1
|
Horecka-Lewitowicz A, Lewitowicz W, Wawszczak-Kasza M, Lim H, Lewitowicz P. Autism Spectrum Disorder Pathogenesis-A Cross-Sectional Literature Review Emphasizing Molecular Aspects. Int J Mol Sci 2024; 25:11283. [PMID: 39457068 PMCID: PMC11508848 DOI: 10.3390/ijms252011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The etiology of autism spectrum disorder (ASD) has not yet been completely elucidated. Through time, multiple attempts have been made to uncover the causes of ASD. Different theories have been proposed, such as being caused by alterations in the gut-brain axis with an emphasis on gut dysbiosis, post-vaccine complications, and genetic or even autoimmune causes. In this review, we present data covering the main streams that focus on ASD etiology. Data collection occurred in many countries covering ethnically diverse subjects. Moreover, we aimed to show how the progress in genetic techniques influences the explanation of medical White Papers in the ASD area. There is no single evidence-based pathway that results in symptoms of ASD. Patient management has constantly only been symptomatic, and there is no ASD screening apart from symptom-based diagnosis and parent-mediated interventions. Multigene sequencing or epigenetic alterations hold promise in solving the disjointed molecular puzzle. Further research is needed, especially in the field of biogenetics and metabolomic aspects, because young children constitute the patient group most affected by ASD. In summary, to date, molecular research has confirmed multigene dysfunction as the causative factor of ASD, the multigene model with metabolomic influence would explain the heterogeneity in ASD, and it is proposed that ion channel dysfunction could play a core role in ASD pathogenesis.
Collapse
Affiliation(s)
- Agata Horecka-Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Wojciech Lewitowicz
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Monika Wawszczak-Kasza
- Institute of Health Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Hyebin Lim
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Piotr Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| |
Collapse
|
2
|
Bhatt IS, Garay JAR, Torkamani A, Dias R. DNA Methylation Patterns Associated with Tinnitus in Young Adults-A Pilot Study. J Assoc Res Otolaryngol 2024; 25:507-523. [PMID: 39147981 PMCID: PMC11528087 DOI: 10.1007/s10162-024-00961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
PURPOSE Tinnitus, the perception of sound without any external sound source, is a prevalent hearing health concern. Mounting evidence suggests that a confluence of genetic, environmental, and lifestyle factors can influence the pathogenesis of tinnitus. We hypothesized that alteration in DNA methylation, an epigenetic modification that occurs at cytosines of cytosine-phosphate-guanine (CpG) dinucleotide sites, where a methyl group from S-adenyl methionine gets transferred to the fifth carbon of the cytosine, could contribute to tinnitus. DNA methylation patterns are tissue-specific, but the tissues involved in tinnitus are not easily accessible in humans. This pilot study used saliva as a surrogate tissue to identify differentially methylated CpG regions (DMRs) associated with tinnitus. The study was conducted on healthy young adults reporting bilateral continuous chronic tinnitus to limit the influence of age-related confounding factors and health-related comorbidities. METHODS The present study evaluated the genome-wide methylation levels from saliva-derived DNA samples from 24 healthy young adults with bilateral continuous chronic tinnitus (> 1 year) and 24 age, sex, and ethnicity-matched controls with no tinnitus. Genome-wide DNA methylation was evaluated for > 850,000 CpG sites using the Infinium Human Methylation EPIC BeadChip. The association analysis used the Bumphunter algorithm on 23 cases and 20 controls meeting the quality control standards. The methylation level was expressed as the area under the curve of CpG sites within DMRs.The FDR-adjusted p-value threshold of 0.05 was used to identify statistically significant DMRs associated with tinnitus. RESULTS We obtained 25 differentially methylated regions (DMRs) associated with tinnitus. Genes within or in the proximity of the hypermethylated DMRs related to tinnitus included LCLAT1, RUNX1, RUFY1, NUDT12, TTC23, SLC43A2, C4orf27 (STPG2), and EFCAB4B. Genes within or in the proximity of hypomethylated DMRs associated with tinnitus included HLA-DPB2, PM20D1, TMEM18, SNTG2, MUC4, MIR886, MIR596, TXNRD1, EID3, SDHAP3, HLA-DPB2, LASS3 (CERS3), C10orf11 (LRMDA), HLA-DQB1, NADK, SZRD1, MFAP2, NUP210L, TPM3, INTS9, and SLC2A14. The burden of genetic variation could explain the differences in the methylation levels for DMRs involving HLA-DPB2, HLA-DQB1, and MUC4, indicating the need for replication in large independent cohorts. CONCLUSION Consistent with the literature on comorbidities associated with tinnitus, we identified genes within or close to DMRs involved in auditory functions, chemical dependency, cardiovascular diseases, psychiatric conditions, immune disorders, and metabolic syndromes. These results indicate that epigenetic mechanisms could influence tinnitus, and saliva can be a good surrogate for identifying the epigenetic underpinnings of tinnitus in humans. Further research with a larger sample size is needed to identify epigenetic biomarkers and investigate their influence on the phenotypic expression of tinnitus.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, IA, 52242, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Science Institute, La Jolla, CA, 92037, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| |
Collapse
|
3
|
Gholamalizadeh H, Amiri-Shahri M, Rasouli F, Ansari A, Baradaran Rahimi V, Reza Askari V. DNA Methylation in Autism Spectrum Disorders: Biomarker or Pharmacological Target? Brain Sci 2024; 14:737. [PMID: 39199432 PMCID: PMC11352561 DOI: 10.3390/brainsci14080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disabilities with persistent impairments in cognition, communication, and social behavior. Although environmental factors play a role in ASD etiopathogenesis, a growing body of evidence indicates that ASD is highly inherited. In the last two decades, the dramatic rise in the prevalence of ASD has interested researchers to explore the etiologic role of epigenetic marking and incredibly abnormal DNA methylation. This review aimed to explain the current understanding of the association between changes in DNA methylation signatures and ASD in patients or animal models. We reviewed studies reporting alterations in DNA methylation at specific genes as well as epigenome-wide association studies (EWASs). Finally, we hypothesized that specific changes in DNA methylation patterns could be considered a potential biomarker for ASD diagnosis and prognosis and even a target for pharmacological intervention.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran;
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | - Maedeh Amiri-Shahri
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Fatemeh Rasouli
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Arina Ansari
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| |
Collapse
|
4
|
Wei X, Li J, Cheng Z, Wei S, Yu G, Olsen ML. Decoding the Epigenetic Landscape: Insights into 5mC and 5hmC Patterns in Mouse Cortical Cell Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602342. [PMID: 39026756 PMCID: PMC11257419 DOI: 10.1101/2024.07.06.602342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), represent powerful epigenetic regulators of temporal and spatial gene expression. Yet, how the cooperation of these genome-wide, epigenetic marks determine unique transcriptional signatures across different brain cell populations is unclear. Here we applied Nanopore sequencing of native DNA to obtain a complete, genome-wide, single-base resolution atlas of 5mC and 5hmC modifications in neurons, astrocytes and microglia in the mouse cortex (99% genome coverage, 40 million CpG sites). In tandem with RNA sequencing, analysis of 5mC and 5hmC patterns across cell types reveals astrocytes drive uniquely high brain 5hmC levels and support two decades of research regarding methylation patterns, gene expression and alternative splicing, benchmarking this resource. As such, we provide the most comprehensive DNA methylation data in mouse brain as an interactive, online tool (NAM-Me, https://olsenlab.shinyapps.io/NAMME/) to serve as a resource dataset for those interested in the methylome landscape.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, the United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, the United States
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| |
Collapse
|
5
|
Shao W, Su Y, Liu J, Liu Y, Zhao J, Fan X. Understanding the link between different types of maternal diabetes and the onset of autism spectrum disorders. DIABETES & METABOLISM 2024; 50:101543. [PMID: 38761920 DOI: 10.1016/j.diabet.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Autism spectrum disorders (ASD) encompass a collection of neurodevelopmental disorders that exhibit impaired social interactions and repetitive stereotypic behaviors. Although the exact cause of these disorders remains unknown, it is widely accepted that both genetic and environmental factors contribute to their onset and progression. Recent studies have highlighted the potential negative impact of maternal diabetes on embryonic neurodevelopment, suggesting that intrauterine hyperglycemia could pose an additional risk to early brain development and contribute to the development of ASD. This paper presents a comprehensive analysis of the current research on the relationship between various forms of maternal diabetes, such as type 1 diabetes mellitus, type 2 diabetes mellitus, and gestational diabetes mellitus, and the likelihood of ASD in offspring. The study elucidates the potential mechanisms through which maternal hyperglycemia affects fetal development, involving metabolic hormones, immune dysregulation, heightened oxidative stress, and epigenetic alterations. The findings of this review offer valuable insights for potential preventive measures and evidence-based interventions targeting ASD.
Collapse
Affiliation(s)
- Wenyu Shao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yichun Su
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulong Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
6
|
Zhang S, Yang J, Ji D, Meng X, Zhu C, Zheng G, Glessner J, Qu HQ, Cui Y, Liu Y, Wang W, Li X, Zhang H, Xiu Z, Sun Y, Sun L, Li J, Hakonarson H, Li J, Xia Q. NASP gene contributes to autism by epigenetic dysregulation of neural and immune pathways. J Med Genet 2024; 61:677-688. [PMID: 38443156 DOI: 10.1136/jmg-2023-109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.
