1
|
Abedi Dorcheh F, Balmeh N, Hejazi SH, Allahyari Fard N. Investigation of the mutated antimicrobial peptides to inhibit ACE2, TMPRSS2 and GRP78 receptors of SARS-CoV-2 and angiotensin II type 1 receptor (AT1R) as well as controlling COVID-19 disease. J Biomol Struct Dyn 2025; 43:1641-1664. [PMID: 38109185 DOI: 10.1080/07391102.2023.2292307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
SARS-CoV-2 is a global problem nowadays. Based on studies, some human receptors are involved in binding to SARS-CoV-2. Thus, the inhibition of these receptors can be effective in the treatment of Covid-19. Because of the proven benefits of antimicrobial peptides (AMPs) and the side effects of chemical drugs, they can be known as an alternative to recent medicines. RCSB PDB to obtain PDB id, StraPep and PhytAMP to acquire Bio-AMPs information and 3-D structure, and AlgPred, Toxinpred, TargetAntiAngio, IL-4pred, IL-6pred, ACPred and Hemopred databases were used to find the best score peptide features. HADDOCK 2.2 was used for molecular docking analysis, and UCSF Chimera software version 1.15, SWISS-MODEL and BIOVIA Discovery Studio Visualizer4.5 were used for mutation and structure modeling. Furthermore, MD simulation results were achieved from GROMACS 4.6.5. Based on the obtained results, the Moricin peptide was found to have the best affinity for ACE2. Moreover, Bacteriocin leucocin-A had the highest affinity for GRP78, Cathelicidin-6 had the best affinity for AT1R, and Bacteriocin PlnK had the best binding affinity for TMPRSS2. Additionally, Bacteriocin glycocin F, Bacteriocin lactococcin-G subunit beta and Cathelicidin-6 peptides were the most common compounds among the four receptors. However, these peptides also have some side effects. Consequently, the mutation eliminated the side effects, and MD simulation results indicated that the mutation proved the result of the docking analysis. The effect of AMPs on ACE2, GRP78, TMPRSS2 and AT1R receptors can be a novel treatment for Covid-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Abedi Dorcheh
- Department of Biotechnology, School of Bioscience and Biotechnology, Shahid Ashrafi Esfahani University of Isfahan, Sepahan Shahr, Iran
| | - Negar Balmeh
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najaf Allahyari Fard
- Department of Systems Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Adeleke RA, Sahler J, Choi A, Roth K, Upadhye V, Ezzatpour S, Imbiakha B, Khomandiak S, Diaz A, Whittaker GR, Jager MC, August A, Buchholz DW, Aguilar HC. Replication-incompetent VSV-based vaccine elicits protective responses against SARS-CoV-2 and influenza virus. SCIENCE ADVANCES 2025; 11:eadq4545. [PMID: 39879304 PMCID: PMC11777205 DOI: 10.1126/sciadv.adq4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus. Furthermore, the vaccine provided heterologous protection upon challenge with a different influenza virus strain, supporting the advantage of using NA to increase the breadth of vaccine protection. Now, no bivalent vaccine is approved for use against both SARS-CoV-2 and influenza virus. Our study supports using this platform to develop safe and efficient vaccines against multiple viruses.
Collapse
Affiliation(s)
- Richard A. Adeleke
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Kyle Roth
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annika Diaz
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Ridelfi M, Pierleoni G, Fonseca VZG, Batani G, Rappuoli R, Sala C. State of the Art and Emerging Technologies in Vaccine Design for Respiratory Pathogens. Semin Respir Crit Care Med 2025. [PMID: 39870103 DOI: 10.1055/a-2500-1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Bordetella pertussis, Streptococcus pneumoniae (pneumococcus), Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.0 approach, can push a more rational and targeted design of vaccines. By focusing on these critical areas, we expect substantial progress in the development of new vaccines against respiratory bacterial pathogens, thereby enhancing global health protection in the framework of the increasingly concerning AMR emergence.
Collapse
Affiliation(s)
- Matteo Ridelfi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Giampiero Batani
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
4
|
Meena SS, Kosgei BK, Soko GF, Tingjun C, Chambuso R, Mwaiselage J, Han RPS. Developing anti-TDE vaccine for sensitizing cancer cells to treatment and metastasis control. NPJ Vaccines 2025; 10:18. [PMID: 39870669 PMCID: PMC11772600 DOI: 10.1038/s41541-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025] Open
Abstract
Tumor-derived exosomes (TDEs) mediate oncogenic communication, which modifies target cells to reinforce a tumor-promoting microenvironment. TDEs support cancer progression by suppressing anti-tumor immune responses, promoting metastasis, and conferring drug resistance. Thus, targeting TDEs could improve the efficacy of anti-cancer treatments and control metastasis. Current strategies to inhibit TDE-mediated oncogenic communication including drug-based and genetic modification-based inhibition of TDE release and/or uptake, have proved to be inefficient. In this work, we propose TDE surface engineering to express foreign antigens that will trigger life-long anti-TDE immune responses. The possibility of combining the anti-TDE vaccines with other treatments such as chemotherapy, radiotherapy, targeted therapy, and surgery is also explored.
Collapse
Affiliation(s)
- Stephene S Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania.
| | - Benson K Kosgei
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Geofrey F Soko
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania
| | - Cheng Tingjun
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Ramadhani Chambuso
- Department of Global Health and Population, Harvard Chan School of Public Health, Harvard University, Cambridge, MA, USA
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, United Republic of Tanzania
| | - Ray P S Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
- Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Huang K, Li N, Li Y, Zhu J, Fan Q, Yang J, Gao Y, Liu Y, Gao S, Zhao P, Wei K, Deng C, Zuo C, Sun Z. Circular mRNA Vaccine against SARS-COV-2 Variants Enabled by Degradable Lipid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4699-4710. [PMID: 39789795 DOI: 10.1021/acsami.4c20770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein. Notably, the cmRNA-1130 vaccine exhibits outstanding stability, remaining effective after six months of storage at 4 °C and multiple freeze-thaw cycles. In comparison with the commercial MC3 lipid, the nanoparticles formed from the degradable AX4 lipid revealed a much faster metabolic rate from the liver and spleen, affording negligible impairment to the hepatorenal function. Following intramuscular administration, cmRNA-1130 generates robust and sustained neutralizing antibodies and induces the activation of Delta RBD-specific CD4+ and CD8+ T effector memory cells (TEM) and Th1-biased T cells in mice. Featured with potent immune activation, high stability, and decent safety, vaccines formed from cmRNA and AX4 hold a huge clinical potential for the prophylaxis and treatment of different diseases.
Collapse
MESH Headings
- SARS-CoV-2/immunology
- SARS-CoV-2/chemistry
- Animals
- Nanoparticles/chemistry
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/immunology
- Mice
- COVID-19/prevention & control
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- mRNA Vaccines
- Lipids/chemistry
- Antibodies, Neutralizing/immunology
- Humans
- Female
- Mice, Inbred BALB C
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Antibodies, Viral/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Liposomes
Collapse
Affiliation(s)
- Ke Huang
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Na Li
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Yingwen Li
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Jiafeng Zhu
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Qianyi Fan
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Jiali Yang
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Yinjia Gao
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Yuping Liu
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Shufeng Gao
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Peng Zhao
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Ke Wei
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| | - Zhenhua Sun
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China
| |
Collapse
|
6
|
Fragoso-Saavedra M, Liu Q. Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies. Virology 2025; 604:110412. [PMID: 39854914 DOI: 10.1016/j.virol.2025.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions. The rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and ongoing pan-sarbecovirus vaccine research, have demonstrated the potential of next-generation vaccine platforms and novel antigen design strategies. These advancements offer valuable insights for the development of multistrain PEDV vaccines. This review summarizes key aspects of PEDV virology and explores multistrain vaccine development considering SARS-CoV-2 vaccine innovations, proposing a framework for developing next-generation PEDV vaccine solutions.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
7
|
Jeon J, Kim E. Exploring Future Pandemic Preparedness Through the Development of Preventive Vaccine Platforms and the Key Roles of International Organizations in a Global Health Crisis. Vaccines (Basel) 2025; 13:56. [PMID: 39852835 PMCID: PMC11768803 DOI: 10.3390/vaccines13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO), and the European Center for Disease Prevention and Control (ECDC), have developed strategies to combat these health threats. The need for rapid vaccine development has been highlighted by Coronavirus disease 2019 (COVID-19), and mRNA technology has shown promise as a platform. While the acceleration of vaccine development has been successful, concerns have been raised about the technical limits, safety, supply, and distribution of vaccines. Objective: This study analyzes the status of vaccine platform development in global pandemics and explores ways to respond to future pandemic crises through an overview of the roles of international organizations and their support programs. It examines the key roles and partnerships of international organizations such as the World Health Organization (WHO), vaccine research and development expertise of the Coalition for Epidemic Preparedness Innovations (CEPI), control of the vaccine supply chain and distribution by the Global Alliance for Vaccines and Immunization (GAVI), and technology transfer capabilities of the International Vaccine Institute (IVI) in supporting the development, production, and supply of vaccine platform technologies for pandemic priority diseases announced by WHO and CEPI and analyzes their vaccine support programs and policies to identify effective ways to rapidly respond to future pandemics caused by emerging infectious diseases. Methods: This study focused on vaccine platform technology and the key roles of international organizations in the pandemic crisis. Literature data on vaccine platform development was collected, compared, and analyzed through national and international literature data search sites, referring to articles, journals, research reports, publications, books, guidelines, clinical trial data, and related reports. In addition, the websites of international vaccine support organizations, such as WHO, CEPI, GAVI, and IVI, were used to examine vaccine support projects, initiatives, and collaborations through literature reviews and case study methods. Results: The COVID-19 pandemic brought focus on the necessity for developing innovative vaccine platforms. Despite initial concerns, the swift integration of cutting-edge development technologies, mass production capabilities, and global collaboration have made messenger RNA (mRNA) vaccines a game-changing technology. As a result of the successful application of novel vaccine platforms, it is important to address the remaining challenges, including technical limits, safety concerns, and equitable global distribution. To achieve this, it is essential to review the regulatory, policy, and support initiatives that have been implemented in response to the COVID-19 pandemic, with particular emphasis on the key stages of vaccine development, production, and distribution, to prepare for future pandemics. An analysis of the status of vaccine development for priority pandemic diseases implies the need for balanced vaccine platform development. Also, international organizations such as WHO, CEPI, GAVI, and IVI play key roles in pandemic preparedness and the development and distribution of preventive vaccines. These organizations collaborated to improve accessibility to vaccines, strengthen the global response to infectious diseases, and address global health issues. The COVID-19 pandemic response demonstrates how the synergistic collaboration of WHO's standardized guidelines, CEPI's vaccine research and development expertise, GAVI's control of the vaccine supply chain and distribution, and IVI's technology transfer capabilities can be united to create a successful process for vaccine development and distribution. Conclusions: In preparation for future pandemics, a balanced vaccine platform development is essential. It should include a balanced investment in both novel technologies such as mRNA and viral vector-based vaccines and traditional platforms. The goal is to develop vaccine platform technologies that can be applied to emerging infectious diseases efficiently and increase manufacturing and distribution capabilities for future pandemics. Moreover, international vaccine support organizations should play key roles in setting the direction of global networking and preparing for international vaccine support programs to address the limitations of previous pandemic responses. As a result, by transforming future pandemic threats from unpredictable crises to surmountable challenges, it is expected to strengthen global health systems and reduce the social and economic burden of emerging infectious diseases in the long term.
