1
|
Zerrad C, Lkhider M, Bouqdayr M, Belkouchi A, Badre W, Tahiri M, Pineau P, Benjelloun S, Ezzikouri S. NOD1 and NOD2 genetic variants: Impact on hepatocellular carcinoma susceptibility and progression in Moroccan population. Gene 2024; 931:148847. [PMID: 39147112 DOI: 10.1016/j.gene.2024.148847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 are involved in carcinogenic processes by recognizing bacterial cell wall components and triggering inflammation. This study explored the association between genetic variations in NOD1 and NOD2 and susceptibility to hepatocellular carcinoma (HCC) and its progression in a Moroccan population. METHODS Genotyping of NOD1 rs2075820 (C>T) and NOD2 rs718226 (A>G) was performed using the TaqMan allelic discrimination assay in 467 Moroccan individuals. The cohort included 156 patients with hepatocellular carcinoma (HCC), 155 patients with liver cirrhosis (LC) diagnosed with HBV, HCV, or MASLD, and 156 controls. RESULTS The NOD1 rs2075820 variant showed no association with HCC susceptibility or progression, which is consistent with in silico predictions. However, the NOD2 rs718226 G allele and GG genotype were more common in the HCC group compared to the cirrhosis and control groups. Individuals with the homozygous G variant had a 2-fold higher risk for HCC (ORad = 2.12; CI=1.01-4.44; Pad = 0.04). Those with the GG genotype also had an increased risk of HCC (GG vs. AG+AA ORad = 2.28; CI=1.15-4.54; Pad = 0.016). Furthermore, GG genotype carriers had a significantly higher risk of HCC progression (ORad = 2.58; CI=1.26-5.31; Pad = 0.031). Individuals with the rs718226 minor allele had a significantly elevated risk of progressing from LC to HCC (ORad = 1.50; CI=1.07-2.09; Pad = 0.016). Stratification analysis indicated that men had a higher risk of HCC progression compared to women (ORad = 4.63; CI=1.53-14.00 vs. ORad = 2.73; CI=1.05-7.09). CONCLUSION The NOD1 rs2075820 polymorphism does not appear to be a genetic risk factor for susceptibility to HCC. In contrast, the non-coding NOD2 rs718226 variant significantly increases HCC susceptibility and promotes liver cancer progression in the Moroccan population. Further studies involving larger cohorts are warranted to definitively confirm or refute the effects of NOD1 and NOD2 genetic variants on liver cancer susceptibility and progression.
Collapse
Affiliation(s)
- Chaimaa Zerrad
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratoire de Virologie, Oncologie, Biosciences, Environnement et Énergies Nouvelles, Hassan II, Casablanca Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Mustapha Lkhider
- Laboratoire de Virologie, Oncologie, Biosciences, Environnement et Énergies Nouvelles, Hassan II, Casablanca Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Meryem Bouqdayr
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Wafaa Badre
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco; Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
2
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
3
|
Aruwa CE, Sabiu S. Interplay of poultry-microbiome interactions - influencing factors and microbes in poultry infections and metabolic disorders. Br Poult Sci 2024; 65:523-537. [PMID: 38920059 DOI: 10.1080/00071668.2024.2356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 06/27/2024]
Abstract
1. The poultry microbiome and its stability at every point in time, either free range or reared under different farming systems, is affected by several environmental and innate factors. The interaction of the poultry birds with their microbiome, as well as several inherent and extraneous factors contribute to the microbiome dynamics. A poor understanding of this could worsen poultry heath and result in disease/metabolic disorders.2. Many diseased states associated with poultry have been linked to dysbiosis state, where the microbiome experiences some perturbation. Dysbiosis itself is too often downplayed; however, it is considered a disease which could lead to more serious conditions in poultry. The management of interconnected factors by conventional and emerging technologies (sequencing, nanotechnology, robotics, 3D mini-guts) could prove to be indispensable in ensuring poultry health and welfare.3. Findings showed that high-throughput technological advancements enhanced scientific insights into emerging trends surrounding the poultry gut microbiome and ecosystem, the dysbiotic condition, and the dynamic roles of intrinsic and exogenous factors in determining poultry health. Yet, a combination of conventional, -omics based and other techniques further enhance characterisation of key poultry microbiome actors, their mechanisms of action, and roles in maintaining gut homoeostasis and health, in a bid to avert metabolic disorders and infections.4. In conclusion, there is an important interplay of innate, environmental, abiotic and biotic factors impacting on poultry gut microbiome homoeostasis, dysbiosis, and overall health. Associated infections and metabolic disorders can result from the interconnected nature of these factors. Emerging concepts (interkingdom or network signalling and neurotransmitter), and future technologies (mini-gut models, cobots) need to include these interactions to ensure accurate control and outcomes.
Collapse
Affiliation(s)
- C E Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - S Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Xu Q, Lv M, Yuan Y, Ling T, Zou X, Dong X. Early weaning damages the intestinal epithelial barrier of squabs through toll-like receptor signaling pathways. Poult Sci 2024; 103:104243. [PMID: 39265515 PMCID: PMC11416584 DOI: 10.1016/j.psj.2024.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024] Open
Abstract
Stress damage caused by early weaning and its possible mechanism have been studied mainly in young mammals, but rarely in altrices, especially in squabs. The study aimed to investigate the possible molecular mechanism of intestinal epithelial barrier damage caused by early weaning in squabs through determining the intestinal permeability, the ultrastructure of villous epithelium, the contents of ileal cytokines, and the protein relative expression of tight-junction proteins, TLRs and their mediated key factors in inflammatory signaling pathways. A total of 192 newly hatched squabs were randomly divided into 2 groups, 1 group was weaned and fed artificial pigeon milk from d 7, and the other group continued to be fed by the parent pigeons. The ileal mucosa and serum of 8 replicates were collected at 1, 4, 7, 10, and 14 d after weaning. The results indicated that early weaning could reduce the growth performance of squabs and damage the intestinal epithelial barrier, which is characterized by down-regulating the protein expression of claudin-1/3, up-regulating the protein expression of claudin-2, promoting the secretion of pro-inflammatory factors, inhibiting the secretion of anti-inflammatory factors, and increasing the permeability of the intestinal barrier. The specific mechanism of stress damage might be the activation of TLR2/4-MyD88-ERK/JNK inflammatory signaling pathway leading to the increase levels of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory of Characteristic Agricultural Product Quality and Hazardous Substance Control Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Science, China Jiliang University, Hangzhou, 310018, China; Key laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Mengqi Lv
- Key Laboratory of Characteristic Agricultural Product Quality and Hazardous Substance Control Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Yiwei Yuan
- Key Laboratory of Characteristic Agricultural Product Quality and Hazardous Substance Control Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Tianliang Ling
- Key Laboratory of Characteristic Agricultural Product Quality and Hazardous Substance Control Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoting Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Xinyang Dong
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China.
| |
Collapse
|
5
|
Suek N, Young T, Fu J. Immune cell profiling in intestinal transplantation. Hum Immunol 2024; 85:110808. [PMID: 38762429 PMCID: PMC11283363 DOI: 10.1016/j.humimm.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
Since the first published case study of human intestinal transplantation in 1967, there have been significant studies of intestinal transplant immunology in both animal models and humans. An improved understanding of the profiles of different immune cell subsets is critical for understanding their contributions to graft outcomes. While different studies have focused on the contribution of one or a few subsets to intestinal transplant, no study has integrated these data for a comprehensive overview of immune dynamics after intestinal transplant. Here, we provide a systematic review of the literature on different immune subsets and discuss their roles in intestinal transplant outcomes on multiple levels, focusing on chimerism and graft immune reconstitution, clonal alloreactivity, and cell phenotype. In Sections 1, 2 and 3, we lay out a shared framework for understanding intestinal transplant, focusing on the mechanisms of rejection or tolerance in the context of mucosal immunology and illustrate the unique role of the bidirectional graft-versus-host (GvH) and host-versus-graft (HvG) alloresponse. In Sections 4, 5 and 6, we further expand upon these concepts as we discuss the contribution of different cell subsets to intestinal transplant. An improved understanding of intestinal transplantation immunology will bring us closer to maximizing the potential of this important treatment.
Collapse
Affiliation(s)
- Nathan Suek
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tyla Young
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Liu W, Guo K. Tannic acid alleviates ETEC K88-induced intestinal damage through regulating the p62-keap1-Nrf2 and TLR4-NF-κB-NLRP3 pathway in IPEC-J2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5186-5196. [PMID: 38288747 DOI: 10.1002/jsfa.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Tannic acid (TA), a naturally occurring polyphenol, has shown diverse potential in preventing intestinal damage in piglet diarrhea induced by Enterotoxigenic Escherichia coli (ETEC) K88. However, the protective effect of TA on ETEC k88 infection-induced post-weaning diarrhea and its potential mechanism has not been well elucidated. Therefore, an animal trial was carried out to investigate the effects of dietary supplementation with TA on the intestinal diarrhea of weaned piglets challenged with ETEC K88. In addition, porcine intestinal epithelial cells were used as an in vitro model to explore the mechanism through which TA alleviates intestinal oxidative damage and inflammation. RESULTS The results indicated that TA supplementation (2 and 4 g kg-1) reduced diarrhea rate, enzyme activity (diamine oxidase [DAO] and Malondialdehyde [MAD]) and serum inflammatory cytokines concentration (TNF-α and IL-1β) (P < 0.05) compared to the Infection group (IG), group in vivo. In vitro, TA treatment effectively alleviated ETEC-induced cytotoxicity, increased the expression of ZO-1, occludin and claudin-1 at both mRNA and protein levels. Moreover, TA pre-treatment increased the activity of antioxidant enzymes (such as T-SOD) and decreased serum cytokine levels (TNF-α and IL-1β). Furthermore, TA increased cellular antioxidant capacity by activating the Nrf2 signaling pathway and decreased inflammatory response by down-regulating the expression of TLR4, MyD88, NF-kB and NLRP3. CONCLUSION The present study showed that TA reduced the diarrhea rate of weaned piglets by restoring the intestinal mucosal mechanical barrier function, alleviating oxidative stress and inflammation. The underlying mechanism was achieved by modulating the p62-keap1-Nrf2 and TLR4-NF-κB-NLRP3 pathway. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Sáez-Fuertes L, Kapravelou G, Grases-Pintó B, Bernabeu M, Knipping K, Garssen J, Bourdet-Sicard R, Castell M, Rodríguez-Lagunas MJ, Collado MC, Pérez-Cano FJ. Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats. Foods 2024; 13:2058. [PMID: 38998564 PMCID: PMC11241808 DOI: 10.3390/foods13132058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants' immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation's effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition.
