrix remodeling within human and early-stage murine osteoarthritic articular cartilage. Commun Biol 2023; 6:405. [PMID: 37055483 PMCID: PMC10102009 DOI: 10.1038/s42003-023-04738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Osteoarthritis (OA) is characterized by the progressive deterioration of articular cartilage, involving complicated cell-matrix interactions. Systematic investigations of dynamic cellular and matrix changes during OA progression are lacking. In this study, we use label-free two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to assess cellular and extracellular matrix features of murine articular cartilage during several time points at early stages of OA development following destabilization of medial meniscus surgery. We detect significant changes in the organization of collagen fibers and crosslink-associated fluorescence of the superficial zone as early as one week following surgery. Such changes become significant within the deeper transitional and radial zones at later time-points, highlighting the importance of high spatial resolution. Cellular metabolic changes exhibit a highly dynamic behavior, and indicate metabolic reprogramming from enhanced oxidative phosphorylation to enhanced glycolysis or fatty acid oxidation over the ten-week observation period. The optical metabolic and matrix changes detected within this mouse model are consistent with differences identified in excised human cartilage specimens from OA and healthy cartilage specimens. Thus, our studies reveal important cell-matrix interactions at the onset of OA that may enable improved understanding of OA development and identification of new potential treatment targets.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, Zhejiang, 314000, China
| | - Carrie K Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | | | - Judith M Hollander
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jia Meng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
- Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
44
|
Stoffels CBA, Angerer TB, Robert H, Poupin N, Lakhal L, Frache G, Mercier-Bonin M, Audinot JN. Lipidomic Profiling of PFOA-Exposed Mouse Liver by Multi-Modal Mass Spectrometry Analysis. Anal Chem 2023; 95:6568-6576. [PMID: 37027489 PMCID: PMC10134131 DOI: 10.1021/acs.analchem.2c05470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated chemical classified as a persistent organic pollutant. PFOA has been linked to many toxic effects, including liver injury. Many studies report that PFOA exposure alters serum and hepatic lipid metabolism. However, lipidomic pathways altered by PFOA exposure are largely unknown and only a few lipid classes, mostly triacylglycerol (TG), are usually considered in lipid analysis. Here, we performed a global lipidomic analysis on the liver of PFOA-exposed (high-dose and short-duration) and control mice by combining three mass spectrometry (MS) techniques: liquid chromatography with tandem mass spectrometry (LC-MS/MS), matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Among all hepatic lipids identified by LC-MS/MS analysis, more than 350 were statistically impacted (increased or decreased levels) after PFOA exposure, as confirmed by multi-variate data analysis. The levels of many lipid species from different lipid classes, most notably phosphatidylethanolamine (PE), phosphatidylcholine (PC), and TG, were significantly altered. Subsequent lipidomic analysis highlights the pathways significantly impacted by PFOA exposure, with the glycerophospholipid metabolism being the most impacted, and the changes in the lipidome network, which connects all the lipid species together. MALDI-MSI displays the heterogeneous distribution of the affected lipids and PFOA, revealing different areas of lipid expression linked to PFOA localization. TOF-SIMS localizes PFOA at the cellular level, supporting MALDI-MSI results. This multi-modal MS analysis unveils the lipidomic impact of PFOA in the mouse liver after high-dose and short-term exposure and opens new opportunities in toxicology.
Collapse
Affiliation(s)
- Charlotte B A Stoffels
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux 4422, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette 4365, Luxembourg
| | - Tina B Angerer
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux 4422, Luxembourg
| | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse 31027, France
| | - Nathalie Poupin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse 31027, France
| | - Laila Lakhal
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse 31027, France
| | - Gilles Frache
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux 4422, Luxembourg
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse 31027, France
| | - Jean-Nicolas Audinot
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux 4422, Luxembourg
| |
Collapse
|
45
|
Krijnen K, Keelor JD, Böhm S, Ellis SR, Köster C, Höhndorf J, Heeren RMA, Anthony IGM. A Multimodal SIMS/MALDI Mass Spectrometry Imaging Source with Secondary Electron Imaging Capabilities for Use with timsTOF Instruments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:720-727. [PMID: 36891615 PMCID: PMC10080675 DOI: 10.1021/jasms.2c00381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Mass spectrometry imaging (MSI) is a surface analysis technique that produces chemical images and is commonly used for biological and biomedical research. Multimodal imaging combines multiple imaging modes in order to get a more comprehensive view of a sample. Multimodal MSI images are often acquired using multiple MSI instruments, which leads to issues regarding image registration and increases the chance of sample damage or degradation during sample transfer. These problems can be solved by using a single instrument that can image in multiple modes. In order to improve the efficiency of multimodal imaging and investigate complementary modes of MSI, we have modified a prototype Bruker timsTOF fleX by adding secondary ion mass spectrometry (SIMS) and secondary electron (SE) imaging capabilities while preserving the ability to perform matrix-assisted laser desorption/ionization (MALDI). We show multimodal images collected on this instrument that required only trivial registration and were acquired without sample transfer between imaging trials. Furthermore, we characterize the performance of SIMS, SE, and MALDI imaging and compare the performance of the modified instrument to a commercial timsTOF fleX.
