1
|
Kang Y, Guo J, Wu T, Han B, Liu F, Chu Y, Wang Q, Gao J, Dai P. Insecticide and pathogens co-exposure induces histomorphology changes in midgut and energy metabolism disorders on Apis mellifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106414. [PMID: 40350227 DOI: 10.1016/j.pestbp.2025.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025]
Abstract
Honey bees in agroecosystems face increasingly exposure to multiple stressors, such as pesticides and pathogens, making it crucial to assess their combined impacts rather than focusing on individual factors alone. This study examined the adverse effects of single exposure acetamiprid, Varroa destructor, and Nosema ceranae, both individually and in combination, on honey bee survival, midgut integrity and transcriptomic changes to understand the molecular mechanisms involved. The findings revealed that combination of acetamiprid and N. ceranae induced significant energetic stress, as evidenced by disruptions in energy metabolism. The synergistic effects of V. destructor and N. ceranae led to severe alterations in midgut histomorphology, particularly damaging the midgut epithelium. Concurrent exposure to acetamiprid and V. destructor inhibited the immune response and energy metabolism of honey bees, thereby exacerbating the vulnerability to pathogens and destabilizing their physiological equilibrium. The combination of all three stressors caused the most dramatic damage, disrupting midgut structure as well as aromatic amino acids and lipid metabolism. Our study underscored the complexity and unpredictability of stressor interactions, emphasizing the need to consider environmental context when assessing the risks of honey bee health.
Collapse
Affiliation(s)
- Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Junxiu Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, PR China
| | - Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Feng Liu
- Jiangxi Institute of Apicultural Research, Nanchang 330201, PR China
| | - Yu Chu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
2
|
Menail HA, Robichaud S, Cormier R, Blanchard A, Hunter-Manseau F, Léger A, Lamarre SG, Pichaud N. Can Ahiflower® (Buglossoides arvensis) seed-oil supplementation help overcome the adverse effects of imidacloprid in honey bees? Comp Biochem Physiol C Toxicol Pharmacol 2025; 296:110238. [PMID: 40436292 DOI: 10.1016/j.cbpc.2025.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/18/2025] [Accepted: 05/24/2025] [Indexed: 06/02/2025]
Abstract
In this study, we investigated the effects of nutritional supplementation as a strategy to mitigate the impacts of imidacloprid (neonicotinoid) on honey bees by using Ahiflower® (Buglossoides arvensis) seed-oil. This oil is rich in stearidonic-acid (SDA, 18:4n3), which is a precursor to eicosapentaenoic-acid (EPA) and docosahexaenoic-acid (DHA) that are known for their beneficial and protective effects. Specifically, we chronically fed newly emerged worker bees with sucrose syrup and pollen patties (control) that we supplemented with (i) imidacloprid (0.375 ng·μl-1), (ii) Ahiflower® oil (5 %) + imidacloprid (0.375 ng·μl-1), and (iii) Ahiflower® oil (5 %). Survival was recorded, and after 21 days, worker bees were sampled to measure mitochondrial respiration, ATP5A1 content, adenylate energy charge, lipid peroxidation in thorax as well as fatty acid composition and peroxidation index in whole bees. Our results indicate that (i) imidacloprid mostly hampers mitochondria, increases saturated fatty acids and decreases survival, (ii) oxidation of alternative substrates allows full recovery of mitochondrial respiration in the imidacloprid-treated group demonstrating mitochondrial flexibility, (iii) Ahiflower® oil in combination with imidacloprid partially restores mitochondrial respiration at the level of complexes I and II, restores fatty acid composition but fails to restore survival. These findings confirm the deleterious effects of imidacloprid on mitochondria while highlighting, for the first time, the potential benefits of Ahiflower® oil in mitochondrial function, though not on honey bee survival. In addition, this study highlights the importance of mitochondrial flexibility when organisms are exposed to toxicants at environmentally relevant levels.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | - Samuel Robichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Robert Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Arianne Blanchard
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Florence Hunter-Manseau
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
3
|
Pearsons KA, Tooker JF. Acute toxicity of neonicotinoid insecticides to ground beetles (Coleoptera: Carabidae) from Pennsylvania. ENVIRONMENTAL ENTOMOLOGY 2025:nvaf048. [PMID: 40353503 DOI: 10.1093/ee/nvaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Predatory soil arthropods are under-represented in insecticide toxicity studies, severely limiting our understanding of how insecticides affect soil-invertebrate communities in agroecosystems. As a step toward addressing this issue, we conducted novel acute oral, topical, and soil-based toxicity assays on 9 ground beetle species (Coleopetera: Carabidae) in response to the neonicotinoid insecticides clothianidin, thiamethoxam, and imidacloprid. From these assays, we calculated 24 h TD50, TC50, LD50, and LC50 values, measured 24 h feeding activity, and recorded beetle survival for 7 d after exposure. Field-realistic oral, topical, or soil-based exposure to neonicotinoids rarely led to acute (<24 h) beetle mortality. Field-realistic topical and oral exposure of multiple tested species did, however, lead to significant sublethal effects-changes to mobility and feeding behavior-and decreased week-long survival. Under field conditions, carabids exposed to neonicotinoid sprays or contaminated food will be at higher risk of mortality from other factors (eg predation and starvation) which may affect their ability to contribute to biocontrol in agroecosystems. Similar toxicity assays with other carabid species, immature life stages, and additional taxa of predatory soil arthropods will further improve our understanding of how these insecticides affect soil-invertebrate communities in agroecosystems.
Collapse
Affiliation(s)
- Kirsten A Pearsons
- Department of Entomology, Merkle Lab, The Pennsylvania State University, University Park, PA, USA
| | - John F Tooker
- Department of Entomology, Merkle Lab, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Chandrasekar S, Marimuthu M, Angappan S, Pernamallur SA, Kaithamalai B, Pagalahalli SS. Effects of neonicotinoid residues in Apis cerana indica bees and bee products: LC-MS/MS analysis and dietary risk assessment in a sunflower field study. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:606-621. [PMID: 39984777 DOI: 10.1007/s10646-025-02857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Bee colony decline, including in Apis cerana indica F., is a global concern linked to multiple factors, notably neonicotinoid insecticides. Residues in honey and pollen threaten bees and humans when exceeding safe levels, necessitating critical assessments of daily exposure thresholds. A controlled field experiment and dietary risk assessment studies were conducted to identify the impact of neonicotinoids. The LC-MS/MS method was developed to analyze residue in bee products. A survey of eight locations showed that only two honey samples, each from a different location, were contaminated with imidacloprid (0.03 µg g-1) and acetamiprid (0.07 µg g-1) residues. Similarly, a separate field experiment in sunflower detected neonicotinoid residues (0.025-0.456 μg g-1) in bee products. The field experiment indicated significantly higher bee mortality in the clothianidin sprayed field, using dead bee trap (88.00 bees) and cotton fabric spread (10.50 bees), than in the control field one day after spraying (DAS). Foraging activity significantly improved in the control plots, with increased incoming nectar (7.18 bees/min) and outgoing forager activity (13.28 bees/min) at 15 DAS. Colony growth parameters, namely, honey (61.88 cm2), pollen (41.25 cm2), brood area (91.00 cm2), and population (3479.50 bees) were highest in the control. The yield parameters followed the descending order of control > dimethoate > thiacloprid > imidacloprid > thiamethoxam > clothianidin. The dietary neonicotinoid residue risk evaluation showed moderate-high risk (risk quotient > 5) for bees but tolerable hazard (hazard quotient < 1) for humans. Hence, these neonicotinoid effects should be further explored through comprehensive risk analysis to safeguard native bee populations while maintaining effective crop protection practices.
Collapse
Affiliation(s)
- Sowmiya Chandrasekar
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Murugan Marimuthu
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India.
| | - Suganthi Angappan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | |
Collapse
|
5
|
Zhang YC, Zhuang ZX, Zhang F, Song XY, Ye WN, Wu SF, Bass C, O'Reilly AO, Gao C. Contribution of Nilaparvata lugens Nicotinic Acetylcholine Receptor Subunits Toward Triflumezopyrim and Neonicotinoid Susceptibility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7054-7065. [PMID: 40184263 DOI: 10.1021/acs.est.5c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the molecular targets of some important insecticides including triflumezopyrim and neonicotinoids. However, our understanding of insect nAChR pharmacology and the specific nAChR subunits targeted by these insecticides remains limited. Here, we cloned 11 nAChR subunit genes, comprising Nlα1 to Nlα8, Nlα10, Nlβ1 and Nlβ3, from Nilaparvata lugens, a highly damaging insect pest of rice crops worldwide. Analysis of the expression of these genes in different tissues of N. lugens by qPCR analysis identified the brain as the primary site of expression. Knock down of the expression of Nlα1, Nlα2, Nlα8 and Nlβ1 using RNAi reduced N. lugens sensitivity to triflumezopyrim, suggesting these genes encode potential target subunits for triflumezopyrim. Knock out of Nlα2 and Nlα8 nAChR subunits by CRISPR/Cas9 genome editing showed that their deletion significantly reduced the toxicity of triflumezopyrim toward N. lugens. Furthermore, the deletion of Nlα2 also increased N. lugens resistance to imidacloprid and dinotefuran. However, numerous attempts revealed that the Nlβ1 knockout was nonviable. In vitro expression of receptors composed of Drosophila homologous subunits showed that this all-insect nAChR was inhibited by nanomolar concentrations of triflumezopyrim. The present findings identify specific nAChR subunits that are important both as targets for monitoring resistance-associated mutations and as subjects for molecular studies aimed at developing novel insecticides targeting these essential ion channels.