Collapse
Affiliation(s)
- Laura Sáez-Fuertes
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Garyfallia Kapravelou
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
| | - Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Manuel Bernabeu
- Institute of Agrochemisty and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.B.); (M.C.C.)
| | - Karen Knipping
- Danone Research & Innovation, 3584 Utrecht, The Netherlands; (K.K.); (J.G.)
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Danone Research & Innovation, 3584 Utrecht, The Netherlands; (K.K.); (J.G.)
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, The Netherlands
| | | | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Center for Biomedical Research Network for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María Carmen Collado
- Institute of Agrochemisty and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.B.); (M.C.C.)
| | - Francisco José Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
8
|
Romaní-Pérez M, López-Almela I, Bullich-Vilarrubias C, Evtoski Z, Benítez-Páez A, Sanz Y. Bacteroides uniformis CECT 7771 requires adaptive immunity to improve glucose tolerance but not to prevent body weight gain in diet-induced obese mice. MICROBIOME 2024; 12:103. [PMID: 38845049 PMCID: PMC11155119 DOI: 10.1186/s40168-024-01810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND The metabolic disturbances of obesity can be mitigated by strategies modulating the gut microbiota. In this study, we sought to identify whether innate or adaptive immunity mediates the beneficial metabolic effects of the human intestinal bacterium Bacteroides uniformis CECT 7771 in obesity. METHODS We evaluated the effects of orally administered B. uniformis on energy homeostasis, intestinal immunity, hormone levels, and gut microbiota in wild-type and Rag1-deficient mice with diet-induced obesity. We also assessed whether B. uniformis needed to be viable to exert its beneficial effects in obesity and to directly induce immunoregulatory effects. RESULTS The administration of B. uniformis to obese mice improved glucose tolerance and insulin secretion, restored the caloric intake suppression after an oral glucose challenge, and reduced hyperglycemia. The pre- and post-prandial glucose-related benefits were associated with restoration of the anti-inflammatory tone mediated by type 2 macrophages and regulatory T cells (Tregs) in the lamina propria of the small intestine. Contrastingly, B. uniformis administration failed to improve glucose tolerance in obese Rag1-/- mice, but prevented the increased body weight gain and adiposity. Overall, the beneficial effects seemed to be independent of enteroendocrine effects and of major changes in gut microbiota composition. B. uniformis directly induced Tregs generation from naïve CD4+ T cells in vitro and was not required to be viable to improve glucose homeostasis but its viability was necessary to prevent body weight gain in diet-induced obese wild-type mice. CONCLUSIONS Here we demonstrate that B. uniformis modulates the energy homeostasis in diet-induced obese mice through different mechanisms. The bacterium improves oral glucose tolerance by adaptive immunity-dependent mechanisms that do not require cell viability and prevents body weight gain by adaptive immunity-independent mechanisms which require cell viability. Video Abstract.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain.
| | - Inmaculada López-Almela
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
- Present Address: Research Group Intracellular Pathogens: Biology and Infection, Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Zoran Evtoski
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Alfonso Benítez-Páez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain.
| |
Collapse
|
9
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
10
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
11
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Li Y, Lin Y, Zheng X, Zheng X, Yan M, Wang H, Liu C. Echinacea purpurea (L.) Moench Polysaccharide Alleviates DSS-Induced Colitis in Rats by Restoring Th17/Treg Balance and Regulating Intestinal Flora. Foods 2023; 12:4265. [PMID: 38231750 DOI: 10.3390/foods12234265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Echinacea purpurea is popularly used as a food supplement or nutritional supplement for its immune regulatory function against various threats. As one of its promising components, Echinacea purpurea (L.) Moench polysaccharide (EPP) has a wide range of biological activities. To evaluate the effect of EPP as a dietary supplement on ulcerative colitis (UC), this study used sodium dextran sulfate (DSS) to induce a UC model, extracted EPP using the ethanol subsiding method, and then supplemented with EPP by gavage for 7 days. Then, we evaluated the efficacy of EPP on DSS rats in terms of immunity, anti-inflammation, and intestinal flora. The result showed that EPP could alleviate colonic shortening and intestinal injury in rats with DSS-induced colitis, decrease the disease activity index (DAI) score, downregulate serum levels of inflammatory cytokines, and contribute to the restoration of the balance between the T helper cells 17 (Th17) and the regulatory T cells (Treg) in the spleen and mesenteric lymph nodes (MLNs). Meanwhile, EPP could downregulate the expression of Toll-like receptors 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa-B (NF-κB) in colon tissue. In addition, the results of 16SrRNA sequencing showed that EPP also had a regulatory effect on intestinal flora of UC rats. These results indicate that EPP might achieve a beneficial effect on UC rats as a dietary supplement through restoring Th17/Treg balance, inhibiting the TLR4 signaling pathway and regulating intestinal flora, suggesting its possible application as a potential functional food ingredient alleviating UC.
Collapse
Affiliation(s)
- Yaoxing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongshi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xirui Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mingen Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Huiting Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou 510642, China
| |
Collapse
|
13
|
Huang K, Yang B, Xu Z, Chen H, Wang J. The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum. J Anim Sci Biotechnol 2023; 14:130. [PMID: 37821933 PMCID: PMC10568933 DOI: 10.1186/s40104-023-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Four-chambered stomach including the forestomachs (rumen, reticulum, and omasum) and abomasum allows ruminants convert plant fiber into high-quality animal products. The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants, especially the immune development. However, the dynamics of immune development are poorly understood. RESULTS We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep, at 5, 10, 15, and 25 days of age. We found that forestomachs share similar gene expression patterns, all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25, whereas the metabolic function were significantly downregulated with age. We constructed a cell landscape of the four-chambered stomach using single-cell sequencing. Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells, monocytes and macrophages, as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues. Moreover, the non-immune cells such as epithelial cells play key roles in immune maturation. Cell communication analysis predicted that in addition to immune cells, non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs. CONCLUSIONS Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life. We also identified the gene expression patterns and functional cells associated with immune development. Additionally, we identified some key receptors and signaling involved in immune regulation. These results help to understand the early life immune development at single-cell resolution, which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.
Collapse
Affiliation(s)
- Kailang Huang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Hongwei Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
14
|
Swain B, Campodonico VA, Curtiss R. Recombinant Attenuated Edwardsiella piscicida Vaccine Displaying Regulated Lysis to Confer Biological Containment and Protect Catfish against Edwardsiellosis. Vaccines (Basel) 2023; 11:1470. [PMID: 37766146 PMCID: PMC10534663 DOI: 10.3390/vaccines11091470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
We implemented a unique strategy to construct a recombinant attenuated Edwardsiella vaccine (RAEV) with a biological containment phenotype that causes regulated bacterial cell wall lysis. This process ensures that the vaccine strain is not able to persist in the environment. The murA gene is responsible for the catalysis of one of the first steps in the biosynthesis of muramic acid, which is a crucial component of the bacterial cell wall. The regulated lysis phenotype was achieved by inserting the tightly regulated araC ParaBAD cassette in place of the chromosomal murA promoter. Strains with this mutation require growth media supplemented with arabinose in order to survive. Without arabinose, they are unable to synthesize the peptidoglycan cell wall. Following the colonization of fish lymphoid tissues, the murA protein is no longer synthesized due to the lack of arabinose. Lysis is subsequently achieved in vivo, thus preventing the generation of disease symptoms and the spread of the strain into the environment. Vaccine strain χ16016 with the genotype ΔPmurA180::TT araC ParaBADmurA is attenuated and shows a higher LD50 value than that of the wild-type strain. Studies have demonstrated that χ16016 induced TLR4, TLR5, TLR8, TLR9, NOD1 and NOD2-mediated NF-κB pathways and upregulated the gene expression of various cytokines, such as il-8, il-1β, tnf-a, il-6 and ifn-γ in catfish. We observed significant upregulation of the expression profiles of cd4, cd8 and mhc-II genes in different organs of vaccinated catfish. Vaccine strain χ16016 induced systemic and mucosal IgM titers and conferred significant protection to catfish against E. piscicida wild-type challenge. Our lysis RAEV is the first live attenuated vaccine candidate designed to be used in the aquaculture industry that displays this biological containment property.