Collapse
Affiliation(s)
- Kasper Krijnen
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joel D. Keelor
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sebastian Böhm
- Bruker
Daltonics GmbH & Co KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Shane R. Ellis
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Claus Köster
- Bruker
Daltonics GmbH & Co KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Jens Höhndorf
- Bruker
Daltonics GmbH & Co KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ian G. M. Anthony
- Maastricht
MultiModal Molecular Imaging (M4i) Institute, Division of Imaging
Mass Spectrometry, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
46
|
Villarreal J, Kow K, Pham B, Egatz-Gomez A, Sandrin TR, Coleman PD, Ros A. Intracellular Amyloid-β Detection from Human Brain Sections Using a Microfluidic Immunoassay in Tandem with MALDI-MS. Anal Chem 2023; 95:5522-5531. [PMID: 36894164 PMCID: PMC10078609 DOI: 10.1021/acs.analchem.2c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Alzheimer's disease (AD) currently affects more than 30 million people worldwide. The lack of understanding of AD's physiopathology limits the development of therapeutic and diagnostic tools. Soluble amyloid-β peptide (Aβ) oligomers that appear as intermediates along the Aβ aggregation into plaques are considered among the main AD neurotoxic species. Although a wealth of data are available about Aβ from in vitro and animal models, there is little known about intracellular Aβ in human brain cells, mainly due to the lack of technology to assess the intracellular protein content. The elucidation of the Aβ species in specific brain cell subpopulations can provide insight into the role of Aβ in AD and the neurotoxic mechanism involved. Here, we report a microfluidic immunoassay for in situ mass spectrometry analysis of intracellular Aβ species from archived human brain tissue. This approach comprises the selective laser dissection of individual pyramidal cell bodies from tissues, their transfer to the microfluidic platform for sample processing on-chip, and mass spectrometric characterization. As a proof-of-principle, we demonstrate the detection of intracellular Aβ species from as few as 20 human brain cells.
Collapse
Affiliation(s)
- Jorvani
Cruz Villarreal
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Keegan Kow
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Brian Pham
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ana Egatz-Gomez
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Todd R. Sandrin
- School
of Mathematical and Natural Sciences, Arizona
State University, Glendale, Arizona 85306, United States
- Julie
Ann Wrigley Global Futures Laboratory, Arizona
State University, Glendale, Arizona 85306, United States
| | - Paul D. Coleman
- Banner
ASU Neurodegenerative Research Center, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
47
|
Straehla JP, Reardon DA, Wen PY, Agar NYR. The Blood-Brain Barrier: Implications for Experimental Cancer Therapeutics. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:265-289. [PMID: 38323268 PMCID: PMC10846865 DOI: 10.1146/annurev-cancerbio-061421-040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The blood-brain barrier is critically important for the treatment of both primary and metastatic cancers of the central nervous system (CNS). Clinical outcomes for patients with primary CNS tumors are poor and have not significantly improved in decades. As treatments for patients with extracranial solid tumors improve, the incidence of CNS metastases is on the rise due to suboptimal CNS exposure of otherwise systemically active agents. Despite state-of-the art surgical care and increasingly precise radiation therapy, clinical progress is limited by the ability to deliver an effective dose of a therapeutic agent to all cancerous cells. Given the tremendous heterogeneity of CNS cancers, both across cancer subtypes and within a single tumor, and the range of diverse therapies under investigation, a nuanced examination of CNS drug exposure is needed. With a shared goal, common vocabulary, and interdisciplinary collaboration, the field is poised for renewed progress in the treatment of CNS cancers.
Collapse
Affiliation(s)
- Joelle P Straehla
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Wehrli P, Ge J, Michno W, Koutarapu S, Dreos A, Jha D, Zetterberg H, Blennow K, Hanrieder J. Correlative Chemical Imaging and Spatial Chemometrics Delineate Alzheimer Plaque Heterogeneity at High Spatial Resolution. JACS AU 2023; 3:762-774. [PMID: 37006756 PMCID: PMC10052239 DOI: 10.1021/jacsau.2c00492] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
We present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 μm). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution. We demonstrate the method's potential through its application toward delineating chemical traits of Alzheimer's disease (AD) pathology. Here, trimodal MALDI MSI of transgenic AD mouse brain delineates beta-amyloid (Aβ) plaque-associated co-localization of lipids and Aβ peptides. Finally, we establish an improved image fusion approach for correlative MSI and functional fluorescence microscopy. This allowed for high spatial resolution (300 nm) prediction of correlative, multimodal MSI signatures toward distinct amyloid structures within single plaque features critically implicated in Aβ pathogenicity.
Collapse
Affiliation(s)
- Patrick
M. Wehrli
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Junyue Ge
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
| | - Wojciech Michno
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Srinivas Koutarapu
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Ambra Dreos
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Durga Jha
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, U.K.
- U.
K. Dementia Research Institute at University College London, London WC1N 3BG, U.K.
- Hong
Kong Center for Neurodegenerative Diseases, Sha Tin, N.T. 1512-1518, Hong Kong, China
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, U.K.
| |
Collapse
|
49
|
Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M, Fiore A. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther 2023; 8:137. [PMID: 36949046 PMCID: PMC10033890 DOI: 10.1038/s41392-023-01380-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Federica Danzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria T Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
50
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|