1
|
Ryvkin A, Furman A, Lebedeva E, Gonotkov M. Analysis of changes in the action potential morphology of the mouse sinoatrial node true pacemaker cells during ontogenetic development in vitro and in silico. Dev Dyn 2024; 253:895-905. [PMID: 38459937 DOI: 10.1002/dvdy.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Maturation of the mouse is accompanied by the increase in heart rate. However, the mechanisms underlying this process remain unclear. We performed an action potentials (APs) recordings in mouse sinoatrial node (SAN) true pacemaker cells and in silico analysis to clarify the mechanisms underlying pre-postnatal period heart rate changes. RESULTS The APs of true pacemaker cells at different stages had similar configurations and dV/dtmax values. The cycle length, action potential duration (APD90), maximal diastolic potential (MDP), and AP amplitude decreased, meanwhile the velocity of diastolic depolarization (DDR) increased from E12.5 stage to adult. Using a pharmacological approach we found that in SAN true pacemaker cells ivabradine reduces the DDR and the cycle length significantly stronger in E12.5 than in newborn and adult mice, whereas the effects of Ni2+ and nifedipine were significantly stronger in adult mice. Computer simulations further suggested that the density of the hyperpolarization-activated pacemaker сurrent (If) decreased during development, whereas transmembrane and intracellular Ca2+ flows increased. CONCLUSIONS The ontogenetic decrease in IK1 density from E12.5 to adult leads to depolarization of MDP to the voltage range in which calcium currents are activated, thereby shifting the balance from the "membrane-clock" to the "calcium-clock."
Collapse
Affiliation(s)
| | - Arseniy Furman
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena Lebedeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail Gonotkov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
2
|
Xu D, Lyu X, Han H, Fang J, Xue J, Zheng J, Hu N, Gao Z. Scalable Drug-Mimicking Nanoplasmonic Therapy for Bradyarrhythmia in Cardiomyocytes. NANO LETTERS 2024; 24:11302-11310. [PMID: 39213538 DOI: 10.1021/acs.nanolett.4c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bradyarrhythmia poses a serious threat to human health, with chronic progression causing heart failure and acute onset leading to sudden death. In this study, we develop a scalable drug-mimicking nanoplasmonic therapeutic strategy by introducing gold nanorod (Au NR) mediated near-infrared (NIR) photothermal effects. An integrated sensing and regulation platform is established for in situ synchronized NIR laser regulation and electrophysiological property recording. The Au NR plasmonic regulation enables the restoration of normal cardiomyocyte rhythm from the bradyarrhythmia. By regulating the aspect ratio and concentration of Au NRs, as well as the intensity and time of NIR irradiation, we precisely optimized the plasmonic photothermal effect to explore effective therapeutic strategies. Furthermore, mRNA sequencing revealed a significant increase in the number of differentially expressed genes (DEGs) involved in the electrophysiological activities of cardiomyocytes following photothermal therapy. Au NR-mediated plasmonic photothermal therapy, as an efficient and noninvasive approach to bradyarrhythmia, holds profound implications for cardiology research.
Collapse
Affiliation(s)
- Dongxin Xu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xuelian Lyu
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Haote Han
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Jiaru Fang
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Jilin Zheng
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Ning Hu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
3
|
Lin Z, Lin B, Hang C, Lu R, Xiong H, Liu J, Wang S, Gong Z, Zhang M, Li D, Fang G, Ding J, Su X, Guo H, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. A new paradigm for generating high-quality cardiac pacemaker cells from mouse pluripotent stem cells. Signal Transduct Target Ther 2024; 9:230. [PMID: 39237509 PMCID: PMC11377569 DOI: 10.1038/s41392-024-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiac biological pacing (BP) is one of the future directions for bradyarrhythmias intervention. Currently, cardiac pacemaker cells (PCs) used for cardiac BP are mainly derived from pluripotent stem cells (PSCs). However, the production of high-quality cardiac PCs from PSCs remains a challenge. Here, we developed a cardiac PC differentiation strategy by adopting dual PC markers and simulating the developmental route of PCs. First, two PC markers, Shox2 and Hcn4, were selected to establish Shox2:EGFP; Hcn4:mCherry mouse PSC reporter line. Then, by stepwise guiding naïve PSCs to cardiac PCs following naïve to formative pluripotency transition and manipulating signaling pathways during cardiac PCs differentiation, we designed the FSK method that increased the yield of SHOX2+; HCN4+ cells with typical PC characteristics, which was 12 and 42 folds higher than that of the embryoid body (EB) and the monolayer M10 methods respectively. In addition, the in vitro cardiac PCs differentiation trajectory was mapped by single-cell RNA sequencing (scRNA-seq), which resembled in vivo PCs development, and ZFP503 was verified as a key regulator of cardiac PCs differentiation. These PSC-derived cardiac PCs have the potential to drive advances in cardiac BP technology, help with the understanding of PCs (patho)physiology, and benefit drug discovery for PC-related diseases as well.
Collapse
Affiliation(s)
- Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Desheng Li
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Guojian Fang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Xuling Su
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
4
|
Mainwaring E, Patel R, Desai C, Acharya R, Raveshia D, Shah S, Panesar H, Patel N, Singh R. Five historical innovations that have shaped modern cardiothoracic surgery. J Perioper Pract 2024; 34:282-292. [PMID: 38149619 DOI: 10.1177/17504589231212967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Throughout history, many innovations have contributed to the development of modern cardiothoracic surgery, improving patient outcomes and expanding the range of treatment options available to patients. This article explores five key historical innovations that have shaped modern cardiothoracic surgery: cardiopulmonary bypass, surgical pacemakers, video assisted thoracic surgery, robotic surgery and mechanical circulatory support. We will review the development, impact and significance of each innovation, highlighting their contributions to the field of cardiothoracic surgery and their ongoing relevance in contemporary and perioperative practice.
Collapse
Affiliation(s)
- Elizabeth Mainwaring
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge, UK
| | - Ravi Patel
- Department of Trauma and Orthopaedics, Shrewsbury and Telford Trust, The Princess Royal Hospital, Telford, UK
- Department of Trauma and Orthopaedics, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Chaitya Desai
- Department of Urology, Walsall Manor Hospital, Walsall Healthcare NHS Trust, Walsall, UK
| | - Radhika Acharya
- Department of Intensive Care, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Dimit Raveshia
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Saumil Shah
- Department of Otolaryngology, The Princess Royal Hospital, Telford, UK
| | - Harrypal Panesar
- Department of Otolaryngology, The Princess Royal Hospital, Telford, UK
| | | | - Rohit Singh
- Department of Trauma and Orthopaedics, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| |
Collapse
|
5
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
6
|
Sleiman Y, Reisqs JB, Boutjdir M. Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model. Int J Mol Sci 2024; 25:9155. [PMID: 39273104 PMCID: PMC11394733 DOI: 10.3390/ijms25179155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for disease modeling and pharmacological screening. However, their application has mainly focused on inherited cardiopathies affecting ventricular cardiomyocytes, leading to extensive knowledge on generating ventricular-like hiPSC-CMs. Electronic pacemakers, despite their utility, have significant disadvantages, including lack of hormonal responsiveness, infection risk, limited battery life, and inability to adapt to changes in heart size. Therefore, developing an in vitro multiscale model of the human sinoatrial node (SAN) pacemaker using hiPSC-CM and SAN-like cardiomyocyte differentiation protocols is essential. This would enhance the understanding of SAN-related pathologies and support targeted therapies. Generating SAN-like cardiomyocytes offers the potential for biological pacemakers and specialized conduction tissues, promising significant benefits for patients with conduction system defects. This review focuses on arrythmias related to pacemaker dysfunction, examining protocols' advantages and drawbacks for generating SAN-like cardiomyocytes from hESCs/hiPSCs, and discussing therapeutic approaches involving their engraftment in animal models.
Collapse
Affiliation(s)
- Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Deng J, Wu J, Chen X, Sarrafian TL, Varela CE, Whyte W, Guo CF, Roche ET, Griffiths LG, Yuk H, Nabzdyk CS, Zhao X. A bioadhesive pacing lead for atraumatic cardiac monitoring and stimulation in rodent and porcine models. Sci Transl Med 2024; 16:eado9003. [PMID: 38896601 DOI: 10.1126/scitranslmed.ado9003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Current clinically used electronic implants, including cardiac pacing leads for epicardial monitoring and stimulation of the heart, rely on surgical suturing or direct insertion of electrodes to the heart tissue. These approaches can cause tissue trauma during the implantation and retrieval of the pacing leads, with the potential for bleeding, tissue damage, and device failure. Here, we report a bioadhesive pacing lead that can directly interface with cardiac tissue through physical and covalent interactions to support minimally invasive adhesive implantation and gentle on-demand removal of the device with a detachment solution. We developed 3D-printable bioadhesive materials for customized fabrication of the device by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to obtain electrical conductivity. The bioadhesive construct exhibited mechanical properties similar to cardiac tissue and strong tissue adhesion, supporting stable electrical interfacing. Infusion of a detachment solution to cleave physical and covalent cross-links between the adhesive interface and the tissue allowed retrieval of the bioadhesive pacing leads in rat and porcine models without apparent tissue damage. Continuous and reliable cardiac monitoring and pacing of rodent and porcine hearts were demonstrated for 2 weeks with consistent capture threshold and sensing amplitude, in contrast to a commercially available alternative. Pacing and continuous telemetric monitoring were achieved in a porcine model. These findings may offer a promising platform for adhesive bioelectronic devices for cardiac monitoring and treatment.