Collapse
Affiliation(s)
- Banikalyan Swain
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | |
Collapse
|
15
|
El-Obeid A, Maashi Y, AlRoshody R, Alatar G, Aljudayi M, Al-Eidi H, AlGaith N, Khan AH, Hassib A, Matou-Nasri S. Herbal melanin modulates PGE2 and IL-6 gastroprotective markers through COX-2 and TLR4 signaling in the gastric cancer cell line AGS. BMC Complement Med Ther 2023; 23:305. [PMID: 37658354 PMCID: PMC10474668 DOI: 10.1186/s12906-023-04124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
We reported a gastric anti-ulcerogenic effect of the Nigella sativa (L.)-derived herbal melanin (HM) using rat models. However, the molecular mechanisms underlying this HM gastroprotective effect remain unknown. Cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E2 (PGE2) and toll-like receptor 4 (TLR4)-mediated interleukin-6 (IL-6) production and secretion play major roles in gastric mucosal protection. In the current study, the human gastric carcinoma epithelial cell line AGS was used as a model to investigate the effect of HM on TLR4, COX-2, glycoprotein mucin 4 protein and gene expression using immuno-cyto-fluorescence staining, Western blot technology, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gastroprotective markers PGE2 and IL-6 production and secretion were also assessed using an enzyme-linked immunosorbent assay (ELISA). Bacterial lipopolysaccharides (LPS), well-known inducers of TLR4, COX-2, PGE2 and IL-6 expression, were used as a positive control. We showed that HM upregulated its main receptor TLR4 gene and protein expression in AGS cells. HM increased, in a dose- and time-dependent manner, the secretion of PGE2 and the expression of COX-2 mRNA and protein, which was detected in the nucleus, cytoplasm and predominantly at the intercellular junctions of the AGS cells. In addition, HM enhanced IL-6 production and secretion, and upregulated the mucin 4 gene expression, the hallmarks of gastroprotection. To check whether HM-induced PGE2 and IL-6 through TLR4 signaling and COX-2 generated, AGS cells were pre-treated with a TLR4 signaling inhibitor TAK242 and the COX-2 inhibitor NS-398. A loss of the stimulatory effects of HM on COX-2, PGE2 and IL-6 production and secretion was observed in TAK242 and NS-398-pre-treated AGS cells, confirming the role of TLR4 signaling and COX-2 generated in the HM gastroprotective effects. In conclusion, our results showed that HM enhances TLR4/COX-2-mediated secretion of gastroprotective markers PGE2 and IL-6, and upregulates mucin 4 gene expression in the human gastric epithelial cell line AGS, which may contribute to the promising beneficial gastroprotective effect of HM for human gastric prevention and treatment.
Collapse
Affiliation(s)
- Adila El-Obeid
- Department of Biobank, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.
- Faculty of Pharmacology, Ahfad University for Women, Omdurman, Sudan.
| | - Yahya Maashi
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
- King Faisal Medical City for Southern Region, Ministry of Health, Abha, Saudi Arabia
| | - Rehab AlRoshody
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Ghada Alatar
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Modhi Aljudayi
- Department of Biobank, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Nouf AlGaith
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Altaf Husain Khan
- Department of Biostatistics and Bioinformatics, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia
| | - Adil Hassib
- Department of Physics, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia.
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Tamayo-Trujillo R, Ruiz-Pozo VA, Zambrano AK. Role of the gut microbiota in hematologic cancer. Front Microbiol 2023; 14:1185787. [PMID: 37692399 PMCID: PMC10485363 DOI: 10.3389/fmicb.2023.1185787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Hematologic neoplasms represent 6.5% of all cancers worldwide. They are characterized by the uncontrolled growth of hematopoietic and lymphoid cells and a decreased immune system efficacy. Pathological conditions in hematologic cancer could disrupt the balance of the gut microbiota, potentially promoting the proliferation of opportunistic pathogens. In this review, we highlight studies that analyzed and described the role of gut microbiota in different types of hematologic diseases. For instance, myeloma is often associated with Pseudomonas aeruginosa and Clostridium leptum, while in leukemias, Streptococcus is the most common genus, and Lachnospiraceae and Ruminococcaceae are less prevalent. Lymphoma exhibits a moderate reduction in microbiota diversity. Moreover, certain factors such as delivery mode, diet, and other environmental factors can alter the diversity of the microbiota, leading to dysbiosis. This dysbiosis may inhibit the immune response and increase susceptibility to cancer. A comprehensive analysis of microbiota-cancer interactions may be useful for disease management and provide valuable information on host-microbiota dynamics, as well as the possible use of microbiota as a distinguishable marker for cancer progression.
Collapse
|
17
|
Di Vincenzo F, Yadid Y, Petito V, Emoli V, Masi L, Gerovska D, Araúzo-Bravo MJ, Gasbarrini A, Regenberg B, Scaldaferri F. Circular and Circulating DNA in Inflammatory Bowel Disease: From Pathogenesis to Potential Molecular Therapies. Cells 2023; 12:1953. [PMID: 37566032 PMCID: PMC10417561 DOI: 10.3390/cells12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic multifactorial disorders which affect the gastrointestinal tract with variable extent. Despite extensive research, their etiology and exact pathogenesis are still unknown. Cell-free DNAs (cfDNAs) are defined as any DNA fragments which are free from the origin cell and able to circulate into the bloodstream with or without microvescicles. CfDNAs are now being increasingly studied in different human diseases, like cancer or inflammatory diseases. However, to date it is unclear how IBD etiology is linked to cfDNAs in plasma. Extrachromosomal circular DNA (eccDNA) are non-plasmidic, nuclear, circular and closed DNA molecules found in all eukaryotes tested. CfDNAs appear to play an important role in autoimmune diseases, inflammatory processes, and cancer; recently, interest has also grown in IBD, and their role in the pathogenesis of IBD has been suggested. We now suggest that eccDNAs also play a role in IBD. In this review, we have comprehensively collected available knowledge in literature regarding cfDNA, eccDNA, and structures involving them such as neutrophil extracellular traps and exosomes, and their role in IBD. Finally, we focused on old and novel potential molecular therapies and drug delivery systems, such as nanoparticles, for IBD treatment.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Ylenia Yadid
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Valentina Petito
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Valeria Emoli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Letizia Masi
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
| | - Marcos Jesus Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonio Gasbarrini
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 13, Room 426, DK-2100 Copenhagen, Denmark;
| | - Franco Scaldaferri
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| |
Collapse
|
18
|
Zhan F, Li Y, Shi F, Lu Z, Yang M, Li Q, Lin L, Qin Z. Characterization analysis of TLR5a and TLR5b immune response after different bacterial infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108716. [PMID: 37001745 DOI: 10.1016/j.fsi.2023.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Toll-like receptor (TLR) is an important pattern recognition receptor, which specifically recognizes microbial components, and TLR5 recognizes bacterial flagellin in vertebrates and invertebrates. In this study, two forms of TLR5 (TLR5a and TLR5b) were identified in grass carp (Ctenopharyngodon idella). Aeromonas hydrophila and Staphylococcus aureus were used to investigate the role of grass carp TLR5a and TLR5b against bacteria (flagellate and non-flagellate) in innate immunity, and the expression of TLR5a and TLR5b genes and proteins were detected in immune-related tissues. Quantitative real-time polymerase chain reaction results showed that TLR5a and TLR5b genes of grass carp were highly expressed in the liver, spleen, and head kidney, and their expression patterns were similar in tissues. Meanwhile, the TLR5b gene expression was higher than TLR5a in most tissues. Following exposure to A. hydrophila and S. aureus, the expression levels of TLR5a and TLR5b genes in the liver, spleen, and head kidney were up-regulated significantly. Moreover, the downstream gene, NF-κB, was up-regulated significantly. After A. hydrophila infection, the expression of TLR5a gene was up-regulated in the liver and spleen at 24 h, while TLR5b was up-regulated at 6 h. In the head kidney, TLR5a was up-regulated at 6 h, while TLR5b was up-regulated at 6 h and 12 h. After S. aureus infection, TLR5a and TLR5b were up-regulated at 6 h in the liver and 12 h in the spleen. However, in the head kidney, TLR5a was down-regulated, while TLR5b was up-regulated. Compared with TLR5a, TLR5b had a higher expression level and stronger response to pathogen stimulation. The immunofluorescence results showed that TLR5a and TLR5b proteins in the liver of grass carp infected with A. hydrophila and S. aureus were similar but different in the spleen and head kidney. The results indicated that TLR5a and TLR5b play a critical role in resisting bacterial infection, and TLR5a and TLR5b had obvious tissue and pathogen specificity. TLR5b may play a major role in immune tissues, while TLR5a may play an auxiliary regulatory role in early infection. In addition, TLR5a and TLR5b have an irreplaceable regulatory role in response to flagellate and non-flagellate bacteria. This lays a foundation to explore further the role of TLR5 in resisting flagellate and non-flagellate infections in fish and provides a reference for the innate immunity research of grass carp.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
19
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Strohmeier V, Andrieux G, Unger S, Pascual-Reguant A, Klocperk A, Seidl M, Marques OC, Eckert M, Gräwe K, Shabani M, von Spee-Mayer C, Friedmann D, Harder I, Gutenberger S, Keller B, Proietti M, Bulashevska A, Grimbacher B, Provaznik J, Benes V, Goldacker S, Schell C, Hauser AE, Boerries M, Hasselblatt P, Warnatz K. Interferon-Driven Immune Dysregulation in Common Variable Immunodeficiency-Associated Villous Atrophy and Norovirus Infection. J Clin Immunol 2023; 43:371-390. [PMID: 36282455 PMCID: PMC9892141 DOI: 10.1007/s10875-022-01379-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE About 15% of patients with common variable immunodeficiency (CVID) develop a small intestinal enteropathy, which resembles celiac disease with regard to histopathology but evolves from a distinct, poorly defined pathogenesis that has been linked in some cases to chronic norovirus (NV) infection. Interferon-driven inflammation is a prominent feature of CVID enteropathy, but it remains unknown how NV infection may contribute. METHODS Duodenal biopsies of CVID patients, stratified according to the presence of villous atrophy (VA), IgA plasma cells (PCs), and chronic NV infection, were investigated by flow cytometry, multi-epitope-ligand cartography, bulk RNA-sequencing, and RT-qPCR of genes of interest. RESULTS VA development was connected to the lack of intestinal (IgA+) PC, a T helper 1/T helper 17 cell imbalance, and increased recruitment of granzyme+CD8+ T cells and pro-inflammatory macrophages to the affected site. A mixed interferon type I/III and II signature occurred already in the absence of histopathological changes and increased with the severity of the disease and in the absence of (IgA+) PCs. Chronic NV infection exacerbated this signature when compared to stage-matched NV-negative samples. CONCLUSIONS Our study suggests that increased IFN signaling and T-cell cytotoxicity are present already in mild and are aggravated in severe stages (VA) of CVID enteropathy. NV infection preempts local high IFN-driven inflammation, usually only seen in VA, at milder disease stages. Thus, revealing the impact of different drivers of the pathological mixed IFN type I/III and II signature may allow for more targeted treatment strategies in CVID enteropathy and supports the goal of viral elimination.