Collapse
Affiliation(s)
- Sipeng Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyi Meng
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chonggui Zhu
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Zheng
- National Supercomputer Center in Tianjin (NSCC-TJ), Tianjin, China
| | - Joseph Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuechen Cui
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Wang
- The Institute of Psychology of the Chinese Academy of Sciences, Beijing, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hao Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanjie Xiu
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Sun
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Sun
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Xie X, Zhou R, Fang Z, Zhang Y, Wang Q, Liu X. Seeing beyond words: Visualizing autism spectrum disorder biomarker insights. Heliyon 2024; 10:e30420. [PMID: 38694128 PMCID: PMC11061761 DOI: 10.1016/j.heliyon.2024.e30420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
Objective This study employs bibliometric and visual analysis to elucidate global research trends in Autism Spectrum Disorder (ASD) biomarkers, identify critical research focal points, and discuss the potential integration of diverse biomarker modalities for precise ASD assessment. Methods A comprehensive bibliometric analysis was conducted using data from the Web of Science Core Collection database until December 31, 2022. Visualization tools, including R, VOSviewer, CiteSpace, and gCLUTO, were utilized to examine collaborative networks, co-citation patterns, and keyword associations among countries, institutions, authors, journals, documents, and keywords. Results ASD biomarker research emerged in 2004, accumulating a corpus of 4348 documents by December 31, 2022. The United States, with 1574 publications and an H-index of 213, emerged as the most prolific and influential country. The University of California, Davis, contributed significantly with 346 publications and an H-index of 69, making it the leading institution. Concerning journals, the Journal of Autism and Developmental Disorders, Autism Research, and PLOS ONE were the top three publishers of ASD biomarker-related articles among a total of 1140 academic journals. Co-citation and keyword analyses revealed research hotspots in genetics, imaging, oxidative stress, neuroinflammation, gut microbiota, and eye tracking. Emerging topics included "DNA methylation," "eye tracking," "metabolomics," and "resting-state fMRI." Conclusion The field of ASD biomarker research is dynamically evolving. Future endeavors should prioritize individual stratification, methodological standardization, the harmonious integration of biomarker modalities, and longitudinal studies to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyue Xie
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Rongyi Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Zihan Fang
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Yongting Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Qirong Wang
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Xiaomian Liu
- Henan University of Chinese Medicine, School of Medicine, Zhengzhou, Henan, 450046, China
| |
Collapse
|
8
|
Tian S, Chen M. Global research progress of gut microbiota and epigenetics: bibliometrics and visualized analysis. Front Immunol 2024; 15:1412640. [PMID: 38803501 PMCID: PMC11128553 DOI: 10.3389/fimmu.2024.1412640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Background Gut microbiota is an important factor affecting host health. With the further study of the mechanism of gut microbiota, significant progress has been made in the study of the link between gut microbiota and epigenetics. This study visualizes the body of knowledge and research priorities between the gut microbiota and epigenetics through bibliometrics. Methods Publications related to gut microbiota and epigenetics were searched in the Web of Science Core Collection (WoSCC) database. Vosviewer 1.6.17 and CiteSpace 6.1.R2 were used for bibliometric analysis. Results WoSCC includes 460 articles from 71 countries. The number of publications on gut microbiota and epigenetics has increased each year since 2011. The USA, PEOPLES R CHINA, and ITALY are at the center of this field of research. The University of California System, Harvard University, and the University of London are the main research institutions. Li, X, Yu, Q, Zhang, S X are the top authors in this research field. We found that current research hotspots and frontiers include short-chain fatty acids (SCFA) play an important role in gut microbiota and epigenetic mechanisms, gut microbiota and epigenetics play an important role in host obesity, diet, and metabolism. Gut microbiota and epigenetics are closely related to colorectal cancer, breast cancer, and inflammatory bowel disease. At the same time, we found that gut microbiota regulates epigenetics through the gut-brain axis and has an impact on psychiatric diseases. Therefore, probiotics can regulate gut microbiota, improve lifestyle, and reduce the occurrence and development of diseases. Conclusion This is the first comprehensive and in-depth bibliometric study of trends and developments in the field of gut microbiota and epigenetics research. This study helps to guide the direction of research scholars in their current field of study.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Yanai T, Yoshida S, Kawakami K. The Association Between Children's Autism Spectrum Disorders and Central Nervous System Infections: Using a Nationwide Claims Database. J Autism Dev Disord 2024:10.1007/s10803-024-06327-0. [PMID: 38607469 DOI: 10.1007/s10803-024-06327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Several studies have reported an association of autism spectrum disorder (ASD) with central nervous system (CNS) infections and intrauterine infections; however, the results remain unclear. This study aimed to examine this issue using an extensive national database. Utilizing JMDC medical claims database, we conducted a retrospective cohort study of children with at least three years of follow-up from birth, ensuring the mother's information was available. The focus was on the relationship between ASD incidence and exposures like viral meningitis/encephalitis, bacterial meningitis, and intrauterine infections. Cox proportional hazards was used to calculate hazard ratios (HRs) with covariates such as presence of maternal history of mental illness, preterm, low birth weight, respiratory and cardiac disorder, epilepsy, and cranial malformations. Sensitivity analysis was performed on sibling and multiple birth cohorts to adjust for genetic factors. Out of 276,195 mother-child pairs, bacterial meningitis was observed in 1326 (0.5%), viral meningitis/encephalitis in 6066 (2.2%), intrauterine infection in 3722 (1.3%), and ASD in 14,229 (5.2%) children. The adjusted HRs (95% confidence interval, p value) for ASD were 1.40 (1.25-1.57, p < 0.001), 1.14 (1.02-1.26, p = 0.013), and 1.06 (0.87-1.30, p = 0.539) for viral meningitis/encephalitis, intrauterine infection, and bacterial meningitis, respectively. After sensitivity analysis, the HRs for viral meningitis/encephalitis and ASD remained significantly high. Viral meningitis/encephalitis may be an independent risk factor for ASD. Awareness of this risk among healthcare professionals can lead to early intervention and potentially improved outcomes for affected children.
Collapse
Affiliation(s)
- Takanori Yanai
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Satomi Yoshida
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Cui J, Zhai Z, Wang S, Song X, Qiu T, Yu L, Zhai Q, Zhang H. The role and impact of abnormal vitamin levels in autism spectrum disorders. Food Funct 2024; 15:1099-1115. [PMID: 38221882 DOI: 10.1039/d3fo03735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental disorder with a predominance of social behavioral disorders, has increased dramatically in various countries in recent decades. The interplay between genetic and environmental factors is believed to underlie ASD pathogenesis. Recent analyses have shown that abnormal vitamin levels in early life are associated with an increased risk of autism. As essential substances for growth and development, vitamins have been shown to have significant benefits for the nervous and immune systems. However, it is unknown whether certain vitamin types influence the emergence or manifestation of ASD symptoms. Several studies have focused on vitamin levels in children with autism, and neurotypical children have provided different insights into the types of vitamins and their intake. Here, we review the mechanisms and significance of several vitamins (A, B, C, D, E, and K) that are closely associated with the development of ASD in order to prevent, mitigate, and treat ASD. Efforts have been made to discover and develop new indicators for nutritional assessment of children with ASD to play a greater role in the early detection of ASD and therapeutic remission after diagnosis.
Collapse
Affiliation(s)
- Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zidan Zhai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Shumin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| | - Ting Qiu
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| |
Collapse
|
11
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Feinberg JI, Schrott R, Ladd-Acosta C, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Daniele Fallin M, Feinberg AP, Volk HE. Epigenetic changes in sperm are associated with paternal and child quantitative autistic traits in an autism-enriched cohort. Mol Psychiatry 2024; 29:43-53. [PMID: 37100868 DOI: 10.1038/s41380-023-02046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
There is a need to consider paternal contributions to autism spectrum disorder (ASD) more strongly. Autism etiology is complex, and heritability is not explained by genetics alone. Understanding paternal gametic epigenetic contributions to autism could help fill this knowledge gap. In the present study, we explored whether paternal autistic traits, and the sperm epigenome, were associated with autistic traits in children at 36 months enrolled in the Early Autism Risk Longitudinal Investigation (EARLI) cohort. EARLI is a pregnancy cohort that recruited and enrolled pregnant women in the first half of pregnancy who already had a child with ASD. After maternal enrollment, EARLI fathers were approached and asked to provide a semen specimen. Participants were included in the present study if they had genotyping, sperm methylation data, and Social Responsiveness Scale (SRS) score data available. Using the CHARM array, we performed genome-scale methylation analyses on DNA from semen samples contributed by EARLI fathers. The SRS-a 65-item questionnaire measuring social communication deficits on a quantitative scale-was used to evaluate autistic traits in EARLI fathers (n = 45) and children (n = 31). We identified 94 significant child SRS-associated differentially methylated regions (DMRs), and 14 significant paternal SRS-associated DMRs (fwer p < 0.05). Many child SRS-associated DMRs were annotated to genes implicated in ASD and neurodevelopment. Six DMRs overlapped across the two outcomes (fwer p < 0.1), and, 16 DMRs overlapped with previous child autistic trait findings at 12 months of age (fwer p < 0.05). Child SRS-associated DMRs contained CpG sites independently found to be differentially methylated in postmortem brains of individuals with and without autism. These findings suggest paternal germline methylation is associated with autistic traits in 3-year-old offspring. These prospective results for autism-associated traits, in a cohort with a family history of ASD, highlight the potential importance of sperm epigenetic mechanisms in autism.