Collapse
Affiliation(s)
- Jue Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | | | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ellen T Roche
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Christoph S Nabzdyk
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Li T, Marashly Q, Kim JA, Li N, Chelu MG. Cardiac conduction diseases: understanding the molecular mechanisms to uncover targets for future treatments. Expert Opin Ther Targets 2024; 28:385-400. [PMID: 38700451 PMCID: PMC11395937 DOI: 10.1080/14728222.2024.2351501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION The cardiac conduction system (CCS) is crucial for maintaining adequate cardiac frequency at rest and modulation during exercise. Furthermore, the atrioventricular node and His-Purkinje system are essential for maintaining atrioventricular and interventricular synchrony and consequently maintaining an adequate cardiac output. AREAS COVERED In this review article, we examine the anatomy, physiology, and pathophysiology of the CCS. We then discuss in detail the most common genetic mutations and the molecular mechanisms of cardiac conduction disease (CCD) and provide our perspectives on future research and therapeutic opportunities in this field. EXPERT OPINION Significant advancement has been made in understanding the molecular mechanisms of CCD, including the recognition of the heterogeneous signaling at the subcellular levels of sinoatrial node, the involvement of inflammatory and autoimmune mechanisms, and the potential impact of epigenetic regulations on CCD. However, the current treatment of CCD manifested as bradycardia still relies primarily on cardiovascular implantable electronic devices (CIEDs). On the other hand, an If specific inhibitor was developed to treat inappropriate sinus tachycardia and sinus tachycardia in heart failure patients with reduced ejection fraction. More work is needed to translate current knowledge into pharmacologic or genetic interventions for the management of CCDs.
Collapse
Affiliation(s)
- Tingting Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qussay Marashly
- Department of Cardiology, Montefiore Medical Center, New York, NY, USA
| | - Jitae A Kim
- Division of CardiovasculMedicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mihail G Chelu
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Division of Cardiology), Baylor College of Medicine, Houston, TX, USA
- Division of Cardiology, Baylor St. Luke's Medical Center, Houston, TX, USA
- Division of Cardiology, Texas Heart Institute, Houston, TX, USA
| |
Collapse
|
9
|
Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther 2024; 256:108596. [PMID: 38301770 DOI: 10.1016/j.pharmthera.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Inherited cardiac arrhythmias are a group of genetic diseases predisposing to sudden cardiac arrest, mainly resulting from variants in genes encoding cardiac ion channels or proteins involved in their regulation. Currently available therapeutic options (pharmacotherapy, ablative therapy and device-based therapy) can not preclude the occurrence of arrhythmia events and/or provide complete protection. With growing understanding of the genetic background and molecular mechanisms of inherited cardiac arrhythmias, advancing insight of stem cell technology, and development of vectors and delivery strategies, gene therapy and stem cell therapy may be promising approaches for treatment of inherited cardiac arrhythmias. Recent years have witnessed impressive progress in the basic science aspects and there is a clear and urgent need to be translated into the clinical management of arrhythmic events. In this review, we present a succinct overview of gene and cell therapy strategies, and summarize the current status of gene and cell therapy. Finally, we discuss future directions for implementation of gene and cell therapy in the therapy of inherited cardiac arrhythmias.
Collapse
Affiliation(s)
- Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
10
|
Mesquita T, Miguel-Dos-Santos R, Cingolani E. Biological Pacemakers: Present and Future. Circ Res 2024; 134:837-841. [PMID: 38547251 DOI: 10.1161/circresaha.123.323180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- Thassio Mesquita
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Eugenio Cingolani
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
11
|
Wang S, Aljirafi FO, Payne GF, Bentley WE. Excite the unexcitable: engineering cells and redox signaling for targeted bioelectronic control. Curr Opin Biotechnol 2024; 85:103052. [PMID: 38150921 DOI: 10.1016/j.copbio.2023.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The ever-growing influence of technology in our lives has led to an increasing interest in the development of smart electronic devices to interrogate and control biological systems. Recently, redox-mediated electrogenetics introduced a novel avenue that enables direct bioelectronic control at the genetic level. In this review, we discuss recent advances in methodologies for bioelectronic control, ranging from electrical stimulation to engineering efforts that allow traditionally unexcitable cells to be electrically 'programmable.' Alongside ion-transport signaling, we suggest redox as a route for rational engineering because it is a native form of electronic communication in biology. Using redox as a common language allows the interfacing of electronics and biology. This newfound connection opens a gateway of possibilities for next-generation bioelectronic tools.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Futoon O Aljirafi
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| |
Collapse
|
12
|
Zhang W, Wang F, Yin L, Tang Y, Wang X, Huang C. Cadherin-5 facilitated the differentiation of human induced pluripotent stem cells into sinoatrial node-like pacemaker cells by regulating β-catenin. J Cell Physiol 2024; 239:212-226. [PMID: 38149479 DOI: 10.1002/jcp.31161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of β-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of β-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
13
|
van der Maarel LE, Christoffels VM. Development of the Cardiac Conduction System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:185-200. [PMID: 38884712 DOI: 10.1007/978-3-031-44087-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.
Collapse
Affiliation(s)
- Lieve E van der Maarel
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Qiao H, Jiang F, Ning P, Zhao H, Zhao J, Zhang J. Safety Review of Radiotherapy for Tumor Patients with Implantable Cardiac Pacemaker. ACTA CARDIOLOGICA SINICA 2023; 39:807-816. [PMID: 38022419 PMCID: PMC10646601 DOI: 10.6515/acs.202311_39(6).20230828a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023]
Abstract
Permanent pacemaker implantation is one of the most effective treatments for chronic arrhythmia. However, there is a certain risk associated with radiation therapy in cancer patients with implantable cardiac pacemakers. To prevent radiotherapy-induced pacemaker failure, there are established medical guidelines for the use of pacemakers in patients undergoing radiotherapy. With advancements in science and technology, the variety of available pacemakers has considerably increased, and radiotherapy equipment has also been updated. Given the variations in irradiation methods and the types of radiation used in clinical practice, there is a pressing need for international consensus on the regulations governing the use of cardiac pacemakers in cancer patients. Currently, many countries lack clinical guidelines for radiotherapy in cancer patients with cardiac pacemakers. This review summarizes recent reports and studies from PubMed (National Center for Biotechnology Information) regarding the safety of radiotherapy in cancer patients with implanted cardiac pacemakers, and provides valuable insights for clinical practice.
Collapse
Affiliation(s)
- Hongmei Qiao
- Department of Radiotherapy and Oncology, Baoji High-Tech Hospital, Baoji City, 721000, Shanxi, China
| | - Fan Jiang
- Department of Radiotherapy and Oncology, Baoji High-Tech Hospital, Baoji City, 721000, Shanxi, China
| | - Peng Ning
- Department of Radiotherapy and Oncology, Baoji High-Tech Hospital, Baoji City, 721000, Shanxi, China
| | - Hui Zhao
- Department of Radiotherapy and Oncology, Baoji High-Tech Hospital, Baoji City, 721000, Shanxi, China
| | - Jie Zhao
- Department of Radiotherapy and Oncology, Baoji High-Tech Hospital, Baoji City, 721000, Shanxi, China
| | - Jinru Zhang
- Department of Radiotherapy and Oncology, Baoji High-Tech Hospital, Baoji City, 721000, Shanxi, China
| |
Collapse
|
15
|
Liu CM, Chen YC, Hu YF. Harnessing cell reprogramming for cardiac biological pacing. J Biomed Sci 2023; 30:74. [PMID: 37633890 PMCID: PMC10463311 DOI: 10.1186/s12929-023-00970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Electrical impulses from cardiac pacemaker cardiomyocytes initiate cardiac contraction and blood pumping and maintain life. Abnormal electrical impulses bring patients with low heart rates to cardiac arrest. The current therapy is to implant electronic devices to generate backup electricity. However, complications inherent to electronic devices remain unbearable suffering. Therefore, cardiac biological pacing has been developed as a hardware-free alternative. The approaches to generating biological pacing have evolved recently using cell reprogramming technology to generate pacemaker cardiomyocytes in-vivo or in-vitro. Different from conventional methods by electrical re-engineering, reprogramming-based biological pacing recapitulates various phenotypes of de novo pacemaker cardiomyocytes and is more physiological, efficient, and easy for clinical implementation. This article reviews the present state of the art in reprogramming-based biological pacing. We begin with the rationale for this new approach and review its advances in creating a biological pacemaker to treat bradyarrhythmia.