Collapse
Affiliation(s)
- Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Adam Klocperk
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, 2Nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Maximilian Seidl
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Otavio Cabral Marques
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marleen Eckert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katja Gräwe
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Michelle Shabani
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Caroline von Spee-Mayer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Friedmann
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvia Gutenberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Jan Provaznik
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
22
|
Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023; 15:nu15030607. [PMID: 36771313 PMCID: PMC9921390 DOI: 10.3390/nu15030607] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbiota is the largest and most complex microflora in the human body, which plays a crucial role in human health and disease. Over the past 20 years, the bidirectional communication between gut microbiota and extra-intestinal organs has been extensively studied. A better comprehension of the alternative mechanisms for physiological and pathophysiological processes could pave the way for health. Cardiovascular disease (CVD) is one of the most common diseases that seriously threatens human health. Although previous studies have shown that cardiovascular diseases, such as heart failure, hypertension, and coronary atherosclerosis, are closely related to gut microbiota, limited understanding of the complex pathogenesis leads to poor effectiveness of clinical treatment. Dysregulation of inflammation always accounts for the damaged gastrointestinal function and deranged interaction with the cardiovascular system. This review focuses on the characteristics of gut microbiota in CVD and the significance of inflammation regulation during the whole process. In addition, strategies to prevent and treat CVD through proper regulation of gut microbiota and its metabolites are also discussed.
Collapse
|
23
|
Asadzadeh-Aghdaei H, Rejali L, Nourian M, Chaleshi V, Zamani N, Baradaran-Ghavami S, Nemati M, Shahrokh S, Norouzinia M, Vosough M, Nazemalhosseini-Mojarad E, Zali M. Toll-Like Receptor 7 a Novel Non-Invasive Inflammatory Genetic Sensor for Ulcerative Colitis Remission Monitoring. Adv Biomed Res 2023; 12:54. [PMID: 37057238 PMCID: PMC10086669 DOI: 10.4103/abr.abr_24_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 04/15/2023] Open
Abstract
Background Ulcerative colitis (UC) and Crohn's disease (CD) are two major types of inflammatory bowel diseases (IBDs). Toll-like receptors (TLRs) are expressed in the innate immune system compartments, in charge of identifying a wide range of microorganisms. The aim of the present study was to evaluate the expression of TLR-2, -7, and -8 in peripheral blood mononuclear cells (PBMC) of UC patients as a novel non-invasive primary inflammation sensor for monitoring the clinical course of UC candidates. Materials and Methods In this cross-sectional study, total RNA was extracted from the PBMC of 42 UC patients along with 20 healthy donors. The mRNA levels of TLR-2, -7, and -8 were assessed using the quantitative real-time polymerase chain (qRT-PCR) reaction. Results The present research study demonstrated no significant changes in TLR-2 mRNA expression in UC patients in comparison with the control group (P = 0.1264), whereas significant elevation (P = 0.0008) was distinguished in the TLR-7 expression of UC participants specifically during the remission course compared with healthy donors and flareup patients (P = 0.0004 and P = 0.0063, respectively). The last selected TLR, TLR-8 was not shown remarkable changes either between UC patients and the control group or between clinical courses of the disease. Conclusion Here, among three nominated TLRs for predicting UC patients, TLR-7 was potentially selected according to the significant difference in mRNA expression in flareup UC patients and control donors. TLR-7 could be used as a novel non-invasive biomarker for monitoring UC patients in the active course of the disease.
Collapse
Affiliation(s)
- Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Nourian
- Mahak Hematology Oncology Research Center (Mahak-HORC), Mahak Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghmeh Zamani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran-Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nemati
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzinia
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Address for correspondence: Dr. Ehsan Nazemalhosseini-Mojarad, Gastroenterology, and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, Thran, Iran. E-mail:
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Saeed M, Shoaib A, Kandimalla R, Javed S, Almatroudi A, Gupta R, Aqil F. Microbe-based therapies for colorectal cancer: Advantages and limitations. Semin Cancer Biol 2022; 86:652-665. [PMID: 34020027 DOI: 10.1016/j.semcancer.2021.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Cancer is one of the leading global causes of death in both men and women. Colorectal cancer (CRC) alone accounts for ∼10 % of total new global cases and poses an over 4% lifetime risk of developing cancer. Recent advancements in the field of biotechnology and microbiology concocted novel microbe-based therapies to treat various cancers, including CRC. Microbes have been explored for human use since centuries, especially for the treatment of various ailments. The utility of microbes in cancer therapeutics is widely explored, and various bacteria, fungi, and viruses are currently in use for the development of cancer therapeutics. The human gut hosts about 100 trillion microbes that release their metabolites in active, inactive, or dead conditions. Microbial secondary metabolites, proteins, immunotoxins, and enzymes are used to target cancer cells to induce cell cycle arrest, apoptosis, and death. Various approaches, such as dietary interventions, the use of prebiotics and probiotics, and fecal microbiota transplantation have been used to modulate the gut microbiota in order to prevent or treat CRC pathogenesis. The present review highlights the role of the gut microbiota in CRC precipitation, the potential mechanisms and use of microorganisms as CRC biomarkers, and strategies to modulate microbiota for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Raghuram Kandimalla
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ramesh Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
25
|
Lacticaseibacillus casei Strain Shirota Modulates Macrophage-Intestinal Epithelial Cell Co-Culture Barrier Integrity, Bacterial Sensing and Inflammatory Cytokines. Microorganisms 2022; 10:microorganisms10102087. [PMID: 36296363 PMCID: PMC9607601 DOI: 10.3390/microorganisms10102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Probiotic bacteria modulate macrophage immune inflammatory responses, with functional cytokine responses determined by macrophage subset polarisation, stimulation and probiotic strain. Mucosal macrophages exhibit subset functional heterogeneity but are organised in a 3-dimensional tissue, over-laid by barrier epithelial cells. This study aimed to investigate the effects of the probiotic Lacticaseibacillus casei strain Shirota (LcS) on macrophage-epithelial cell cytokine responses, pattern recognition receptor (PRR) expression and LPS responses and the impacts on barrier integrity. THP-1-derived M1 and M2 subset macrophages were co-cultured in a transwell system with differentiated Caco-2 epithelial cells in the presence or absence of enteropathogenic LPS. Both Caco-2 cells in monoculture and macrophage co-culture were assayed for cytokines, PRR expression and barrier integrity (TEER and ZO-1) by RT-PCR, ELISA, IHC and electrical resistance. Caco-2 monocultures expressed distinct cytokine profiles (IL-6, IL-8, TNFα, endogenous IL-10), PRRs and barrier integrity, determined by inflammatory context (TNFα or IL-1β). In co-culture, LcS rescued ZO-1 and TEER in M2/Caco-2, but not M1/Caco-2. LcS suppressed TLR2, TLR4, MD2 expression in both co-cultures and differentially regulated NOD2, TLR9, Tollip and cytokine secretion. In conclusion, LcS selectively modulates epithelial barrier integrity, pathogen sensing and inflammatory cytokine profile; determined by macrophage subset and activation status.