Collapse
Affiliation(s)
- Jihee Jeon
- Pharmaceutical Regulatory Affairs, Department of Pharmaceutical Industry, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Eunyoung Kim
- Pharmaceutical Regulatory Affairs, Department of Pharmaceutical Industry, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea;
- Central Research Center of Epigenome Based Platform and Its Application for Drug Development, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Regulatory Science Policy, Pharmaceutical Regulatory Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
8
|
Sheehan J, Trauth AJ, Hagensee ME, Ramsay AJ. Characterization of Vaccine-Enhanced Humoral Immune Responses Against Emergent SARS-CoV-2 Variants in a Convalescent Cohort. Pathogens 2025; 14:44. [PMID: 39861005 PMCID: PMC11768806 DOI: 10.3390/pathogens14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Vaccination of COVID-19-convalescent individuals may generate 'hybrid' immunity of enhanced magnitude, durability, and cross-reactive breadth. Our primary goal was to characterize hybrid antibody (Ab) responses in a patient cohort infected with ancestral Wuhan-Hu-1 virus and vaccinated between 6 and 10 months later with the Wuhan-Hu-1-based BNT162b2 mRNA vaccine. We were particularly interested in determining the efficacy of neutralizing Ab responses against subsequently emergent SARS-CoV-2 variants. Sera collected at 3-monthly intervals over a period of 12 months were analyzed by ELISA for SARS-CoV-2 RBD-specific Ab responses, and also for neutralizing Ab activity using pseudovirus-based neutralization assays. We found that convalescent RBD-reactive IgG and IgA Ab responses did not decline significantly through 9 months post-diagnosis. These responses improved significantly following vaccination and remained elevated through at least 12-months. SARS-CoV-2 neutralizing Ab activity was detected in convalescent sera through 9 months post-diagnosis, although it trended downwards from 3 months. Neutralizing Ab activity against the Wuhan-Hu-1 strain was significantly improved by vaccination, to levels that persisted through the end of the study. However, sera collected from vaccinated convalescent subjects also had significant neutralization activity against Delta B.1.617.2 and Omicron variants that persisted for at least 2-3 months, unlike sera from unvaccinated convalescent controls. Thus, vaccination of Wuhan-Hu-1-convalescent individuals with the BNT162b2 vaccine improved and sustained protective neutralizing Ab activity against SARS-CoV-2, including cross-reactive neutralizing activity against variants that emerged months later.
Collapse
Affiliation(s)
- Jared Sheehan
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Amber J. Trauth
- Stanley S. Scott Cancer, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Michael E. Hagensee
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Alistair J. Ramsay
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| |
Collapse
|
9
|
Aljehani ND, Tamming L, Khan MY, Abdulal RH, Alfaleh MA, Ghazwani A, Helal A, Alsulaiman RM, Sanki MA, Alluhaybi K, Sukareh FA, Alharbi RH, Alyami FH, ElAssouli MZ, Shebbo S, Abdulaal WH, Algaissi A, Mahmoud AB, Basabrain M, Duque D, Bavananthasivam J, Chen W, Wang L, Sauve S, Abujamel TS, Altorki T, Alhabbab R, Tran A, Li X, Hashem AM. Mucosal SARS-CoV-2 S1 adenovirus-based vaccine elicits robust systemic and mucosal immunity and protects against disease in animals. mBio 2025; 16:e0217024. [PMID: 39629990 PMCID: PMC11708039 DOI: 10.1128/mbio.02170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 pandemic has emphasized the importance and need for accessible safe, effective, and versatile vaccine platforms. While approved SARS-CoV-2 vaccines have been instrumental in saving lives and reducing healthcare and economic burdens, the induction of mucosal immunity remains an unmet need. Here, we engineered and evaluated a non-replicating adenovirus 5 (rAd5)-based vaccine expressing the SARS-CoV-2 S1 subunit (rAd5-SARS2-S1). We assessed the immunogenicity, durability, and protective efficacy of intramuscular (IM) and intranasal (IN) administration of rAd5-SARS2-S1 in mice and Syrian hamsters. Two IM or IN doses of rAd5-SARS2-S1 elicited robust and sustained Th1-skewed S1-specific serum IgG, neutralizing antibodies (nAbs) against several SARS-CoV-2 variants and systemic antigen-specific memory T cell responses in mice. Additionally, IN vaccination induced potent and long-lasting mucosal S1-specific IgG, IgA, and nAbs and pulmonary memory T cells. Importantly, while IM vaccine significantly ameliorated disease severity in hamsters by reducing viral burden, lung pathology, and, to some extent, weight loss, IN immunization significantly reduced viral replication and provided superior protection against disease and weight loss. Together, our study demonstrates that the rAd5-SARS2-S1 vaccine is immunogenic in both mice and hamsters when administered intramuscularly or intranasally, with IN administration providing better protection. These findings suggest that IN delivery of rAd5-SARS2-S1 could be a promising approach for inducing mucosal and systemic immunity, offering enhanced protection against SARS-CoV-2 and emerging variants. IMPORTANCE This publication presents an assessment of the immune response and effectiveness of a vaccine containing genetically modified non-replicating recombinant that expresses the S1 subunit protein of SARS-CoV-2. We conducted a comparative analysis of the immune response potency, durability, and protective effectiveness of this vaccine using intramuscular (IM) and intranasal (IN) inoculation in mice and Syrian hamsters. Our findings indicate that both vaccinations were effective in stimulating strong and long-lasting immune responses, both locally and across the body, when administered through either IM or IN methods. Crucially, our study demonstrated that the IN vaccination outperformed the IM vaccine by effectively and significantly suppressing the multiplication of the virus in the lungs and nasal turbinates. Additionally, the IN vaccine provided protection against disease-related weight loss and lung damage in the animals. This work showcases the potential of intranasal administration as a viable method to stimulate both mucosal and systemic immunity. This technique provides improved defense against SARS-CoV-2 and maybe additional variations.