Collapse
Affiliation(s)
- Chih-Min Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
16
|
Kingma J, Simard C, Drolet B. Overview of Cardiac Arrhythmias and Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:844. [PMID: 37375791 DOI: 10.3390/ph16060844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Maintenance of normal cardiac rhythm requires coordinated activity of ion channels and transporters that allow well-ordered propagation of electrical impulses across the myocardium. Disruptions in this orderly process provoke cardiac arrhythmias that may be lethal in some patients. Risk of common acquired arrhythmias is increased markedly when structural heart disease caused by myocardial infarction (due to fibrotic scar formation) or left ventricular dysfunction is present. Genetic polymorphisms influence structure or excitability of the myocardial substrate, which increases vulnerability or risk of arrhythmias in patients. Similarly, genetic polymorphisms of drug-metabolizing enzymes give rise to distinct subgroups within the population that affect specific drug biotransformation reactions. Nonetheless, identification of triggers involved in initiation or maintenance of cardiac arrhythmias remains a major challenge. Herein, we provide an overview of knowledge regarding physiopathology of inherited and acquired cardiac arrhythmias along with a summary of treatments (pharmacologic or non-pharmacologic) used to limit their effect on morbidity and potential mortality. Improved understanding of molecular and cellular aspects of arrhythmogenesis and more epidemiologic studies (for a more accurate portrait of incidence and prevalence) are crucial for development of novel treatments and for management of cardiac arrhythmias and their consequences in patients, as their incidence is increasing worldwide.
Collapse
Affiliation(s)
- John Kingma
- Department of Medicine, Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Chantale Simard
- Faculty of Pharmacy Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| | - Benoît Drolet
- Faculty of Pharmacy Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| |
Collapse
|
17
|
Henley T, Goudy J, Easterling M, Donley C, Wirka R, Bressan M. Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Sci Alliance 2023; 6:e202201799. [PMID: 36973005 PMCID: PMC10043993 DOI: 10.26508/lsa.202201799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.
Collapse
Affiliation(s)
- Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marietta Easterling
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrie Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Wirka
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Karimi T, Pan Z, Potaman VN, Alt EU. Conversion of Unmodified Stem Cells to Pacemaker Cells by Overexpression of Key Developmental Genes. Cells 2023; 12:1381. [PMID: 37408215 PMCID: PMC10216671 DOI: 10.3390/cells12101381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Arrhythmias of the heart are currently treated by implanting electronic pacemakers and defibrillators. Unmodified adipose tissue-derived stem cells (ASCs) have the potential to differentiate into all three germ layers but have not yet been tested for the generation of pacemaker and Purkinje cells. We investigated if-based on overexpression of dominant conduction cell-specific genes in ASCs-biological pacemaker cells could be induced. Here we show that by overexpression of certain genes that are active during the natural development of the conduction system, the differentiation of ASCs to pacemaker and Purkinje-like cells is feasible. Our study revealed that the most effective procedure consisted of short-term upregulation of gene combinations SHOX2-TBX5-HCN2, and to a lesser extent SHOX2-TBX3-HCN2. Single-gene expression protocols were ineffective. Future clinical implantation of such pacemaker and Purkinje cells, derived from unmodified ASCs of the same patient, could open up new horizons for the treatment of arrythmias.
Collapse
Affiliation(s)
- Tahereh Karimi
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
| | - Zhizhong Pan
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vladimir N. Potaman
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
| | - Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- Isar Klinikum Munich, Sonnenstr 24-26, 80331 Munich, Germany
| |
Collapse
|
19
|
Ashok A, Nguyen TK, Barton M, Leitch M, Masud MK, Park H, Truong TA, Kaneti YV, Ta HT, Li X, Liang K, Do TN, Wang CH, Nguyen NT, Yamauchi Y, Phan HP. Flexible Nanoarchitectonics for Biosensing and Physiological Monitoring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204946. [PMID: 36538749 DOI: 10.1002/smll.202204946] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Flexible and implantable electronics hold tremendous promises for advanced healthcare applications, especially for physiological neural recording and modulations. Key requirements in neural interfaces include miniature dimensions for spatial physiological mapping and low impedance for recognizing small biopotential signals. Herein, a bottom-up mesoporous formation technique and a top-down microlithography process are integrated to create flexible and low-impedance mesoporous gold (Au) electrodes for biosensing and bioimplant applications. The mesoporous architectures developed on a thin and soft polymeric substrate provide excellent mechanical flexibility and stable electrical characteristics capable of sustaining multiple bending cycles. The large surface areas formed within the mesoporous network allow for high current density transfer in standard electrolytes, highly suitable for biological sensing applications as demonstrated in glucose sensors with an excellent detection limit of 1.95 µm and high sensitivity of 6.1 mA cm-2 µM-1 , which is approximately six times higher than that of benchmarking flat/non-porous films. The low impedance of less than 1 kΩ at 1 kHz in the as-synthesized mesoporous electrodes, along with their mechanical flexibility and durability, offer peripheral nerve recording functionalities that are successfully demonstrated in vivo. These features highlight the new possibilities of our novel flexible nanoarchitectonics for neuronal recording and modulation applications.
Collapse
Affiliation(s)
- Aditya Ashok
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Matthew Barton
- School of Nursing and Midwifery, Griffith University, Southport, Queensland, 4215, Australia
- Menzies Health Institute Queensland - Griffith University, Southport, Queensland, 4215, Australia
| | - Michael Leitch
- School of Nursing and Midwifery, Griffith University, Southport, Queensland, 4215, Australia
| | - Mostafa Kamal Masud
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Hyeongyu Park
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Thanh-An Truong
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Hang Thu Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Xiaopeng Li
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kang Liang
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chun-Hui Wang
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4067, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hoang-Phuong Phan
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4067, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
20
|
Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, Li N. Sinus node dysfunction: current understanding and future directions. Am J Physiol Heart Circ Physiol 2023; 324:H259-H278. [PMID: 36563014 PMCID: PMC9886352 DOI: 10.1152/ajpheart.00618.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. Normal SAN function is crucial in maintaining proper cardiac rhythm and contraction. Sinus node dysfunction (SND) is due to abnormalities within the SAN, which can affect the heartbeat frequency, regularity, and the propagation of electrical pulses through the cardiac conduction system. As a result, SND often increases the risk of cardiac arrhythmias. SND is most commonly seen as a disease of the elderly given the role of degenerative fibrosis as well as other age-dependent changes in its pathogenesis. Despite the prevalence of SND, current treatment is limited to pacemaker implantation, which is associated with substantial medical costs and complications. Emerging evidence has identified various genetic abnormalities that can cause SND, shedding light on the molecular underpinnings of SND. Identification of these molecular mechanisms and pathways implicated in the pathogenesis of SND is hoped to identify novel therapeutic targets for the development of more effective therapies for this disease. In this review article, we examine the anatomy of the SAN and the pathophysiology and epidemiology of SND. We then discuss in detail the most common genetic mutations correlated with SND and provide our perspectives on future research and therapeutic opportunities in this field.
Collapse
Affiliation(s)
- Pavan Manoj
- School of Public Health, Texas A&M University, College Station, Texas
| | - Jitae A Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kim
- Department of BioSciences, Rice University, Houston, Texas
| | - Tingting Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Maham Sewani
- Department of BioSciences, Rice University, Houston, Texas
| | - Mihail G Chelu
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
21
|
Sanchez L, Mesquita T, Zhang R, Liao K, Rogers R, Lin YN, Miguel-dos-Santos R, Akhmerov A, Li L, Nawaz A, Holm K, Marbán E, Cingolani E. MicroRNA-dependent suppression of biological pacemaker activity induced by TBX18. Cell Rep Med 2022; 3:100871. [PMID: 36543116 PMCID: PMC9798022 DOI: 10.1016/j.xcrm.2022.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022]
Abstract
Chemically modified mRNA (CMmRNA) with selectively altered nucleotides are used to deliver transgenes, but translation efficiency is variable. We have transfected CMmRNA encoding human T-box transcription factor 18 (CMmTBX18) into heart cells or the left ventricle of rats with atrioventricular block. TBX18 protein expression from CMmTBX18 is weak and transient, but Acriflavine, an Argonaute 2 inhibitor, boosts TBX18 levels. Small RNA sequencing identified two upregulated microRNAs (miRs) in CMmTBX18-transfected cells. Co-administration of miR-1-3p and miR-1b antagomiRs with CMmTBX18 prolongs TBX18 expression in vitro and in vivo and is sufficient to generate electrical stimuli capable of pacing the heart. Different suppressive miRs likewise limit the expression of VEGF-A CMmRNA. Cells therefore resist translation of CMmRNA therapeutic transgenes by upregulating suppressive miRs. Blockade of suppressive miRs enhances CMmRNA expression of genes driving biological pacing or angiogenesis. Such counterstrategies constitute an approach to boost the efficacy and efficiency of CMmRNA therapies.