Collapse
Affiliation(s)
- Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Cuomo M, Coretti L, Costabile D, Della Monica R, De Riso G, Buonaiuto M, Trio F, Bravaccio C, Visconti R, Berni Canani R, Chiariotti L, Lembo F. Host fecal DNA specific methylation signatures mark gut dysbiosis and inflammation in children affected by autism spectrum disorder. Sci Rep 2023; 13:18197. [PMID: 37875530 PMCID: PMC10598023 DOI: 10.1038/s41598-023-45132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
The gut-brain axis involves several bidirectional pathway communications including microbiome, bacterial metabolites, neurotransmitters as well as immune system and is perturbed both in brain and in gastrointestinal disorders. Consistently, microbiota-gut-brain axis has been found altered in autism spectrum disorder (ASD). We reasoned that such alterations occurring in ASD may impact both on methylation signatures of human host fecal DNA (HFD) and possibly on the types of human cells shed in the stools from intestinal tract giving origin to HFD. To test this hypothesis, we have performed whole genome methylation analysis of HFD from an age-restricted cohort of young children with ASD (N = 8) and healthy controls (N = 7). In the same cohort we have previously investigated the fecal microbiota composition and here we refined such analysis and searched for eventual associations with data derived from HFD methylome analysis. Our results showed that specific epigenetic signatures in human fecal DNA, especially at genes related to inflammation, associated with the disease. By applying methylation-based deconvolution algorithm, we found that the HFD derived mainly from immune cells and the relative abundance of those differed between patients and controls. Consistently, most of differentially methylated regions fitted with genes involved in inflammatory response. Interestingly, using Horvath epigenetic clock, we found that ASD affected children showed both epigenetic and microbiota age accelerated. We believe that the present unprecedented approach may be useful for the identification of the ASD associated HFD epigenetic signatures and may be potentially extended to other brain disorders and intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies "Franco Salvatore", Via G. Salvatore 482, 80145, Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Davide Costabile
- CEINGE Advanced Biotechnologies "Franco Salvatore", Via G. Salvatore 482, 80145, Naples, Italy
- SEMM-European School of Molecular Medicine, University of Naples "Federico II", Naples, Italy
| | - Rosa Della Monica
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies "Franco Salvatore", Via G. Salvatore 482, 80145, Naples, Italy
| | - Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Michela Buonaiuto
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies "Franco Salvatore", Via G. Salvatore 482, 80145, Naples, Italy
| | - Federica Trio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies "Franco Salvatore", Via G. Salvatore 482, 80145, Naples, Italy
| | - Carmela Bravaccio
- Department of Translational Medical Science - Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Roberta Visconti
- Institute for the Experimental Endocrinology and Oncology "G. Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science - Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
- CEINGE Advanced Biotechnologies "Franco Salvatore", Via G. Salvatore 482, 80145, Naples, Italy.
- SEMM-European School of Molecular Medicine, University of Naples "Federico II", Naples, Italy.
| | - Francesca Lembo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
14
|
Sommer AJ, Okonkwo J, Monteiro J, Bind MAC. A permutation-based approach using a rank-based statistic to identify sex differences in epigenetics. Sci Rep 2023; 13:14838. [PMID: 37684282 PMCID: PMC10491832 DOI: 10.1038/s41598-023-41360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Epigenetic sex differences and their resulting implications for human health have been studied for about a decade. The objective of this paper is to use permutation-based inference and a new ranked-based test statistic to identify sex-based epigenetic differences in the human DNA methylome. In particular, we examine whether we could identify separations between the female and male distributions of DNA methylation across hundred of thousands CpG sites in two independent cohorts, the Swedish Adoption Twin study and the Lamarck study. Based on Fisherian p-values, we set a threshold for methylation differences "worth further scrutiny". At this threshold, we were able to confirm previously-found CpG sites that stratify with respect to sex. These CpG sites with sex differences in DNA methylation should be further investigated for their possible contribution to various physiological and pathological functions in the human body. We followed-up our statistical analyses with a literature review in order to inform the proposed disease implications for the loci we uncovered.
Collapse
Affiliation(s)
- Alice J Sommer
- Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-University München, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jude Okonkwo
- Columbia Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jonathan Monteiro
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, USA
| | - Marie-Abèle C Bind
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Salem S, Mosaad R, Lotfy R, Ashaat E, Ismail S. PCSK9 Involvement in Autism Etiology: Sequence Variations, Protein Concentration, and Promoter Methylation. Arch Med Res 2023; 54:102860. [PMID: 37499571 DOI: 10.1016/j.arcmed.2023.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Besides its main role in the control of blood cholesterol, PCSK9 has a role in the regulation of neuronal development and apoptosis. We suggest, for the first time, the possible involvement of PCSK9 in autism. METHOD In this case-control study, Sanger sequencing was used to analyze sequence variations in the PCSK9 gene exons and their flanking intronic sequences. ELISA assay was used to determine the plasma concentration of PCSK9. The methylation percentage of the PCSK9 gene promoter was assessed by methylation-specific PCR (MSP). RESULTS Forty-three variants were found; out of them, seven showed differential frequency between patients and controls. rs.45448095, rs.45613943, rs.630431, rs.529500286, and rs.45439391 are risk factors for autism, while rs.11800231 and rs.483462 are protective variants. The concentration of plasma PCSK9 protein was significantly elevated and the methylation percentage of PCSK9 gene promoter was significantly lower in cases than in controls (p <0.001 and = 0.002, respectively). ROC curve analysis identified an area under the curve (AUC) of 0.915 for plasma protein concentration and 0.693 for percent gene promoter methylation. In addition, two new variants were identified (g.23809C>T in intron 11 and g.24071T>G in 3' UTR). CONCLUSION This is the first study to investigate the correlation between PCSK9 protein and autism and suggests the potential involvement of PCSK9 as one of the susceptibility genes for autism. Further studies with a larger number of subjects are recommended.
Collapse
Affiliation(s)
- Sohair Salem
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Rehab Mosaad
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Randa Lotfy
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Engy Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre Cairo, Egypt
| | - Samira Ismail
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre Cairo, Egypt
| |
Collapse
|
16
|
Lyall K, Rando J, Wang S, Hamra GB, Chavarro J, Weisskopf MG, Croen LA, Fallin MD, Hertz-Picciotto I, Volk HE, Schmidt RJ, Newschaffer CJ. Examining Prenatal Dietary Factors in Association with Child Autism-Related Traits Using a Bayesian Mixture Approach: Results from 2 United States Cohorts. Curr Dev Nutr 2023; 7:101978. [PMID: 37600935 PMCID: PMC10432916 DOI: 10.1016/j.cdnut.2023.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Background Prior work has suggested relationships between prenatal intake of certain nutrients and autism. Objectives We examined a broad set of prenatal nutrients and foods using a Bayesian modeling approach. Methods Participants were drawn from the Early Autism Risks Longitudinal Investigation (n = 127), a cohort following women with a child with autism through a subsequent pregnancy. Participants were also drawn from the Nurses' Health Study II (NHSII, n = 713), a cohort of United States female nurses, for comparison analyses. In both studies, information on prospectively reported prenatal diet was drawn from food frequency questionnaires, and child autism-related traits were measured by the Social Responsiveness Scale (SRS). Bayesian kernel machine regression was used to examine the combined effects of several nutrients with neurodevelopmental relevance, including polyunsaturated fatty acids (PUFAs), iron, zinc, vitamin D, folate, and other methyl donors, and separately, key food sources of these, in association with child SRS scores in crude and adjusted models. Results In adjusted analyses, the overall mixture effects of nutrients in Early Autism Risks Longitudinal Investigation and foods in both cohorts on SRS scores were not observed, though there was some suggestion of decreasing SRS scores with increasing overall nutrient mixture in NHSII. No associations were observed with folate within the context of this mixture, but holding other nutrients fixed, n-6 PUFAs were associated with lower SRS scores in NHSII. In both cohorts, lower SRS scores were observed with higher intake of some groupings of vegetables, though for differing types of vegetables across cohorts, and some vegetable groups were associated with higher SRS scores in NHSII. Conclusions Our work extends prior research and suggests the need to further consider prenatal dietary factors from a combined effects perspective. In addition, findings here point to potential differences in nutrient associations based on a family history of autism, which suggests the need to consider gene interactions in future work.
Collapse
Affiliation(s)
- Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Juliette Rando
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jorge Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - M Daniele Fallin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Craig J. Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, United States
| |
Collapse
|
17
|
Grezenko H, Ekhator C, Nwabugwu NU, Ganga H, Affaf M, Abdelaziz AM, Rehman A, Shehryar A, Abbasi FA, Bellegarde SB, Khaliq AS. Epigenetics in Neurological and Psychiatric Disorders: A Comprehensive Review of Current Understanding and Future Perspectives. Cureus 2023; 15:e43960. [PMID: 37622055 PMCID: PMC10446850 DOI: 10.7759/cureus.43960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
The burgeoning field of epigenetics offers transformative insights into the complex landscape of neurological and psychiatric disorders. By unraveling the intricate interplay between genetic, epigenetic, environmental, and lifestyle factors, this comprehensive review highlights the multifaceted nature of mental health. The exploration reveals the potential of epigenetic modifications to revolutionize our understanding, diagnosis, treatment, and prevention of these disorders. Emphasizing the importance of multidisciplinary collaborations, large-scale studies, technological advancements, and ethical considerations, the review asserts the promise of epigenetics as a vital tool for personalized medicine, early intervention, and public health strategies. While acknowledging the challenges in a still-emerging field, the review paints an optimistic picture of epigenetics as a groundbreaking approach that can reshape mental healthcare, offering hope for those affected by neurological and psychiatric conditions. The future trajectory of the field relies on interdisciplinary efforts, ethical diligence, innovative technologies, and translating scientific insights into real-world applications, thereby unlocking the vast potential of epigenetics in mental health.
Collapse
Affiliation(s)
- Han Grezenko
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Nkechi U Nwabugwu
- Public Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Maryam Affaf
- Internal Medicine, Women Medical College, Abbottabad, PAK
| | - Ali M Abdelaziz
- Internal Medicine, Alexandria University Faculty of Medicine, Alexandria, EGY
| | | | | | - Fatima A Abbasi
- Cardiology, Shifa International Hospital Islamabad, Islamabad, PAK
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
18
|
Lax E, Do Carmo S, Enuka Y, Sapozhnikov DM, Welikovitch LA, Mahmood N, Rabbani SA, Wang L, Britt JP, Hancock WW, Yarden Y, Szyf M. Methyl-CpG binding domain 2 (Mbd2) is an epigenetic regulator of autism-risk genes and cognition. Transl Psychiatry 2023; 13:259. [PMID: 37443311 PMCID: PMC10344909 DOI: 10.1038/s41398-023-02561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brains of Autism Spectrum Disorder (ASD) individuals. Notably, downregulated genes are significantly enriched for human ortholog ASD risk genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Hippocampal Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest that Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD individuals.