Collapse
Affiliation(s)
- Najwa D. Aljehani
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Muhammad Yasir Khan
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A. Alfaleh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aishah Ghazwani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asalah Helal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M. Alsulaiman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad A. Sanki
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Alluhaybi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farah Ayman Sukareh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahaf H. Alharbi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faris H. Alyami
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M-Zaki ElAssouli
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salima Shebbo
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mohammad Basabrain
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diana Duque
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Ontario, Canada
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarfa Altorki
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anh Tran
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Deng D, Zhang J, Wang J, Zong X. Sustainable performance evaluation of pharmaceutical companies: sustainable balanced scorecard and hybrid MCDM approach. Front Public Health 2025; 12:1495156. [PMID: 39845657 PMCID: PMC11750867 DOI: 10.3389/fpubh.2024.1495156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Despite the increasing demand for sustainable development of pharmaceutical companies due to the rigorous pressure of environmental regulation, public health crisis and economic competition, there has been little research on relevant evaluation models. The COVID-19 experience has also prompted investors in pharmaceutical companies to re-examine the impact of environment and ethics on business development. Therefore, pharmaceutical companies need to focus on their performance, especially on the shift from a single financial performance to an integrated performance. This paper constructs a reticulated sustainable performance evaluation model for decision-makers based on the Sustainability Balanced Scorecard (SBSC) framework. The evaluation results are derived using Decision Making Experiment and Evaluation Laboratory (DEMATEL), Analytical Network Process (ANP) and modified VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). The model can help management gain a more comprehensive understanding of the company's overall situation, promote management's focus on the balance and synergies between the various dimensions and indicators of sustainability performance, clarify the relationships and the comment weights of evaluation dimensions and indicators, and provide sustainability improvement solutions, which have been neglected in previous research on the evaluation of sustainability performance of pharmaceutical companies. Based on questionnaires with experts, this paper finds that the Environment is the most important factor, followed by Internal Processes, Customers, Finance, Learning and Growth, as well as Society. The empirical results of a Chinese pharmaceutical company suggest that green transformation and customer relations are the priorities, in addition to the need for additional ways to improve the sustainability performance of pharmaceutical companies. The evaluation results provide a strategic reference for stakeholders, which helps the case company to find better strategies for sustainable development and priorities for improving their sustainability performance.
Collapse
Affiliation(s)
- Deqiang Deng
- College of Economics and Management, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jiayang Zhang
- College of Economics and Management, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jingyi Wang
- College of Economics and Management, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiuran Zong
- College of Economics and Management, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Alqaaf M, Nasution AK, Karim MB, Rumman MI, Sedayu MH, Supriyanti R, Ono N, Altaf-Ul-Amin M, Kanaya S. Discovering natural products as potential inhibitors of SARS-CoV-2 spike proteins. Sci Rep 2025; 15:200. [PMID: 39747174 PMCID: PMC11697186 DOI: 10.1038/s41598-024-83637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The ongoing global pandemic caused by the SARS-CoV-2 virus has demanded the urgent search for effective therapeutic interventions. In response, our research aimed at identifying natural products (NPs) with potential inhibitory effects on the entry of the SARS-CoV-2 spike (S) protein into host cells. Utilizing the Protein Data Bank Japan (PDBJ) and BindingDB databases, we isolated 204 S-glycoprotein sequences and conducted a clustering analysis to identify similarities and differences among them. We subsequently identified 33,722 binding molecules (BMs) by matching them with the sequences of 204 S-glycoproteins and compared them with 52,107 secondary metabolites (SMs) from the KNApSAcK database to identify potential inhibitors. We conducted docking and drug-likeness property analyses to identify several SMs with potential as drug candidates based on binding energy (BE), no Lipinski's rule violation (LV), psychochemical properties within the pink area of the bioavailability radar, and a bioavailability score (BAS) not less than 0.55. Fourteen SMs were predicted through computational analysis as potential candidates for inhibiting the three major types of S proteins. Our study provides a foundation for further experimental validation of these compounds as potential therapeutic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Alqaaf
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Ahmad Kamal Nasution
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Mohammad Bozlul Karim
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Mahfujul Islam Rumman
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Muhammad Hendrick Sedayu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Department of Electrical Engineering, Jenderal Soedirman University, Purbalingga, 53371, Central Java, Indonesia
| | - Retno Supriyanti
- Department of Electrical Engineering, Jenderal Soedirman University, Purbalingga, 53371, Central Java, Indonesia
| | - Naoaki Ono
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Md Altaf-Ul-Amin
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Shigehiko Kanaya
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
12
|
Lim E, Kim YH, Jeong NY, Kim SH, Won H, Bae JS, Choi NK. The association between acute transverse myelitis and COVID-19 vaccination in Korea: Self-controlled case series study. Eur J Neurol 2025; 32:e70020. [PMID: 39739424 DOI: 10.1111/ene.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Acute transverse myelitis (ATM) has been reported as a potential association between COVID-19 vaccination. In this study, we aimed to investigate the association between the COVID-19 vaccination and ATM. METHODS A self-controlled case series study was performed using a large database that combine the COVID-19 vaccine registry and the national claims database. The COVID-19 vaccination data included information on individuals aged 18 and above who received COVID-19 vaccination from February 26, 2021, to August 31, 2022. The claims database covered the entire Korean population for the period between January 1, 2002 to August 31, 2022. Patients who develop ATM within 1-42 days following COVID-19 vaccination were included. The observation period was 270 days after the first dose of the COVID-19 vaccine. The incidence rate ratio (IRR) and 95% confidence interval (CI) were estimated using a conditional Poisson regression model. RESULTS A total of 159 ATM patients were included. Among them, 82 (51.6%) were male, and mean age was 55.4 (±17.4) years. The IRR was 2.41 (95% CI: 1.76-3.30) for the ATM risk within 1-42 days after COVID-19 vaccination. The IRR by vaccine product was 3.31 (95% CI: 1.81-6.05) for ChAdOx1-S; 1.99 (95% CI: 1.30-3.03) for BNT162b2; 2.57 (95% CI: 1.14-5.97) for mRNA-1273; and 3.33 (95% CI: 0.30-36.44) for Ad26.COV2.S. CONCLUSION These findings indicated an increased risk of ATM following COVID-19 vaccination within 42 days. An association with the risk of ATM was found both for viral vector and mRNA vaccines.
Collapse
Affiliation(s)
- Eunsun Lim
- Department of Health Convergence, College of Science and Industry Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Yoo Hwan Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym Universit, Anyang, Republic of Korea
| | - Na-Young Jeong
- Department of Health Convergence, College of Science and Industry Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Republic of Korea
| | - Heehyun Won
- Department of Health Convergence, College of Science and Industry Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Seok Bae
- Department of Neurology, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Nam-Kyong Choi
- Department of Health Convergence, College of Science and Industry Convergence, Ewha Womans University, Seoul, Republic of Korea
- Graduate School of Industrial Pharmaceutical Science, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Romero Arias T, Betancort Montesinos M. Voice Sequelae Following Recovery From COVID-19. J Voice 2025; 39:287.e19-287.e25. [PMID: 35909049 PMCID: PMC9250906 DOI: 10.1016/j.jvoice.2022.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Covid-19 is an infectious disease with a different symptomatic implication depending on each person. There are sequelae in the nervous, cardiovascular, and/or digestive system that involve the approach and multidisciplinary work of different health professionals where the speech therapist is included. In this way, we can speak of a direct relationship between speech therapy and Covid-19; especially in those patients with serious sequelae such as the inability to eat and/or speak and the loss of voice. The damage caused to the laryngeal mucosa triggers the loss of some of the qualities of the voice, limiting oral communication. That is why we can find dysphonias caused by a great weakness, by a continuous overexertion or because of a paralysis of the vocal cords. OBJECTIVES/HYPOTHESIS The objective of this study was to identify the patterns of behavior in the biomechanical correlates of people who passed Covid-19 symptomatically with sequelae in voice. METHODS An experimental study with a total of 21 participants (11 women and 10 men) with sequelae in voice post Covid-19 is presented. Voice samples were collected and biomechanical correlates were analyzed through the Voice Clinical Systems program. RESULTS AND CONCLUSIONS The results show different altered biomechanical patterns between men and women that correlate with other infectious diseases.
Collapse
Affiliation(s)
- Tatiana Romero Arias
- Facultad de Ciencias de la Salud, Sección Logopedia, Universidad Pontificia of Salamanca, Salamanca, Spain.
| | - Moisés Betancort Montesinos
- Dpto. de Psicología Clínica, Metodología y Psicobiología, Facultad de Psicología y Logopedia, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
14
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
15
|
Hua T, Fan R, Fan Y, Chen F. Immune response of COVID-19 vaccines in solid cancer patients: A meta-analysis. Hum Vaccin Immunother 2024; 20:2357424. [PMID: 38785118 PMCID: PMC11135846 DOI: 10.1080/21645515.2024.2357424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Solid cancer patients, compared to their healthy counterparts, are at a greater risk of contracting and suffering from severe complications and poorer prognosis after COVID-19 infections. They also have different immune responses after doses of COVID-19 vaccination, but limited evidence is available to reveal the effectiveness and help to guide immunization programs for this subpopulation; MEDLINE, Embase, Web of Science, Cochrane Library databases, and clinicaltrials.gov were used to search literature. The pooled seroconversion rate was calculated using a random-effects model and reported with a 95% confidence interval (CI); The review includes 66 studies containing serological responses after COVID-19 vaccination in 13,050 solid cancer patients and 8550 healthy controls. The pooled seropositive rates after the first dose in patients with solid cancer and healthy controls are 55.2% (95% CI 45.9%-64.5% N = 18) and 90.2% (95% CI 80.9%-96.6% N = 13), respectively. The seropositive rates after the second dose in patients with solid cancer and healthy controls are 87.6% (95% CI 84.1%-90.7% N = 50) and 98.9% (95% CI 97.6%-99.7% N = 35), respectively. The seropositive rates after the third dose in patients with solid cancer and healthy controls are 91.4% (95% CI 85.4%-95.9% N = 21) and 99.8% (95% CI 98.1%-100.0% N = 4), respectively. Subgroup analysis finds that study sample size, timing of antibody testing, and vaccine type have influence on the results; Seroconversion rates after COVID-19 vaccination are significantly lower in patients with solid malignancies, especially after the first dose, then shrinking gradually after the following two vaccinations, indicating that subsequent doses or a booster dose should be considered for the effectiveness of this subpopulation.