Collapse
Affiliation(s)
- Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Ke Liao
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Russell Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Yen-Nien Lin
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Rodrigo Miguel-dos-Santos
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Akbarshakh Akhmerov
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Liang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Asma Nawaz
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Kevin Holm
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, USA,Corresponding author
| |
Collapse
|
22
|
Prodan N, Ershad F, Reyes-Alcaraz A, Li L, Mistretta B, Gonzalez L, Rao Z, Yu C, Gunaratne PH, Li N, Schwartz RJ, McConnell BK. Direct reprogramming of cardiomyocytes into cardiac Purkinje-like cells. iScience 2022; 25:105402. [PMID: 36388958 PMCID: PMC9646947 DOI: 10.1016/j.isci.2022.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Currently, there are no treatments that ameliorate cardiac cell death, the underlying basis of cardiovascular disease. An unexplored cell type in cardiac regeneration is cardiac Purkinje cells; specialized cells from the cardiac conduction system (CCS) responsible for propagating electrical signals. Purkinje cells have tremendous potential as a regenerative treatment because they may intrinsically integrate with the CCS of a recipient myocardium, resulting in more efficient electrical conduction in diseased hearts. This study is the first to demonstrate an effective protocol for the direct reprogramming of human cardiomyocytes into cardiac Purkinje-like cells using small molecules. The cells generated were genetically and functionally similar to native cardiac Purkinje cells, where expression of key cardiac Purkinje genes such as CNTN2, ETV1, PCP4, IRX3, SCN5a, HCN2 and the conduction of electrical signals with increased velocity was observed. This study may help to advance the quest to finding an optimized cell therapy for heart regeneration.
Collapse
Affiliation(s)
- Nicole Prodan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Faheem Ershad
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Luge Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Lei Gonzalez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Zhoulyu Rao
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Cunjiang Yu
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
23
|
Li J, Wiesinger A, Fokkert L, Boukens BJ, Verkerk AO, Christoffels VM, Boink GJ, Devalla HD. Molecular and electrophysiological evaluation of human cardiomyocyte subtypes to facilitate generation of composite cardiac models. J Tissue Eng 2022; 13:20417314221127908. [PMID: 36277058 PMCID: PMC9583221 DOI: 10.1177/20417314221127908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Paucity of physiologically relevant cardiac models has limited the widespread application of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in drug development. Here, we performed comprehensive characterization of hiPSC-derived cardiomyocyte subtypes from 2D and 3D cultures and established a novel 3D model to study impulse initiation and propagation. Directed differentiation approaches were used to generate sinoatrial nodal (SANCM), atrial (ACM) and ventricular cardiomyocytes (VCM). Single cell RNA sequencing established that the protocols yield distinct cell populations in line with expected identities, which was also confirmed by electrophysiological characterization. In 3D EHT cultures of all subtypes, we observed prominent expression of stretch-responsive genes such as NPPA. Response to rate modulating drugs noradrenaline, carbachol and ivabradine were comparable in single cells and EHTs. Differences in the speed of impulse propagation between the subtypes were more pronounced in EHTs compared with 2D monolayers owing to a progressive increase in conduction velocities in atrial and ventricular cardiomyocytes, in line with a more mature phenotype. In a novel binary EHT model of pacemaker-atrial interface, the SANCM end of the tissue consistently paced the EHTs under baseline conditions, which was inhibited by ivabradine. Taken together, our data provide comprehensive insights into molecular and electrophysiological properties of hiPSC-derived cardiomyocyte subtypes, facilitating the creation of next generation composite cardiac models for drug discovery, disease modeling and cell-based regenerative therapies.
Collapse
Affiliation(s)
- Jiuru Li
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Alexandra Wiesinger
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Lianne Fokkert
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Bastiaan J. Boukens
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Arie O. Verkerk
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands,Department of Experimental Cardiology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Gerard J.J. Boink
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands,Department of Cardiology, Amsterdam
University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands
| | - Harsha D. Devalla
- Department of Medical Biology,
Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The
Netherlands,Harsha D Devalla, Department of Medical
Biology, Amsterdam University Medical Centers, University of Amsterdam,
Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
24
|
Wiesinger A, Li J, Fokkert L, Bakker P, Verkerk AO, Christoffels VM, Boink GJJ, Devalla HD. A single cell transcriptional roadmap of human pacemaker cell differentiation. eLife 2022; 11:76781. [PMID: 36217819 PMCID: PMC9553210 DOI: 10.7554/elife.76781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
Each heartbeat is triggered by the sinoatrial node (SAN), the primary pacemaker of the heart. Studies in animal models have revealed that pacemaker cells share a common progenitor with the (pro)epicardium, and that the pacemaker cardiomyocytes further diversify into ‘transitional’, ‘tail’, and ‘head’ subtypes. However, the underlying molecular mechanisms, especially of human pacemaker cell development, are poorly understood. Here, we performed single cell RNA sequencing (scRNA-seq) and trajectory inference on human induced pluripotent stem cells (hiPSCs) differentiating to SAN-like cardiomyocytes (SANCMs) to construct a roadmap of transcriptional changes and lineage decisions. In differentiated SANCM, we identified distinct clusters that closely resemble different subpopulations of the in vivo SAN. Moreover, the presence of a side population of proepicardial cells suggested their shared ontogeny with SANCM, as also reported in vivo. Our results demonstrate that the divergence of SANCM and proepicardial lineages is determined by WNT signaling. Furthermore, we uncovered roles for TGFβ and WNT signaling in the branching of transitional and head SANCM subtypes, respectively. These findings provide new insights into the molecular processes involved in human pacemaker cell differentiation, opening new avenues for complex disease modeling in vitro and inform approaches for cell therapy-based regeneration of the SAN.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Jiuru Li
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Priscilla Bakker
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Trueman RP, Ahlawat AS, Phillips JB. A Shock to the (Nervous) System: Bioelectricity Within Peripheral Nerve Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1137-1150. [PMID: 34806913 DOI: 10.1089/ten.teb.2021.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The peripheral nervous system has the remarkable ability to regenerate in response to injury. However, this is only successful over shorter nerve gaps and often provides poor outcomes for patients. Currently, the gold standard of treatment is the surgical intervention of an autograft, whereby patient tissue is harvested and transplanted to bridge the nerve gap. Despite being the gold standard, more than half of patients have dissatisfactory functional recovery after an autograft. Peripheral nerve tissue engineering aims to create biomaterials that can therapeutically surpass the autograft. Current tissue-engineered constructs are designed to deliver a combination of therapeutic benefits to the regenerating nerve, such as supportive cells, alignment, extracellular matrix, soluble factors, immunosuppressants, and other therapies. An emerging therapeutic opportunity in nerve tissue engineering is the use of electrical stimulation (ES) to modify and enhance cell function. ES has been shown to positively affect four key cell types, such as neurons, endothelial cells, macrophages, and Schwann cells, involved in peripheral nerve repair. Changes elicited include faster neurite extension, cellular alignment, and changes in cell phenotype associated with improved regeneration and functional recovery. This review considers the relevant modes of administration and cellular responses that could underpin incorporation of ES into nerve tissue engineering strategies. Impact Statement Tissue engineering is becoming increasingly complex, with multiple therapeutic modalities often included within the final tissue-engineered construct. Electrical stimulation (ES) is emerging as a viable therapeutic intervention to be included within peripheral nerve tissue engineering strategies; however, to date, there have been no review articles that collate the information regarding the effects of ES on key cell within peripheral nerve injury. This review article aims to inform the field on the different therapeutic effects that may be achieved by using ES and how they may become incorporated into existing strategies.
Collapse
Affiliation(s)
- Ryan P Trueman
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Ananya S Ahlawat
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - James B Phillips
- Center for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
26
|
Hwang JC, Kim M, Kim S, Seo H, An S, Jang EH, Han SY, Kim MJ, Kim NK, Cho SW, Lee S, Park JU. In situ diagnosis and simultaneous treatment of cardiac diseases using a single-device platform. SCIENCE ADVANCES 2022; 8:eabq0897. [PMID: 36103536 PMCID: PMC9473581 DOI: 10.1126/sciadv.abq0897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 06/07/2023]
Abstract
The in situ diagnosis of cardiac activities with simultaneous therapeutic electrical stimulation of the heart is key to preventing cardiac arrhythmia. Here, we present an unconventional single-device platform that enables in situ monitoring even in a wet condition and control of beating heart motions without interferences to the recording signal. This platform consists of the active-matrix array of pressure-sensitive transistors for detecting cardiac beatings, biocompatible, low-impedance electrodes for cardiac stimulations, and an alginate-based hydrogel adhesive for attaching this platform conformally to the epicardium. In contrast to conventional electrophysiological sensing using electrodes, the pressure-sensitive transistors measured mechanophysiological characteristics by monitoring the spatiotemporal distributions of cardiac pressures during heart beating motions. In vivo tests show mechanophysiological readings having good correlation with electrocardiography and negligible interference with the electrical artifacts caused during cardiac stimulations. This platform can therapeutically synchronize the rhythm of abnormal heartbeats through efficient pacing of cardiac arrhythmia.