Collapse
Affiliation(s)
- Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Zi-Xin Zhuang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Fan Zhang
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Xiao-Yan Song
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Wen-Nan Ye
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, U.K
| | - Andrias O O'Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Congfen Gao
- College of Plant Protection, Nanjing Agricultural University/State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095 Jiangsu, China
| |
Collapse
|
6
|
Ma XK, Zhang QQ, Peng FJ, Dong LL, Zhang JG, Ying GG. Estimation and evaluation of usage, loss and ecological risk of neonicotinoid pesticides in a large catchment. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137186. [PMID: 39823874 DOI: 10.1016/j.jhazmat.2025.137186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Neonicotinoid pesticides (NNs) are increasingly used in agriculture, which may pose significant threats to aquatic organisms in receiving rivers. However, no studies have explored their entire process from application and transport to receptors within river basins. Here, we estimated the usage and loss of NNs in the Dongting Lake Basin in China using modeling approaches, and assessed NNs-associated aquatic ecological risks. Our research data showed that the annual usage of the nine NNs reached 1895 tonnes in the basin, with the peri-urban areas being the major users. We further calibrated and validated a SWAT model using various 13-years hydrological data and field measured NNs concentration data. The simulated total annual loss of NNs was 121 tonnes in the entire basin, 94 tonnes of which were discharged into the Dongting Lake. An obvious monthly variation was observed in the lake basin, with relatively higher NNs concentrations being found in summer. Results from the ecological risk assessment showed that NNs posed significant risks to aquatic organisms in approximately 11.2 % of river sections in the whole basin. The present study underscores the significant issue of NNs loss in the Dongting Lake Basin and warrants great attention to their potential risks to aquatic organisms.
Collapse
Affiliation(s)
- Xian-Kun Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Li Dong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
7
|
Guo Y, Ma C, Zhao W, Kuang H, Tian Y, Zhang H, Xue Y, Li-Byarlay H, Dong K, Gong X. Chronic Exposure to Field-Level Thiamethoxam Impairs Gut Tissue and Reduces Honeybee ( Apis cerana) Survival. INSECTS 2025; 16:372. [PMID: 40332838 PMCID: PMC12028093 DOI: 10.3390/insects16040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Pesticides such as neonicotinoids frequently harm beneficial insect pollinators and affect their survival, social behavior, digestive system, and metabolism. Investigating the mechanisms behind these impairments is crucial for enhancing pesticide risk assessments. Apis cerana, a native honeybee species in Asia, has received limited research attention regarding the toxicological mechanisms of thiamethoxam (TMX) exposure. We exposed newly emerged worker bees of A. cerana to a field-relevant dose of TMX (400 ng/g) under laboratory conditions to examine whether TMX exposure triggers similar or distinct effects in different biological processes and tissues. Our results demonstrate that TMX damages the gut cell structure and significantly increases mortality. Gut transcriptomic analysis revealed that the activation of signaling pathways such as glycosphingolipid biosynthesis, Notch signaling, and Wnt signaling likely contributed to structural damage in gut cells. Head transcriptomic results indicated that the activation of pathways including pyruvate metabolism, glycolysis/gluconeogenesis, thiamine metabolism, and riboflavin metabolism might negatively affect the stability of the neural system in A. cerana. The metabolic dysfunction of glycine, serine, threonine, as well as glycerophospholipids potentially impairs the neural system, leading to behavioral abnormalities and mortality. In summary, field-level TMX damages the gut cell structure, destabilizes the neural system, and increases the mortality rate of A. cerana. These findings demonstrate that TMX exposure induces complex, tissue-specific effects. This study provides a comprehensive understanding of the molecular and physiological impacts of TMX on A. cerana, offering valuable insights for the conservation and protection of this important pollinator species.
Collapse
Affiliation(s)
- Yulong Guo
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.G.)
| | - Changsheng Ma
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Yuelushan Laboratory, Changsha 410082, China
| | - Wenzheng Zhao
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.G.)
| | - Haiou Kuang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.G.)
| | - Yakai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.G.)
| | - Haoyuan Zhang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.G.)
| | - Yunfei Xue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.G.)
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, OH 45384, USA;
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.G.)
| | - Xueyang Gong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.G.)
| |
Collapse
|
8
|
Zhang W, Jiang Z, Ding M, Wang X, Huang A, Qiu L, Qi S. Novel neonicotinoid insecticide cycloxaprid exhibits sublethal toxicity to honeybee (Apis mellifera L.) workers by disturbing olfactory sensitivity and energy metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136923. [PMID: 39706026 DOI: 10.1016/j.jhazmat.2024.136923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The risk of neonicotinoid insecticides to honeybees is a global issue. Cycloxaprid (CYC) is a novel neonicotinoid insecticide with outstanding activities, good safety profiles, and no cross-resistance with other neonicotinoids. Information on the environmental risks of CYC is limited, especially its effects on honeybees. Herein, the acute and chronic toxicities of CYC on honeybees were evaluated, and the underlying mechanisms were explored via transcriptomics and molecular docking. The results indicate that CYC had high toxicity to honeybees, with a 48-h oral median lethal dose of 32.8 ng/bee. Over a 10-days of chronic exposure to CYC at sublethal concentration 30 μg/L, the honeybees showed significantly decreased survival rates and food consumption. Additionally, the sensitivity of honeybees to sucrose and odors and CO2 production was significantly reduced. Furthermore, molecular docking revealed that CYC has higher binding affinity than odors to odorant-binding proteins, and the olfactory and metabolism pathways gene expression was negatively affected at transcriptome level. These findings indicate that CYC at sublethal concentration can pose risks to honeybees by affecting their olfactory function and energy metabolic balance. Further study and consideration are needed to fully exploit the benefits of this pesticide.
Collapse
Affiliation(s)
- Wei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mu Ding
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China; Beijing University of Agriculture, Beijing 100096, China
| | - Xue Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Aidi Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China.
| |
Collapse
|
9
|
Steketee RW. Attractive targeted sugar baits series in Malaria Journal. Malar J 2025; 24:70. [PMID: 40033339 DOI: 10.1186/s12936-025-05309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
|
10
|
Shi J, Wang X, Luo Y. Honey bees prefer moderate sublethal concentrations of acetamiprid and experience increased mortality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106320. [PMID: 40015911 DOI: 10.1016/j.pestbp.2025.106320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Acetamiprid, a prevalent neonicotinoid residue in honey, poses long-term risks to honey bee health even at sublethal concentrations. Despite this, the chronic lethal effects across a bee's full adult life stage and the influence of acetamiprid at environmentally relevant concentrations on food preferences in honey bees remain uncertain. By conducting a long-term survival monitoring, we found that bees chronically exposed to 0.75 mg/L acetamiprid exhibited a greater mortality compared to those exposed to the highest concentration (3 mg/L) when given a choice between acetamiprid-treated syrup and nontreated pollen. Bees exposed to 0.75 mg/L acetamiprid consumed less pollen and higher amounts of treated syrups compared to the control and 3 mg/L treatment, indicating a preference for moderate sublethal concentrations. To refine our understanding, we tested a range of additionally extended acetamiprid concentrations (0, 0.1, 0.5, 1, and 5 mg/L) using various food-choice assays. The findings indicated no consumption bias and revealed a significant dose-response relationship concerning reduced survival at concentrations exceeding 0.5 mg/L of acetamiprid in the no-choice assay, while manifesting a highest preference for 0.5 mg/L concentration in the two-choice and five-choice assays. This study underscores the hidden risk of acetamiprid threatening bees through foraging preferences on specific range of concentrations.
Collapse
Affiliation(s)
- Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, PR China
| | - Xiaolong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
11
|
Sukkar D, Falla-Angel J, Laval-Gilly P. Bees as environmental and toxicological bioindicators in the light of pesticide non-targeted exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178639. [PMID: 39864251 DOI: 10.1016/j.scitotenv.2025.178639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Pesticides have a significant impact on the environment, harming valuable non-target organisms like bees. Honeybees, in particular, are ideal bioindicators of pesticide exposure due to extensive research on how pesticides affect their behavior, immunity, development, biomolecules, and detoxification. However, wild pollinators are less studied in terms of pesticide exposure, and their inclusion is essential for a comprehensive risk assessment. Additionally, food chain organisms, such as the Asian hornet, could serve as indicators of pesticide bioaccumulation. Addressing gaps in honeybee toxicology, understanding the limitations, and exploring the role of wild pollinators and insects as complementary indicators, along with advancements in risk assessment methodologies, could enhance predictive models. These models would help anticipate environmental pesticide impacts while reducing the need for costly, time-consuming research.
Collapse
Affiliation(s)
- Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France.
| | | | | |
Collapse
|
12
|
Orr SE, Xu J, Juneau WC, Goodisman MAD. Bumblebees prefer sulfoxaflor-contaminated food and show caste-specific differences in sulfoxaflor sensitivity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:232-239. [PMID: 39887265 DOI: 10.1093/etojnl/vgae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 02/01/2025]
Abstract
More than 30% of human food crop yield requires animal pollination. In addition, successful crop production depends on agrochemicals to control pests. However, agrochemicals can have negative consequences on beneficial insect pollinators, such as bees. We investigated the effects of an emerging class of pesticides, sulfoximines, on the common eastern bumblebee, Bombus impatiens. We performed a series of 96-hour toxicity tests on microcolonies of laboratory-reared B. impatiens. Our data showed that sulfoxaflor (SFX) is significantly less toxic to B. impatiens than historically used neonicotinoid pesticides, such as thiamethoxam. Further, for the first time, we found significant differences among castes in sensitivity to SFX; workers and drones were more sensitive than queens. These findings are notable because they reveal both caste and sex-specific differences in bumblebee sensitivity to pesticides. Interestingly, we found no evidence that bumblebees avoid SFX-contaminated sugar syrup. To the contrary, B. impatiens workers had an apparent preference for SFX-contaminated sugar syrup over sugar syrup alone. Overall, our investigation provides novel information on an important pesticide and may help inform regulatory decisions regarding pesticide use.