Collapse
Affiliation(s)
- Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lindsay A Welikovitch
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan P Britt
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Strathearn L, Momany A, Kovács EH, Guiler W, Ladd-Acosta C. The intersection of genome, epigenome and social experience in autism spectrum disorder: Exploring modifiable pathways for intervention. Neurobiol Learn Mem 2023; 202:107761. [PMID: 37121464 PMCID: PMC10330448 DOI: 10.1016/j.nlm.2023.107761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/22/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
The number of children diagnosed with autism spectrum disorder (ASD) has increased substantially over the past two decades. Current research suggests that both genetic and environmental risk factors are involved in the etiology of ASD. The goal of this paper is to examine how one specific environmental factor, early social experience, may be correlated with DNA methylation (DNAm) changes in genes associated with ASD. We present an innovative model which proposes that polygenic risk and changes in DNAm due to social experience may both contribute to the symptoms of ASD. Previous research on genetic and environmental factors implicated in the etiology of ASD will be reviewed, with an emphasis on the oxytocin receptor gene, which may be epigenetically altered by early social experience, and which plays a crucial role in social and cognitive development. Identifying an environmental risk factor for ASD (e.g., social experience) that could be modified via early intervention and which results in epigenetic (DNAm) changes, could transform our understanding of this condition, facilitate earlier identification of ASD, and guide early intervention efforts.
Collapse
Affiliation(s)
- Lane Strathearn
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road 2-471 Bowen Science Building, Iowa City, IA 52241, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, 100 Hawkins Drive, Iowa City, IA 52242, USA; Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), University of Iowa, 100 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Allison Momany
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Hawkeye Intellectual and Developmental Disabilities Research Center (Hawk-IDDRC), University of Iowa, 100 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Emese Hc Kovács
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road 2-471 Bowen Science Building, Iowa City, IA 52241, USA.
| | - William Guiler
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242, USA.
| | - Christine Ladd-Acosta
- Department of Epidemiology and the Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Spirito G, Filosi M, Domenici E, Mangoni D, Gustincich S, Sanges R. Exploratory analysis of L1 retrotransposons expression in autism. Mol Autism 2023; 14:22. [PMID: 37381037 DOI: 10.1186/s13229-023-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a set of highly heterogeneous neurodevelopmental diseases whose genetic etiology is not completely understood. Several investigations have relied on transcriptome analysis from peripheral tissues to dissect ASD into homogenous molecular phenotypes. Recently, analysis of changes in gene expression from postmortem brain tissues has identified sets of genes that are involved in pathways previously associated with ASD etiology. In addition to protein-coding transcripts, the human transcriptome is composed by a large set of non-coding RNAs and transposable elements (TEs). Advancements in sequencing technologies have proven that TEs can be transcribed in a regulated fashion, and their dysregulation might have a role in brain diseases. METHODS We exploited published datasets comprising RNA-seq data from (1) postmortem brain of ASD subjects, (2) in vitro cell cultures where ten different ASD-relevant genes were knocked out and (3) blood of discordant siblings. We measured the expression levels of evolutionarily young full-length transposable L1 elements and characterized the genomic location of deregulated L1s assessing their potential impact on the transcription of ASD-relevant genes. We analyzed every sample independently, avoiding to pool together the disease subjects to unmask the heterogeneity of the molecular phenotypes. RESULTS We detected a strong upregulation of intronic full-length L1s in a subset of postmortem brain samples and in in vitro differentiated neurons from iPSC knocked out for ATRX. L1 upregulation correlated with an high number of deregulated genes and retained introns. In the anterior cingulate cortex of one subject, a small number of significantly upregulated L1s overlapped with ASD-relevant genes that were significantly downregulated, suggesting the possible existence of a negative effect of L1 transcription on host transcripts. LIMITATIONS Our analyses must be considered exploratory and will need to be validated in bigger cohorts. The main limitation is given by the small sample size and by the lack of replicates for postmortem brain samples. Measuring the transcription of locus-specific TEs is complicated by the repetitive nature of their sequence, which reduces the accuracy in mapping sequencing reads to the correct genomic locus. CONCLUSIONS L1 upregulation in ASD appears to be limited to a subset of subjects that are also characterized by a general deregulation of the expression of canonical genes and an increase in intron retention. In some samples from the anterior cingulate cortex, L1s upregulation seems to directly impair the expression of some ASD-relevant genes by a still unknown mechanism. L1s upregulation may therefore identify a group of ASD subjects with common molecular features and helps stratifying individuals for novel strategies of therapeutic intervention.
Collapse
Affiliation(s)
- Giovanni Spirito
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience, Via Bonomea 265, 34136, Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
- CMP3vda, Via Lavoratori Vittime del Col Du Mont 28, Aosta, Italy
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy
- Eurac Research, Institute for Biomedicine, Bolzano, BZ, Italy
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, TN, Italy
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
- CMP3vda, Via Lavoratori Vittime del Col Du Mont 28, Aosta, Italy.
| | - Remo Sanges
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience, Via Bonomea 265, 34136, Trieste, Italy.
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
| |
Collapse
|
21
|
Apte M, Kumar A. Correlation of mutated gene and signalling pathways in ASD. IBRO Neurosci Rep 2023; 14:384-392. [PMID: 37101819 PMCID: PMC10123338 DOI: 10.1016/j.ibneur.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autism is a complicated spectrum of neurodevelopmental illnesses characterized by repetitive and constrained behaviors and interests, as well as social interaction and communication difficulties that are first shown in infancy. More than 18 million Indians, according to the National Health Portal of India, and 1 in 160 children worldwide, according to the WHO, are diagnosed with autism spectrum disorders. This review aims to discuss the complex genetic architecture that underlies autism and summarizes the role of proteins likely to play in the development of autism. We also consider how genetic mutations can affect convergent signaling pathways and hinder the development of brain circuitry and the role of cognition development and theory of mind with Cognition-behavior therapy benefits in autism.
Collapse
Affiliation(s)
- Madhavi Apte
- Quality Assurance and Pharmacognosy and Phytochemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, 400056 Mumbai, India
| | - Aayush Kumar
- Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, 400056 Mumbai, India
| |
Collapse
|
22
|
Stoccoro A, Conti E, Scaffei E, Calderoni S, Coppedè F, Migliore L, Battini R. DNA Methylation Biomarkers for Young Children with Idiopathic Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2023; 24:9138. [PMID: 37298088 PMCID: PMC10252672 DOI: 10.3390/ijms24119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, the underlying pathological mechanisms of which are not yet completely understood. Although several genetic and genomic alterations have been linked to ASD, for the majority of ASD patients, the cause remains unknown, and the condition likely arises due to complex interactions between low-risk genes and environmental factors. There is increasing evidence that epigenetic mechanisms that are highly sensitive to environmental factors and influence gene function without altering the DNA sequence, particularly aberrant DNA methylation, are involved in ASD pathogenesis. This systematic review aimed to update the clinical application of DNA methylation investigations in children with idiopathic ASD, investigating its potential application in clinical settings. To this end, a literature search was performed on different scientific databases using a combination of terms related to the association between peripheral DNA methylation and young children with idiopathic ASD; this search led to the identification of 18 articles. In the selected studies, DNA methylation is investigated in peripheral blood or saliva samples, at both gene-specific and genome-wide levels. The results obtained suggest that peripheral DNA methylation could represent a promising methodology in ASD biomarker research, although further studies are needed to develop DNA-methylation-based clinical applications.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Eugenia Conti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Elena Scaffei
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
23
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
24
|
Saeliw T, Kanlayaprasit S, Thongkorn S, Songsritaya K, Sanannam B, Sae-Lee C, Jindatip D, Hu VW, Sarachana T. Epigenetic Gene-Regulatory Loci in Alu Elements Associated with Autism Susceptibility in the Prefrontal Cortex of ASD. Int J Mol Sci 2023; 24:ijms24087518. [PMID: 37108679 PMCID: PMC10139202 DOI: 10.3390/ijms24087518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Alu elements are transposable elements that can influence gene regulation through several mechanisms; nevertheless, it remains unclear whether dysregulation of Alu elements contributes to the neuropathology of autism spectrum disorder (ASD). In this study, we characterized transposable element expression profiles and their sequence characteristics in the prefrontal cortex tissues of ASD and unaffected individuals using RNA-sequencing data. Our results showed that most of the differentially expressed transposable elements belong to the Alu family, with 659 loci of Alu elements corresponding to 456 differentially expressed genes in the prefrontal cortex of ASD individuals. We predicted cis- and trans-regulation of Alu elements to host/distant genes by conducting correlation analyses. The expression level of Alu elements correlated significantly with 133 host genes (cis-regulation, adjusted p < 0.05) associated with ASD as well as the cell survival and cell death of neuronal cells. Transcription factor binding sites in the promoter regions of differentially expressed Alu elements are conserved and associated with autism candidate genes, including RORA. COBRA analyses of postmortem brain tissues showed significant hypomethylation in global methylation analyses of Alu elements in ASD subphenotypes as well as DNA methylation of Alu elements located near the RNF-135 gene (p < 0.05). In addition, we found that neuronal cell density, which was significantly increased (p = 0.042), correlated with the expression of genes associated with Alu elements in the prefrontal cortex of ASD. Finally, we determined a relationship between these findings and the ASD severity (i.e., ADI-R scores) of individuals with ASD. Our findings provide a better understanding of the impact of Alu elements on gene regulation and molecular neuropathology in the brain tissues of ASD individuals, which deserves further investigation.
Collapse
Affiliation(s)
- Thanit Saeliw
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songphon Kanlayaprasit
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bumpenporn Sanannam
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Depicha Jindatip
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Perini S, Filosi M, Domenici E. Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs. Transl Psychiatry 2023; 13:109. [PMID: 37012247 PMCID: PMC10070641 DOI: 10.1038/s41398-023-02407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues.
Collapse
Affiliation(s)
- Samuel Perini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
- EURAC Research, Bolzano, Italy
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy.