Collapse
Affiliation(s)
- Jae Chul Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Moohyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Hunkyu Seo
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Soohwan An
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Seung Yeop Han
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Mi Jung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Nam Kyun Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sak Lee
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
27
|
Farraha M, Rao R, Igoor S, Le TYL, Barry MA, Davey C, Kok C, Chong JJ, Kizana E. Recombinant Adeno-Associated Viral Vector-Mediated Gene Transfer of hTBX18 Generates Pacemaker Cells from Ventricular Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23169230. [PMID: 36012498 PMCID: PMC9408910 DOI: 10.3390/ijms23169230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Sinoatrial node dysfunction can manifest as bradycardia, leading to symptoms of syncope and sudden cardiac death. Electronic pacemakers are the current standard of care but are limited due to a lack of biological chronotropic control, cost of revision surgeries, and risk of lead- and device-related complications. We therefore aimed to develop a biological alternative to electronic devices by using a clinically relevant gene therapy vector to demonstrate conversion of cardiomyocytes into sinoatrial node-like cells in an in vitro context. Neonatal rat ventricular myocytes were transduced with recombinant adeno-associated virus vector 6 encoding either hTBX18 or green fluorescent protein and maintained for 3 weeks. At the endpoint, qPCR, Western blot analysis and immunocytochemistry were used to assess for reprogramming into pacemaker cells. Cell morphology and Arclight action potentials were imaged via confocal microscopy. Compared to GFP, hTBX18-transduced cells showed that hTBX18, HCN4 and Cx45 were upregulated. Cx43 was significantly downregulated, while sarcomeric α-actinin remained unchanged. Cardiomyocytes transduced with hTBX18 acquired the tapering morphology of native pacemaker cells, as compared to the block-like, striated appearance of ventricular cardiomyocytes. Analysis of the action potentials showed phase 4 depolarization and a significant decrease in the APD50 of the hTBX18-transduced cells. We have demonstrated that rAAV-hTBX18 gene transfer to ventricular myocytes results in morphological, molecular, physiological, and functional changes, recapitulating the pacemaker phenotype in an in vitro setting. The generation of these induced pacemaker-like cells using a clinically relevant vector opens new prospects for biological pacemaker development.
Collapse
Affiliation(s)
- Melad Farraha
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Renuka Rao
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Sindhu Igoor
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Thi Y. L. Le
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Michael A. Barry
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
| | - Christopher Davey
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- School of Physics, the University of Sydney, Sydney 2006, Australia
| | - Cindy Kok
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - James J.H. Chong
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
| | - Eddy Kizana
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
- Correspondence:
| |
Collapse
|
28
|
Vijayarajan V, Kritharides L, Brieger D, Cheng YY, Chow V, Ng ACC. Sex differences in rates of permanent pacemaker implantation and in-hospital complications: A statewide cohort study of over 7 million persons from 2009–2018. PLoS One 2022; 17:e0272305. [PMID: 35947540 PMCID: PMC9365143 DOI: 10.1371/journal.pone.0272305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Whether a bias exists in the implantation of permanent pacemakers (PPI) and complications according to sex and age in the Australian population is unclear. Hypothesis Population rate of PPI and its complications differed between men and women. Methods We examined the prevalence of PPI from January-2009 to December-2018 from datasets held by the New South Wales (NSW) Centre-for-Health-Record-Linkage, including patient’s characteristics and in-hospital complications. All analysis was stratified by sex and age by decade. Results A total of 28,714 admissions involved PPI (40% women). The mean PPI rate (±standard-deviation) and median age (interquartile range) was 2,871±242 per-annum and 80yrs (73-86yrs), respectively. At the same time-period, the mean NSW population size was 7,487,393±315,505 persons (50% women; n = 3,773,756±334,912). The mean annual age-adjusted rate of PPI was 125.5±11.6 per-100,000-men, compared to 63.4±14.3 per-100,000-women (P<0.01). The mean annual rate of PPI increased from 2009–2017 by 0.9±3.3% in men, compared to 0.4±4.4% in women (P<0.01) suggesting a widening disparity. Total non-fatal in-hospital complications was higher in women compared to men (8.2% vs 6.6%, P<0.01), and this persisted throughout study period even after adjusting for multiple covariates. Overall, in-hospital mortality was low (0.73%) and similar between sexes. Conclusion In a statewide Australian population exceeding 7 million, PPI rates were consistently nearly two-fold higher for men compared to women over 10-years, with an apparently widening disparity, that was not explained by age. Overall complication rates were higher in women. Future studies should examine the aetiology behind this disparity in PPI rates, as well as its complications.
Collapse
Affiliation(s)
| | - Leonard Kritharides
- Department of Cardiology, Concord Hospital, The University of Sydney, Concord, NSW, Australia
| | - David Brieger
- Department of Cardiology, Concord Hospital, The University of Sydney, Concord, NSW, Australia
| | - Yeu-Yao Cheng
- Department of Cardiology, Concord Hospital, The University of Sydney, Concord, NSW, Australia
| | - Vincent Chow
- Department of Cardiology, Concord Hospital, The University of Sydney, Concord, NSW, Australia
| | - Austin Chin Chwan Ng
- Department of Cardiology, Concord Hospital, The University of Sydney, Concord, NSW, Australia
- * E-mail:
| |
Collapse
|
29
|
Darche FF, Ullrich ND, Huang Z, Koenen M, Rivinius R, Frey N, Schweizer PA. Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. Int J Mol Sci 2022; 23:ijms23137318. [PMID: 35806319 PMCID: PMC9266442 DOI: 10.3390/ijms23137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Current protocols for the differentiation of human-induced pluripotent stem cells (hiPSC) into cardiomyocytes only generate a small amount of cardiac pacemaker cells. In previous work, we reported the generation of high amounts of cardiac pacemaker cells by co-culturing hiPSC with mouse visceral endoderm-like (END2) cells. However, potential medical applications of cardiac pacemaker cells generated according to this protocol, comprise an incalculable xenogeneic risk. We thus aimed to establish novel protocols maintaining the differentiation efficiency of the END2 cell-based protocol, yet eliminating the use of END2 cells. Three protocols were based on the activation and inhibition of the Wingless/Integrated (Wnt) signaling pathway, supplemented either with retinoic acid and the Wnt activator CHIR99021 (protocol B) or with the NODAL inhibitor SB431542 (protocol C) or with a combination of all three components (protocol D). An additional fourth protocol (protocol E) was used, which was originally developed by the manufacturer STEMCELL Technologies for the differentiation of hiPSC or hESC into atrial cardiomyocytes. All protocols (B, C, D, E) were compared to the END2 cell-based protocol A, serving as reference, in terms of their ability to differentiate hiPSC into cardiac pacemaker cells. Our analysis revealed that protocol E induced upregulation of 12 out of 15 cardiac pacemaker-specific genes. For comparison, reference protocol A upregulated 11, while protocols B, C and D upregulated 9, 10 and 8 cardiac pacemaker-specific genes, respectively. Cells differentiated according to protocol E displayed intense fluorescence signals of cardiac pacemaker-specific markers and showed excellent rate responsiveness to adrenergic and cholinergic stimulation. In conclusion, we characterized four novel and END2 cell-independent protocols for the differentiation of hiPSC into cardiac pacemaker cells, of which protocol E was the most efficient.
Collapse
Affiliation(s)
- Fabrice F. Darche
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-56-8676; Fax: +49-6221-56-5515
| | - Nina D. Ullrich
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ziqiang Huang
- EMBL Imaging Centre, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Michael Koenen
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Patrick A. Schweizer
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| |
Collapse
|
30
|
Moerke C, Wolff A, Ince H, Ortak J, Öner A. New strategies for energy supply of cardiac implantable devices. Herzschrittmacherther Elektrophysiol 2022; 33:224-231. [PMID: 35377021 PMCID: PMC9177465 DOI: 10.1007/s00399-022-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Heart disease and atrial fibrillation are the leading causes of death worldwide. Patient morbidity and mortality associated with cardiovascular disease can be reduced by more accurate and continuous diagnostic and therapeutic tools provided by cardiovascular implantable electronic devices (CIEDs). OBJECTIVES Long-term operation of CIEDs continues to be a challenge due to limited battery life and the associated risk of device failure. To overcome this issue, new approaches for autonomous battery supply are being investigated. RESULTS Here, the state of the art in CIED power supply is presented and an overview of current strategies for autonomous power supply in the cardiovascular field is given, using the body as a sustainable energy source. Finally, future challenges and potentials as well as advanced features for CIEDs are discussed. CONCLUSION CIEDs need to fulfil more requirements for diagnostic and telemetric functions, which leads to higher energy requirements. Ongoing miniaturization and improved sensor technologies will help in the development of new devices.