Collapse
Affiliation(s)
- Tiantian Hua
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Ru Fan
- Medical Statistics and Analysis Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Feng Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Nagib M, Sayed AM, Korany AH, Abdelkader K, Shari FH, Mackay WG, Rateb ME. Human Defensins: Structure, Function, and Potential as Therapeutic Antimicrobial Agents with Highlights Against SARS CoV-2. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10436-8. [PMID: 39693007 DOI: 10.1007/s12602-024-10436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The human defensins are a group of cationic antimicrobial peptides that range in size from 2 to 5 kDa and share a common structural motif of six disulphide-linked cysteines. Several naturally occurring human α- and β-defensins have been identified over the past two decades. They have a wide variety of antimicrobial effects, and their potential to avoid the development of resistance to antimicrobial treatment makes them attractive as therapeutic agents. Human defensins have recently been the focus of medical and molecular biology studies due to their promising application in medicine and the pharmaceutical industry. This work aims to provide a comprehensive summary of the current developments of human defensins, including their identification, categorization, molecular features, expression, modes of action, and potential application in medical settings. Current obstacles and future opportunities for using human defensins are also covered. Furthermore, we shed light on the potential of this class as an antiviral agent, particularly against SARS CoV-2, by providing an in silico-based investigation of their plausible mechanisms of action.
Collapse
Affiliation(s)
- Maryam Nagib
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK
| | - Ahmed M Sayed
- Department of Pharmacognosy, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - Ahmed H Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni Suef, 62513, Egypt
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Falah H Shari
- Department of Clinical Biochemistry, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - William G Mackay
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, Glasgow, G72 0LH, UK
| | - Mostafa E Rateb
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK.
| |
Collapse
|
17
|
Wu PH, Hong DC, Xie C, Zeng MS, Sun C. Enhancing immune defense against COVID-19: Alveolar delivery of mucosal vaccines. Sci Bull (Beijing) 2024; 69:3637-3639. [PMID: 39129115 DOI: 10.1016/j.scib.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Affiliation(s)
- Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dong-Chun Hong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
18
|
Zhang J, Yang Y, Wang B, Qiu W, Zhang H, Qiu Y, Yuan J, Dong R, Zha Y. Developing a universal multi-epitope protein vaccine candidate for enhanced borna virus pandemic preparedness. Front Immunol 2024; 15:1427677. [PMID: 39703502 PMCID: PMC11655343 DOI: 10.3389/fimmu.2024.1427677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Borna disease virus 1 (BoDV-1) is an emerging zoonotic RNA virus that can cause severe acute encephalitis with high mortality. Currently, there are no effective countermeasures, and the potential risk of a future outbreak requires urgent attention. To address this challenge, the complete genome sequence of BoDV-1 was utilized, and immunoinformatics was applied to identify antigenic peptides suitable for vaccine development. Methods Immunoinformatics and antigenicity-focused protein screening were employed to predict B-cell linear epitopes, B-cell conformational epitopes, and cytotoxic T lymphocyte (CTL) epitopes. Only overlapping epitopes with antigenicity greater than 1 and non-toxic, non-allergenic properties were selected for subsequent vaccine construction. The epitopes were linked using GPGPG linkers, incorporating β-defensins at the N-terminus to enhance immune response, and incorporating Hit-6 at the C-terminus to improve protein solubility and aid in protein purification. Computational tools were used to predict the immunogenicity, physicochemical properties, and structural stability of the vaccine. Molecular docking was performed to predict the stability and dynamics of the vaccine in complex with Toll-like receptor 4 (TLR-4) and major histocompatibility complex I (MHC I) receptors. The vaccine construct was cloned through in silico restriction to create a plasmid for expression in a suitable host. Results Among the six BoDV-1 proteins analyzed, five exhibited high antigenicity scores. From these, eight non-toxic, non-allergenic overlapping epitopes with antigenicity scores greater than 1 were selected for vaccine development. Computational predictions indicated favorable immunogenicity, physicochemical properties, and structural stability. Molecular docking analysis showed that the vaccine remained stable in complex with TLR-4 and MHC I receptors, suggesting strong potential for immune recognition. A plasmid construct was successfully generated, providing a foundation for the experimental validation of vaccines in future pandemic scenarios. Discussion These findings demonstrate the potential of the immunoinformatics-designed multi-epitope vaccines for the prevention and treatment of BoDV-1. Relevant preparations were made in advance for possible future outbreaks and could be quickly utilized for experimental verification.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Youfang Yang
- Department of Nephrology, The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Binyu Wang
- School of Medicine, Guizhou University, Guiyang, China
| | - Wanting Qiu
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Helin Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Qiu
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rong Dong
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
19
|
Wilders H, Biggs G, Rowe SM, Cawood EE, Riziotis IG, Rendina AR, Grant EK, Pettinger J, Fallon DJ, Skehel M, House D, Tomkinson NCO, Bush JT. Expedited SARS-CoV-2 Main Protease Inhibitor Discovery through Modular 'Direct-to-Biology' Screening. Angew Chem Int Ed Engl 2024:e202418314. [PMID: 39630105 DOI: 10.1002/anie.202418314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Reactive fragment (RF) screening has emerged as an efficient method for ligand discovery across the proteome, irrespective of a target's perceived tractability. To date, however, the efficiency of subsequent optimisation campaigns has largely been low-throughput, constrained by the need for synthesis and purification of target compounds. We report an efficient platform for 'direct-to-biology' (D2B) screening of cysteine-targeting chloroacetamide RFs, wherein synthesis is performed in 384-well plates allowing direct assessment in downstream biological assays without purification. Here, the developed platform was used to optimise inhibitors of SARS-CoV-2 main protease (MPro), an established drug target for the treatment of COVID-19. An initial RF hit was developed into a series of potent inhibitors, and further exploration using D2B screening enabled a 'switch' to a reversible inhibitor series. This example of ligand discovery for MPro illustrates the acceleration that D2B chemistry can offer for optimising RFs towards covalent inhibitor candidates, as well as providing future impetus to explore the evolution of RFs into non-covalent ligands.
Collapse
Affiliation(s)
- Harry Wilders
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - George Biggs
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Sam M Rowe
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Emma E Cawood
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Ioannis G Riziotis
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Alan R Rendina
- Screening, Profiling and Mechanistic Biology, GSK, 1250 South Collegeville Road, Collegevill, PA, 19426, US
| | - Emma K Grant
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jonathan Pettinger
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - David J Fallon
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David House
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Nicholas C O Tomkinson
- Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Jacob T Bush
- Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Crick-GSK Biomedical Linklabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
20
|
Zhu Y, He W, Hu R, Liu X, Li M, Liu Y. Sindbis Virus Replicon-Based SARS-CoV-2 and Dengue Combined Vaccine Candidates Elicit Immune Responses and Provide Protective Immunity in Mice. Vaccines (Basel) 2024; 12:1292. [PMID: 39591194 PMCID: PMC11599113 DOI: 10.3390/vaccines12111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Since its emergence in 2019, the rapid spread of SARS-CoV-2 led to the global pandemic. Recent large-scale dengue fever outbreaks overlapped with the COVID-19 pandemic, leading to increased cases of co-infection and posing severe public health risks. Accordingly, the development of effective combined SARS-CoV-2 and dengue virus (DENV) vaccines is necessary to control the spread and prevalence of both viruses. Methods: In this study, we designed Sindbis virus (SINV) replicon-based SARS-CoV-2 and DENV chimeric vaccines using two delivery strategies: DNA-launched self-replicating RNA replicon (DREP) and viral replicon particle (VRP) systems. Results: Cellular and animal experiments confirmed that the vaccines effectively produced viral proteins and elicited strong immunogenicity. These vaccines induced robust immune responses and neutralizing activity against live SARS-CoV-2, DENV1, and DENV2 viruses. In addition, passively transferred sera from BALB/c mice immunized with these vaccines into AG129 mice provided significant protection against lethal DENV2 challenge. The transferred sera protected the mice from physical symptoms, reduced viral loads in the kidney, spleen, liver, and intestine, and prevented DENV2-induced vascular leakage in these tissues. Conclusions: Therefore, combined vaccines based on the SINV replicon system are promising candidates for pandemic control. These results lay a foundation for further development of a safe and effective combination vaccine against SARS-CoV-2 and DENV.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (W.H.); (R.H.); (X.L.); (M.L.)