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy.
| |
Collapse
|
26
|
Senarathne UD, Indika NLR, Jezela-Stanek A, Ciara E, Frye RE, Chen C, Stepien KM. Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders. Genes (Basel) 2023; 14:genes14040803. [PMID: 37107561 PMCID: PMC10138025 DOI: 10.3390/genes14040803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by impaired social interaction, limited communication skills, and restrictive and repetitive behaviours. The pathophysiology of ASD is multifactorial and includes genetic, epigenetic, and environmental factors, whereas a causal relationship has been described between ASD and inherited metabolic disorders (IMDs). This review describes biochemical, genetic, and clinical approaches to investigating IMDs associated with ASD. The biochemical work-up includes body fluid analysis to confirm general metabolic and/or lysosomal storage diseases, while the advances and applications of genomic testing technology would assist with identifying molecular defects. An IMD is considered likely underlying pathophysiology in ASD patients with suggestive clinical symptoms and multiorgan involvement, of which early recognition and treatment increase their likelihood of achieving optimal care and a better quality of life.
Collapse
Affiliation(s)
- Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Department of Chemical Pathology, Monash Health Pathology, Monash Health, Melbourne, VIC 3168, Australia
| | - Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
| | - Cliff Chen
- Clinical Neuropsychology Department, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Mark Holland Unit, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
- Correspondence:
| |
Collapse
|
27
|
Alshamrani AA, Alshehri S, Alqarni SS, Ahmad SF, Alghibiwi H, Al-Harbi NO, Alqarni SA, Al-Ayadhi LY, Attia SM, Alfardan AS, Bakheet SA, Nadeem A. DNA Hypomethylation Is Associated with Increased Inflammation in Peripheral Blood Neutrophils of Children with Autism Spectrum Disorder: Understanding the Role of Ubiquitous Pollutant Di(2-ethylhexyl) Phthalate. Metabolites 2023; 13:metabo13030458. [PMID: 36984898 PMCID: PMC10057726 DOI: 10.3390/metabo13030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multidimensional disorder in which environmental, immune, and genetic factors act in concert to play a crucial role. ASD is characterized by social interaction/communication impairments and stereotypical behavioral patterns. Epigenetic modifications are known to regulate genetic expression through various mechanisms. One such mechanism is DNA methylation, which is regulated by DNA methyltransferases (DNMTs). DNMT transfers methyl groups onto the fifth carbon atom of the cytosine nucleotide, thus converting it into 5-methylcytosine (5mC) in the promoter region of the DNA. Disruptions in methylation patterns of DNA are usually associated with modulation of genetic expression. Environmental pollutants such as the plasticizer Di(2-ethylhexyl) phthalate (DEHP) have been reported to affect epigenetic mechanisms; however, whether DEHP modulates DNMT1 expression, DNA methylation, and inflammatory mediators in the neutrophils of ASD subjects has not previously been investigated. Hence, this investigation focused on the role of DNMT1 and overall DNA methylation in relation to inflammatory mediators (CCR2, MCP-1) in the neutrophils of children with ASD and typically developing healthy children (TDC). Further, the effect of DEHP on overall DNA methylation, DNMT1, CCR2, and MCP-1 in the neutrophils was explored. Our results show that the neutrophils of ASD subjects have diminished DNMT1 expression, which is associated with hypomethylation of DNA and increased inflammatory mediators such as CCR2 and MCP-1. DEHP further causes downregulation of DNMT1 expression in the neutrophils of ASD subjects, probably through oxidative inflammation, as antioxidant treatment led to reversal of a DEHP-induced reduction in DNMT1. These data highlight the importance of the environmental pollutant DEHP in the modification of epigenetic machinery such as DNA methylation in the neutrophils of ASD subjects.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Trangle SS, Rosenberg T, Parnas H, Levy G, Bar E, Marco A, Barak B. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Mol Psychiatry 2023; 28:1112-1127. [PMID: 36577841 DOI: 10.1038/s41380-022-01921-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a heterozygous micro-deletion in the WS critical region (WSCR) and is characterized by hyper-sociability and neurocognitive abnormalities. Nonetheless, whether and to what extent WSCR deletion leads to epigenetic modifications in the brain and induces pathological outcomes remains largely unknown. By examining DNA methylation in frontal cortex, we revealed genome-wide disruption in the methylome of individuals with WS, as compared to typically developed (TD) controls. Surprisingly, differentially methylated sites were predominantly annotated as introns and intergenic loci and were found to be highly enriched around binding sites for transcription factors that regulate neuronal development, plasticity and cognition. Moreover, by utilizing enhancer-promoter interactome data, we confirmed that most of these loci function as active enhancers in the human brain or as target genes of transcriptional networks associated with myelination, oligodendrocyte (OL) differentiation, cognition and social behavior. Cell type-specific methylation analysis revealed aberrant patterns in the methylation of active enhancers in neurons and OLs, and important neuron-glia interactions that might be impaired in individuals with WS. Finally, comparison of methylation profiles from blood samples of individuals with WS and healthy controls, along with other data collected in this study, identified putative targets of endophenotypes associated with WS, which can be used to define brain-risk loci for WS outside the WSCR locus, as well as for other associated pathologies. In conclusion, our study illuminates the brain methylome landscape of individuals with WS and sheds light on how these aberrations might be involved in social behavior and physiological abnormalities. By extension, these results may lead to better diagnostics and more refined therapeutic targets for WS.
Collapse
Affiliation(s)
- Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.,The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
29
|
Davide G, Rebecca C, Irene P, Luciano C, Francesco R, Marta N, Miriam O, Natascia B, Pierluigi P. Epigenetics of Autism Spectrum Disorders: A Multi-level Analysis Combining Epi-signature, Age Acceleration, Epigenetic Drift and Rare Epivariations Using Public Datasets. Curr Neuropharmacol 2023; 21:2362-2373. [PMID: 37489793 PMCID: PMC10556384 DOI: 10.2174/1570159x21666230725142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Epigenetics of Autism Spectrum Disorders (ASD) is still an understudied field. The majority of the studies on the topic used an approach based on mere classification of cases and controls. OBJECTIVE The present study aimed at providing a multi-level approach in which different types of epigenetic analysis (epigenetic drift, age acceleration) are combined. METHODS We used publicly available datasets from blood (n = 3) and brain tissues (n = 3), separately. Firstly, we evaluated for each dataset and meta-analyzed the differential methylation profile between cases and controls. Secondly, we analyzed age acceleration, epigenetic drift and rare epigenetic variations. RESULTS We observed a significant epi-signature of ASD in blood but not in brain specimens. We did not observe significant age acceleration in ASD, while epigenetic drift was significantly higher compared to controls. We reported the presence of significant rare epigenetic variations in 41 genes, 35 of which were never associated with ASD. Almost all genes were involved in pathways linked to ASD etiopathogenesis (i.e., neuronal development, mitochondrial metabolism, lipid biosynthesis and antigen presentation). CONCLUSION Our data support the hypothesis of the use of blood epi-signature as a potential tool for diagnosis and prognosis of ASD. The presence of an enhanced epigenetic drift, especially in brain, which is linked to cellular replication, may suggest that alteration in epigenetics may occur at a very early developmental stage (i.e., fetal) when neuronal replication is still high.
Collapse
Affiliation(s)
- Gentilini Davide
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Cavagnola Rebecca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Possenti Irene
- Department of Statistical Sciences Paolo Fortunati, University of Bologna, Bologna, Italy
| | - Calzari Luciano
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Ranucci Francesco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Nola Marta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Olivola Miriam
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Brondino Natascia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Politi Pierluigi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
30
|
Anna S, Magdalena J. Editorial: Epigenomic contributions to autism spectrum disorders. Front Neurosci 2023; 17:1177378. [PMID: 37144095 PMCID: PMC10151758 DOI: 10.3389/fnins.2023.1177378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Starnawska Anna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
- *Correspondence: Starnawska Anna
| | - Janecka Magdalena
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
31
|
Song AY, Bakulski K, Feinberg JI, Newschaffer C, Croen LA, Hertz-Picciotto I, Schmidt RJ, Farzadegan H, Lyall K, Fallin MD, Volk HE, Ladd-Acosta C. Associations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children. Autism Res 2022; 15:2359-2370. [PMID: 36189953 PMCID: PMC9722613 DOI: 10.1002/aur.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Parental age is a known risk factor for autism spectrum disorder (ASD), however, studies to identify the biologic changes underpinning this association are limited. In recent years, "epigenetic clock" algorithms have been developed to estimate biologic age and to evaluate how the epigenetic aging impacts health and disease. In this study, we examined the relationship between parental epigenetic aging and their child's prospective risk of ASD and autism related quantitative traits in the Early Autism Risk Longitudinal Investigation study. Estimates of epigenetic age were computed using three robust clock algorithms and DNA methylation measures from the Infinium HumanMethylation450k platform for maternal blood and paternal blood specimens collected during pregnancy. Epigenetic age acceleration was defined as the residual of regressing chronological age on epigenetic age while accounting for cell type proportions. Multinomial logistic regression and linear regression models were completed adjusting for potential confounders for both maternal epigenetic age acceleration (n = 163) and paternal epigenetic age acceleration (n = 80). We found accelerated epigenetic aging in mothers estimated by Hannum's clock was significantly associated with lower cognitive ability and function in offspring at 12 months, as measured by Mullen Scales of Early Learning scores (β = -1.66, 95% CI: -3.28, -0.04 for a one-unit increase). We also observed a marginal association between accelerated maternal epigenetic aging by Horvath's clock and increased odds of ASD in offspring at 36 months of age (aOR = 1.12, 95% CI: 0.99, 1.26). By contrast, fathers accelerated aging was marginally associated with decreased ASD risk in their offspring (aOR = 0.83, 95% CI: 0.68, 1.01). Our findings suggest epigenetic aging could play a role in parental age risks on child brain development.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann
Arbor, MI
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Craig Newschaffer
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- College of Health and Human Development, Pennsylvania State
University, State College, PA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and The MIND
Institute, School of Medicine, University of California-Davis, Davis, CA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and The MIND
Institute, School of Medicine, University of California-Davis, Davis, CA
| | - Homayoon Farzadegan
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University,
Philadelphia, PA
| | - M. Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta,
Georgia, USA
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
| |
Collapse
|
32
|
Abstract
Despite decades of investigation into the genetics of autism spectrum disorder (ASD), a current consensus in the field persists that ASD risk is too heterogeneous to be diagnosed by a single set of genetic variants. As such, ASD research has broadened to include assessment of other molecular biomarkers implicated in the condition that may be reflective of environmental exposures or gene by environment interactions. Epigenetic variance, and specifically differential DNA methylation, have emerged as areas of particularly high interest to ASD, as the epigenetic markers from specific chromatin loci collectively can reflect influences of multiple genetic and environmental factors and can also result in differential gene expression patterns. This review examines recent studies of the ASD epigenome, detailing common gene pathways found to be differentially methylated in people with ASD, and considers how these discoveries may inform our understanding of ASD etiology. We also consider future applications of epigenetics in ASD research and clinical practice, focusing on substratification, biomarker development, and experimental preclinical models of ASD that test causality. In combination with other -omics approaches, epigenomics allows an improved conceptualization of the multifactorial nature of ASD, and opens future lines of inquiry for both basic research and clinical practice.