Collapse
Affiliation(s)
- Sarah E Orr
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Jixiang Xu
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Wanvimol C Juneau
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Michael A D Goodisman
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| |
Collapse
|
13
|
Azpiazu C, Sgolastra F, Ippolito A, Albacete S, Brandt A, Colli M, Grossar D, Jeker L, Malagnini V, Sancho G, Splitt A, Straub L, Strobl V, Boranski M, Jachuła J, Martins C, Medrzycki P, Simon-Delso N, Tosi S, Bosch J. Chronic oral toxicity protocol for adult solitary bees (Osmia bicornis L.): Reduced survival under long-term exposure to a "bee-safe" insecticide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125129. [PMID: 39414062 DOI: 10.1016/j.envpol.2024.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Pollinators are essential for crop productivity. Yet, in agricultural areas, they may be threatened by pesticide exposure. Current pesticide risk assessments predominantly focus on honey bees, with a lack of standardized protocols for solitary bees. This study addresses this gap by developing a long-term oral exposure protocol tailored for O. bicornis. We conducted initial trials to determine optimal container sizes and feeding methods, ensuring high survival rates and accurate syrup consumption measurements. A validation test involving five laboratories was then conducted with the insecticide Flupyradifurone (FPF). Control mortality thresholds were set at ≤ 15% at 10 days. Three laboratories achieved ≤10%, demonstrating the protocol's effectiveness in maintaining healthy test populations. The seasonal timing of experiments influenced control mortality, underscoring the importance of aligning tests with the natural flight period of the population used. Our findings revealed dose-dependent effects of FPF on syrup consumption, showing stimulatory effects at lower concentrations and inhibitory effects at higher ones. The 10-day median lethal daily dose (LDD50) of FPF for O. bicornis (531.92 ng/bee/day) was 3.4-fold lower than that reported for Apis mellifera (1830 ng/bee/day), indicating Osmia's higher susceptibility. Unlike other insecticides, FPF did not exhibit time-reinforced toxicity. This study introduces a robust protocol for chronic pesticide exposure in solitary bees, addressing a critical gap in current risk assessment. Based on its low risk to honey bees and bumblebees, FPF is approved for application during flowering. However, our results suggest that it may threaten Osmia populations under realistic field conditions. Our findings underscore the need for comparative toxicity studies to ensure comprehensive protection of all pollinators and the importance of accounting for long term exposure scenarios in risk assessment. By enhancing our understanding of chronic pesticide effects in solitary bees, our study should contribute to the development of more effective conservation strategies and sustainable agricultural practices.
Collapse
Affiliation(s)
- Celeste Azpiazu
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Alessio Ippolito
- European Food Safety Authority, Environment, Plants & Ecotoxicology Unit, 43126 Parma, Italy
| | - Sergio Albacete
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Annely Brandt
- LLH-Bee Institute Kirchhain, Erlenstr. 9, 35274 Kirchhain, Germany
| | - Monica Colli
- Biotecnologie BT Srl - Fraz. Pantalla 06059 Todi (PG), Italy
| | - Daniela Grossar
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Lukas Jeker
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Valeria Malagnini
- Centro Trasferimento Tecnologico Fondazione Ednund Mach, Via E. Mach, 1 38098 San Michele all'Adige (TN), Italy
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Aleksandra Splitt
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mikolaj Boranski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Jacek Jachuła
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Cátia Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Piotr Medrzycki
- CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura ed Ambiente, 40128 Bologna, Italy
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Rondeau S, Raine NE. Bumblebee (Bombus impatiens) queens prefer pesticide-contaminated soils when selecting underground hibernation sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176534. [PMID: 39332727 DOI: 10.1016/j.scitotenv.2024.176534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
New evidence points to substantial impacts of exposure to pesticide residues in soil for a range of bee taxa that have close regular contact with this substrate. Among others, the risk of exposure is high for bumblebee (Bombus spp.) queens hibernating in agricultural soils. An important question is whether bumblebee queens can detect and avoid pesticide-contaminated soils, or whether they might be attracted to such agrochemical residues. To address this question, we performed a multiple-choice preference experiment in which newly emerged bumblebee (Bombus impatiens) queens were given access to arrays of 36 crates of soil treated with different pesticides in large mesh-covered enclosures. Five of the most commonly encountered pesticides in agricultural soils (boscalid, chlorantraniliprole, clothianidin, cyantraniliprole, difenoconazole) were selected for testing at two contamination levels (lower or higher), based on field-realistic exposure estimates. Bumblebee queens consistently avoided hibernating in pesticide-free soil at both contamination levels, while showing no avoidance for any pesticide-treated soil types. At the lower contamination level, queens selected the pesticide-free soil 1.3 to 2.4-fold less frequently on average than any of the spiked soils, while none of the queens from the higher contamination group selected pesticide-free soil. This apparent preference for pesticide-contaminated soils increases the likelihood of exposure to and potential hazard from pesticide residues in soil for bumblebee queens during hibernation, a critical and highly vulnerable period of their annual life cycle.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
15
|
Gekière A, Breuer L, Dorio L, Evrard D, Vanderplanck M, Michez D. Bumble bees do not avoid field-realistic but innocuous concentrations of cadmium and copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1123-1134. [PMID: 39261366 DOI: 10.1007/s10646-024-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Bee populations are facing numerous stressors globally, including environmental pollution by trace metals and metalloids. Understanding whether bees can detect and avoid these pollutants in their food is pivotal, as avoidance abilities may mitigate their exposure to xenobiotics. While these pollutants are known to induce sublethal effects in bees, such as disrupting physiological mechanisms, their potential impacts on locomotive abilities, fat metabolism, and reproductive physiology remain poorly understood. In this study, utilising workers of the buff-tailed bumble bee and two prevalent trace metals, namely cadmium and copper, we aimed to address these knowledge gaps for field-realistic concentrations. Our findings reveal that workers did not reject field-realistic concentrations of cadmium and copper in sucrose solutions. Moreover, they did not reject lethal concentrations of cadmium, although they rejected lethal concentrations of copper. Additionally, we observed no significant effects of field-realistic concentrations of these metals on the walking and flying activities of workers, nor on their fat metabolism and reproductive physiology. Overall, our results suggest that bumble bees may not avoid cadmium and copper at environmental concentrations, but ingestion of these metals in natural settings may not adversely affect locomotive abilities, fat metabolism, or reproductive physiology. However, given the conservative nature of our study, we still recommend future research to employ higher concentrations over longer durations to mimic conditions in heavily polluted areas (i.e., mine surrounding). Furthermore, investigations should ascertain whether field-realistic concentrations of metals exert no impact on bee larvae.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium.
| | - Luna Breuer
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Luca Dorio
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Dimitri Evrard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Maryse Vanderplanck
- CEFE, CNRS, University of Montpellier, EPHE, IRD, 1919 Route de Mende, 34293, Montpellier, France
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| |
Collapse
|
16
|
Deng W, Zhang Y, He L, Xu L, Ye X, Xu H, Zhu L, Jia J. Optimized nanopesticide delivery of thiamethoxam to cowpeas (Vigna unguiculata) controls thrips (Megalurothrips usitatus) and reduces toxicity to non-target worker bees (Apis mellifera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176327. [PMID: 39299328 DOI: 10.1016/j.scitotenv.2024.176327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Thrips [Megalurothrips usitatus (Bagnall)] (Thysanoptera: Thripidae) is a pest that poses a serious challenge to global crop production and food supply, especially to the cowpea industry. Nano-delivery systems have broad application prospects in the prevention and control of pests in agriculture. Herein, three types of amino acid (AA) modified polysuccinimide nano-delivery carriers (PSI-GABA, PSI-ASP and PSI-GLU) were constructed with a diameter of approximately 150 nm to load thiamethoxam (THX), which enhanced THX effective distribution and use with cowpea plants. Significantly, the PSI-GLU nanocarrier effectively delivered THX to cowpea plant tissues following 6 h of soil application. Compared with commercial THX suspension (SC), the THX content in the leaves of cowpea plants was increased by 2.3 times. Confocal laser scanning microscopy revealed that the FITC-labeled PSI-GLU nanocarrier reached the leaves through the vascular system after being absorbed by the roots of cowpea plants. The PSI-GLU nanocarrier decreased the LC50 of THX from 11.45 to 7.79 mg/L and significantly enhanced the insecticidal effect. The PSI-GLU nanocarrier also improved the safety of THX to worker bees at 48 h, and moreover showed a growth-promoting effect on cowpea seedlings. These results demonstrated that the PSI-GLU nano-delivery carrier has promising uses on improving the effective utilization of THX for the sustainable control of thrips and reducing the risk to non-target pollutions.
Collapse
Affiliation(s)
- Wenjie Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yanheng Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liangheng He
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Li Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xulang Ye
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jinliang Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Ferreira LMN, Hrncir M, de Almeida DV, Bernardes RC, Lima MAP. Climatic fluctuations alter the preference of stingless bees (Apidae, Meliponini) towards food contaminated with acephate and glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175892. [PMID: 39218107 DOI: 10.1016/j.scitotenv.2024.175892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The global decline of pollinators has become a major concern for the scientific community, policymakers, and the general public. Among the main drivers of diminishing bee populations is the widespread use of agrochemicals. To gain a comprehensive understanding of the foraging dynamics of bees at agrochemical-contaminated areas, it is essential to consider both environmental conditions and the specific foraging ecology of bee species. For the first time, we conducted a semi-field study to investigate whether stingless bees exhibit a preference for food contaminated with agrochemicals compared to non- contaminated food, under natural weather conditions. Colonies of Plebeia lucii Moure, 2004 were placed in a greenhouse and subjected to a preference test, where bees were given the freedom to choose between contaminated or non-contaminated food sources following a preliminary training period. Within the greenhouse, we placed feeders containing realistic concentrations of an insecticide (acephate: 2 mg a.i./L), a herbicide (glyphosate: 31.3 mg a.i./L), or a mixture of both, alongside non-contaminated food. Environmental variables (temperature, humidity, and light intensity) were monitored throughout the experiment. At higher temperatures, the foragers preferred food containing the mixture of both agrochemicals or uncontaminated food over the other treatments. At lower temperatures, by contrast, the bees preferred food laced with a single agrochemical (acephate or glyphosate) over uncontaminated food or the agrochemical mixture. Our findings indicate that agrochemical residues in nectar pose a significant threat to P. lucii colonies, as foragers do not actively avoid contaminated food, despite the detrimental effects of acephate and glyphosate on bees. Furthermore, we demonstrate that even minor, natural fluctuations in environmental conditions can alter the colony exposure risk. Despite the interplay between temperature and bees' preference for contaminated food, foragers consistently collected contaminated food containing both agrochemicals, whether isolated or in combination, throughout the whole experiment.