Collapse
|
26
|
Xiao Q, Chen J, Zeng S, Cai H, Zhu G. An updated systematic review of the association between the TLR4 polymorphism rs4986790 and cancers risk. Medicine (Baltimore) 2022; 101:e31247. [PMID: 36281200 PMCID: PMC9592503 DOI: 10.1097/md.0000000000031247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) is a lipopolysaccharide receptor that may influence tumor progression through inflammatory response and immune response. This complex process mainly occurs within cells. The correlation between TLR4 and neoplasms has been of great interest, but discrepancies remain. METHODS We analyze the literature retrieved from five databases (Web of Science, PubMed, Embase, CNKI, and Wan Fang) to assess the intensity of association using odds ratio (ORs) and 95% confidence intervals (95% CI). Meta-regression and subgroup analysis were utilized to find sources of heterogeneity. Publication bias is estimated using contour-enhanced funnel plots, Begg's test, and Egger's test, and we implemented sensitivity analysis to clarify the reliability of the outcomes. We also conducted an evaluation of the sample size using trial sequential analysis (TSA) method. RESULTS We found a significant association between rs4986790 and tumors (dominant model: OR [95% CI] = 1.25 [1.11-1.42]; heterozygous model OR [95% CI] = 1.25 [1.11-1.41]; and additive model: OR [95% CI] = 1.25 [1.10-1.41]. Specifically, the rs4986790 minor allele G may increase the risk of gastric cancer (dominant model: OR [95% CI] = 1.62 [1.3-2.03]; heterozygous model: OR [95% CI] = 1.57 [1.24-1.97]; additive model: OR [95% CI] = 1.64 [1.31-2.05] and other tumors (dominant model: OR [95% CI] = 1.36 [1.17-1.57]; heterozygous model: OR [95% CI] = 1.43 [1.25-1.63]; additive model: OR [95% CI] = 1.35 [1.18-1.55]. Further subgroup analysis showed that this association are both present in Caucasian and Asian. CONCLUSION The outcomes of our systemic review proved that the TLR4 polymorphism rs4986790 is associated with cancer, especially with gastric cancer, and this strong correlation are evident in Caucasians and Asian.
Collapse
Affiliation(s)
- Qiang Xiao
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Chen
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - ShuKun Zeng
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hu Cai
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - GuoMin Zhu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Guomin Zhu, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China (e-mail: )
| |
Collapse
|
27
|
Nabeta HW, Lasnik AB, Fuqua JL, Wang L, Rohan LC, Palmer KE. Antiviral lectin Q-Griffithsin suppresses fungal infection in murine models of vaginal candidiasis. Front Cell Infect Microbiol 2022; 12:976033. [PMID: 36329822 PMCID: PMC9623022 DOI: 10.3389/fcimb.2022.976033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Resistance to antifungal agents in vulvovaginal candidiasis has resulted in increasing morbidity among women globally. It is therefore crucial that new antimycotic agents are developed to counter this rising challenge. Q-Griffithsin (Q-GRFT) is a red algal lectin, manufactured in Nicotiana benthamiana. Griffithsin has well characterized broad spectrum antiviral activity and has demonstrated potent in vitro activity against multiple strains of Candida, including C. albicans. We have been working to incorporate Q-GRFT into topical microbicide products to prevent HIV-1 and HSV-2 transmission. The goal of this study was to evaluate the efficacy of a prototype Q-GRFT dosage form in prophylactic and therapeutic murine models of vaginal candidiasis, through microbiologic, histopathologic, and immune studies. In a preventive model, in comparison with infected controls, Q-GRFT treatment resulted in a lower fungal burden but did not alter the number of vaginal neutrophils and monocytes. In a therapeutic model, Q-GRFT enhanced fungal clearance when compared with infected untreated controls. Finally, histopathology demonstrated lower vaginal colonization with C. albicans following Q-GRFT treatment. Our results demonstrate that Q-GRFT has significant preventive and therapeutic activity in vaginal candidiasis offering additional benefit as a topical microbicide for prevention of HIV-1 and HSV-2 transmission.
Collapse
Affiliation(s)
- Henry W. Nabeta
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville KY, United States
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville KY, United States
- *Correspondence: Henry W. Nabeta, ; Kenneth E. Palmer,
| | - Amanda B. Lasnik
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville KY, United States
| | - Joshua L. Fuqua
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville KY, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville KY, United States
| | - Lin Wang
- Infectious Diseases, Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Lisa C. Rohan
- Infectious Diseases, Magee-Womens Research Institute, Pittsburgh, PA, United States
- Department of Obstetrics, Gynecology, & Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States
| | - Kenneth E. Palmer
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville KY, United States
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville KY, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville KY, United States
- *Correspondence: Henry W. Nabeta, ; Kenneth E. Palmer,
| |
Collapse
|
28
|
Tiruvayipati S, Hameed DS, Ahmed N. Play the plug: How bacteria modify recognition by host receptors? Front Microbiol 2022; 13:960326. [PMID: 36312954 PMCID: PMC9615552 DOI: 10.3389/fmicb.2022.960326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The diverse microbial community that colonizes the gastrointestinal tract has remarkable effects on the host immune system and physiology resulting in homeostasis or disease. In both scenarios, the gut microbiota interacts with their host through ligand-receptor binding whereby the downstream signaling processes determine the outcome of the interaction as disease or the counteractive immune responses of the host. Despite several studies on microbe-host interactions and the mechanisms by which this intricate process happens, a comprehensive and updated inventory of known ligand-receptor interactions and their roles in disease is paramount. The ligands which originate as a result of microbial responses to the host environment contribute to either symbiotic or parasitic relationships. On the other hand, the host receptors counteract the ligand actions by mounting a neutral or an innate response. The varying degrees of polymorphic changes in the host receptors contribute to specificity of interaction with the microbial ligands. Additionally, pathogenic microbes manipulate host receptors with endogenous enzymes belonging to the effector protein family. This review focuses on the diversity and similarity in the gut microbiome-host interactions both in health and disease conditions. It thus establishes an overview that can help identify potential therapeutic targets in response to critically soaring antimicrobial resistance as juxtaposed to tardy antibiotic development research.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Infectious Diseases Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dharjath S. Hameed
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
- *Correspondence: Niyaz Ahmed, ,
| |
Collapse
|
29
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
30
|
Ma Z, Zhang D, Cheng Z, Niu Y, Kong L, Lu Z, Bie X. Designed symmetrical β-hairpin peptides for treating multidrug-resistant salmonella typhimurium infections. Eur J Med Chem 2022; 243:114769. [PMID: 36137364 DOI: 10.1016/j.ejmech.2022.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The rapid emergence and prevalence of multidrug-resistant salmonellosis lack effective therapies, which causes epidemic health problems and stimulates the development of antimicrobials with novel modes of action. In this research, 10 short symmetrical β-hairpin peptides are synthesized by combining the β-turn of Leucocin-A with recurring hydrophobic and cationic amino acid sequences. Those designed peptides exhibited potent antibacterial activities against drug-susceptible and drug-resistant Salmonella. One of the 10 peptides, WK2 ((WK)2CTKSGC(KW)2), displayed best cell selectivity towards Salmonella cells over macrophages and erythrocytes in a co-culture model. Fluorescent measurements and microscopic observations reflected that WK2 exerted its antimicrobial activity through a membrane-lytic mechanism. Moreover, the β-hairpin peptides can bind to endotoxin (LPS) and suppress the production of LPS-induced proinflammatory cytokines in RAW264.7 cells, indicating as a potent anti-inflammatory activity. The preliminary in vivo studies can also demonstrate that WK2 decreased loads of Salmonella in the liver and spleen, mitigated Salmonella-caused inflammation and maintained the integrity of intestinal mucosal surfaces. Ultimately, the results highlight that WK2 is a promising therapeutic agent to prevent multidrug-resistant S. Typhimurium infections in humans and animals.
Collapse
Affiliation(s)
- Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dong Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyi Cheng
- Faculty of Cell and Molecular Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yandong Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Liangyu Kong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Bifidobacterium breve Alleviates DSS-Induced Colitis in Mice by Maintaining the Mucosal and Epithelial Barriers and Modulating Gut Microbes. Nutrients 2022; 14:nu14183671. [PMID: 36145047 PMCID: PMC9503522 DOI: 10.3390/nu14183671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
This study was designed to explore the different intestinal barrier repair mechanisms of Bifidobacterium breve (B. breve) H4-2 and H9-3 with different exopolysaccharide (EPS) production in mice with colitis. The lipopolysaccharide (LPS)-induced IEC-6 cell inflammation model and dextran sulphate sodium (DSS)-induced mice colitis model were used. Histopathological changes, epithelial barrier integrity, short-chain fatty acid (SCFA) content, cytokine levels, NF-κB expression level, and intestinal flora were analyzed to evaluate the role of B. breve in alleviating colitis. Cell experiments indicated that both B. breve strains could regulate cytokine levels. In vivo experiments confirmed that oral administration of B. breve H4-2 and B. breve H9-3 significantly increased the expression of mucin, occludin, claudin-1, ZO-1, decreased the levels of IL-6, TNF-α, IL-1β and increased IL-10. Both strains of B. breve also inhibited the expression of the NF-κB signaling pathway. Moreover, B. breve H4-2 and H9-3 intervention significantly increased the levels of SCFAs, reduced the abundance of Proteobacteria and Bacteroidea, and increased the abundance of Muribaculaceae. These results demonstrate that EPS-producing B. breve strains H4-2 and H9-3 can regulate the physical, immune, and microbial barrier to repair the intestinal damage caused by DSS in mice. Of the two strains, H4-2 had a higher EPS output and was more effective at repair than H9-3. These results will provide insights useful for clinical applications and the development of probiotic products for the treatment of colitis.