Collapse
Affiliation(s)
- Logan A Williams
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California Davis, Davis, CA, USA.
- Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Anne A, Saxena S, Mohan KN. Genome-wide methylation analysis of post-mortem cerebellum samples supports the role of peroxisomes in autism spectrum disorder. Epigenomics 2022; 14:1015-1027. [PMID: 36154275 DOI: 10.2217/epi-2022-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We tested the hypothesis that a subset of patients with autism spectrum disorder (ASD) contains candidate genes with high DNA methylation differences (effective values) that potentially affect one of the two alleles. Materials & methods: Genome-wide DNA methylation comparisons were made on cerebellum samples from 30 patients and 45 controls. Results: 12 genes with high effective values, including GSDMD, MMACHC, SLC6A5 and NKX6-2, implicated in ASD and other neuropsychiatric disorders were identified. Monoallelic promoter methylation and downregulation were observed for SERHL (serine hydrolase-like) and CAT (catalase) genes associated with peroxisome function. Conclusion: These data are consistent with the hypothesis implicating impaired peroxisome function/biogenesis for ASD. A similar approach holds promise for identifying rare epimutations in ASD and other complex disorders.
Collapse
Affiliation(s)
- Anuhya Anne
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Sonal Saxena
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| |
Collapse
|
34
|
León I, Herrero Roldán S, Rodrigo MJ, López Rodríguez M, Fisher J, Mitchell C, Lage-Castellanos A. The shared mother-child epigenetic signature of neglect is related to maternal adverse events. Front Physiol 2022; 13:966740. [PMID: 36091392 PMCID: PMC9448913 DOI: 10.3389/fphys.2022.966740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Studies of DNA methylation have revealed the biological mechanisms by which life adversity confers risk for later physical and mental health problems. What remains unknown is the “biologically embedding” of maternal adverse experiences resulting in maladaptive parenting and whether these epigenetic effects are transmitted to the next generation. This study focuses on neglectful mothering indexed by a severe disregard for the basic and psychological needs of the child. Using the Illumina Human Methylation EPIC BeadChip in saliva samples, we identified genes with differentially methylated regions (DMRs) in those mothers with (n = 51), versus those without (n = 87), neglectful behavior that present similar DMRs patterns in their children being neglected versus non-neglected (n = 40 vs. 75). Mothers reported the emotional intensity of adverse life events. After covariate adjustment and multiple testing corrections, we identified 69 DMRs in the mother epigenome and 42 DMRs in the child epigenome that were simultaneously above the α = 0.01 threshold. The common set of nine DMRs contained genes related to childhood adversity, neonatal and infant diabetes, child neurobehavioral development and other health problems such as obesity, hypertension, cancer, posttraumatic stress, and the Alzheimer’s disease; four of the genes were associated with maternal life adversity. Identifying a shared epigenetic signature of neglect linked to maternal life adversity is an essential step in breaking the intergenerational transmission of one of the most common forms of childhood maltreatment.
Collapse
Affiliation(s)
- Inmaculada León
- Instituto Universitario de Neurociencia, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
- Facultad de Psicología, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
| | - Silvia Herrero Roldán
- Instituto Universitario de Neurociencia, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
- Facultad de Psicología, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
- *Correspondence: Silvia Herrero Roldán,
| | - María José Rodrigo
- Instituto Universitario de Neurociencia, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
- Facultad de Psicología, Universidad de La Laguna, San Cristóbal de la Laguna, Spain
| | - Maykel López Rodríguez
- Department of Pathology and Experimental Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jonah Fisher
- Institute for Social Research, University of Michigan, Ann Abor, MI, United States
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Abor, MI, United States
| | - Agustín Lage-Castellanos
- Department of NeuroInformatics, Cuban Center for Neuroscience, Havana, Cuba
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
35
|
DNA Methylation Profiles of GAD1 in Human Cerebral Organoids of Autism Indicate Disrupted Epigenetic Regulation during Early Development. Int J Mol Sci 2022; 23:ijms23169188. [PMID: 36012452 PMCID: PMC9408997 DOI: 10.3390/ijms23169188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methylation profiling has become a promising approach towards identifying biomarkers of neuropsychiatric disorders including autism spectrum disorder (ASD). Epigenetic markers capture genetic risk factors and diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathologies. We analysed the differential methylation profile of a regulatory region of the GAD1 gene using cerebral organoids generated from induced pluripotent stem cells (iPSCs) from adults with a diagnosis of ASD and from age- and gender-matched healthy individuals. Both groups showed high levels of methylation across the majority of CpG sites within the profiled GAD1 region of interest. The ASD group exhibited a higher number of unique DNA methylation patterns compared to controls and an increased CpG-wise variance. We detected six differentially methylated CpG sites in ASD, three of which reside within a methylation-dependent transcription factor binding site. In ASD, GAD1 is subject to differential methylation patterns that may not only influence its expression, but may also indicate variable epigenetic regulation among cells.
Collapse
|
36
|
Engal E, Baker M, Salton M. The chromatin roots of abnormal splicing in autism. Trends Genet 2022; 38:892-894. [PMID: 35750536 DOI: 10.1016/j.tig.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Spatiotemporal gene expression drives neurodevelopment. Therefore, abnormal expression during development results in atypical brain function. Alterations in gene expression have been described in autism spectrum disorder (ASD). Here, we focus on one aspect of gene expression, pre-mRNA splicing, specifically, the mechanism of its regulation by chromatin and how this is altered in ASD.
Collapse
Affiliation(s)
- Eden Engal
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
37
|
Khogeer AA, AboMansour IS, Mohammed DA. The Role of Genetics, Epigenetics, and the Environment in ASD: A Mini Review. EPIGENOMES 2022; 6:15. [PMID: 35735472 PMCID: PMC9222497 DOI: 10.3390/epigenomes6020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023] Open
Abstract
According to recent findings, variances in autism spectrum disorder (ASD) risk factors might be determined by several factors, including molecular genetic variants. Accumulated evidence has also revealed the important role of biological and chemical pathways in ASD aetiology. In this paper, we assess several reviews with regard to their quality of evidence and provide a brief outline of the presumed mechanisms of the genetic, epigenetic, and environmental risk factors of ASD. We also review some of the critical literature, which supports the basis of each factor in the underlying and specific risk patterns of ASD. Finally, we consider some of the implications of recent research regarding potential molecular targets for future investigations.
Collapse
Affiliation(s)
- Asim A. Khogeer
- Research Department, The Strategic Planning Administration, General Directorate of Health Affairs of Makkah Region, Ministry of Health, Makkah 24382, Saudi Arabia
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia;
- Scientific Council, Molecular Research and Training Center, iGene, Jeddah 3925, Saudi Arabia
| | - Iman S. AboMansour
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
- Neurogenetic Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 2865, Saudi Arabia
| | - Dia A. Mohammed
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia;
| |
Collapse
|
38
|
Enhanced Expression of Human Endogenous Retroviruses, TRIM28 and SETDB1 in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23115964. [PMID: 35682642 PMCID: PMC9180946 DOI: 10.3390/ijms23115964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are relics of ancestral infections and represent 8% of the human genome. They are no longer infectious, but their activation has been associated with several disorders, including neuropsychiatric conditions. Enhanced expression of HERV-K and HERV-H envelope genes has been found in the blood of autism spectrum disorder (ASD) patients, but no information is available on syncytin 1 (SYN1), SYN2, and multiple sclerosis-associated retrovirus (MSRV), which are thought to be implicated in brain development and immune responses. HERV activation is regulated by TRIM28 and SETDB1, which are part of the epigenetic mechanisms that organize the chromatin architecture in response to external stimuli and are involved in neural cell differentiation and brain inflammation. We assessed, through a PCR realtime Taqman amplification assay, the transcription levels of pol genes of HERV-H, -K, and -W families, of env genes of SYN1, SYN2, and MSRV, as well as of TRIM28 and SETDB1 in the blood of 33 ASD children (28 males, median 3.8 years, 25–75% interquartile range 3.0–6.0 y) and healthy controls (HC). Significantly higher expressions of TRIM28 and SETDB1, as well as of all the HERV genes tested, except for HERV-W-pol, were found in ASD, as compared with HC. Positive correlations were observed between the mRNA levels of TRIM28 or SETDB1 and every HERV gene in ASD patients, but not in HC. Overexpression of TRIM28/SETDB1 and several HERVs in children with ASD and the positive correlations between their transcriptional levels suggest that these may be main players in pathogenetic mechanisms leading to ASD.