| |
Collapse
|
21
|
Rathore D, Chauhan P, Bonagiri A, Gandhi L, Maisnam D, Kumar R, Row AT, Kesavulu MM, Venkataramana M. Non-RBD peptides of SARS-CoV-2 spike protein exhibit immunodominance as they elicit both innate and adaptive immune responses. Heliyon 2024; 10:e39941. [PMID: 39568852 PMCID: PMC11577203 DOI: 10.1016/j.heliyon.2024.e39941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Severe acute respiratory coronavirus-2 (SARS-CoV-2) emerged in 2019 as a new virus and caused worldwide outbreaks, quickly turning into a pandemic disease called coronavirus disease-19 (COVID-19). All the existing methodologies were used for developing vaccines for this virus. But sporadic infections of this virus and the emergence of new strains to date suggest the incomplete protection offered by the developed vaccines and the need for new research. In this direction, we identified five epitopes present in the non-RBD region and on the surface of the spike protein by in silico analysis. They are epitope I (aa 80-90), epitope II (aa 262-270), and a small protein with three epitopes (aa 1059-1124). Antigenicity scores of these epitopes were found to be higher than the full length spike protein and its RBD region. These epitopes showed high conserveness across the emerging strains, high immunogenicity, non-toxicity, no homology with human sequences and high affinity for MHC class I & II molecules. Antibodies raised against these epitopes interacted with the bacterially expressed spike protein in western blotting. The antiserum of COVID-19 recovered participants reacted with the developed epitopes (small protein). Furthermore, in the presence of the respective antiserum and COVID-19 convalescent serum, these epitopes successfully fixed the complement, implying a possible role in innate immunity. The epitopes were also found to activate the peripheral blood mononuclear cells (PBMCs) isolated from the blood samples of COVID-19 recovered/vaccinated participants, suggesting a possible role in adaptive immunity. The need for the new SARS-CoV-2 vaccines is further highlighted in light of current reports about the side effects of a developed vaccine (AstraZeneca) and the circulating new strains. The epitopes presented in this study represent the potential immunogens and expect certain pitfalls of the existing vaccines would be sealed.
Collapse
Affiliation(s)
- Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Ramesh Kumar
- Health Centre, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Anupama T Row
- Health Centre, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - M M Kesavulu
- Department of Basic Sciences and Humanities, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
22
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
23
|
Aktaş E, Sezerman OU, Özer M, Kırboğa KK, Köseoğlu AE, Özgentürk NÖ. Identification of potential antigenic proteins and epitopes for the development of a monkeypox virus vaccine: an in silico approach. Mol Divers 2024:10.1007/s11030-024-11033-1. [PMID: 39546220 DOI: 10.1007/s11030-024-11033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Virus assembly, budding, or surface proteins play important roles such as viral attachment to cells, fusion, and entry into cells. The present study aimed to identify potential antigenic proteins and epitopes that could be used to develop a vaccine or diagnostic assay against the Monkeypox virus (MPXV) which may cause a potential epidemic. To do this, 39 MPXV proteins (including assembly, budding, and surface proteins) were analyzed using an in silico approach. Of these 39 proteins, the F5L virus protein was found to be the best vaccine candidate due to its signal peptide properties, negative GRAVY value, low transmembrane helix content, moderate aliphatic index, large molecular weight, long-estimated half-life, beta wrap motifs, and being stable, soluble, and containing non-allergic features. Moreover, the F5L protein exhibited alpha-helical secondary structures, making it a potential "structural antigen" recognized by antibodies. The other viral protein candidates were A9 and A43, but A9 lacked beta wrap motifs, while A43 had a positive GRAVY value and was insoluble. These two proteins were not as suitable candidates as the F5L protein. The KRVNISLTCL epitope from the F5L protein demonstrated the highest antigen score (2.4684) for MHC-I, while the GRFGYVPYVGYKCI epitope from the A9 protein exhibited the highest antigenicity (1.754) for MHC-II. Both epitopes met the criteria for high antigenicity, non-toxicity, solubility, non-allergenicity, and the presence of cleavage sites. Molecular docking and dynamics (MD) simulations further validated their potential, revealing stable and energetically favorable interactions with MHC molecules. The immunogenicity assessment showed that GRFGYVPYVGYKCI could strongly induce immune responses through both IFN-γ and IL-4 pathways, suggesting its capacity to provoke a balanced Th1 and Th2 response. In contrast, KRVNISLTCL exhibited limited immunostimulatory potential. Overall, these findings lay the groundwork for future vaccine development, indicating that F5L, particularly the GRFGYVPYVGYKCI epitope, may serve as an effective candidate for peptide-based vaccine design against MPXV.
Collapse
Affiliation(s)
- Emre Aktaş
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey.
| | - Osman Uğur Sezerman
- School of Medicine, Department of Basic Sciences, Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Murat Özer
- Department of Chemistry, Faculty of Science and Arts, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Kevser Kübra Kırboğa
- Faculty of Engineering, Bioengineering Department, Bilecik Seyh Edebali University, Bilecik, 11100, Turkey
| | - Ahmet Efe Köseoğlu
- Experimental Eye Research Institute, Ruhr-University Bochum, Bochum, Germany
| | - Nehir Özdemir Özgentürk
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
24
|
Mohammadi D, Ghasemi M, Manouchehrian N, Zafarmand M, Akbari M, Boroumand AB. COVID-19 vaccines: current and future challenges. Front Pharmacol 2024; 15:1434181. [PMID: 39568586 PMCID: PMC11576167 DOI: 10.3389/fphar.2024.1434181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
As of December 2020, around 200 vaccine candidates for Coronavirus Disease 2019 (COVID-19) are being developed. COVID-19 vaccines have been created on a number of platforms and are still being developed. Nucleic acid (DNA, RNA) vaccines, viral vector vaccines, inactivated vaccines, protein subunit vaccines, and live attenuated vaccines are among the COVID-19 vaccine modalities. At this time, at least 52 candidate vaccines are being studied. Spike protein is the primary protein that COVID-19 vaccines are targeting. Therefore, it is critical to determine whether immunizations provide complete or fractional protection, whether this varies with age, whether vaccinated people are protected from reoccurring diseases, and whether they need booster shots if they've already been inoculated. Despite the enormous achievement of bringing several vaccine candidates to market in less than a year, acquiring herd immunity at the national level and much more so at the global level remains a major challenge. Therefore, we gathered information on the mechanism of action of presently available COVID-19 vaccines in this review and essential data on the vaccines' advantages and downsides and their future possibilities.
Collapse
Affiliation(s)
| | - Matin Ghasemi
- Islamic Azad University Tonekabon, Tonekabon, Mazandaran, Iran
| | - Nahid Manouchehrian
- Department of Anesthesilogy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mitra Akbari
- Eye Research Center, Department of Eye, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | | |
Collapse
|
25
|
Doroud D, Sadat Larijani M, Biglari A, Ashrafian F, Sabouni T, Eybpoosh S, Verez-Bencomo V, Valdés-Balbín Y, García-Rivera D, Herrera-Rojas Y, Climent-Ruiz Y, Santana-Mederos D, Ramezani A. Comparative assessment of a COVID-19 vaccine after technology transfer to Iran from critical quality attributes to clinical and immunogenicity aspects. Sci Rep 2024; 14:26793. [PMID: 39501012 PMCID: PMC11538526 DOI: 10.1038/s41598-024-77331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
During COVID-19 pandemic, international pharmaceutical companies put effort to build global manufacturing networks for vaccines. Soberana Plus vaccine, a recombinant protein based vaccine (RBD dimer), with the trade name of PastoCovac Plus in Iran, is based on a protein subunit platform in Cuba and completed preclinical and toxicological assessments. This study aimed at presenting the steps of vaccine technology transfer from Cuba to Iran. This study provides the first practical comparability results in Iran to ensure the quality, safety and efficacy of a protein subunit vaccine against COVID-19 after a successful technology transfer from Cuba. PastoCovac Plus was transferred to Iran at the formulation stage. The assessment of the active ingredient pharmaceutical (API) was achieved through physicochemical and clinical data collection and tests to assure if there was any adverse impact on the vaccination results. In order to assess the quality of the vaccine product after technology transfer, we sought different properties including regulatory features, physicochemical quality, vaccine potency and stability as well as its immunogenicity and safety. Following the evaluation of the clinical quality attributes (CQAs) based on the standard protocols, the results showed that the two vaccines are highly similar and comparable, with no considerable effect on safety or efficacy profiles. The CQAs were all in the acceptance limits in terms of safety and efficacy as well as clinical evaluation results. The immunogenicity evaluation also confirmed no significant differences between the vaccines regarding reinfection (P = 0.199) or vaccine breakthrough (P = 0.176). Furthermore, the level of anti-spike and neutralizing antibodies in the both vaccine groups was not significantly different indicating the equality of performance between the two vaccines. According to the results of the quality and clinical assessment of this study, we achieved an acceptable quality attributes and acceptant limits in terms of safety and efficacy of the vaccines pre and post technology transfer.
Collapse
Affiliation(s)
- Delaram Doroud
- Quality Control Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, 13164, Iran
| | - Alireza Biglari
- School of Medicine, Tehran University of Medical Sciences, P.O. BOX 14155-6559, Tehran, Tehran, Iran.