Collapse
Affiliation(s)
- Caroline Moerke
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Anne Wolff
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Jasmin Ortak
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
31
|
Chou PC, Liu CM, Weng CH, Yang KC, Cheng ML, Lin YC, Yang RB, Shyu BC, Shyue SK, Liu JD, Chen SP, Hsiao M, Hu YF. Fibroblasts Drive Metabolic Reprogramming in Pacemaker Cardiomyocytes. Circ Res 2022; 131:6-20. [PMID: 35611699 DOI: 10.1161/circresaha.121.320301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The sinoatrial node (SAN) is characterized by the microenvironment of pacemaker cardiomyocytes (PCs) encased with fibroblasts. An altered microenvironment leads to rhythm failure. Operable cell or tissue models are either generally lacking or difficult to handle. The biological process behind the milieu of SANs to evoke pacemaker rhythm is unknown. We explored how fibroblasts interact with PCs and regulate metabolic reprogramming and rhythmic activity in the SAN. METHODS Tbx18 (T-box transcription factor 18)-induced PCs and fibroblasts were used for cocultures and engineered tissues, which were used as the in vitro models to explore how fibroblasts regulate the functional integrity of SANs. RNA-sequencing, metabolomics, and cellular and molecular techniques were applied to characterize the molecular signals underlying metabolic reprogramming and identify its critical regulators. These pathways were further validated in vivo in rodents and induced human pluripotent stem cell-derived cardiomyocytes. RESULTS We observed that rhythmicity in Tbx18-induced PCs was regulated by aerobic glycolysis. Fibroblasts critically activated metabolic reprogramming and aerobic glycolysis within PCs, and, therefore, regulated pacemaker activity in PCs. The metabolic reprogramming was attributed to the exclusive induction of Aldoc (aldolase c) within PCs after fibroblast-PC integration. Fibroblasts activated the integrin-dependent mitogen-activated protein kinase-E2F1 signal through cell-cell contact and turned on Aldoc expression in PCs. Interruption of fibroblast-PC interaction or Aldoc knockdown nullified electrical activity. Engineered Tbx18-PC tissue sheets were generated to recapitulate the microenvironment within SANs. Aldoc-driven rhythmic machinery could be replicated within tissue sheets. Similar machinery was faithfully validated in de novo PCs of adult mice and rats, and in human PCs derived from induced pluripotent stem cells. CONCLUSIONS Fibroblasts drive Aldoc-mediated metabolic reprogramming and rhythmic regulation in SANs. This work details the cellular machinery behind the complex milieu of vertebrate SANs and opens a new direction for future therapy.
Collapse
Affiliation(s)
- Pei-Chun Chou
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Chih-Min Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-M.L., Y.-F.H.)
| | - Ching-Hui Weng
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Kai-Chien Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei (K.-C.Y.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan (M.-L.C.)
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan (Y.-C.L.)
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Jin-Dian Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan. (S.-P.C.)
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan (M.H.)
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-M.L., Y.-F.H.)
| |
Collapse
|
32
|
Han M, Karatum O, Nizamoglu S. Optoelectronic Neural Interfaces Based on Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20468-20490. [PMID: 35482955 PMCID: PMC9100496 DOI: 10.1021/acsami.1c25009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
Optoelectronic modulation of neural activity is an emerging field for the investigation of neural circuits and the development of neural therapeutics. Among a wide variety of nanomaterials, colloidal quantum dots provide unique optoelectronic features for neural interfaces such as sensitive tuning of electron and hole energy levels via the quantum confinement effect, controlling the carrier localization via band alignment, and engineering the surface by shell growth and ligand engineering. Even though colloidal quantum dots have been frontier nanomaterials for solar energy harvesting and lighting, their application to optoelectronic neural interfaces has remained below their significant potential. However, this potential has recently gained attention with the rise of bioelectronic medicine. In this review, we unravel the fundamentals of quantum-dot-based optoelectronic biointerfaces and discuss their neuromodulation mechanisms starting from the quantum dot level up to electrode-electrolyte interactions and stimulation of neurons with their physiological pathways. We conclude the review by proposing new strategies and possible perspectives toward nanodevices for the optoelectronic stimulation of neural tissue by utilizing the exceptional nanoscale properties of colloidal quantum dots.
Collapse
Affiliation(s)
- Mertcan Han
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Onuralp Karatum
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Graduate
School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
33
|
Ghazizadeh Z, Zhu J, Fattahi F, Tang A, Sun X, Amin S, Tsai SY, Khalaj M, Zhou T, Samuel RM, Zhang T, Ortega FA, Gordillo M, Moroziewicz D, Paull D, Noggle SA, Xiang JZ, Studer L, Christini DJ, Pitt GS, Evans T, Chen S. A dual SHOX2:GFP; MYH6:mCherry knockin hESC reporter line for derivation of human SAN-like cells. iScience 2022; 25:104153. [PMID: 35434558 PMCID: PMC9010642 DOI: 10.1016/j.isci.2022.104153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. The human SAN is poorly understood due to limited primary tissue access and limitations in robust in vitro derivation methods. We developed a dual SHOX2:GFP; MYH6:mCherry knockin human embryonic stem cell (hESC) reporter line, which allows the identification and purification of SAN-like cells. Using this line, we performed several rounds of chemical screens and developed an efficient strategy to generate and purify hESC-derived SAN-like cells (hESC-SAN). The derived hESC-SAN cells display molecular and electrophysiological characteristics of bona fide nodal cells, which allowed exploration of their transcriptional profile at single-cell level. In sum, our dual reporter system facilitated an effective strategy for deriving human SAN-like cells, which can potentially be used for future disease modeling and drug discovery.
Collapse
Affiliation(s)
- Zaniar Ghazizadeh
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA,Corresponding author
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Faranak Fattahi
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alice Tang
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiaolu Sun
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sadaf Amin
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Mona Khalaj
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ryan M. Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Francis A. Ortega
- Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY 10065, USA,Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | | | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Scott A. Noggle
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Jenny Zhaoying Xiang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David J. Christini
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA,Corresponding author
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA,Corresponding author
| |
Collapse
|
34
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
35
|
Effect of Shenfu Injection on Differentiation of Bone Marrow Mesenchymal Stem Cells into Pacemaker-Like Cells and Improvement of Pacing Function of Sinoatrial Node. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4299892. [PMID: 35186186 PMCID: PMC8853776 DOI: 10.1155/2022/4299892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Sick sinus syndrome (SSS), a complex type of cardiac arrhythmia, is a major health threat to humans. Shenfu injection (SFI), a formula of traditional Chinese medicine (TCM), is effective in improving bradyarrhythmia. However, the underlying mechanism of SFI’s therapeutic effect is subject to few systematic investigations. The purpose of the present research is to examine whether SFI can boost the differentiation effectiveness of bone marrow mesenchymal stem cells (BMSCs) into pacemaker-like cells and whether the transplantation of these cells can improve the pacing function of the sinoatrial node (SAN) in a rabbit model of SSS. BMSCs from New Zealand rabbits were extracted, followed by incubation in vitro. The flow cytometry was utilized to identify the expression of CD29, CD44, CD90, and CD105 surface markers. The isolated BMSCs were treated with SFI, and the whole-cell patch-clamp method was performed to detect hyperpolarization-the activated cyclic nucleotide-gated potassium channel 4 (HCN4) channel current activation curve. The SSS rabbit model was established using the formaldehyde wet dressing method, and BMSCs treated with SFI were transplanted into the SAN of the SSS rabbit model. We detected changes in the body-surface electrocardiogram and recorded dynamic heart rate measurements. Furthermore, transplanted SFI-treated BMSCs were subjected to HE staining, TUNEL staining, qPCR, western blotting, immunofluorescence, immunohistochemistry, and enzyme-linked immunosorbent assay to study their characteristics. Our results indicate that the transplantation of SFI-treated BMSCs into the SAN of SSS rabbits improved the pacing function of the SAN. In vitro data showed that SFI induced the proliferation of BMSCs, promoted their differentiation capacity into pacemaker-like cells, and increased the HCN4 expression in BMSCs. In vivo, the transplantation of SFI treated-BMSCs preserved the function of SAN in SSS rabbits, improved the expression of the HCN4 gene and gap junction proteins (Cx43 and Cx45), and significantly upregulated the expression of cAMP in the SAN, compared to the SSS model group. In summary, the present research demonstrated that SFI might enhance the differentiation capacity of BMSCs into pacemaker-like cells, hence offering a novel approach for the development of biological pacemakers. Additionally, we confirmed the effectiveness and safety of pacemaker-like cells differentiated from BMSCs in improving the pacing function of the SAN.
Collapse
|
36
|
Miao BA, Meng L, Tian B. Biology-guided engineering of bioelectrical interfaces. NANOSCALE HORIZONS 2022; 7:94-111. [PMID: 34904138 DOI: 10.1039/d1nh00538c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioelectrical interfaces that bridge biotic and abiotic systems have heightened the ability to monitor, understand, and manipulate biological systems and are catalyzing profound progress in neuroscience research, treatments for heart failure, and microbial energy systems. With advances in nanotechnology, bifunctional and high-density devices with tailored structural designs are being developed to enable multiplexed recording or stimulation across multiple spatial and temporal scales with resolution down to millisecond-nanometer interfaces, enabling efficient and effective communication with intracellular electrical activities in a relatively noninvasive and biocompatible manner. This review provides an overview of how biological systems guide the design, engineering, and implementation of bioelectrical interfaces for biomedical applications. We investigate recent advances in bioelectrical interfaces for applications in nervous, cardiac, and microbial systems, and we also discuss the outlook of state-of-the-art biology-guided bioelectrical interfaces with high biocompatibility, extended long-term stability, and integrated system functionality for potential clinical usage.