Collapse
Affiliation(s)
- Lívia Maria Negrini Ferreira
- Programa de Pós-Graduação em Entomologia, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Michael Hrncir
- Departamento de Fisiologia, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Danilo Vieira de Almeida
- Curso de Graduação em Agronomia, Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | |
Collapse
|
18
|
Catania R, Bonforte M, Negrini Ferreira LM, Martins GF, Pereira Lima MA, Ricupero M, Zappalà L, Mazzeo G. Insecticides used for controlling cotton mealybug pose a threat to non-target bumble bees. CHEMOSPHERE 2024; 368:143742. [PMID: 39542376 DOI: 10.1016/j.chemosphere.2024.143742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Bumble bees (Bombus spp., Hymenoptera, Apidae) play a crucial role in pollinating greenhouse tomato crops. However, tomato production is constantly threatened by different invasive pests that often lead to the increased use of pesticides, with negative consequences for pollinators. The cotton mealybug Phenacoccus solenopsis has recently been reported in Mediterranean tomatoes and its chemical control raises concerns also regarding bumble bees. In the laboratory, we evaluated the acute toxicity and sublethal effects in B. terrestris workers exposed to the diet contaminated with four insecticides (acetamiprid, pyriproxyfen, sulfoxaflor, and thiamethoxam), potentially used to control P. solenopsis. Sulfoxaflor and thiamethoxam significantly reduced the survival of B. terrestris, while acetamiprid and pyriproxyfen altered its feeding behaviour, and the bumble bees were unable to detect the contaminated solution. Moreover, neurotoxic symptoms were observed in bees exposed to acetamiprid and alterations of the midgut were detected in bees exposed to both acetamiprid and pyriproxyfen. These results show that insecticides with low levels of toxicity to bumble bees (e.g. acetamiprid and pyriproxyfen), can cause sublethal effects on them, increasing concern about the use of these substances. Our findings provide valuable insights as regards optimizing bumble bee pollination services with chemical pest control within the context of Integrated Pest and Pollinator Management.
Collapse
Affiliation(s)
- Roberto Catania
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Marta Bonforte
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Lívia Maria Negrini Ferreira
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maria Augusta Pereira Lima
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Michele Ricupero
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Lucia Zappalà
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Gaetana Mazzeo
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| |
Collapse
|
19
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
20
|
Sokolowski MBC, Bottet G, Dacher M. Measuring honey bee feeding rhythms with the BeeBox, a platform for nectar foraging insects. Physiol Behav 2024; 283:114598. [PMID: 38821143 DOI: 10.1016/j.physbeh.2024.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In honey bees, most studies of circadian rhythms involve a locomotion test performed in a small tube, a tunnel, or at the hive entrance. However, despite feeding playing an important role in honey bee health or fitness, no demonstration of circadian rhythm on feeding has been performed until recently. Here, we present the BeeBox, a new laboratory platform for bees based on the concept of the Skinner box, which dispenses discrete controlled amounts of food (sucrose syrup) following entrance into an artificial flower. We compared caged groups of bees in 12 h-12 h light/dark cycles, constant darkness and constant light and measured average hourly syrup consumption per living bee. Food intake was higher in constant light and lower in constant darkness; mortality increased in constant light. We observed rhythmic consumption with a period longer than 24 h; this is maintained in darkness without environmental cues, but is damped in the constant light condition. The BeeBox offers many new research perspectives and numerous potential applications in the study of nectar foraging animals.
Collapse
Affiliation(s)
| | - Guillaume Bottet
- Université de Picardie - Jules Verne, 1, rue des Louvels, 80000 Amiens, France
| | - Matthieu Dacher
- Sorbonne Université, INRAE, Université Paris Est Créteil, CNRS, IRD - Institute for Ecology and Environnemental Sciences of Paris, iEES Paris, 78026, Versailles, France
| |
Collapse
|
21
|
de Castro Lippi IC, da Luz Scheffer J, de Lima YS, Lunardi JS, Astolfi A, Kadri SM, Alvarez MVN, de Oliveira Orsi R. Intake of imidacloprid in lethal and sublethal doses alters gene expression in Apis mellifera bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173393. [PMID: 38795984 DOI: 10.1016/j.scitotenv.2024.173393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Bees are important pollinators for ecosystems and agriculture; however, populations have suffered a decline that may be associated with several factors, including habitat loss, climate change, increased vulnerability to diseases and parasites and use of pesticides. The extensive use of neonicotinoids, including imidacloprid, as agricultural pesticides, leads to their persistence in the environment and accumulation in bees, pollen, nectar, and honey, thereby inducing deleterious effects. Forager honey bees face significant exposure to pesticide residues while searching for resources outside the hive, particularly systemic pesticides like imidacloprid. In this study, 360 Apis mellifera bees, twenty-one days old (supposed to be in the forager phase) previously marked were fed syrup (honey and water, 1:1 m/v) containing a lethal dose (0.081 μg/bee) or sublethal dose (0.00081 μg/bee) of imidacloprid. The syrup was provided in plastic troughs, with 250 μL added per trough onto each plastic Petri dish containing 5 bees (50 μL per bee). The bees were kept in the plastic Petri dishes inside an incubator, and after 1 and 4 h of ingestion, the bees were euthanised and stored in an ultra-freezer (-80 °C) for transcriptome analysis. Following the 1-h ingestion of imidacloprid, 1516 genes (73 from lethal dose; 1509 from sublethal dose) showed differential expression compared to the control, while after 4 h, 758 genes (733 from lethal dose; 25 from sublethal) exhibited differential expression compared to the control. All differentially expressed genes found in the brain tissue transcripts of forager bees were categorised based on gene ontology into functional groups encompassing biological processes, molecular functions, and cellular components. These analyses revealed that sublethal doses might be capable of altering more genes than lethal doses, potentially associated with a phenomenon known as insecticide-induced hormesis. Alterations in genes related to areas such as the immune system, nutritional metabolism, detoxification system, circadian rhythm, odour detection, foraging activity, and memory in bees were present after exposure to the pesticide. These findings underscore the detrimental effects of both lethal and sublethal doses of imidacloprid, thereby providing valuable insights for establishing public policies regarding the use of neonicotinoids, which are directly implicated in the compromised health of Apis mellifera bees.
Collapse
Affiliation(s)
- Isabella Cristina de Castro Lippi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Jaine da Luz Scheffer
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Yan Souza de Lima
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Juliana Sartori Lunardi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Aline Astolfi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Samir Moura Kadri
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | | | - Ricardo de Oliveira Orsi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil.
| |
Collapse
|
22
|
Bovier M, Camenzind DW, Brown AF, Jeker L, Retschnig G, Neumann P, Straub L. Colony environment and absence of brood enhance tolerance to a neonicotinoid in winter honey bee workers, Apis mellifera. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:608-621. [PMID: 38780664 PMCID: PMC11252217 DOI: 10.1007/s10646-024-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
In eusocial insects, worker longevity is essential to ensure colony survival in brood-free periods. Trade-offs between longevity and other traits may render long-living workers in brood-free periods more susceptible to pesticides compared to short-lived ones. Further, colony environment (e.g., adequate nutrition) may enable workers to better cope with pesticides, yet data comparing long vs. short-living workers and the role of the colony environment for pesticide tolerance are scarce. Here, we show that long-living honey bee workers, Apis mellifera, are less susceptible to the neonicotinoid thiamethoxam than short-lived workers, and that susceptibility was further reduced when workers were acclimatized under colony compared to laboratory conditions. Following an OECD protocol, freshly-emerged workers were exposed to thiamethoxam in summer and winter and either acclimatized within their colony or in the laboratory. Mortality and sucrose consumption were measured daily and revealed that winter workers were significantly less susceptible than summer workers, despite being exposed to higher thiamethoxam dosages due to increased food consumption. Disparencies in fat body activity, which is key for detoxification, may explain why winter bees were less susceptible. Furthermore, colony acclimatization significantly reduced susceptibility towards thiamethoxam in winter workers likely due to enhanced protein nutrition. Brood absence and colony environment seem to govern workers' ability to cope with pesticides, which should be considered in risk assessments. Since honey bee colony losses occur mostly over winter, long-term studies assessing the effects of pesticide exposure on winter bees are required to better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Manon Bovier
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic W Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew F Brown
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- University of Freiburg, Freiburg, Switzerland
| | - Lukas Jeker
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| | - Gina Retschnig
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, Thailand.
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
23
|
Albacete S, Sancho G, Azpiazu C, Sgolastra F, Rodrigo A, Bosch J. Exposure to sublethal levels of insecticide-fungicide mixtures affect reproductive success and population growth rates in the solitary bee Osmia cornuta. ENVIRONMENT INTERNATIONAL 2024; 190:108919. [PMID: 39094406 DOI: 10.1016/j.envint.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
In agricultural environments, bees are routinely exposed to combinations of pesticides. For the most part, exposure to these pesticide mixtures does not result in acute lethal effects, but we know very little about potential sublethal effects and their consequences on reproductive success and population dynamics. In this study, we orally exposed newly emerged females of the solitary bee Osmia cornuta to environmentally-relevant levels of acetamiprid (a cyano-substituted neonicotinoid insecticide) singly and in combination with tebuconazole (a sterol-biosynthesis inhibitor (SBI) fungicide). The amount of feeding solution consumed during the exposure phase was lowest in bees exposed to the pesticide mixture. Following exposure, females were individually marked and released into oilseed rape field cages to monitor their nesting performance and assess their reproductive success. The nesting performance and reproductive success of bees exposed to the fungicide or the insecticide alone were similar to those of control bees and resulted in a 1.3-1.7 net population increases. By contrast, bees exposed to the pesticide mixture showed lower establishment, shortened nesting period, and reduced fecundity. Together, these effects led to a 0.5-0.6 population decrease. Female establishment and shortened nesting period were the main population bottlenecks. We found no effects of the pesticide mixture on nest provisioning rate, offspring body weight or sex ratio. Our study shows how sublethal pesticide exposure may affect several components of bee reproductive success and, ultimately, population growth. Our results calls for a rethinking of pollinator risk assessment schemes, which should target not only single compounds but also combinations of compounds likely to co-occur in agricultural environments.