Collapse
|
32
|
Lv Q, Li Z, Sui A, Yang X, Han Y, Yao R. The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases. Front Microbiol 2022; 13:977187. [PMID: 36060752 PMCID: PMC9433831 DOI: 10.3389/fmicb.2022.977187] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and T2DM-related complications [such as retinopathy, nephropathy, and cardiovascular diseases (CVDs)] are the most prevalent metabolic diseases. Intriguingly, overwhelming findings have shown a strong association of the gut microbiome with the etiology of these diseases, including the role of aberrant gut bacterial metabolites, increased intestinal permeability, and pathogenic immune function affecting host metabolism. Thus, deciphering the specific microbiota, metabolites, and the related mechanisms to T2DM-related complications by combined analyses of metagenomics and metabolomics data can lead to an innovative strategy for the treatment of these diseases. Accordingly, this review highlights the advanced knowledge about the characteristics of the gut microbiota in T2DM-related complications and how it can be associated with the pathogenesis of these diseases. Also, recent studies providing a new perspective on microbiota-targeted therapies are included.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Xu Q, Zhao W, Li Y, Zou X, Dong X. Intestinal Immune Development Is Accompanied by Temporal Deviation in Microbiota Composition of Newly Hatched Pigeon Squabs. Microbiol Spectr 2022; 10:e0189221. [PMID: 35579441 PMCID: PMC9241753 DOI: 10.1128/spectrum.01892-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Identifying the interaction between intestinal mucosal immune system development and commensal microbiota colonization in neonates is of paramount importance for understanding how early life events affect resistance to disease later in life. However, knowledge about this interaction during the early posthatch development period in altrices is limited. To fill this gap, samples of intestinal content and tissue were collected from newly hatched pigeon squabs at four time points (days 0, 7, 14, and 21) for microbial community analysis and genome-wide transcriptome profiling, respectively. We show that the first week after hatching seems to be the critical window for ileal microbiota colonization and that a potentially stable microbiota has not yet been well established at 21 days of age. Regional transcriptome differences revealed that the jejunum rather than the ileum plays a crucial role in immunity at both the innate and adaptive levels. In the ileum, temporal deviation in innate immune-related genes mainly occurs in the first week of life and is accompanied by a temporal change in microbiota composition, indicating that the ileal innate mucosal immune system development regulated by microbial colonization occurs mainly in this period. Furthermore, we provide evidence that colonization by Escherichia and Lactobacillus within the first week of life is likely one of the causative factors for the induction of proinflammatory cytokine expression in the ileum. We also demonstrate that cellular adaptive immune responses mediated by Th17 cells following commensal-induced proinflammatory cytokine production in the ileum begin as early as the first week posthatch, but this cellular immunity seems to be less effective in terms of maintaining the inflammatory response balance. Because the induction of high levels of mucosal secretory IgA (SIgA) seems to take approximately 3 weeks, we favor the idea that humoral adaptive immunity might be less active, at least, during the first 2 weeks of life. Our data may help to explain the phenomenon of the occurrence of intestinal infections mainly in the ileum of pigeon squabs during the early posthatch period. IMPORTANCE The pigeon (Columba livia), an altricial bird, is one of the most economically important farmed poultry for table purposes. Identifying the interaction between intestinal mucosal immune system development and commensal microbiota colonization in neonates is of paramount importance for understanding how early life events affect resistance to disease and potential productivity later in life. However, knowledge about this interaction during the early posthatch development period in altricial birds is limited. The study described herein is the first to try to provide insights into this interaction. Our data provide evidence on the mutual relationship between intestinal mucosal immune system development and commensal microbiota colonization in pigeon squabs and may help to explain the phenomenon of the occurrence of intestinal infections mainly in the ileum of pigeon squabs during the early posthatch period.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory for Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenyan Zhao
- Key Laboratory for Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yan Li
- Key Laboratory for Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory for Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Xu Q, Jian H, Zhao W, Li J, Zou X, Dong X. Early Weaning Stress Induces Intestinal Microbiota Disturbance, Mucosal Barrier Dysfunction and Inflammation Response Activation in Pigeon Squabs. Front Microbiol 2022; 13:877866. [PMID: 35711747 PMCID: PMC9194612 DOI: 10.3389/fmicb.2022.877866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Early weaning stress has been reported to impair intestinal health in mammals. Like mammals, weaning of the pigeon squab, an altricial bird, is associated with social, environmental and dietary stress. However, understanding of weaning stress on intestinal functions is very limited in altricial birds, especially in squabs. This study was aimed to evaluate the effects of early weaning stress on intestinal microbiota diversity, architecture, permeability, the first line defense mechanisms, mucosal barrier functions, and immune cell responses. A total of 192 newly hatched squabs were randomly allocated into two groups, one weaned on day 7 and the other remained with the parent pigeons. Mucosal tissue and digesta in ileum, as well as blood samples, were collected from squabs (n = 8) on days 1, 4, 7, 10, and 14 postweaning. Our results showed that weaning stress induced immediate and long-term deleterious effects on both growth performance and intestinal barrier functions of squabs. Early weaning significantly increased ileal bacterial diversity and alters the relative abundance of several bacteria taxa. Weaning stress can also cause morphological and functional changes in ileum, including an atrophy in villi, an increase in permeability, and a variation in the mRNA expression of genes encoding mucins, immunoglobulins, tight junction proteins, toll-like receptors, and cytokines, as well as the concentration of secretory IgA. We concluded that the impaired intestinal barrier functions accompanied with early weaning stress seems to be the main reason for the poor growth rate after weaning in squabs. In addition, the disturbance of intestinal microbiota of early weaning stress in squabs coincided with dysfunction of intestinal mucosal barrier and activation of inflammation cell responses that were possibly mediated via the activation of toll-like receptors.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Huafeng Jian
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Wenyan Zhao
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Jiankui Li
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| |
Collapse
|
35
|
Fathima S, Shanmugasundaram R, Adams D, Selvaraj RK. Gastrointestinal Microbiota and Their Manipulation for Improved Growth and Performance in Chickens. Foods 2022; 11:1401. [PMID: 35626971 PMCID: PMC9140538 DOI: 10.3390/foods11101401] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
The gut of warm-blooded animals is colonized by microbes possibly constituting at least 100 times more genetic material of microbial cells than that of the somatic cells of the host. These microbes have a profound effect on several physiological functions ranging from energy metabolism to the immune response of the host, particularly those associated with the gut immune system. The gut of a newly hatched chick is typically sterile but is rapidly colonized by microbes in the environment, undergoing cycles of development. Several factors such as diet, region of the gastrointestinal tract, housing, environment, and genetics can influence the microbial composition of an individual bird and can confer a distinctive microbiome signature to the individual bird. The microbial composition can be modified by the supplementation of probiotics, prebiotics, or synbiotics. Supplementing these additives can prevent dysbiosis caused by stress factors such as infection, heat stress, and toxins that cause dysbiosis. The mechanism of action and beneficial effects of probiotics vary depending on the strains used. However, it is difficult to establish a relationship between the gut microbiome and host health and productivity due to high variability between flocks due to environmental, nutritional, and host factors. This review compiles information on the gut microbiota, dysbiosis, and additives such as probiotics, postbiotics, prebiotics, and synbiotics, which are capable of modifying gut microbiota and elaborates on the interaction of these additives with chicken gut commensals, immune system, and their consequent effects on health and productivity. Factors to be considered and the unexplored potential of genetic engineering of poultry probiotics in addressing public health concerns and zoonosis associated with the poultry industry are discussed.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Daniel Adams
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| |
Collapse
|
36
|
Kogut MH. Role of diet-microbiota interactions in precision nutrition of the chicken: facts, gaps, and new concepts. Poult Sci 2022; 101:101673. [PMID: 35104729 PMCID: PMC8814386 DOI: 10.1016/j.psj.2021.101673] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the intestine, host-derived factors are genetically hardwired and difficult to modulate. However, the intestinal microbiome is more plastic and can be readily modulated by dietary factors. Further, it is becoming more apparent that the microbiome can potentially impact poultry physiology by participating in digestion, the absorption of nutrients, shaping of the mucosal immune response, energy homeostasis, and the synthesis or modulation of several potential bioactive metabolites. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated in large part by diet. Thus, diet-induced microbiota alterations may be harnessed to induce changes in host physiology, including disease development and progression. In this regard, the gut microbiome is malleable and renders the gut microbiome a candidate 'organ' for the possibility of precision nutrition to induce precision microbiomics-the use of the gut microbiome as a biomarker to predict responsiveness to specific dietary constituents to generate precision diets and interventions for optimal poultry performance and health. However, it is vital to identify the causal relationships and mechanisms by which dietary components and additives affect the gut microbiome which then ultimately influence avian physiology. Further, an improved understanding of the spatial and functional relationships between the different sections of the avian gut and their regional microbiota will provide a better understanding of the role of the diet in regulating the intestinal microbiome.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA.