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, 13164, Iran
| | - Talieh Sabouni
- Quality Control Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Research Centre for Emerging and Reemerging Infectious Diseases, Tehran, Iran
| | | | | | | | | | | | | | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, 13164, Iran.
| |
Collapse
|
26
|
Ong YC, Tejo BA, Yap WB. An Immunoinformatic Approach for Identifying and Designing Conserved Multi-Epitope Vaccines for Coronaviruses. Biomedicines 2024; 12:2530. [PMID: 39595095 PMCID: PMC11592158 DOI: 10.3390/biomedicines12112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has exposed the vulnerabilities and unpreparedness of the global healthcare system in dealing with emerging zoonoses. In the past two decades, coronaviruses (CoV) have been responsible for three major viral outbreaks, and the likelihood of future outbreaks caused by these viruses is high and nearly inevitable. Therefore, effective prophylactic universal vaccines targeting multiple circulating and emerging coronavirus strains are warranted. METHODS This study utilized an immunoinformatic approach to identify evolutionarily conserved CD4+ (HTL) and CD8+ (CTL) T cells, and B-cell epitopes in the coronaviral spike (S) glycoprotein. RESULTS A total of 132 epitopes were identified, with the majority of them found to be conserved across the bat CoVs, pangolin CoVs, endemic coronaviruses, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Their peptide sequences were then aligned and assembled to identify the overlapping regions. Eventually, two major peptide assemblies were derived based on their promising immune-stimulating properties. CONCLUSIONS In this light, they can serve as lead candidates for universal coronavirus vaccine development, particularly in the search for pan-coronavirus multi-epitope universal vaccines that can confer protection against current and novel coronaviruses.
Collapse
Affiliation(s)
- Yu Chuan Ong
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Bimo Ario Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
- One Health UKM, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
27
|
Wang J, Dong H, Ji Y, Li Y, Lee ST. Patterned graphene: An effective platform for adsorption, immobilization, and destruction of SARS-CoV-2 M pro. J Colloid Interface Sci 2024; 673:202-215. [PMID: 38875787 DOI: 10.1016/j.jcis.2024.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (Mpro) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of Mpro. Specifically, CG is found to promote disruption of the active pocket for Mpro, but the presence of "checkerboard" oxidized regions inhibits the adsorption of Mpro. Meanwhile, the SG can effectively confine Mpro within the non-oxidized strips and enhances their binding strength, but doesn't play well on disrupting the active pocket. Our work not only elucidates the biological effects of PGs, but also provides guidance for their targeted and precise utilization in combating the SARS-CoV-2.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Shuit-Tong Lee
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
28
|
Lima GSF, Yafit D, Kaminer BM, Harris R, Cohen O, Ziv O. The COVID-19 period influence on pediatric deep neck abscess: Occurrences and clinical presentation. Int J Pediatr Otorhinolaryngol 2024; 186:112139. [PMID: 39437602 DOI: 10.1016/j.ijporl.2024.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The purpose of the study was to investigate the influence of the COVID-19 pandemic on the incidence of deep neck infections (DNIs) in pediatric patients. In addition, it describes the clinical, laboratory, and microbiology presentation as well as the clinical outcomes. STUDY DESIGN Retrospective cohort study. SETTINGS A single tertiary medical center. METHODS All patients ≤18 years with a diagnosis of DNI, between the years 2010-2022, were included in the study and the yearly incidence of DNI was calculated. Patients were divided according to their diagnosis of retropharyngeal abscesses (RPAs) and parapharyngeal abscesses (PPAs), and according to age; Group 1 (aged 0 to ≤4 years) and Group 2 (aged>4 to ≤18 years). RESULTS A total of 46 cases of DNIs; 24 were RPAs and 22 were PPAs, age group 1 had 20 patients, and age group 2 had 26 patients. The overall DNI incidence during 2010 was 0.81 and declined in 2020 (COVID-19 pandemic period) to 0.33, followed by a surge in the incidence of 4.85 in 2022 (post-COVID-19 period). In age group 1 RPAs were more dominant (70 %) while PPAs were dominant (61.5 %) in group 2. (p = 0.034). A higher prevalence of positive cultures was seen in the RPA group compared to the PPA group (75 % vs 33 %, p = 0.025, respectively), and in age group 1 compared to age group 2 (77 % vs 30 %, p = 0.001, respectively). CONCLUSION In conclusion, our study provides valuable insights about the disease and vulnerable communities. In addition, we showed a decrease during the COVID-19 pandemic followed by an increase in DNI incidence post-COVID-19 pandemic era. A larger comprehensive prospective study is warranted to gain a deeper understanding of these trends and their underlying causes.
Collapse
Affiliation(s)
- Gabriela Sara Freixo Lima
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Yafit
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benyamin Meir Kaminer
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronit Harris
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oded Cohen
- Department of Otolaryngology-Head & Neck Surgery, Assuta Ashdod Hospital, Ashdod, Israel
| | - Oren Ziv
- Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
29
|
Pardi N, Krammer F. mRNA vaccines for infectious diseases - advances, challenges and opportunities. Nat Rev Drug Discov 2024; 23:838-861. [PMID: 39367276 DOI: 10.1038/s41573-024-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
The concept of mRNA-based vaccines emerged more than three decades ago. Groundbreaking discoveries and technological advancements over the past 20 years have resolved the major roadblocks that initially delayed application of this new vaccine modality. The rapid development of nucleoside-modified COVID-19 mRNA vaccines demonstrated that this immunization platform is easy to develop, has an acceptable safety profile and can be produced at a large scale. The flexibility and ease of antigen design have enabled mRNA vaccines to enter development for a wide range of viruses as well as for various bacteria and parasites. However, gaps in our knowledge limit the development of next-generation mRNA vaccines with increased potency and safety. A deeper understanding of the mechanisms of action of mRNA vaccines, application of novel technologies enabling rational antigen design, and innovative vaccine delivery strategies and vaccination regimens will likely yield potent novel vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Omoleke SA, de Kiev LC. An evaluation of the surveillance system for monitoring and reporting adverse events following immunization in Kebbi State, Northern Nigeria: a mixed method approach. BMC Public Health 2024; 24:2906. [PMID: 39434046 PMCID: PMC11494836 DOI: 10.1186/s12889-024-20356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
INTRODUCTION Despite the benefits of periodic evaluation of the vaccine safety surveillance system, no formal assessment, to our knowledge, has been conducted in Nigeria. Hence, this study evaluated the surveillance system for adverse events following immunization (AEFI) to ascertain the system's functionality to inform vaccine safety considerations and guide communication strategies for demand generation. MATERIALS AND METHODS The study employed a mixed-method approach. Survey questionnaires were administered to 274 routine immunization service providers in Kebbi State, Northern Nigeria, and data were analyzed descriptively using SPSS. In this study, 10 Key Informant Interviews and two Focus Group Discussions were conducted with senior officers and managers at sub-national and national levels within the immunization and surveillance landscape in Nigeria. The interview recordings were cleaned minimally, transcribed, and manually analyzed thematically. Finally, methodological triangulation was done to improve research rigor and provide a better understanding of the phenomena under investigation. RESULTS Of the respondents, 201(73.4%) reported that the surveillance system can inform vaccine safety considerations while 170(62%) reported that the AEFI surveillance system can determine the magnitude of AEFI within the population. Further, 173(63%) reported that the surveillance system can provide timely feedback about causality assessment. However, 158(58%) of the respondents stated that the surveillance system is competent in informing communication strategies to improve immunization demand. Triangulation was done which showed dissonance in AEFI surveillance and vaccine safety considerations but partial agreement in immunization demand generation. Further, AEFI surveillance system attributes' triangulation revealed agreements (convergence) on simplicity and timeliness; partial agreements on acceptability, data quality, sensitivity, flexibility, and completeness; dissonance on representativeness and silence on stability, indicating a sub-optimal performance of the AEFI surveillance system in the study setting. Finally, the study unearthed some underlying health system factors impeding the AEFI surveillance system from fully fulfilling its objectives. CONCLUSION The AEFI surveillance system in Northern Nigeria is well established but functioning sub-optimally. Based on the study findings, the capacity to provide information on vaccine safety exists but it is not robust enough to generate sufficient and convincing vaccine safety data and guide communication strategies for vaccine demand generation, especially for new vaccines and those under emergency authorization use.
Collapse
|
31
|
Li J, Shi XH, Fu DD, Du L, Tang B, Ao J, Ma AX, Hou YN, Wang ZG, Liu SL, Pang DW. An Inhalable Nanoshield for Effective Prevention of Influenza Virus Infections. ACS NANO 2024; 18:27327-27339. [PMID: 39315858 DOI: 10.1021/acsnano.4c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Influenza virus (IV) infection currently poses a serious and continuing threat to the global public health. Developing effective prevention strategies is important to defend against infection and spread of IV. Here, we developed a triple-protective nanoshield against IV infection in the lungs, formed by self-assembling DSPE-PEG amphiphilic polymers encapsulating the flu-preventive antiviral drug Arbidol internally. The preventive effect of the nanoshield against virus infection includes increasing the viscosity in the surrounding environment to physically defend against viral entry, forming a hydrated layer to block the interaction between viruses and cells, and inhibiting virus replication. Our finding suggested that a single inhalation of the nanoshield provides effective protection against IV infection for at least 8 h. Thus, this nanoshield may be a potential pandemic protection agent against IV, especially in viral environments, where no prophylactic or therapeutic measures are available.