Collapse
Affiliation(s)
- Sergio Albacete
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain.
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Celeste Azpiazu
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain; Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), 08034 Barcelona, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Anselm Rodrigo
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| |
Collapse
|
24
|
Dingtoumda OG, Yamkoulga M, Sawadogo S, Kam KW, Ilboudo Z. Peasant perception of beekeeping constraints and practices in large honey production areas in Burkina Faso. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:67. [PMID: 39020367 PMCID: PMC11253321 DOI: 10.1186/s13002-024-00690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/01/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND In recent decades, agricultural landscapes have been profoundly modified due to the intensification of agriculture, therefore leading to significant disturbances in all components of biodiversity. A survey on the knowledge of beekeeping realities and the use of phytosanitary products in areas of high honey production in Burkina Faso was carried out. Beekeeping realities design the state of beekeeping activities in the study localities. METHODS The objective of this survey was to characterize Beekeeping operations and to assess the level of knowledge of beekeepers on the effects of the use of phytosanitary products through different beekeeping and agricultural practices. In this sense, 113 farmer beekeepers from the Boucle du Mouhoun, Hauts-Bassins and Nord regions in Burkina Faso were surveyed about their different beekeeping practices. RESULTS The results obtained indicated that beekeeping is a secondary activity (96.47%) and is mainly practiced by men (90.27%). The respondents have mostly an average of 22 traditional hives. The majority of beekeepers have not received training (84.07%) on the hazards of plant protection products on their beekeeping farms. However, a large amount of beekeepers (70.73%) acknowledged that the use of plant protection products could be harmful to their activity. Hives are usually installed in or near the fields. The plant protection products used for crop protection are herbicides (27%), insecticides (23%), fungicides (8%), but especially mixed (42%). CONCLUSION The results show that beekeeping in Burkina Faso remains traditional and is practiced for sociocultural reasons. The use of pesticides close to beekeeping could play a role in bee colony collapse taking place in these regions. Training beekeepers on the dangers of the chemicals they use in fields near hives is therefore essential.
Collapse
Affiliation(s)
- Oswald Gilbert Dingtoumda
- Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), UFR, SVT, Université Joseph KI-ZERBO, 06 BP 9499, Ouagadougou, Burkina Faso.
| | - Marcellin Yamkoulga
- Département Environnement et Foret (DEF), Institut de L'Environnement et de Recherches Agricoles (INERA), Station de Saria, BP 10, Koudougou, Burkina Faso
| | - Souhaïbou Sawadogo
- Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), UFR, SVT, Université Joseph KI-ZERBO, 06 BP 9499, Ouagadougou, Burkina Faso
| | - Koï Wenceslas Kam
- Institut Supérieur du Développement Durable (ISDD), Université de Fada N'gourma, BP 54, Fada N'gourma, Burkina Faso
| | - Zakaria Ilboudo
- Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), UFR, SVT, Université Joseph KI-ZERBO, 06 BP 9499, Ouagadougou, Burkina Faso.
| |
Collapse
|
25
|
Shepherd S, Park YG, Krupke CH. Effects of common co-occurring pesticides (a neonicotinoid and fungicide) on honey bee colony health in a semi-field study. Heliyon 2024; 10:e29886. [PMID: 38707404 PMCID: PMC11066323 DOI: 10.1016/j.heliyon.2024.e29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Multiple stressors are linked to declines of insects and important pollinators, such as bees. Recently, interactive effects of multiple agrochemicals on bees have been highlighted, including fungicides, which increase toxicity of neonicotinoid insecticides. Here, we use a semi-field study across two seasons in controlled foraging tunnels to test the effects of a field application of a commercial fungicide product with two active ingredients (pyraclostrobin and metconazole) applied at label rates. We also examine its interactive effects with the neonicotinoid insecticide clothianidin, at a conservative field-realistic dose of 2.23 ppb, on 48 honey bee colonies. We found combined effects of pesticide exposure, including additive 2.93-fold increases in mortality, and an additional effect of increased infestation levels of the ectoparasitic mite, Varroa destructor. Pesticide treatments also reduced colony activity, reduced colony weight, and increased sugar consumption of whole colonies. These findings indicate that typical sublethal exposure levels to common, co-occurring agrochemicals in the field significantly affect the health of whole honey bee colonies, highlighting an unintended consequence of increasing pesticide applications.
Collapse
Affiliation(s)
| | - Young-gyun Park
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
26
|
Shi J, Wang X, Chen Z, Mao D, Luo Y. Spatial distribution of two acaricides and five neonicotinoids in beehives and surrounding environments in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133892. [PMID: 38461662 DOI: 10.1016/j.jhazmat.2024.133892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.
Collapse
Affiliation(s)
- Jingliang Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
27
|
Ma C, Shi X, Chen S, Han J, Bai H, Li Z, Li-Byarlay H, Bai L. Combined pesticides in field doses weaken honey bee (Apis cerana F.) flight ability and analyses of transcriptomics and metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105793. [PMID: 38685207 DOI: 10.1016/j.pestbp.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 05/02/2024]
Abstract
Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 μL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.
Collapse
Affiliation(s)
- Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sihao Chen
- University of Liverpool, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, Liverpool L69 3BX, UK; Department of Health and Environmental Sciences, Xi'an-Jiaotong Liverpool University, Suzhou 215123, China
| | - Jincai Han
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haodong Bai
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zuren Li
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Hongmei Li-Byarlay
- Agriculture Research and Development Program, Central State University, Wilberforce OH, 45384, USA.
| | - Lianyang Bai
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
28
|
Gray LK, Hulsey M, Siviter H. A novel insecticide impairs bumblebee memory and sucrose responsiveness across high and low nutrition. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231798. [PMID: 38721128 PMCID: PMC11076119 DOI: 10.1098/rsos.231798] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024]
Abstract
Wild bees are important pollinators of crops and wildflowers but are exposed to a myriad of different anthropogenic stressors, such as pesticides and poor nutrition, as a consequence of intensive agriculture. These stressors do not act in isolation, but interact, and may exacerbate one another. Here, we assessed whether a field-realistic concentration of flupyradifurone, a novel pesticide that has been labelled as 'bee safe' by regulators, influenced bumblebee sucrose responsiveness and long-term memory. In a fully crossed experimental design, we exposed individual bumblebees (Bombus impatiens) to flupyradifurone at high (50% (w/w)) or low (15% (w/w)) sucrose concentrations, replicating diets that are either carbohydrate rich or poor, respectively. We found that flupyradifurone impaired sucrose responsiveness and long-term memory at both sucrose concentrations, indicating that better nutrition did not buffer the negative impact of flupyradifurone. We found no individual impact of sugar deficiency on bee behaviour and no significant interactions between pesticide exposure and poor nutrition. Our results add to a growing body of evidence demonstrating that flupyradifurone has significant negative impacts on pollinators, indicating that this pesticide is not 'bee safe'. This suggests that agrochemical risk assessments are not protecting pollinators from the unintended consequences of pesticide use.
Collapse
Affiliation(s)
- Lily K. Gray
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
| | - Marcus Hulsey
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
- University of Oklahoma, Norman, OK73019, USA
| | - Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, UK
| |
Collapse
|
29
|
Zhang J, Wang Y, Wurjihu S, Ruan H, Huang Y, Guo M, Kong D, Luo J, Yang M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170937. [PMID: 38360305 DOI: 10.1016/j.scitotenv.2024.170937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanbaga Wurjihu
- Plastic Surgery Hospital and Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Haonan Ruan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
30
|
Fischer N, Costa CP, Hur M, Kirkwood JS, Woodard SH. Impacts of neonicotinoid insecticides on bumble bee energy metabolism are revealed under nectar starvation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169388. [PMID: 38104805 DOI: 10.1016/j.scitotenv.2023.169388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Bumble bees are an important group of insects that provide essential pollination services as a consequence of their foraging behaviors. These pollination services are driven, in part, by energetic exchanges between flowering plants and individual bees. Thus, it is important to examine bumble bee energy metabolism and explore how it might be influenced by external stressors contributing to declines in global pollinator populations. Two stressors that are commonly encountered by bees are insecticides, such as the neonicotinoids, and nutritional stress, resulting from deficits in pollen and nectar availability. Our study uses a metabolomic approach to examine the effects of neonicotinoid insecticide exposure on bumble bee metabolism, both alone and in combination with nutritional stress. We hypothesized that exposure to imidacloprid disrupts bumble bee energy metabolism, leading to changes in key metabolites involved in central carbon metabolism. We tested this by exposing Bombus impatiens workers to imidacloprid according to one of three exposure paradigms designed to explore how chronic versus more acute (early or late) imidacloprid exposure influences energy metabolite levels, then also subjecting them to artificial nectar starvation. The strongest effects of imidacloprid were observed when bees also experienced nectar starvation, suggesting a combinatorial effect of neonicotinoids and nutritional stress on bumble bee energy metabolism. Overall, this study provides important insights into the mechanisms underlying the impact of neonicotinoid insecticides on pollinators, and underscores the need for further investigation into the complex interactions between environmental stressors and energy metabolism.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| | - Claudinéia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Manhoi Hur
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - Jay S Kirkwood
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
31
|
Schwarz JM, Knauer AC, Alaux C, Barascou L, Barraud A, Dievart V, Ghazoul J, Michez D, Albrecht M. Diverse pollen nutrition can improve the development of solitary bees but does not mitigate negative pesticide impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169494. [PMID: 38142004 DOI: 10.1016/j.scitotenv.2023.169494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Floral resource loss and pesticide exposure are major threats to bees in intensively managed agroecosystems, but interactions among these drivers remain poorly understood. Altered composition and lowered diversity of pollen nutrition may reinforce negative pesticide impacts on bees. Here we investigated the development and survival of the solitary bee Osmia bicornis provisioned with three different pollen types, as well as a mixture of these types representing a higher pollen diversity. We exposed bees of each nutritional treatment to five pesticides at different concentrations in the laboratory. Two field-realistic concentrations of three nicotinic acetylcholine receptor (nAChR) modulating insecticides (thiacloprid, sulfoxaflor and flupyradifurone), as well as of two fungicides (azoxystrobin and tebuconazole) were examined. We further measured the expression of two detoxification genes (CYP9BU1, CYP9BU2) under exposure to thiacloprid across different nutrition treatments as a potential mechanistic pathway driving pesticide-nutrition interactions. We found that more diverse pollen nutrition reduced development time, enhanced pollen efficacy (cocoon weight divided by consumed pollen weight) and pollen consumption, and increased weight of O. bicornis after larval development (cocoon weight). Contrary to fungicides, high field-realistic concentrations of all three insecticides negatively affected O. bicornis by extending development times. Moreover, sulfoxaflor and flupyradifurone also reduced pollen efficacy and cocoon weight, and sulfoxaflor reduced pollen consumption and increased mortality. The expression of detoxification genes differed across pollen nutrition types, but was not enhanced after exposure to thiacloprid. Our findings highlight that lowered diversity of pollen nutrition and high field-realistic exposure to nAChR modulating insecticides negatively affected the development of O. bicornis, but we found no mitigation of negative pesticide impacts through increased pollen diversity. These results have important implications for risk assessment for bee pollinators, indicating that negative effects of nAChR modulating insecticides to developing solitary bees are currently underestimated.