| |
Collapse
|
37
|
Tong J, Zhang W, Chen Y, Yuan Q, Qin NN, Qu G. The Emerging Role of RNA Modifications in the Regulation of Antiviral Innate Immunity. Front Microbiol 2022; 13:845625. [PMID: 35185855 PMCID: PMC8851159 DOI: 10.3389/fmicb.2022.845625] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Posttranscriptional modifications have been implicated in regulation of nearly all biological aspects of cellular RNAs, from stability, translation, splicing, nuclear export to localization. Chemical modifications also have been revealed for virus derived RNAs several decades before, along with the potential of their regulatory roles in virus infection. Due to the dynamic changes of RNA modifications during virus infection, illustrating the mechanisms of RNA epigenetic regulations remains a challenge. Nevertheless, many studies have indicated that these RNA epigenetic marks may directly regulate virus infection through antiviral innate immune responses. The present review summarizes the impacts of important epigenetic marks on viral RNAs, including N6-methyladenosine (m6A), 5-methylcytidine (m5C), 2ʹ-O-methylation (2ʹ-O-Methyl), and a few uncanonical nucleotides (A-to-I editing, pseudouridine), on antiviral innate immunity and relevant signaling pathways, while highlighting the significance of antiviral innate immune responses during virus infection.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuran Chen
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Qiaoling Yuan
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Ning-Ning Qin
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guosheng Qu
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
38
|
Dai Z, Shang L, Wang F, Zeng X, Yu H, Liu L, Zhou J, Qiao S. Effects of Antimicrobial Peptide Microcin C7 on Growth Performance, Immune and Intestinal Barrier Functions, and Cecal Microbiota of Broilers. Front Vet Sci 2022; 8:813629. [PMID: 35071396 PMCID: PMC8780134 DOI: 10.3389/fvets.2021.813629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Microcin C7 is an antimicrobial peptide produced by Escherichia coli, composed of a heptapeptide with a modified adenosine monophosphate. This study was performed to evaluate the effects of Microcin C7 as a potential substrate to traditional antibiotics on growth performance, immune functions, intestinal barrier, and cecal microbiota of broilers. In the current study, 300 healthy Arbor Acres broiler chicks were randomly assigned to one of five treatments including a corn-soybean basal diet and basal diet supplemented with antibiotic or 2, 4, and 6 mg/kg Microcin C7. Results showed that Microcin C7 significantly decreased the F/G ratio of broilers; significantly increased the levels of serum cytokine IL-10, immunoglobulins IgG and IgM, and ileal sIgA secretion; significantly decreased the level of serum cytokine TNF-α. Microcin C7 significantly increased villus height and V/C ratio and significantly decreased crypt depth in small intestine of broilers. Microcin C7 significantly increased gene expression of tight junction protein Occludin and ZO-1 and significantly decreased gene expression of pro-inflammatory and chemokine TNF-α, IL-8, IFN-γ, Toll-like receptors TLR2 and TLR4, and downstream molecular MyD88 in the jejunum of broilers. Microcin C7 significantly increased the number of Lactobacillus and decreased the number of total bacteria and Escherichia coli in the cecum of broilers. Microcin C7 also significantly increased short-chain fatty acid (SCFA) and lactic acid levels in the ileum and cecum of broilers. In conclusion, diet supplemented with Microcin C7 significantly improved growth performance, strengthened immune functions, enhanced intestinal barrier, and regulated cecal microbiota of broilers. Therefore, the antimicrobial peptide Microcin C7 may have the potential to be an ideal alternative to antibiotic.
Collapse
Affiliation(s)
- Ziqi Dai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Fengming Wang
- Fengguangde Laboratory of Sichuan Tieqilishi Group, Mianyang, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Haitao Yu
- Department of Immunology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Jianchuan Zhou
- Fengguangde Laboratory of Sichuan Tieqilishi Group, Mianyang, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| |
Collapse
|
39
|
Saldana-Morales FB, Kim DV, Tsai MT, Diehl GE. Healthy Intestinal Function Relies on Coordinated Enteric Nervous System, Immune System, and Epithelium Responses. Gut Microbes 2022; 13:1-14. [PMID: 33929291 PMCID: PMC8096330 DOI: 10.1080/19490976.2021.1916376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During both health and disease, a coordinated response between the epithelium, immune system, and enteric nervous system is required for proper intestinal function. While each system responds to a number of common stimuli, their coordinated responses support digestion as well as responses and recovery following injury or pathogenic infections. In this review, we discuss how individual responses to common signals work together to support these critical functions.
Collapse
Affiliation(s)
- Fatima B. Saldana-Morales
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Dasom V. Kim
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ming-Ting Tsai
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA,CONTACT Gretchen E. Diehl Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10021, USA. Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
40
|
Fang Y, Yan C, Zhao Q, Zhao B, Liao Y, Chen Y, Wang D, Tang D. The Association Between Gut Microbiota, Toll-Like Receptors, and Colorectal Cancer. Clin Med Insights Oncol 2022; 16:11795549221130549. [PMCID: PMC9634190 DOI: 10.1177/11795549221130549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
The large number of microbes found in the gut are involved in various critical biological processes in the human body and have dynamic and complex interactions with the immune system. Disruptions in the host’s gut microbiota and the metabolites produced during fermentation promote the development of intestinal inflammation and colorectal cancer (CRC). Toll-like receptors (TLRs) recognize specific microbial-associated molecular patterns specific to microorganisms whose signaling is involved in maintaining intestinal homeostasis or, under certain conditions, mediating dysbiosis-associated intestinal inflammation. The signaling pathways of TLRs are described first, followed by a discussion of the interrelationship between gut microbes and TLRs, including the activation of TLRs by gut microbes and the effect of TLRs on the distribution of gut microbiota, particularly the role of microbes in colorectal carcinogenesis via TLRs. Finally, we discuss the potential roles of various TLRs in colorectal cancer.
Collapse
Affiliation(s)
- Yongkun Fang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Cheng Yan
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
- The People’s Hospital Of QianNan, Duyun, China
| | - Qi Zhao
- Department of Clinical Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
- Changshu No.2 People’s Hospital, Suzhou, China
| | - Bin Zhao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yuji Chen
- Department of Clinical Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
41
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Guryanova SV, Kudryashova NA, Kataeva AA, Orozbekova BT, Kolesnikova NV, Chuchalin AG. Novel approaches to increase resistance to acute respiratory infections. RUDN JOURNAL OF MEDICINE 2021. [DOI: 10.22363/2313-0245-2021-25-3-181-195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Relevance . Respiratory infections are the most common in the world. In order to prevent epidemics, there is a need to improve the strategies for organizing medical care and develop new approaches in order to increase the nonspecific resistance, mobilize innate immunity. Objective . The aim of this study was to investigate the effect of glucosaminylmuramyldipeptide (GMDP) on the level of expression of markers of differentiation and activation of functionally significant subpopulations of dendritic cells in peripheral blood mononuclear cells of healthy donors,the second aim was to assess the effectiveness of GMDP in the prevention of acute respiratory infections in an unfavorable epidemiological period of the COVID-19 pandemic. Materials and Methods . An open comparative study included 309 apparently healthy participants, aged 19-22 years. At the first stage of the study, 42 participants (22 female and 20 male) took the drug Licopid 1 mg for 10 days according to the instructions, 1 tablet 3 times a day in order to prevent acute respiratory infections. Peripheral blood sampling was performed before taking the drug (day 0) and the next day after the last dose of the drug (day 12). Evaluation of the expression of markers of differentiation and activation of dendritic cell subpopulations HLA-DR, CD11c, CD123, CD80, CD83, CCR7, CD3, CD14, CD20 was assessed by flow cytometry. At the same time, mRNA was isolated from mononuclear cells of perfusion blood and, after reverse transcription, the level of gene expression was determined by RT PCR. At the next stage, the effectiveness of the prophylactic use of the drug Licopid in 267 students of the Institute of Physical Culture was assessed in order to prevent acute respiratory infections in an unfavorable epidemiological period; the observation period was 12 months. Results and Discussion . A study of the relative quantitative composition of DCs in the peripheral blood of healthy donors by flow cytometry revealed the possibility of an increase in their total number, as well as subpopulations of MDC and PDC under the influence of GMDP. There was a statistically significant increase in the receptors for the chemokine CCR7, which is responsible for the recruitment of DCs to the secondary lymphoid organs. Analysis of the levels of expression of genes XCR1, CD11b , and CD103 showed a statistically significant effect of GMDP on an increase in their expression compared to the baseline level (before GMDP intake), with the mean value being higher in participants undergoing moderate exercise. It was found that the use of the drug Licopid 1mg for the purpose of preventing and reducing the seasonal incidence of acute respiratory infections at the stage of basic training of students of the Institute of Physical Culture contributed to a decrease in the incidence of acute respiratory infections within 12 months of observation after taking the drug. The number of episodes of acute respiratory infections decreased 3.7 times, while the group with 3 or more episodes of acute respiratory infections during the year, which constituted 14.5 % of participants, completely disappeared. The maximum efficiency of GMDP was observed in the track and field command, in which the number of participants who had no episodes of acute respiratory infections during the year increased by 7 times. Conclusion . Our data complement the modern understanding of the molecular mechanism of action of GMDP and substantiate the possibility of its experimental and clinical use in order to develop new strategies for organizing medical care in order to increase the nonspecific resistance of the organism.