Collapse
|
39
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
40
|
Gupta C, Chandrashekar P, Jin T, He C, Khullar S, Chang Q, Wang D. Bringing machine learning to research on intellectual and developmental disabilities: taking inspiration from neurological diseases. J Neurodev Disord 2022; 14:28. [PMID: 35501679 PMCID: PMC9059371 DOI: 10.1186/s11689-022-09438-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/07/2022] [Indexed: 12/31/2022] Open
Abstract
Intellectual and Developmental Disabilities (IDDs), such as Down syndrome, Fragile X syndrome, Rett syndrome, and autism spectrum disorder, usually manifest at birth or early childhood. IDDs are characterized by significant impairment in intellectual and adaptive functioning, and both genetic and environmental factors underpin IDD biology. Molecular and genetic stratification of IDDs remain challenging mainly due to overlapping factors and comorbidity. Advances in high throughput sequencing, imaging, and tools to record behavioral data at scale have greatly enhanced our understanding of the molecular, cellular, structural, and environmental basis of some IDDs. Fueled by the "big data" revolution, artificial intelligence (AI) and machine learning (ML) technologies have brought a whole new paradigm shift in computational biology. Evidently, the ML-driven approach to clinical diagnoses has the potential to augment classical methods that use symptoms and external observations, hoping to push the personalized treatment plan forward. Therefore, integrative analyses and applications of ML technology have a direct bearing on discoveries in IDDs. The application of ML to IDDs can potentially improve screening and early diagnosis, advance our understanding of the complexity of comorbidity, and accelerate the identification of biomarkers for clinical research and drug development. For more than five decades, the IDDRC network has supported a nexus of investigators at centers across the USA, all striving to understand the interplay between various factors underlying IDDs. In this review, we introduced fast-increasing multi-modal data types, highlighted example studies that employed ML technologies to illuminate factors and biological mechanisms underlying IDDs, as well as recent advances in ML technologies and their applications to IDDs and other neurological diseases. We discussed various molecular, clinical, and environmental data collection modes, including genetic, imaging, phenotypical, and behavioral data types, along with multiple repositories that store and share such data. Furthermore, we outlined some fundamental concepts of machine learning algorithms and presented our opinion on specific gaps that will need to be filled to accomplish, for example, reliable implementation of ML-based diagnosis technology in IDD clinics. We anticipate that this review will guide researchers to formulate AI and ML-based approaches to investigate IDDs and related conditions.
Collapse
Affiliation(s)
- Chirag Gupta
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Pramod Chandrashekar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ting Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chenfeng He
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
41
|
Epigenome-Wide Analysis Reveals DNA Methylation Alteration in ZFP57 and Its Target RASGFR2 in a Mexican Population Cohort with Autism. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040462. [PMID: 35455506 PMCID: PMC9025761 DOI: 10.3390/children9040462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2022]
Abstract
Autism Spectrum Disorders (ASD) comprise a group of heterogeneous and complex neurodevelopmental disorders. Genetic and environmental factors contribute to ASD etiology. DNA methylation is particularly relevant for ASD due to its mediating role in the complex interaction between genotype and environment and has been implicated in ASD pathophysiology. The lack of diversity in DNA methylation studies in ASD individuals is remarkable. Since genetic and environmental factors are likely to vary across populations, the study of underrepresented populations is necessary to understand the molecular alterations involved in ASD and the risk factors underlying these changes. This study explored genome-wide differences in DNA methylation patterns in buccal epithelium cells between Mexican ASD patients (n = 27) and age-matched typically developing (TD: n = 15) children. DNA methylation profiles were evaluated with the Illumina 450k array. We evaluated the interaction between sex and ASD and found a differentially methylated region (DMR) over the 5′UTR region of ZFP57 and one of its targets, RASGRF2. These results match previous findings in brain tissue, which may indicate that ZFP57 could be used as a proxy for DNA methylation in different tissues. This is the first study performed in a Mexican, and subsequently, Latin American, population that evaluates DNA methylation in ASD patients.
Collapse
|
42
|
Erden S, Akbaş İleri B, Sadıç Çelikkol Ç, Nalbant K, Kılınç İ, Yazar A. Serum B12, homocysteine, and anti-parietal cell antibody levels in children with autism. Int J Psychiatry Clin Pract 2022; 26:8-13. [PMID: 33823740 DOI: 10.1080/13651501.2021.1906906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIMS To compare vitamin B12, homocysteine, and anti-parietal cell antibody (APCA) levels between children with ASD and controls, paired in terms of age, sex, and socioeconomic level. METHODS The research group consisted of 69 children, 36 with ASD and 33 controls. The severity of ASD was determined using the Childhood Autism Rating Scale (CARS). Serum vitamin B12, homocysteine and human anti-parietal cell levels were analysed using enzyme-linked immunosorbent assay. RESULTS The serum vitamin B12 and homocysteine levels in children with ASD were lower than in the control group, but there was no significant difference in terms of APCA levels. CONCLUSIONS Deficiencies in micronutrients, such as B12, may play a role in the pathogenesis and clinical symptoms of autism. However, it is believed that these parameters should be analysed in a wider population to clarify their effect on the aetiology of ASD.KEY POINTWe hypothesised that low levels of vitamin B12 and homocysteine levels reported in previous studies might be associated with APCA levels.The homocysteine and B12 levels were found to be significantly lower in children with ASD. There was no significant difference in serum APCA levels.No significant relationship was found between B12 levels and APCA.Given all these findings, it can be stated that vitamin B12 deficiency is not associated with an absorption-related mechanism due to the presence of APCA.Deficiencies in micronutrients, such as B12, may play a role in the pathogenesis and clinical symptoms of autism.In future studies, it will be beneficial to investigate other mechanisms that may cause vitamin B12 deficiency.
Collapse
Affiliation(s)
- Semih Erden
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Betül Akbaş İleri
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Çağla Sadıç Çelikkol
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Kevser Nalbant
- Department of Child and Adolescent Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İbrahim Kılınç
- Department of Biochemistry, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Abdullah Yazar
- Department of Child Health and Diseases, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
43
|
Algothmi K, Alqurashi A, Alrofaidi A, Alharbi M, Farsi R, Alburae N, Ganash M, Azhari S, Basingab F, Almuhammadi A, Alqosaibi A, Alkhatabi H, Elaimi A, Jan M, Aldhalaan H, Alrafiah A, Alhazmi S. DNA Methylation Level of Transcription Factor Binding Site in the Promoter Region of Acyl-CoA Synthetase Family Member 3 ( ACSF3) in Saudi Autistic Children. Pharmgenomics Pers Med 2022; 15:131-142. [PMID: 35221709 PMCID: PMC8865760 DOI: 10.2147/pgpm.s346187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) is one of the main epigenetic mechanisms that affects gene expression without changing the underlying DNA sequence. Aberrant DNAm has an implication in different human diseases such as cancer, schizophrenia, and autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that affects behavior, learning, and communication skills. Acyl-CoA synthetase family member 3 (ACSF3) encodes malonyl-CoA synthetase that is involved in the synthesis and oxidation of fatty acids. The dysregulation in such gene has been reported in combined malonic and methylmalonic aciduria associated with neurological symptoms such as memory problems, psychiatric diseases, and/or cognitive decline. This research aims to study DNAm in the transcription factor (TF) binding site of ACSF3 in Saudi autistic children. To determine whether the DNAm of the TF-binding site is a cause or a consequence of transcription regulation of ACSF3. METHODS RT-qPCR and DNA methylight qPCR were used to determine the expression and DNAm level in the promoter region of ACSF3, respectively. DNA and RNA were extracted from 19 cases of ASD children and 18 control samples from their healthy siblings. RESULTS The results showed a significant correlation between the gene expression of ACSF3 and specificity protein 1 (SP1) in 17 samples of ASD patients, where both genes were upregulated in 9 samples and downregulated in 8 samples. CONCLUSION Although this study found no DNAm in the binding site of SP1 within the ACSF3 promoter, the indicated correlation highlights a possible role of ACSF3 and SP1 in ASD patients.
Collapse
Affiliation(s)
- Khloud Algothmi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amal Alqurashi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Alrofaidi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Farsi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren Azhari
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatemah Basingab
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Almuhammadi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Heba Alkhatabi
- King Abdulaziz University, Centre of Excellence in Genomic Medicine Research, Jeddah, Saudi Arabia,Medical LaboratorySciencesDepartment,Faculty of Applied Medical Sciences, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- King Abdulaziz University, Centre of Excellence in Genomic Medicine Research, Jeddah, Saudi Arabia,Medical LaboratorySciencesDepartment,Faculty of Applied Medical Sciences, Jeddah, Saudi Arabia
| | - Mohammed Jan
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research at King Faisal Specialist Hospital & Research Center (KFSH & RC), Riyadh, Saudi Arabia
| | - Aziza Alrafiah
- Medical LaboratorySciencesDepartment,Faculty of Applied Medical Sciences, Jeddah, Saudi Arabia,Correspondence: Aziza Alrafiah, P.O Box 80200, Jeddah, 21589, Saudi Arabia, Tel +966 126401000 Ext. 23495, Fax +966 126401000 Ext. 21686, Email
| | - Safiah Alhazmi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Zhu Y, Gomez JA, Laufer BI, Mordaunt CE, Mouat JS, Soto DC, Dennis MY, Benke KS, Bakulski KM, Dou J, Marathe R, Jianu JM, Williams LA, Gutierrez Fugón OJ, Walker CK, Ozonoff S, Daniels J, Grosvenor LP, Volk HE, Feinberg JI, Fallin MD, Hertz-Picciotto I, Schmidt RJ, Yasui DH, LaSalle JM. Placental methylome reveals a 22q13.33 brain regulatory gene locus associated with autism. Genome Biol 2022; 23:46. [PMID: 35168652 PMCID: PMC8848662 DOI: 10.1186/s13059-022-02613-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia S Mouat
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Megan Y Dennis
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ria Marathe
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Logan A Williams
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Orangel J Gutierrez Fugón
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Cheryl K Walker
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Sally Ozonoff
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, Davis, CA, USA
| | - Jason Daniels
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Luke P Grosvenor
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
45
|
Lu J, Wang Z, Liang Y, Yao P. Rethinking autism: the impact of maternal risk factors on autism development. Am J Transl Res 2022; 14:1136-1145. [PMID: 35273718 PMCID: PMC8902545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/15/2021] [Indexed: 06/14/2023]
Abstract
Autism spectrum disorders (ASD) are a group of lifelong neurodevelopmental disorders characterized by cognitive deficits and impaired social and communicative development that have been rising in prevalence in recent decades. These disorders may be accompanied by disabling health issues and often lead to a substantial economic burden. The causes and mechanisms of ASD have not yet been fully elucidated, although it has been reported that genetic background, epigenetic modification, and environmental risk factors all contribute to the development of ASD. Environmental factors, which include prenatal circumstances or events, all play a very important role in the early development of autism, yet the exact mechanism remains largely undetermined. In this review, we promote a 'rethinking' of autism as a neurodevelopmental disease that originates from early life development. We focus on the impact of the prenatal and maternal risk factors such as maternal diabetes, prenatal chemical exposure, and hormone imbalances during pregnancy on the risk for ASD development in children and offspring, identifying important pathological bases and prevention measures for future decades. Further research focused on understanding the role of the environmental factors in the etiology of ASD will drive forward innovation strategies towards intervention and the prevention of the maternal risk factors for autism.