Collapse
Affiliation(s)
- Janine M Schwarz
- Agroscope, Agroecology and Environment, Zurich, Switzerland; ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland.
| | - Anina C Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| | | | - Alexandre Barraud
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Mons, Belgium
| | | | - Jaboury Ghazoul
- ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland
| | - Denis Michez
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Mons, Belgium
| | | |
Collapse
|
32
|
Okeke ES, Olisah C, Malloum A, Adegoke KA, Ighalo JO, Conradie J, Ohoro CR, Amaku JF, Oyedotun KO, Maxakato NW, Akpomie KG. Ecotoxicological impact of dinotefuran insecticide and its metabolites on non-targets in agroecosystem: Harnessing nanotechnology- and bio-based management strategies to reduce its impact on non-target ecosystems. ENVIRONMENTAL RESEARCH 2024; 243:117870. [PMID: 38072111 DOI: 10.1016/j.envres.2023.117870] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11, Hoffman St, Potchefstroom, 2520, South Africa
| | - James F Amaku
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Kabir O Oyedotun
- College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Nobanathi W Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
33
|
Moural TW, Koirala B K S, Bhattarai G, He Z, Guo H, Phan NT, Rajotte EG, Biddinger DJ, Hoover K, Zhu F. Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals. CHEMOSPHERE 2024; 350:141089. [PMID: 38163465 DOI: 10.1016/j.chemosphere.2023.141089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA.
| | - Ziming He
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Haoyang Guo
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, AR 72701, USA; Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Viet Nam.
| | - Edwin G Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - David J Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA.
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
34
|
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
35
|
Abu Bakar N, Fronzi M, Shapter JG. Surface-Enhanced Raman Spectroscopy Using a Silver Nanostar Substrate for Neonicotinoid Pesticides Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:373. [PMID: 38257464 PMCID: PMC10820608 DOI: 10.3390/s24020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been introduced to detect pesticides at low concentrations and in complex matrices to help developing countries monitor pesticides to keep their concentrations at safe levels in food and the environment. SERS is a surface-sensitive technique that enhances the Raman signal of molecules absorbed on metal nanostructure surfaces and provides vibrational information for sample identification and quantitation. In this work, we report the use of silver nanostars (AgNs) as SERS-active elements to detect four neonicotinoid pesticides (thiacloprid, imidacloprid, thiamethoxam and nitenpyram). The SERS substrates were prepared with multiple depositions of the nanostars using a self-assembly approach to give a dense coverage of the AgNs on a glass surface, which ultimately increased the availability of the spikes needed for SERS activity. The SERS substrates developed in this work show very high sensitivity and excellent reproducibility. Our research opens an avenue for the development of portable, field-based pesticide sensors, which will be critical for the effective monitoring of these important but potentially dangerous chemicals.
Collapse
Affiliation(s)
- Norhayati Abu Bakar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Institute of Microengineering and Nanoelectronic, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
| | - Marco Fronzi
- School of Chemical and Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joseph George Shapter
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
36
|
Carroll MJ, Brown NJ, Reitz D. Sublethal effects of imidacloprid-contaminated honey stores on colony performance, queens, and worker activities in fall and early winter colonies. PLoS One 2024; 19:e0292376. [PMID: 38165994 PMCID: PMC10760783 DOI: 10.1371/journal.pone.0292376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/19/2023] [Indexed: 01/04/2024] Open
Abstract
Neonicotinoid-contaminated sugar stores can have both near term and long term effects on honey bees due to their persistence in honey stores. Effects of imidacloprid food stores contaminants were examined in subtropical colonies that experience reduced brood rearing and foraging during overwintering. Colonies were given treatment sugar syrup containing 0 ppb (control), 20 ppb (field relevant), or 100 ppb (above field relevant) imidacloprid over six weeks to simulate contaminated fall nectar. Colonies were evaluated immediately (post-treatment) and 10 weeks (mid-winter) after treatment to compare proximal and latent effects. Post-treatment 0 ppb and 20 ppb colonies had more workers than 100 ppb colonies while 0 ppb colonies more brood than 20 ppb or 100 ppb colonies. Mid-winter 0 ppb and 20 ppb colonies had more workers than 100 ppb colonies and 0 ppb colonies more brood than 100 ppb colonies. Colonies experienced seasonal declines in stored pollen but no treatment effects. Lower 100 ppb colony performance was associated with reduced effort rather than lifespan. RFID (Radio Frequency Identification) tracking revealed that workers had similar adult lifespans across treatments; however, 100 ppb workers engaged in activities outside the colony for less time than 0 ppb workers. Imidacloprid exposure affected queen but not worker nutritional physiology. Nurses retained well-developed hypopharyngeal glands (as indicated by head protein) across treatments. Mid-winter queens from 0 ppb colonies had marginally higher ovary protein than queens from 100 ppb colonies and more ovary lipids than queens from 20 ppb colonies. However, queen nutrient stores in non-reproductive tissues (fat bodies) did not differ across treatments. Queens from different treatments were attended by comparable numbers of retinue workers and had similar gland contents of four QMP (Queen Mandibular Pheromone) components essential to queen care. High levels of imidacloprid in sugar stores can negatively affect colony performance months after initial storage.
Collapse
Affiliation(s)
- Mark J. Carroll
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Nicholas J. Brown
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Dylan Reitz
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| |
Collapse
|
37
|
Parkinson RH, Scott J, Dorling AL, Jones H, Haslam M, McDermott-Roberts AE, Wright GA. Mouthparts of the bumblebee ( Bombus terrestris) exhibit poor acuity for the detection of pesticides in nectar. eLife 2023; 12:RP89129. [PMID: 38109195 PMCID: PMC10727498 DOI: 10.7554/elife.89129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Bees are important pollinators of agricultural crops, but their populations are at risk when pesticides are used. One of the largest risks bees face is poisoning of floral nectar and pollen by insecticides. Studies of bee detection of neonicotinoids have reported contradictory evidence about whether bees can taste these pesticides in sucrose solutions and hence avoid them. Here, we use an assay for the detection of food aversion combined with single-sensillum electrophysiology to test whether the mouthparts of the buff-tailed bumblebee (Bombus terrestris) detect the presence of pesticides in a solution that mimicked the nectar of oilseed rape (Brassica napus). Bees did not avoid consuming solutions containing concentrations of imidacloprid, thiamethoxam, clothianidin, or sulfoxaflor spanning six orders of magnitude, even when these solutions contained lethal doses. Only extremely high concentrations of the pesticides altered spiking in gustatory neurons through a slight reduction in firing rate or change in the rate of adaptation. These data provide strong evidence that bumblebees cannot detect or avoid field-relevant concentrations of pesticides using information from their mouthparts. As bees rarely contact floral nectar with other body parts, we predict that they are at high risk of unwittingly consuming pesticides in the nectar of pesticide-treated crops.
Collapse
Affiliation(s)
| | - Jennifer Scott
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Anna L Dorling
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Hannah Jones
- Department of Life Sciences, Imperial CollegeLondonUnited Kingdom
| | - Martha Haslam
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | | | | |
Collapse
|
38
|
Klatt BK, Wurz A, Herbertsson L, Rundlöf M, Svensson GP, Kuhn J, Vessling S, de La Vega B, Tscharntke T, Clough Y, Smith HG. Seed treatment with clothianidin induces changes in plant metabolism and alters pollinator foraging preferences. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1247-1256. [PMID: 38062283 PMCID: PMC10724316 DOI: 10.1007/s10646-023-02720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Neonicotinoids, systemic insecticides that are distributed into all plant tissues and protect against pests, have become a common part of crop production, but can unintentionally also affect non-target organisms, including pollinators. Such effects can be direct effects from insecticide exposure, but neonicotinoids can affect plant physiology, and effects could therefore also be indirectly mediated by changes in plant phenology, attractiveness and nutritional value. Under controlled greenhouse conditions, we tested if seed treatment with the neonicotinoid clothianidin affected oilseed rape's production of flower resources for bees and the content of the secondary plant products glucosinolates that provide defense against herbivores. Additionally, we tested if seed treatment affected the attractiveness of oilseed rape to flower visiting bumblebees, using outdoor mesocosms. Flowers and leaves of clothianidin-treated plants had different profiles of glucosinolates compared with untreated plants. Bumblebees in mesocosms foraged slightly more on untreated plants. Neither flower timing, flower size nor the production of pollen and nectar differed between treatments, and therefore cannot explain any preference for untreated oilseed rape. We instead propose that this small but significant preference for untreated plants was related to the altered glucosinolate profile caused by clothianidin. Thereby, this study contributes to the understanding of the complex relationships between neonicotinoid-treated crops and pollinator foraging choices, by suggesting a potential mechanistic link by which insecticide treatment can affect insect behavior.
Collapse
Affiliation(s)
- Björn K Klatt
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden.
- Department of Biology, Lund University, 223 62, Lund, Sweden.