Collapse
Affiliation(s)
- Bernadette A Miao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
- The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Magisetty R, Park SM. New Era of Electroceuticals: Clinically Driven Smart Implantable Electronic Devices Moving towards Precision Therapy. MICROMACHINES 2022; 13:161. [PMID: 35208286 PMCID: PMC8876842 DOI: 10.3390/mi13020161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
In the name of electroceuticals, bioelectronic devices have transformed and become essential for dealing with all physiological responses. This significant advancement is attributable to its interdisciplinary nature from engineering and sciences and also the progress in micro and nanotechnologies. Undoubtedly, in the future, bioelectronics would lead in such a way that diagnosing and treating patients' diseases is more efficient. In this context, we have reviewed the current advancement of implantable medical electronics (electroceuticals) with their immense potential advantages. Specifically, the article discusses pacemakers, neural stimulation, artificial retinae, and vagus nerve stimulation, their micro/nanoscale features, and material aspects as value addition. Over the past years, most researchers have only focused on the electroceuticals metamorphically transforming from a concept to a device stage to positively impact the therapeutic outcomes. Herein, the article discusses the smart implants' development challenges and opportunities, electromagnetic field effects, and their potential consequences, which will be useful for developing a reliable and qualified smart electroceutical implant for targeted clinical use. Finally, this review article highlights the importance of wirelessly supplying the necessary power and wirelessly triggering functional electronic circuits with ultra-low power consumption and multi-functional advantages such as monitoring and treating the disease in real-time.
Collapse
Affiliation(s)
- RaviPrakash Magisetty
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
38
|
Mesquita T, Zhang R, Cho JH, Zhang R, Lin YN, Sanchez L, Goldhaber J, Yu JK, Liang JA, Liu W, Trayanova NA, Cingolani E. Mechanisms of Sinoatrial Node Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation 2022; 145:45-60. [PMID: 34905696 PMCID: PMC9083886 DOI: 10.1161/circulationaha.121.054976] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The ability to increase heart rate during exercise and other stressors is a key homeostatic feature of the sinoatrial node (SAN). When the physiological heart rate response is blunted, chronotropic incompetence limits exercise capacity, a common problem in patients with heart failure with preserved ejection fraction (HFpEF). Despite its clinical relevance, the mechanisms of chronotropic incompetence remain unknown. METHODS Dahl salt-sensitive rats fed a high-salt diet and C57Bl6 mice fed a high-fat diet and an inhibitor of constitutive nitric oxide synthase (Nω-nitro-L-arginine methyl ester [L-NAME]; 2-hit) were used as models of HFpEF. Myocardial infarction was created to induce HF with reduced ejection fraction. Rats and mice fed with a normal diet or those that had a sham surgery served as respective controls. A comprehensive characterization of SAN function and chronotropic response was conducted by in vivo, ex vivo, and single-cell electrophysiologic studies. RNA sequencing of SAN was performed to identify transcriptomic changes. Computational modeling of biophysically-detailed human HFpEF SAN was created. RESULTS Rats with phenotypically-verified HFpEF exhibited limited chronotropic response associated with intrinsic SAN dysfunction, including impaired β-adrenergic responsiveness and an alternating leading pacemaker within the SAN. Prolonged SAN recovery time and reduced SAN sensitivity to isoproterenol were confirmed in the 2-hit mouse model. Adenosine challenge unmasked conduction blocks within the SAN, which were associated with structural remodeling. Chronotropic incompetence and SAN dysfunction were also found in rats with HF with reduced ejection fraction. Single-cell studies and transcriptomic profiling revealed HFpEF-related alterations in both the "membrane clock" (ion channels) and the "Ca2+ clock" (spontaneous Ca2+ release events). The physiologic impairments were reproduced in silico by empirically-constrained quantitative modeling of human SAN function. CONCLUSIONS Chronotropic incompetence and SAN dysfunction were seen in both models of HF. We identified that intrinsic abnormalities of SAN structure and function underlie the chronotropic response in HFpEF.
Collapse
Affiliation(s)
- Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jae Hyung Cho
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yen-Nien Lin
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua Goldhaber
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joseph K. Yu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Jialiu A. Liang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Alliance for Cardiovascular and Diagnostic and treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, Maryland
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
39
|
Computational modeling of aberrant electrical activity following remuscularization with intramyocardially injected pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2022; 162:97-109. [PMID: 34487753 PMCID: PMC8766907 DOI: 10.1016/j.yjmcc.2021.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Acute engraftment arrhythmias (EAs) remain a serious complication of remuscularization therapy. Preliminary evidence suggests that a focal source underlies these EAs stemming from the automaticity of immature pluripotent stem cell-derived cardiomyocytes (PSC-CMs) in nascent myocardial grafts. How these EAs arise though during early engraftment remains unclear. In a series of in silico experiments, we probed the origin of EAs-exploring aspects of altered impulse formation and altered impulse propagation within nascent PSC-CM grafts and at the host-graft interface. To account for poor gap junctional coupling during early PSC-CM engraftment, the voltage dependence of gap junctions and the possibility of ephaptic coupling were incorporated. Inspired by cardiac development, we also studied the contributions of another feature of immature PSC-CMs, circumferential sodium channel (NaCh) distribution in PSC-CMs. Ectopic propagations emerged from nascent grafts of immature PSC-CMs at a rate of <96 bpm. Source-sink effects dictated this rate and contributed to intermittent capture between host and graft. Moreover, ectopic beats emerged from dynamically changing sites along the host-graft interface. The latter arose in part because circumferential NaCh distribution in PSC-CMs contributed to preferential conduction slowing and block of electrical impulses from host to graft myocardium. We conclude that additional mechanisms, in addition to focal ones, contribute to EAs and recognize that their relative contributions are dynamic across the engraftment process.
Collapse
|
40
|
Ottolia M, John S, Hazan A, Goldhaber JI. The Cardiac Na + -Ca 2+ Exchanger: From Structure to Function. Compr Physiol 2021; 12:2681-2717. [PMID: 34964124 DOI: 10.1002/cphy.c200031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ca2+ homeostasis is essential for cell function and survival. As such, the cytosolic Ca2+ concentration is tightly controlled by a wide number of specialized Ca2+ handling proteins. One among them is the Na+ -Ca2+ exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na+ to drive Ca2+ out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca2+ homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, California, USA
| | - Adina Hazan
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
41
|
Zhang W, Zhao H, Quan D, Tang Y, Wang X, Huang C. Tbx18 promoted the conversion of human-induced pluripotent stem cell-derived cardiomyocytes into sinoatrial node-like pacemaker cells. Cell Biol Int 2021; 46:403-414. [PMID: 34882885 DOI: 10.1002/cbin.11738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 01/22/2023]
Abstract
Sinoatrial node (SAN) pacemaker cells originate from T-box transcription factor 18 (Tbx18)-expressing progenitor cells. The present study aimed to investigate whether overexpression of human transcription factor Tbx18 could reprogram human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) into SAN-like pacemaker cells (SANLPCs) in vitro. In the study, hiPSCs were first differentiated into hiPSC-CMs through regulating the Wnt/β-catenin pathway, then purified hiPSC-CMs were transfected by Tbx18 adenovirus (Tbx18-CMs group) or green fluorescent protein (GFP) adenovirus (GFP-CMs group). The beating frequency of the Tbx18-CMs group was significantly higher than that of the hiPSC-CMs group and GFP-CMs group. Compared with the other two groups, the expression levels of hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4, connexin-45 in the Tbx18-CMs group were markedly upregulated, while the expressions of transcription factor NKX2.5, CX43 were significantly downregulated. Whole-cell patch-clamp results illustrated that action potential and "funny" current (If ) similar to SAN pacemaker cells could be recorded in the Tbx18-CMs group. In conclusion, this present study demonstrated that overexpression of Tbx18 promoted the conversion of hiPSC-CMs into SANLPCs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Dajun Quan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| |
Collapse
|
42
|
Hu YF, Lee AS, Chang SL, Lin SF, Weng CH, Lo HY, Chou PC, Tsai YN, Sung YL, Chen CC, Yang RB, Lin YC, Kuo TBJ, Wu CH, Liu JD, Chung TW, Chen SA. Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats. Nat Biomed Eng 2021; 6:421-434. [PMID: 34811487 DOI: 10.1038/s41551-021-00812-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Pacemaker cells can be differentiated from stem cells or transdifferentiated from quiescent mature cardiac cells via genetic manipulation. Here we show that the exposure of rat quiescent ventricular cardiomyocytes to a silk-fibroin hydrogel activates the direct conversion of the quiescent cardiomyocytes to pacemaker cardiomyocytes by inducing the ectopic expression of the vascular endothelial cell-adhesion glycoprotein cadherin. The silk-fibroin-induced pacemaker cells exhibited functional and morphological features of genuine sinoatrial-node cardiomyocytes in vitro, and pacemaker cells generated via the injection of silk fibroin in the left ventricles of rats functioned as a surrogate in situ sinoatrial node. Biomaterials with suitable surface structure, mechanics and biochemistry could facilitate the scalable production of biological pacemakers for human use.