Collapse
Affiliation(s)
- Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhen, Guangdong, China
- Faculty of Mental Health, Shenzhen UniversityShenzhen, Guangdong, China
| | - Zichen Wang
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhen, Guangdong, China
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen 518055, China
| | - Paul Yao
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhen, Guangdong, China
| |
Collapse
|
46
|
Alharthi A, Alhazmi S, Alburae N, Bahieldin A. The Human Gut Microbiome as a Potential Factor in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23031363. [PMID: 35163286 PMCID: PMC8835713 DOI: 10.3390/ijms23031363] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
The high prevalence of gastrointestinal (GI) disorders among autism spectrum disorder (ASD) patients has prompted scientists to look into the gut microbiota as a putative trigger in ASD pathogenesis. Thus, many studies have linked the gut microbial dysbiosis that is frequently observed in ASD patients with the modulation of brain function and social behavior, but little is known about this connection and its contribution to the etiology of ASD. This present review highlights the potential role of the microbiota–gut–brain axis in autism. In particular, it focuses on how gut microbiota dysbiosis may impact gut permeability, immune function, and the microbial metabolites in autistic people. We further discuss recent findings supporting the possible role of the gut microbiome in initiating epigenetic modifications and consider the potential role of this pathway in influencing the severity of ASD. Lastly, we summarize recent updates in microbiota-targeted therapies such as probiotics, prebiotics, dietary supplements, fecal microbiota transplantation, and microbiota transfer therapy. The findings of this paper reveal new insights into possible therapeutic interventions that may be used to reduce and cure ASD-related symptoms. However, well-designed research studies using large sample sizes are still required in this area of study.
Collapse
Affiliation(s)
- Amani Alharthi
- Department of Biology, Faculty of Science, Majmaah University, Al Zulfi 11932, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
- Correspondence: (A.A.); (A.B.)
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
| | - Najla Alburae
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.); (N.A.)
- Correspondence: (A.A.); (A.B.)
| |
Collapse
|
47
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
48
|
Soyer-Gobillard MO, Gaspari L, Courtet P, Sultan C. Diethylstilbestrol and autism. Front Endocrinol (Lausanne) 2022; 13:1034959. [PMID: 36479217 PMCID: PMC9720308 DOI: 10.3389/fendo.2022.1034959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
It is acknowledged that diethylstilbestrol (DES), a synthetic diphenol with powerful estrogenic properties, causes structural anomalies of the reproductive tract and increases the risk of cancer and genital malformations in children and grandchildren of mothers treated during pregnancy. Conversely, data on DES effects on neurodevelopment and psychiatric disorders in in-utero exposed children and their descendants are rare, especially concerning Autism Spectrum Disorders (ASD). Recent studies presented in this review strengthen the hypothesis that in-utero exposure to DES and also other synthetic estrogens and progestogens, which all are endocrine disruptors, contributes to the pathogenesis of psychiatric disorders, especially ASD. A large epidemiological study in the USA in 2010 reported severe depression in in-utero exposed children (n=1,612), and a French cohort study (n=1,002 in-utero DES exposed children) in 2016 found mainly bipolar disorders, schizophrenia, major depression, suicide attempts, and suicide. Few publications described ASD in in-utero exposed children, mainly a Danish cohort study and a large Chinese epidemiological study. Molecular studies on endocrine disruptors demonstrated the transgenerational induction of diseases and DES epigenetic impact (DNA methylation changes) at two genes implicated in neurodevelopment (ZFP57 and ADAM TS9). We recently described in an informative family, somatic and psychiatric disorders in four generations, particularly ASD in boys of the third and fourth generation. These data show that the principle of precaution must be retained for the protection of future generations: women (pregnant or not) should be extremely vigilant about synthetic hormones.
Collapse
Affiliation(s)
- Marie-Odile Soyer-Gobillard
- Univ Sorbonne, Centre National de la Recherche Scientifique (CNRS), Paris, France
- Association Halte aux HORmones Artificielles pour les GrossessES (Hhorages)-France, Perpignan, France
| | - Laura Gaspari
- Centre Hospitalier Universitaire (CHU) Montpellier: Univ Montpellier, Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Montpellier, France
- Centre Hospitalier Universitaire (CHU) Montpellier: Univ Montpellier, Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, Montpellier, France
- Univ Montpellier, Institut National de la Santé et de la Recherche Médicale (Inserm) 1203, Développement Embryonnaire Fertilité Environnement, Montpellier, France
| | - Philippe Courtet
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Montpellier, France
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France
| | - Charles Sultan
- Centre Hospitalier Universitaire (CHU) Montpellier: Univ Montpellier, Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Montpellier, France
- *Correspondence: Charles Sultan,
| |
Collapse
|
49
|
Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, Cao X, Shen L. Oxidative Stress in Autism Spectrum Disorder-Current Progress of Mechanisms and Biomarkers. Front Psychiatry 2022; 13:813304. [PMID: 35299821 PMCID: PMC8921264 DOI: 10.3389/fpsyt.2022.813304] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. Existing data suggest that early diagnosis and intervention can improve ASD outcomes. However, the causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. More mechanisms and biomarkers of autism have been found with the development of advanced technology such as mass spectrometry. Many recent studies have found a link between ASD and elevated oxidative stress, which may play a role in its development. ASD is caused by oxidative stress in several ways, including protein post-translational changes (e.g., carbonylation), abnormal metabolism (e.g., lipid peroxidation), and toxic buildup [e.g., reactive oxygen species (ROS)]. To detect elevated oxidative stress in ASD, various biomarkers have been developed and employed. This article summarizes recent studies about the mechanisms and biomarkers of oxidative stress. Potential biomarkers identified in this study could be used for early diagnosis and evaluation of ASD intervention, as well as to inform and target ASD pharmacological or nutritional treatment interventions.
Collapse
Affiliation(s)
- Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, China
| |
Collapse
|
50
|
Bakulski KM, Dou JF, Feinberg JI, Aung MT, Ladd-Acosta C, Volk HE, Newschaffer CJ, Croen LA, Hertz-Picciotto I, Levy SE, Landa R, Feinberg AP, Fallin MD. Autism-Associated DNA Methylation at Birth From Multiple Tissues Is Enriched for Autism Genes in the Early Autism Risk Longitudinal Investigation. Front Mol Neurosci 2021; 14:775390. [PMID: 34899183 PMCID: PMC8655859 DOI: 10.3389/fnmol.2021.775390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Pregnancy measures of DNA methylation, an epigenetic mark, may be associated with autism spectrum disorder (ASD) development in children. Few ASD studies have considered prospective designs with DNA methylation measured in multiple tissues and tested overlap with ASD genetic risk loci. Objectives: To estimate associations between DNA methylation in maternal blood, cord blood, and placenta and later diagnosis of ASD, and to evaluate enrichment of ASD-associated DNA methylation for known ASD-associated genes. Methods: In the Early Autism Risk Longitudinal Investigation (EARLI), an ASD-enriched risk birth cohort, genome-scale maternal blood (early n = 140 and late n = 75 pregnancy), infant cord blood (n = 133), and placenta (maternal n = 106 and fetal n = 107 compartments) DNA methylation was assessed on the Illumina 450k HumanMethylation array and compared to ASD diagnosis at 36 months of age. Differences in site-specific and global methylation were tested with ASD, as well as enrichment of single site associations for ASD risk genes (n = 881) from the Simons Foundation Autism Research Initiative (SFARI) database. Results: No individual DNA methylation site was associated with ASD at genome-wide significance, however, individual DNA methylation sites nominally associated with ASD (P < 0.05) in each tissue were highly enriched for SFARI genes (cord blood P = 7.9 × 10-29, maternal blood early pregnancy P = 6.1 × 10-27, maternal blood late pregnancy P = 2.8 × 10-16, maternal placenta P = 5.6 × 10-15, fetal placenta P = 1.3 × 10-20). DNA methylation sites nominally associated with ASD across all five tissues overlapped at 144 (29.5%) SFARI genes. Conclusion: DNA methylation sites nominally associated with later ASD diagnosis in multiple tissues were enriched for ASD risk genes. Our multi-tissue study demonstrates the utility of examining DNA methylation prior to ASD diagnosis.
Collapse
Affiliation(s)
- Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jason I Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.,Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, United States.,Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Max T Aung
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, United States.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.,Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, United States
| | - Craig J Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, United States
| | - Lisa A Croen
- Kaiser Permanente Division of Research, Oakland, CA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Susan E Levy
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca Landa
- Kennedy Krieger Institute Center for Autism and Related Disorders, Baltimore, MD, United States
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Margaret D Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.,Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, United States.,Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|