- School of Business, Innovation and Sustainability, Biology & Environmental Sciences, Halmstad University, 30118, Halmstad, Sweden.
| | - Annemarie Wurz
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
- Department of Crop Sciences, Agroecology, University of Göttingen, 37077, Göttingen, Germany
- Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Lina Herbertsson
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | | - Jürgen Kuhn
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Sofie Vessling
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
| | - Bernardo de La Vega
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teja Tscharntke
- Department of Crop Sciences, Agroecology, University of Göttingen, 37077, Göttingen, Germany
| | - Yann Clough
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
| | - Henrik G Smith
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
- Department of Biology, Lund University, 223 62, Lund, Sweden
| |
Collapse
|
39
|
Mustard JA, Dobb R, Wright GA. Chronic nicotine exposure influences learning and memory in the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104582. [PMID: 37918514 DOI: 10.1016/j.jinsphys.2023.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In insects, nicotine activates nicotinic acetylcholine receptors, which are expressed throughout the central nervous system. However, little work has been done to investigate the effects of chronic nicotine treatment on learning or other behaviors in non-herbivorous insects. To examine the effects of long term nicotine consumption on learning and memory, honey bees were fed nicotine containing solutions over four days. Bees were able to detect nicotine at 0.1 mM in sucrose solutions, and in a no choice assay, bees reduced food intake when nicotine was 1 mM or higher. Treatment with a low dose of nicotine decreased the proportion of bees able to form an associative memory when bees were conditioned with either a massed or spaced appetitive olfactory training paradigm. On the other hand, higher doses of nicotine increased memory retention and the proportion of bees responding to the odor during 10 min and 24 h recall tests. The reduction in nicotine containing food consumed may also impact response levels during learning and recall tests. These data suggest that long term exposure to nicotine has complex effects on learning and memory.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Rachel Dobb
- Centre for Behaviour and Evolution, Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | |
Collapse
|
40
|
Couvillon MJ, Ohlinger BD, Bizon C, Johnson LE, McHenry LC, McMillan BE, Schürch R. A volatilized pyrethroid insecticide from a mosquito repelling device does not impact honey bee foraging and recruitment. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:11. [PMID: 38055948 PMCID: PMC10699868 DOI: 10.1093/jisesa/iead079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 12/08/2023]
Abstract
Because nontarget, beneficials, like insect pollinators, may be exposed unintentionally to insecticides, it is important to evaluate the impact of chemical controls on the behaviors performed by insect pollinators in field trials. Here we examine the impact of a portable mosquito repeller, which emits prallethrin, a pyrethroid insecticide, on honey bee foraging and recruitment using a blinded, randomized, paired, parallel group trial. We found no significant effect of the volatilized insecticide on foraging frequency (our primary outcome), waggle dance propensity, waggle dance frequency, and feeder persistency (our secondary outcomes), even though an additional deposition study confirmed that the treatment device was performing appropriately. These results may be useful to consumers that are interested in repelling mosquitos, but also concerned about potential consequences to beneficial insects, such as honey bees.
Collapse
Affiliation(s)
| | | | - Connor Bizon
- Thermacell Repellents Inc., 32 Crosby Dr., Suite #100, Bedford, MA 01730, USA
| | - Lindsay E Johnson
- Department of Entomology, 170 Drillfield Dr., Blacksburg, VA 24061, USA
| | - Laura C McHenry
- Department of Entomology, 170 Drillfield Dr., Blacksburg, VA 24061, USA
| | - Benjamin E McMillan
- Thermacell Repellents Inc., 32 Crosby Dr., Suite #100, Bedford, MA 01730, USA
| | - Roger Schürch
- Department of Entomology, 170 Drillfield Dr., Blacksburg, VA 24061, USA
| |
Collapse
|
41
|
Quarrell S, Weinstein AM, Hannah L, Bonavia N, del Borrello O, Flematti GR, Bohman B. Critical Pollination Chemistry: Specific Sesquiterpene Floral Volatiles in Carrot Inhibit Honey Bee Feeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16079-16089. [PMID: 37871312 PMCID: PMC10623568 DOI: 10.1021/acs.jafc.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Many plants rely on insect pollination, yet numerous agricultural plant-breeding programs focus on traits that appeal to growers and consumers instead of pollinators, leading to declining pollinator attraction and crop yields. Using hybrid carrot seed production as a model, we investigated low-yielding carrot varieties by analyzing sugars and minerals in nectar and floral volatile composition. While the analysis of nectar sugars and minerals did not reveal any key differences between the carrot varieties, differences between the 112 detected volatiles in 23 samples were observed. Numerous differentiating sesquiterpenes were identified in floral solvent extracts, and subsequent behavioral assays showed that β-ocimene from higher-yielding carrot varieties stimulated nectar feeding (attractant), while α- and β-selinene from lower-yielding lines decreased feeding (deterrents). Sesquiterpenes have previously been implicated in plant defense, suggesting a trade-off between pollination and protection. Our results highlight the importance of volatiles as regulators of pollinator attraction in agricultural settings.
Collapse
Affiliation(s)
- Stephen
R. Quarrell
- Tasmanian
Institute of Agriculture, University of
Tasmania, College Rd, Hobart 7005, Australia
| | - Alyssa M. Weinstein
- Ecology
and Evolution, Research School of Biology, The Australian National University, Canberra 2601, Australia
| | - Lea Hannah
- Seed
Production Research, Research and Development, Rijk Zwaan Australia, Musk, Victoria 3461, Australia
- Hawkesbury
Institute for the Environment, Western Sydney
University, Richmond, New South Wales 2753, Australia
| | - Nicole Bonavia
- Seed
Production Research, Research and Development, Rijk Zwaan Australia, Musk, Victoria 3461, Australia
| | - Oscar del Borrello
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
| | - Gavin R. Flematti
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
| | - Björn Bohman
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
- Department
of Plant Protection Biology, Swedish University
of Agricultural Sciences, Lomma 234 22, Sweden
| |
Collapse
|
42
|
Zhang F, Cao W, Zhang Y, Luo J, Hou J, Chen L, Yi G, Li H, Huang M, Dong L, Li X. S-dinotefuran affects the social behavior of honeybees (Apis mellifera)and increases their risk in the colony. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105594. [PMID: 37945244 DOI: 10.1016/j.pestbp.2023.105594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 11/12/2023]
Abstract
The toxic effects of neonicotinoid pesticides on honeybees is a global concern, whereas little is known about the effect of stereoisomeric pesticides among honeybee social behavior. In this study, we investigated the effects of stereoisomeric dinotefuran on honeybee social behavior. We found that honeybees exhibit a preference for consuming food containing S-dinotefuran, actively engage in trophallaxis with S-dinotefuran-consuming peers, and consequently acquire higher levels of S-dinotefuran compared with R-dinotefuran. In comparison to R-dinotefuran, S-dinotefuran stimulates honeybees to elevate their body temperature, thereby attracting more peers for trophallaxis. Transcriptome analysis revealed a significant enrichment of thermogenesis pathways due to S-dinotefuran exposure. Additionally, metabolome data indicated that S-dinotefuran may enhance body temperature by promoting lipid synthesis in the lysine degradation pathway. Consequently, body temperature emerges as a key factor influencing honeybee social behavior. Our study is the first to highlight the propensity of S-dinotefuran to raise honeybee body temperature, which prompts honeybee to preferentially engage in trophallaxis with peers exhibiting higher body temperatures. This preference may lead honeybees to collect more dinotefuran-contaminated food in the wild, significantly accelerating dinotefuran transmission within a population. Proactive trophallaxis further amplifies the risk of neonicotinoid pesticide transmission within a population, making honeybees that have consumed S-dinotefuran particularly favored within their colonies. These findings may contribute to our understanding of the higher risk associated with neonicotinoid use compared with other pesticides.
Collapse
Affiliation(s)
- Fu Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenjing Cao
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Jie Luo
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Lichao Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Guoqiang Yi
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Mingfeng Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Linxi Dong
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
43
|
Farnan H, Yeeles P, Lach L. Sublethal doses of insecticide reduce thermal tolerance of a stingless bee and are not avoided in a resource choice test. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230949. [PMID: 38026031 PMCID: PMC10663796 DOI: 10.1098/rsos.230949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Insecticides and climate change are among the multiple stressors that bees face, but little is known about their synergistic effects, especially for non-Apis bee species. In laboratory experiments, we tested whether the stingless bee Tetragonula hockingsi avoids insecticide in sucrose solutions and how T. hockingsi responds to insecticide and heat stress combined. We found that T. hockingsi neither preferred nor avoided sucrose solutions with either low (2.5 × 10-4 ng µl-1 imidacloprid or 1.0 × 10-4 ng µl-1 fipronil) or high (2.5 × 10-3 ng µl-1 imidacloprid or 1.0 × 10-3 ng µl-1 fipronil) insecticide concentrations when offered alongside sucrose without insecticide. In our combined stress experiment, the smallest dose of imidacloprid (7.5 × 10-4 ng) did not significantly affect thermal tolerance (CTmax). However, CTmax significantly reduced by 0.8°C (±0.16 SE) and by 0.5°C (±0.16 SE) when bees were fed as little as 7.5 × 10-3 ng of imidacloprid or 3.0 × 10-4 ng of fipronil, respectively, and as much as 1.5°C (±0.16 SE) and 1.2°C (±0.16 SE) when bees were fed 7.5 × 10-2 ng of imidacloprid or 3.0 × 10-2 ng of fipronil, respectively. Predictions of temperature increase, and increased insecticide use in the tropics suggest that T. hockingsi will be at increased risk of the effects of both stressors in the future.