Collapse
Affiliation(s)
- Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Hui Weng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yu Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chun Chou
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Nan Tsai
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Han Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Dian Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Center for Advanced Pharmaceutical Research and Drug Delivery, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
43
|
Sheng H, Zhang X, Liang J, Shao M, Xie E, Yu C, Lan W. Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100199. [PMID: 33930254 DOI: 10.1002/adhm.202100199] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Indexed: 12/14/2022]
Abstract
The emerging field of implantable bioelectronics has attracted widespread attention in modern society because it can improve treatment outcomes, reduce healthcare costs, and lead to an improvement in the quality of life. However, their continuous operation is often limited by conventional bulky and rigid batteries with a limited lifespan, which must be surgically removed after completing their missions and/or replaced after being exhausted. Herein, this paper gives a comprehensive review of recent advances in nonconventional energy solutions for implantable bioelectronics, emphasizing the miniaturized, flexible, biocompatible, and biodegradable power devices. According to their source of energy, the promising alternative energy solutions are sorted into three main categories, including energy storage devices (batteries and supercapacitors), internal energy-harvesting devices (including biofuel cells, piezoelectric/triboelectric energy harvesters, thermoelectric and biopotential power generators), and external wireless power transmission technologies (including inductive coupling/radiofrequency, ultrasound-induced, and photovoltaic devices). Their fundamentals, materials strategies, structural design, output performances, animal experiments, and typical biomedical applications are also discussed. It is expected to offer complementary power sources to extend the battery lifetime of bioelectronics while acting as an independent power supply. Thereafter, the existing challenges and perspectives associated with these powering devices are also outlined, with a focus on implantable bioelectronics.
Collapse
Affiliation(s)
- Hongwei Sheng
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Xuetao Zhang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Jie Liang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Mingjiao Shao
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Erqing Xie
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| | - Cunjiang Yu
- Department of Mechanical Engineering Texas Center for Superconductivity University of Houston Houston TX 77204 USA
| | - Wei Lan
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education School of Physical Science and Technology Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
44
|
The Essential Need for a Validated Potency Assay for Cell-Based Therapies in Cardiac Regenerative and Reparative Medicine. A Practical Approach to Test Development. Stem Cell Rev Rep 2021; 17:2235-2244. [PMID: 34463902 PMCID: PMC8599250 DOI: 10.1007/s12015-021-10244-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 01/04/2023]
Abstract
Biological treatments are one of the medical breakthroughs in the twenty-first century. The initial enthusiasm pushed the field towards indiscriminatory use of cell therapy regardless of the pathophysiological particularities of underlying conditions. In the reparative and regenerative cardiovascular field, the results of the over two decades of research in cell-based therapies, although promising still could not be translated into clinical scenario. Now, when we identified possible deficiencies and try to rebuild its foundations rigorously on scientific evidence, development of potency assays for the potential therapeutic product is one of the steps which will bring our goal of clinical translation closer. Although, highly challenging, the potency tests for cell products are considered as a priority by the regulatory agencies. In this paper we describe the main characteristics and challenges for a cell therapy potency test focusing on the cardiovascular field. Moreover, we discuss different steps and types of assays that should be taken into consideration for an eventual potency test development by tying together two fundamental concepts: target disease and expected mechanism of action.
Collapse
|
45
|
Naumova N, Iop L. Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Front Bioeng Biotechnol 2021; 9:673477. [PMID: 34409019 PMCID: PMC8365186 DOI: 10.3389/fbioe.2021.673477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Heart rhythm disturbances caused by different etiologies may affect pediatric and adult patients with life-threatening consequences. When pharmacological therapy is ineffective in treating the disturbances, the implantation of electronic devices to control and/or restore normal heart pacing is a unique clinical management option. Although these artificial devices are life-saving, they display many limitations; not least, they do not have any capability to adapt to somatic growth or respond to neuroautonomic physiological changes. A biological pacemaker could offer a new clinical solution for restoring heart rhythms in the conditions of disorder in the cardiac conduction system. Several experimental approaches, such as cell-based, gene-based approaches, and the combination of both, for the generation of biological pacemakers are currently established and widely studied. Pacemaker bioengineering is also emerging as a technology to regenerate nodal tissues. This review analyzes and summarizes the strategies applied so far for the development of biological pacemakers, and discusses current translational challenges toward the first-in-human clinical application.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
46
|
Persons AK, Ball JE, Freeman C, Macias DM, Simpson CL, Smith BK, Burch V. RF. Fatigue Testing of Wearable Sensing Technologies: Issues and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4070. [PMID: 34361264 PMCID: PMC8347841 DOI: 10.3390/ma14154070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from "bench to bedside", fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.
Collapse
Affiliation(s)
- Andrea Karen Persons
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Starkville, MS 39762, USA; (A.K.P.); (C.L.S.)
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
| | - John E. Ball
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
- Department of Electrical and Computer Engineering, Mississippi State University, 406 Hardy Road, Starkville, MS 39762, USA
| | - Charles Freeman
- School of Human Sciences, Mississippi State University, 255 Tracy Drive, Starkville, MS 39762, USA;
| | - David M. Macias
- Department of Kinesiology, Mississippi State University, P.O. Box 6186, Starkville, MS 39762, USA;
- Columbus Orthopaedic Clinic, 670 Leigh Drive, Columbus, MS 39705, USA
| | - Chartrisa LaShan Simpson
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Starkville, MS 39762, USA; (A.K.P.); (C.L.S.)
| | - Brian K. Smith
- Department of Industrial and Systems Engineering, Mississippi State University, 479-2 Hardy Road, Starkville, MS 39762, USA;
| | - Reuben F. Burch V.
- Human Factors and Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Boulevard, Starkville, MS 39759, USA;
- Department of Industrial and Systems Engineering, Mississippi State University, 479-2 Hardy Road, Starkville, MS 39762, USA;
| |
Collapse
|
47
|
Boink GJJ, Coronel R. Towards Molecular Therapy of Atrioventricular Nodal Dysfunction. Circ Res 2021; 129:6-8. [PMID: 34166074 DOI: 10.1161/circresaha.121.319450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Ruben Coronel
- Amsterdam University Medical Centers, the Netherlands
| |
Collapse
|
48
|
Hennis K, Rötzer RD, Piantoni C, Biel M, Wahl-Schott C, Fenske S. Speeding Up the Heart? Traditional and New Perspectives on HCN4 Function. Front Physiol 2021; 12:669029. [PMID: 34122140 PMCID: PMC8191466 DOI: 10.3389/fphys.2021.669029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023] Open
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart and is responsible for generating the intrinsic heartbeat. Within the SAN, spontaneously active pacemaker cells initiate the electrical activity that causes the contraction of all cardiomyocytes. The firing rate of pacemaker cells depends on the slow diastolic depolarization (SDD) and determines the intrinsic heart rate (HR). To adapt cardiac output to varying physical demands, HR is regulated by the autonomic nervous system (ANS). The sympathetic and parasympathetic branches of the ANS innervate the SAN and regulate the firing rate of pacemaker cells by accelerating or decelerating SDD-a process well-known as the chronotropic effect. Although this process is of fundamental physiological relevance, it is still incompletely understood how it is mediated at the subcellular level. Over the past 20 years, most of the work to resolve the underlying cellular mechanisms has made use of genetically engineered mouse models. In this review, we focus on the findings from these mouse studies regarding the cellular mechanisms involved in the generation and regulation of the heartbeat, with particular focus on the highly debated role of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 in mediating the chronotropic effect. By focusing on experimental data obtained in mice and humans, but not in other species, we outline how findings obtained in mice relate to human physiology and pathophysiology and provide specific information on how dysfunction or loss of HCN4 channels leads to human SAN disease.
Collapse
Affiliation(s)
- Konstantin Hennis
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - René D. Rötzer
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chiara Piantoni
- Institute for Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Martin Biel
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Wahl-Schott
- Institute for Neurophysiology, Hannover Medical School, Hanover, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefanie Fenske
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
49
|
Morotti S, Ni H, Peters CH, Rickert C, Asgari-Targhi A, Sato D, Glukhov AV, Proenza C, Grandi E. Intracellular Na + Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An In Silico Analysis. Int J Mol Sci 2021; 22:5645. [PMID: 34073281 PMCID: PMC8198068 DOI: 10.3390/ijms22115645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart's primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Colin H. Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
| | - Christian Rickert
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
| | - Ameneh Asgari-Targhi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Alexey V. Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| |
Collapse
|
50
|
Assembly of the Cardiac Pacemaking Complex: Electrogenic Principles of Sinoatrial Node Morphogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8040040. [PMID: 33917972 PMCID: PMC8068396 DOI: 10.3390/jcdd8040040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac pacemaker cells located in the sinoatrial node initiate the electrical impulses that drive rhythmic contraction of the heart. The sinoatrial node accounts for only a small proportion of the total mass of the heart yet must produce a stimulus of sufficient strength to stimulate the entire volume of downstream cardiac tissue. This requires balancing a delicate set of electrical interactions both within the sinoatrial node and with the downstream working myocardium. Understanding the fundamental features of these interactions is critical for defining vulnerabilities that arise in human arrhythmic disease and may provide insight towards the design and implementation of the next generation of potential cellular-based cardiac therapeutics. Here, we discuss physiological conditions that influence electrical impulse generation and propagation in the sinoatrial node and describe developmental events that construct the tissue-level architecture that appears necessary for sinoatrial node function.
Collapse
|