Collapse
Affiliation(s)
- Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Yi-Ning Hou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
32
|
Asare AF, Sabblah GT, Buabeng RO, Alhassan Y, Asamoa-Amoakohene A, Amponsa-Achiano K, Mohammed NT, Darko DM, Bonful HA. Adverse events following COVID-19 vaccination: A comprehensive analysis of spontaneous reporting data in Ghana. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003770. [PMID: 39331603 PMCID: PMC11432875 DOI: 10.1371/journal.pgph.0003770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Vaccines are important public health tools and formed part of the fight against the COVID-19 pandemic. Five COVID-19 vaccines were given Emergency Use Authorization in Ghana and deployed during the pandemic. Early phase trials of the vaccines were mostly not conducted in Africans. This study examines safety data during their deployment under real-life conditions in Ghana. This study analysed secondary data on COVID-19 vaccine-related adverse events following immunization (AEFI) reported to the Ghana Food and Drugs Authority (GFDA) between March 2021 and June 2022 using STATA. AEFIs were coded with their Preferred Terms using the Medical Dictionary for Regulatory Activities, version 24.0. Statistical tests examined associations between demographic characteristics, vaccine types, seriousness, and AEFI outcomes. Binary logistic regression model assessed factors associated with serious AEFIs, while the GFDA's Joint COVID-19 Vaccine Safety Review Committee provided causality assessments of serious AEFIs. Overall cumulative incidence of AEFIs was about 25 per 100,000 persons vaccinated. Across the five vaccines, majority of the AEFIs reported were not serious (98.7%) with higher incidences in those below 50 years (74.0%) and females (51.2%). The most common AEFIs recorded were headache (52.9%), pains (44.4%), pyrexia (35.1%), chills (16.7%) and injection site pain (15.6%). Relative to those 50 years and above, the odds of serious AEFI were 60% less among those aged <30 years (aOR = 0.40, CI: [0.19, 0.86], p = 0.019). However, a causality assessment of the 57 serious AEFIs indicated only 8 (14%) were vaccine product-related. There was a low incidence of AEFIs following deployment of the vaccines in Ghana with a much lower incidence of serious AEFIs. Informing the public about the safety of the vaccines and potential side effects may increase trust and acceptance, decreasing hesitancy in current and future vaccination programmes.
Collapse
Affiliation(s)
| | | | | | - Yakubu Alhassan
- Department of Biostatistics, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | | | | | | | | | - Harriet Affran Bonful
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
33
|
Tsyruk O, Kaplan GG, Fortin PR, Hitchon CA, Chandran V, Larché MJ, Avina-Zubieta A, Boire G, Colmegna I, Lacaille D, Lalonde N, Proulx L, Richards DP, Boivin N, DeBow C, Kovalova-Wood L, Paleczny D, Wilhelm L, Lukusa L, Pereira D, Lee JLF, Bernatsky S. How Safe Are COVID-19 Vaccines in Individuals with Immune-Mediated Inflammatory Diseases? The SUCCEED Study. Vaccines (Basel) 2024; 12:1027. [PMID: 39340057 PMCID: PMC11436126 DOI: 10.3390/vaccines12091027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
We were tasked by Canada's COVID-19 Immunity Task Force to describe severe adverse events (SAEs) associated with emergency department (ED) visits and/or hospitalizations in individuals with immune-mediated inflammatory diseases (IMIDs). At eight Canadian centres, data were collected from adults with rheumatoid arthritis (RA), axial spondyloarthritis (AxS), systemic lupus (SLE), psoriatic arthritis (PsA), and inflammatory bowel disease (IBD). We administered questionnaires, analyzing SAEs experienced within 31 days following SARS-CoV-2 vaccination. About two-thirds (63%) of 1556 participants were female; the mean age was 52.5 years. The BNT162b2 (Pfizer) vaccine was the most common, with mRNA-1273 (Moderna) being second. A total of 49% of participants had IBD, 27.4% had RA, 14.3% had PsA, 5.3% had SpA, and 4% had SLE. Twelve (0.77% of 1556 participants) SAEs leading to an ED visit or hospitalization were self-reported, occurring in 11 participants. SAEs included six (0.39% of 1556 participants) ED visits (including one due to Bell's Palsy 31 days after first vaccination) and six (0.39% of 1556 participants) hospitalizations (including one due to Guillain-Barré syndrome 15 days after the first vaccination). Two SAEs included pericarditis, one involved SLE (considered a serious disease flare), and one involved RA. Thus, in the 31 days after SARS-CoV-2 vaccination in our IMID sample, very few serious adverse events occurred. As SARS-CoV2 continues to be a common cause of death, our findings may help optimize vaccination acceptance.
Collapse
Affiliation(s)
- Olga Tsyruk
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Gilaad G. Kaplan
- Division of Gastroenterology and Hepatology, Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Paul R. Fortin
- Centre de Recherche ARThrite-UL, Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
| | - Carol A Hitchon
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Maggie J. Larché
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Antonio Avina-Zubieta
- Arthritis Research Canada and Division of Rheumatology, University of British Columbia, Vancouver, BC V5Y 3P2, Canada
| | - Gilles Boire
- Division of Rheumatology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ines Colmegna
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | - Diane Lacaille
- Arthritis Research Canada and Division of Rheumatology, University of British Columbia, Vancouver, BC V5Y 3P2, Canada
| | - Nadine Lalonde
- Canadian Arthritis Patient Alliance, Toronto, ON L6A 4Z6, Canada
| | - Laurie Proulx
- Canadian Arthritis Patient Alliance, Toronto, ON L6A 4Z6, Canada
| | - Dawn P. Richards
- Canadian Arthritis Patient Alliance, Toronto, ON L6A 4Z6, Canada
| | - Natalie Boivin
- Canadian Arthritis Patient Alliance, Toronto, ON L6A 4Z6, Canada
| | | | | | - Deborah Paleczny
- Canadian Arthritis Patient Alliance, Toronto, ON L6A 4Z6, Canada
| | - Linda Wilhelm
- Canadian Arthritis Patient Alliance, Toronto, ON L6A 4Z6, Canada
| | - Luck Lukusa
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | - Daniel Pereira
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Jennifer LF. Lee
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | - Sasha Bernatsky
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | | |
Collapse
|
34
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
35
|
Wang M, Wu C, Liu N, Jiang X, Dong H, Zhao S, Li C, Xu S, Gu L. Regulation of protein thermal stability and its potential application in the development of thermo-attenuated vaccines. ENGINEERING MICROBIOLOGY 2024; 4:100162. [PMID: 39629114 PMCID: PMC11610959 DOI: 10.1016/j.engmic.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 12/06/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of developing novel vaccines. An ideal vaccine should trigger an intense immune reaction without causing significant side effects. In this study we found that substitution of tryptophan located in the cores of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein structures with certain smaller amino acids resulted in variants with melting temperatures of 33-37 °C. An enzyme activity assay indicated that the proteolytic activity of the main proteinase (3CLpro) decreased sharply when the environmental temperature exceeded the melting temperature, implying that other protein variants may lose most of their functions under the same conditions. This finding suggests that a virus variant containing engineered proteins with melting temperatures of 33-37 °C may only be functional in the upper respiratory tract where the temperature is about 33 °C, but will be unable to invade internal organs, which maintain temperatures above 37 °C, thus making it possible to construct temperature-sensitive attenuated vaccines.
Collapse
Affiliation(s)
- Maofeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Cancan Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nan Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xiaoqiong Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272033, China
| | - Shubao Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chaonan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
36
|
Nakagami H, Hayashi H, Morishita R. Therapeutic Vaccines and Nucleic Acid Drugs for Cardiovascular Disease. J Lipid Atheroscler 2024; 13:328-337. [PMID: 39355408 PMCID: PMC11439748 DOI: 10.12997/jla.2024.13.3.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 03/10/2024] [Indexed: 10/03/2024] Open
Abstract
To combat the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), novel vaccine modalities, such as messenger RNA vaccines, were rapidly developed and have shown high efficacy. This new vaccine technology, underpinned by intensive immunological analysis, is now being applied to the production of other vaccines. For over 10 years, we have been developing therapeutic vaccines for non-infectious diseases. The epitope vaccine approach, which combines a B-cell epitope with exogenous T-cell epitopes presented through major histocompatibility complex molecules, has been proposed to induce antibody production. This vaccine type is designed to efficiently induce a blocking antibody response against the self-antigen without activating cytotoxic T cells. If therapeutic vaccines become established as treatment options for conditions such as hypertension or dyslipidemia, their administration-potentially only a few times per year-could replace the need for daily medication. Nucleic acid drugs, including small interfering RNA and antisense oligonucleotides, have recently received attention as long-term agonists, similar to vaccines. Therefore, therapeutic vaccines or nucleic acid drugs could represent a novel strategy for controlling the progression of cardiovascular diseases. It is hoped that the accumulation of immunological findings and advances in vaccine technology will provide valuable insights into the development of vaccines for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
37
|
Hao T, Li Y, Liu P, Wang X, Xu K, Lei W, Li Y, Zhang R, Li X, Zhao X, Xu K, Lu X, Bi Y, Song H, Wu G, Zhu B, Gao GF. A chimeric mRNA vaccine of S-RBD with HA conferring broad protection against influenza and COVID-19 variants. PLoS Pathog 2024; 20:e1012508. [PMID: 39303003 PMCID: PMC11414905 DOI: 10.1371/journal.ppat.1012508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Influenza and coronavirus disease 2019 (COVID-19) represent two respiratory diseases that have significantly impacted global health, resulting in substantial disease burden and mortality. An optimal solution would be a combined vaccine capable of addressing both diseases, thereby obviating the need for multiple vaccinations. Previously, we conceived a chimeric protein subunit vaccine targeting both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), utilizing the receptor binding domain of spike protein (S-RBD) and the stalk region of hemagglutinin protein (HA-stalk) components. By integrating the S-RBD from the SARS-CoV-2 Delta variant with the headless hemagglutinin (HA) from H1N1 influenza virus, we constructed stable trimeric structures that remain accessible to neutralizing antibodies. This vaccine has demonstrated its potential by conferring protection against a spectrum of strains in mouse models. In this study, we designed an mRNA vaccine candidate encoding the chimeric antigen. The resultant humoral and cellular immune responses were meticulously evaluated in mouse models. Furthermore, the protective efficacy of the vaccine was rigorously examined through challenges with either homologous or heterologous influenza viruses or SARS-CoV-2 strains. Our findings reveal that the mRNA vaccine exhibited robust immunogenicity, engendering high and sustained levels of neutralizing antibodies accompanied by robust and persistent cellular immunity. Notably, this vaccine effectively afforded complete protection to mice against H1N1 or heterosubtypic H5N8 subtypes, as well as the SARS-CoV-2 Delta and Omicron BA.2 variants. Additionally, our mRNA vaccine design can be easily adapted from Delta RBD to Omicron RBD antigens, providing protection against emerging variants. The development of two-in-one vaccine targeting both influenza and COVID-19, incorporating the mRNA platform, may provide a versatile approach to combating future pandemics.