Collapse
Affiliation(s)
- Holly Farnan
- College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| | - Peter Yeeles
- College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| | - Lori Lach
- College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| |
Collapse
|
44
|
Zhou HX, Cheng MH, Pan JL, Cui P, Song YQ, Yu Y, Cao J, Zha HG. Residues of sulfoxaflor and its metabolites in floral and extrafloral nectar from Hibiscus rosa-sinensis L. (Malvaceae) with or without co-application of tebuconazole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105587. [PMID: 37945224 DOI: 10.1016/j.pestbp.2023.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 11/12/2023]
Abstract
Systemic pesticide exposure through nectar is a growing global concern linked to loss of insect diversity, especially pollinators. The insecticide sulfoxaflor and the fungicide tebuconazole are currently widely used systemic pesticides which are toxic to certain pollinators. However, their metabolisms in floral or extrafloral nectar under different application methods have not yet been well studied. Hibiscus rosa-sinensis was exposed to sulfoxaflor and tebuconazole via soil drenching and foliar spraying. Sulfoxaflor, tebuconazole, and their main metabolites in floral and extrafloral nectar, soil, and leaves were identified and quantified using liquid chromatography coupled with triple quadrupole mass spectrometry (LC-QqQ MS). The chemical compositions of unexposed and contaminated H. rosa-sinensis floral nectar or extrafloral nectar were compared using regular biochemical methods. The activities of two pesticide detoxifying enzymes, glutathione-s-transferase and nitrile hydratase, in H. rosa-sinensis nectar were examined using LC-MS and spectrophotometry. The floral nectar proteome of H. rosa-sinensis was analysed using high-resolution orbitrap-based MS/MS analysis to screen for sulfoxaflor and tebuconazole detoxifying enzymes. H. rosa-sinensis can absorb sulfoxaflor and tebuconazole through its roots or leaf surfaces and secrete them into floral nectar and extrafloral nectar. Both sulfoxaflor and tebuconazole and their major metabolites were present at higher concentrations in extrafloral nectar than in floral nectar. X11719474 was the dominant metabolite of sulfoxaflor in the nectars we studied. Compared with soil application, more sulfoxaflor and tebuconazole remained in their original forms in floral nectar and extrafloral nectar after foliar application. Sulfoxaflor and tebuconazole exposure did not modify the chemical composition of floral or extrafloral nectar. No active components, including proteins in the nectar, were detected to be able to detoxify sulfoxaflor.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Man-Huan Cheng
- Instrumental Analysis Centre, Huangshan University, Huangshan 245041, China
| | - Juan-Lin Pan
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Peng Cui
- Instrumental Analysis Centre, Huangshan University, Huangshan 245041, China
| | - Yue-Qin Song
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ying Yu
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Jun Cao
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology, Yunnan University, Kunming 650500, China
| | - Hong-Guang Zha
- College of Life and Environment Sciences, Huangshan University, Huangshan 245041, China.
| |
Collapse
|
45
|
Zioga E, White B, Stout JC. Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166214. [PMID: 37567302 DOI: 10.1016/j.scitotenv.2023.166214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
46
|
Sasidharan R, Junker RR, Eilers EJ, Müller C. Floral volatiles evoke partially similar responses in both florivores and pollinators and are correlated with non-volatile reward chemicals. ANNALS OF BOTANY 2023; 132:1-14. [PMID: 37220889 PMCID: PMC10550281 DOI: 10.1093/aob/mcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.
Collapse
Affiliation(s)
- Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Robert R Junker
- Department of Biology, Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Kapitalgasse 4-6, 5020 Salzburg, Austria
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- CTL GmbH Bielefeld, Krackser Straße 12, 33659 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
47
|
Fine JD, Foster LJ, McAfee A. Indirect exposure to insect growth disruptors affects honey bee (Apis mellifera) reproductive behaviors and ovarian protein expression. PLoS One 2023; 18:e0292176. [PMID: 37782633 PMCID: PMC10545116 DOI: 10.1371/journal.pone.0292176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Pesticide exposure and queen loss are considered to be major causes of honey bee colony mortality, yet little is known regarding the effects of regularly encountered agrochemicals on honey bee reproduction. Here, we present the results of a two-generational study using specialized cages to expose queens to commonly used insect growth disrupting pesticides (IGDs) via their retinue of worker bees. Under IGD exposure, we tracked queen performance and worker responses to queens, then the performance of the exposed queens' offspring was assessed to identify patterns that may contribute to the long-term health and stability of a social insect colony. The positive control, novaluron, resulted in deformed larvae hatching from eggs laid by exposed queens, and methoxyfenozide, diflubenzuron, and novaluron caused a slight decrease in daily egg laying rates, but this was not reflected in the total egg production over the course of the experiment. Curiously, eggs laid by queens exposed to pyriproxyfen exhibited increased hatching rates, and those larvae developed into worker progeny with increased responsiveness to their queens. Additionally, pyriproxyfen and novaluron exposure affected the queen ovarian protein expression, with the overwhelming majority of differentially expressed proteins coming from the pyriproxyfen exposure. We discuss these results and the potential implications for honey bee reproduction and colony health.
Collapse
Affiliation(s)
- Julia D. Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, United States of America
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
48
|
Gaubert J, Giovenazzo P, Derome N. Individual and social defenses in Apis mellifera: a playground to fight against synergistic stressor interactions. Front Physiol 2023; 14:1172859. [PMID: 37485064 PMCID: PMC10360197 DOI: 10.3389/fphys.2023.1172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
The honeybee is an important species for the agri-food and pharmaceutical industries through bee products and crop pollination services. However, honeybee health is a major concern, because beekeepers in many countries are experiencing significant colony losses. This phenomenon has been linked to the exposure of bees to multiple stresses in their environment. Indeed, several biotic and abiotic stressors interact with bees in a synergistic or antagonistic way. Synergistic stressors often act through a disruption of their defense systems (immune response or detoxification). Antagonistic interactions are most often caused by interactions between biotic stressors or disruptive activation of bee defenses. Honeybees have developed behavioral defense strategies and produce antimicrobial compounds to prevent exposure to various pathogens and chemicals. Expanding our knowledge about these processes could be used to develop strategies to shield bees from exposure. This review aims to describe current knowledge about the exposure of honeybees to multiple stresses and the defense mechanisms they have developed to protect themselves. The effect of multi-stress exposure is mainly due to a disruption of the immune response, detoxification, or an excessive defense response by the bee itself. In addition, bees have developed defenses against stressors, some behavioral, others involving the production of antimicrobials, or exploiting beneficial external factors.
Collapse
Affiliation(s)
- Joy Gaubert
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Laboratoire Giovenazzo, Département de Biologie, Université Laval, Québec, QC, Canada
| | - Pierre Giovenazzo
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Nicolas Derome
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Laboratoire Giovenazzo, Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
49
|
Wang K, Cai M, Sun J, Chen H, Lin Z, Wang Z, Niu Q, Ji T. Atrazine exposure can dysregulate the immune system and increase the susceptibility against pathogens in honeybees in a dose-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131179. [PMID: 36948121 DOI: 10.1016/j.jhazmat.2023.131179] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Recently, concerns regarding the impact of agrochemical pesticides on non-target organisms have increased. The effect of atrazine, the second-most widely used herbicide in commercial farming globally, on honeybees remains poorly understood. Here, we evaluated how atrazine impacts the survival of honeybees and pollen and sucrose consumption, investigating the morphology and mRNA expression levels of midgut tissue, along with bacterial composition (relative abundance) and load (absolute abundance) in the whole gut. Atrazine did not affect mortality, but high exposure (37.3 mg/L) reduced pollen and sucrose consumption, resulting in peritrophic membrane dysplasia. Sodium channels and chitin synthesis were considered potential atrazine targets, with the expression of various genes related to lipid metabolism, detoxification, immunity, and chemosensory activity being inhibited after atrazine exposure. Importantly, 37.3 mg/L atrazine exposure substantially altered the composition and size of the gut microbial community, clearly reducing both the absolute and relative abundance of three core gram-positive taxa, Lactobacillus Firm-5, Lactobacillus Firm-4, and Bifidobacterium asteroides. With altered microbiome composition and a weakened immune system following atrazine exposure, honeybees became more susceptible to infection by the opportunistic pathogen Serratia marcescens. Thus, considering its scale of use, atrazine could negatively impact honeybee populations worldwide, which may adversely affect global food security.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Minqi Cai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Jie Sun
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Heng Chen
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Zhi Wang
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China.
| |
Collapse
|
50
|
Paus-Knudsen JS, Sveinsson HA, Grung M, Borgå K, Nielsen A. The Neonicotinoid Imidacloprid Impairs Learning, Locomotor Activity Levels, and Sucrose Solution Consumption in Bumblebees (Bombus terrestris). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1337-1345. [PMID: 36942385 DOI: 10.1002/etc.5611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 03/16/2023] [Indexed: 05/27/2023]
Abstract
Bumblebees carry out the complex task of foraging to provide for their colonies. They also conduct pollination, an ecosystem service of high importance to both wild plants and entomophilous crops. Insecticides can alter different aspects of bumblebee foraging behavior, including the motivation to leave the hive, finding the right flowers, handling flowers, and the ability to return to the colony. In the present study, we assessed how the neonicotinoid imidacloprid affects bumblebees' foraging behavior after exposure to four different treatment levels, including field-realistic concentrations (0 [control], 1, 10, and 100 μg/L), through sucrose solution over 9 days. We observed the behavior of several free-flying bumblebees simultaneously foraging on artificial flowers in a flight arena to register the bees' complex behavior postexposure. To conduct a detailed assessment of how insecticides affect bumblebee locomotor behavior, we used video cameras and analyzed the recordings using computer vision. We found that imidacloprid impaired learning and locomotor activity level when the bumblebees foraged on artificial flowers. We also found that imidacloprid exposure reduced sucrose solution intake and storage. By using automated analyses of video recordings of bumblebee behavior, we identified sublethal effects of imidacloprid exposure at field-realistic doses. Specifically, we observed negative impacts on consumption of sucrose solution as well as on learning and locomotor activity level. Our results highlight the need for more multimodal approaches when assessing the sublethal effects of insecticides and plant protection products in general. Environ Toxicol Chem 2023;42:1337-1345. © 2023 SETAC.
Collapse
Affiliation(s)
- Julie Sørlie Paus-Knudsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Henrik Andersen Sveinsson
- Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
- Department of Physics, The NJORD Centre, University of Oslo, Oslo, Norway
| | - Merete Grung
- Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
- Norwegian Institute for Water Research, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Anders Nielsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Department of Landscape and Biodiversity, Norwegian Institute for Bioeconomy Research, Ås, Norway
| |
Collapse
|