Collapse
|
43
|
Zhang X, Zhang Q, Huang L, Liu M, Cheng Z, Zheng Y, Xu W, Lu J, Liu J, Huang M. Pien-Tze-Huang attenuates neuroinflammation in cerebral ischaemia-reperfusion injury in rats through the TLR4/NF-κB/MAPK pathway. PHARMACEUTICAL BIOLOGY 2021; 59:828-839. [PMID: 34196587 PMCID: PMC8253189 DOI: 10.1080/13880209.2021.1942926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT Pien-Tze-Huang (PTH) is traditionally applied to treat various inflammation-related diseases including stroke. However, literature regarding the anti-inflammatory effects and possible mechanisms of PTH in ischaemic stroke is unavailable. OBJECTIVE This study investigates the anti-inflammatory effects and its underlying mechanism of PTH on ischaemic stroke. MATERIALS AND METHODS Cerebral ischaemia-reperfusion injury was induced through 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion in male Sprague-Dawley (SD) rats receiving oral pre-treatment with PTH (180 mg/kg) for 4 days. TLR4 antagonist TAK-242 (3 mg/kg) was injected intraperitoneally at 1.5 h after MCAO. MRI, HE staining, qRT-PCR, western blot, and immunofluorescence methods were employed. RESULTS PTH treatment markedly reduced cerebral infarct volume (by 51%), improved neurological function (by 33%), and ameliorated brain histopathological damage in MCAO rats. It also reduced the levels of four inflammatory mediators including IL-1β (by 70%), IL-6 (by 78%), TNF-α (by 60%) and MCP-1 (by 58%); inhibited microglia and astrocyte activation; and decreased protein expression of iNOS and COX-2 in injured brains. Moreover, PTH down-regulated the protein expressions of TLR4, MyD88, and TRAF6; reduced the expression and nuclear translocation of NF-κB; and lowered the protein expressions of p-ERK1/2, p-JNK, and p-p38. Similar effects were observed in MCAO rats with TAK-242 treatment. However, combined administration of PTH and TAK-242 did not significantly reinforce the anti-inflammatory effects of PTH. DISCUSSION AND CONCLUSION PTH improved cerebral ischaemia-reperfusion injury by inhibiting neuroinflammation partly via the TLR4/NF-κB/MAPK signalling pathway, which will help guide its clinical application.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qing Zhang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Huang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingzhen Liu
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zaixing Cheng
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanfang Zheng
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wen Xu
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian Liu
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- CONTACT Jian Liu
| | - Mingqing Huang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Mingqing Huang College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Road, Shangjie University Town, Fuzhou350108, PR China
| |
Collapse
|
44
|
Qin J, Li H, Yu W, Wei L, Wen B. Effect of cold exposure and capsaicin on the expression of histone acetylation and Toll-like receptors in 1,2-dimethylhydrazine-induced colon carcinogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60981-60992. [PMID: 34165751 DOI: 10.1007/s11356-021-14849-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have indicated that capsaicin-rich diet and cold weather have shown strong association with tumor incidence. Thus, we investigated the effects of capsaicin and cold exposure in 1,2-dimethylhydrazine (DMH)-induced colorectal cancer as well as the mechanisms underlying capsaicin and cold-induced CRC. Rats were randomly divided into four groups and received cold still water and capsaicin via intragastric gavage until the end of the experiment. The rat's body weight, thymus weight, and food intakes were assessed. Global levels of histone H3K9, H3K18, H3K27, and H4K16 acetylation and histone deacetylase (HDACs) in colon mucosa were assessed by western blot. Expression levels of Toll-like receptors 2 (TLR2) and Toll-like receptors 4 (TLR4) were measured by western blot and reverse-transcriptase quantitative polymerase chain reaction (qPCR). We found that cold and low-dose capsaicin increased tumor numbers and multiplicity, although there were no differences in tumor incidence. Additionally, rat exposure to cold water and capsaicin display further higher levels of histone H3 lysine 9 (H3K9AC), histone H3 lysine 18 (H3K18AC), histone H3 lysine 27 (H3K27AC), and HDACs compared with the DMH and normal rats. In contrast, a considerable decrease of histone H4 lysine 16 (H4K16AC) was detected in the colon mucosa. Cold and low-dose capsaicin exposure groups were also increased TLR2 and TLR4 protein levels and mRNA levels. These results suggest that chronic cold exposure and capsaicin at a low-dose intervention exacerbate ectopic expression of global histone acetylation and TLR level, which are crucial mechanisms responsible for the progression of colorectal cancer in rats.
Collapse
Affiliation(s)
- Jingchun Qin
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Huixuan Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weitao Yu
- The Second People's Hospital Lianyungang, Lianyungang, China
| | - Li Wei
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Bin Wen
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
45
|
Transcriptome analysis revealed that delaying first colostrum feeding postponed ileum immune system development of neonatal calves. Genomics 2021; 113:4116-4125. [PMID: 34743958 DOI: 10.1016/j.ygeno.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022]
Abstract
Our objective was to evaluate the effect of colostrum feeding times on genome-wide gene expression of neonatal calves. In total, twenty-seven calves were assigned to three colostrum feeding treatments: within 45 min (TRT0h, n = 9), 6 h (TRT6h, n = 9) and 12 h (TRT12h, n = 9). Ileum tissues were collected at 51 h and transcriptomic analysis was conducted. Uniquely expressed genes were identified in TRT0h group with enriched "Antigen Presentation" function. Meanwhile, the weighted gene co-expression network analysis (WGCNA) identified four significant gene modules (|correlation| > 0.50 and P ≤ 0.05). In particular, Turquoise gene module with the enriched "Cadherin binding involved in cell-cell adhesion" and "Cell-cell adherences junction" GO terms were significantly correlated with Faecalibacterium prausnitzii (R = -0.70, P < 0.01) and Bifidobacterium (R = -0.55, P < 0.01). Our findings suggest feeding colostrum without delay could stimulate the expression of genes involved in immune function development related to host response and microbial colonization in neonatal claves.
Collapse
|
46
|
Chen L, Zhang S, Wu S, Ren Z, Liu G, Wu J. Synergistic Protective Effect of Konjac Mannan Oligosaccharides and Bacillus subtilis on Intestinal Epithelial Barrier Dysfunction in Caco-2 Cell Model and Mice Model of Lipopolysaccharide Stimulation. Front Immunol 2021; 12:696148. [PMID: 34603279 PMCID: PMC8484872 DOI: 10.3389/fimmu.2021.696148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
As the first line of defense against intestinal bacteria and toxins, intestinal epithelial cells are always exposed to bacteria or lipopolysaccharide (LPS), whereas pathogenic bacteria or LPS can cause intestinal epithelial cell damage. Previous studies have shown that konjac mannan oligosaccharides (KMOS) have a positive effect on maintaining intestinal integrity, and Bacillus subtilis (BS) can promote the barrier effect of the intestine. However, it is still unknown whether KMOS and BS have a synergistic protective effect on the intestines. In this study, we used the LPS-induced Caco-2 cell injury model and mouse intestinal injury model to study the synergistic effects of KMOS and BS. Compared with KMOS or BS alone, co-treatment with KMOS and BS significantly enhanced the activity and antioxidant capacity of Caco-2 cell, protected mouse liver and ileum from LPS-induced oxidative damage, and repaired tight junction and mucus barrier damage by up-regulating the expression of Claudin-1, ZO-1 and MUC-2. Our results demonstrate that the combination of KMOS and BS has a synergistic repair effect on inflammatory and oxidative damage of Caco-2 cells and aIIeviates LPS-induced acute intestinal injury in mice.
Collapse
Affiliation(s)
- Lupeng Chen
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Zhang
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shi Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhuqing Ren
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoquan Liu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Zubareva OE, Melik-Kasumov TB. The Gut–Brain Axis and Peroxisome Proliferator-Activated Receptors in the Regulation of Epileptogenesis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Al-Sadi R, Dharmaprakash V, Nighot P, Guo S, Nighot M, Do T, Ma TY. Bifidobacterium bifidum Enhances the Intestinal Epithelial Tight Junction Barrier and Protects against Intestinal Inflammation by Targeting the Toll-like Receptor-2 Pathway in an NF-κB-Independent Manner. Int J Mol Sci 2021; 22:8070. [PMID: 34360835 PMCID: PMC8347470 DOI: 10.3390/ijms22158070] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Defective intestinal tight junction (TJ) barrier is a hallmark in the pathogenesis of inflammatory bowel disease (IBD). To date, there are no effective therapies that specifically target the intestinal TJ barrier. Among the various probiotic bacteria, Bifidobacterium, is one of the most widely studied to have beneficial effects on the intestinal TJ barrier. The main purpose of this study was to identify Bifidobacterium species that cause a sustained enhancement in the intestinal epithelial TJ barrier and can be used therapeutically to target the intestinal TJ barrier and to protect against or treat intestinal inflammation. Our results showed that Bifidobacterium bifidum caused a marked, sustained enhancement in the intestinal TJ barrier in Caco-2 monolayers. The Bifidobacterium bifidum effect on TJ barrier was strain-specific, and only the strain designated as BB1 caused a maximal enhancement in TJ barrier function. The mechanism of BB1 enhancement of intestinal TJ barrier required live bacterial cell/enterocyte interaction and was mediated by the BB1 attachment to Toll-like receptor-2 (TLR-2) at the apical membrane surface. The BB1 enhancement of the intestinal epithelial TJ barrier function was mediated by the activation of the p38 kinase pathway, but not the NF-κB signaling pathway. Moreover, the BB1 caused a marked enhancement in mouse intestinal TJ barrier in a TLR-2-dependent manner and protected against dextran sodium sulfate (DSS)-induced increase in mouse colonic permeability, and treated the DSS-induced colitis in a TJ barrier-dependent manner. These studies show that probiotic bacteria BB1 causes a strain-specific enhancement of the intestinal TJ barrier through a novel mechanism involving BB1 attachment to the enterocyte TLR-2 receptor complex and activation of p38 kinase pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Y. Ma
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Penn State University, Hershey, PA 17033, USA; (R.A.-S.); (V.D.); (P.N.); (S.G.); (M.N.); (T.D.)
| |
Collapse
|
49
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
50
|
Yang KM, Zhu C, Wang L, Cao ST, Yang XF, Gao KG, Jiang ZY. Early supplementation with Lactobacillus plantarum in liquid diet modulates intestinal innate immunity through toll-like receptor 4-mediated mitogen-activated protein kinase signaling pathways in young piglets challenged with Escherichia coli K88. J Anim Sci 2021; 99:6259343. [PMID: 33928383 DOI: 10.1093/jas/skab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg-1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg-1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1β, IL-8, and tumor necrosis factor-α), porcine β-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Kuanmin M Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Cui Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, P.R. China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Shuting T Cao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Xuefen F Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Kaiguo G Gao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Zongyong Y Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| |
Collapse
|