Collapse
MESH Headings
- Animals
- Mice
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- mRNA Vaccines/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- COVID-19 Vaccines/immunology
- Influenza Vaccines/immunology
- Antibodies, Viral/immunology
- Mice, Inbred BALB C
- Female
- Influenza A Virus, H1N1 Subtype/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Vaccines, Synthetic/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Tianjiao Hao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yulei Li
- Clinicopathological Diagnosis & Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, People’s Republic of China
| | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xi Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ying Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, People’s Republic of China
| | - Xiaoyan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hao Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, People’s Republic of China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Barrera A, Martínez-Valdebenito C, Angulo J, Palma C, Hormazábal J, Vial C, Aguilera X, Castillo-Torres P, Pardo-Roa C, Balcells ME, Nervi B, Corre NL, Ferrés M. SARS-CoV-2 infectivity and antigenic evasion: spotlight on isolated Omicron sub-lineages. Front Med (Lausanne) 2024; 11:1414331. [PMID: 39267969 PMCID: PMC11390582 DOI: 10.3389/fmed.2024.1414331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024] Open
Abstract
Since the SARS-CoV-2 outbreak in 2019, a diversity of viral genomic variants has emerged and spread globally due to increased transmissibility, pathogenicity, and immune evasion. By the first trimester of 2023 in Chile, as in most countries, BQ and XBB were the predominant circulating sub-lineages of Omicron. The molecular and antigenic characteristics of these variants have been mainly determined using non-authentic spike pseudoviruses, which is often described as a limitation. Additionally, few comparative studies using isolates from recent Omicron sub-lineages have been conducted. In this study, we isolated SARS-CoV-2 variants from clinical samples, including the ancestral B.1.1, Delta, Omicron BA.1, and sub-lineages of BA.2 and BA.5. We assessed their infectivity through cell culture infections and their antibody evasion using neutralization assays. We observed variations in viral plaque size, cell morphology, and cytotoxicity upon infection in Vero E6-TMPRSS2 cells for each variant compared to the ancestral B.1.1 virus. BA.2-derived sub-variants, such as XBB.1.5, showed attenuated viral replication, while BA.5-derived variants, such as BQ.1.1, exhibited replication rates similar to the ancestral SARS-CoV-2 virus. Similar trends were observed in intestinal Caco-2 cells, except for Delta. Antibody neutralization experiments using sera from individuals infected during the first COVID-19 wave (FWI) showed a consistent but moderate reduction in neutralization against Omicron sub-lineages. Interestingly, despite being less prevalent, BQ.1.1 showed a 6.1-fold greater escape from neutralization than XBB.1.5. Neutralization patterns were similar when tested against sera from individuals vaccinated with 3xBNT162b2 (PPP) or Coronavac-Coronavac-BNT162b2 (CCP) schedules. However, CCP sera showed 2.3-fold higher neutralization against XBB.1.5 than FWI and PPP sera. This study provides new insights into the differences between BA.2 and BA.5-derived variants, leading to their eventual outcompetition. Our analysis offers important evidence regarding the balance between infectivity and antigenic escape that drives the evolution of second-generation SARS-CoV-2 variants in the population.
Collapse
Affiliation(s)
- Aldo Barrera
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Martínez-Valdebenito
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jenniffer Angulo
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Palma
- Laboratorio de Infectología y Virología Molecular, Facultad de Medicina y Red de Salud UC CHRISTUS, Santiago, Chile
| | - Juan Hormazábal
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Vial
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Ximena Aguilera
- Centro de Epidemiología y Políticas de Salud, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Pablo Castillo-Torres
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Salud del Niño y el Adolescente, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Salud del Niño y el Adolescente, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Elvira Balcells
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bruno Nervi
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio de Infectología y Virología Molecular, Facultad de Medicina y Red de Salud UC CHRISTUS, Santiago, Chile
| | - Marcela Ferrés
- Departamento de Enfermedades Infecciosas e Inmunología Pediátricas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio de Infectología y Virología Molecular, Facultad de Medicina y Red de Salud UC CHRISTUS, Santiago, Chile
| |
Collapse
|
39
|
Khurana MP, Curran-Sebastian J, Scheidwasser N, Morgenstern C, Rasmussen M, Fonager J, Stegger M, Tang MHE, Juul JL, Escobar-Herrera LA, Møller FT, Albertsen M, Kraemer MUG, du Plessis L, Jokelainen P, Lehmann S, Krause TG, Ullum H, Duchêne DA, Mortensen LH, Bhatt S. High-resolution epidemiological landscape from ~290,000 SARS-CoV-2 genomes from Denmark. Nat Commun 2024; 15:7123. [PMID: 39164246 PMCID: PMC11335946 DOI: 10.1038/s41467-024-51371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Vast amounts of pathogen genomic, demographic and spatial data are transforming our understanding of SARS-CoV-2 emergence and spread. We examined the drivers of molecular evolution and spread of 291,791 SARS-CoV-2 genomes from Denmark in 2021. With a sequencing rate consistently exceeding 60%, and up to 80% of PCR-positive samples between March and November, the viral genome set is broadly whole-epidemic representative. We identify a consistent rise in viral diversity over time, with notable spikes upon the importation of novel variants (e.g., Delta and Omicron). By linking genomic data with rich individual-level demographic data from national registers, we find that individuals aged < 15 and > 75 years had a lower contribution to molecular change (i.e., branch lengths) compared to other age groups, but similar molecular evolutionary rates, suggesting a lower likelihood of introducing novel variants. Similarly, we find greater molecular change among vaccinated individuals, suggestive of immune evasion. We also observe evidence of transmission in rural areas to follow predictable diffusion processes. Conversely, urban areas are expectedly more complex due to their high mobility, emphasising the role of population structure in driving virus spread. Our analyses highlight the added value of integrating genomic data with detailed demographic and spatial information, particularly in the absence of structured infection surveys.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Jacob Curran-Sebastian
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Neil Scheidwasser
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Christian Morgenstern
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Morten Rasmussen
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Man-Hung Eric Tang
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas L Juul
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Sune Lehmann
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tyra G Krause
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut Copenhagen, Copenhagen, Denmark
| | | | - David A Duchêne
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Statistics Denmark, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
40
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
41
|
Zhou H, Leng P, Wang Y, Yang K, Li C, Ojcius DM, Wang P, Jiang S. Development of T cell antigen-based human coronavirus vaccines against nAb-escaping SARS-CoV-2 variants. Sci Bull (Beijing) 2024; 69:2456-2470. [PMID: 38942698 DOI: 10.1016/j.scib.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 06/30/2024]
Abstract
Currently approved vaccines have been successful in preventing the severity of COVID-19 and hospitalization. These vaccines primarily induce humoral immune responses; however, highly transmissible and mutated variants, such as the Omicron variant, weaken the neutralization potential of the vaccines, thus, raising serious concerns about their efficacy. Additionally, while neutralizing antibodies (nAbs) tend to wane more rapidly than cell-mediated immunity, long-lasting T cells typically prevent severe viral illness by directly killing infected cells or aiding other immune cells. Importantly, T cells are more cross-reactive than antibodies, thus, highly mutated variants are less likely to escape lasting broadly cross-reactive T cell immunity. Therefore, T cell antigen-based human coronavirus (HCoV) vaccines with the potential to serve as a supplementary weapon to combat emerging SARS-CoV-2 variants with resistance to nAbs are urgently needed. Alternatively, T cell antigens could also be included in B cell antigen-based vaccines to strengthen vaccine efficacy. This review summarizes recent advancements in research and development of vaccines containing T cell antigens or both T and B cell antigens derived from proteins of SARS-CoV-2 variants and/or other HCoVs based on different vaccine platforms.
Collapse
Affiliation(s)
- Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94115, USA
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Ministry of Health/Chinese Academy of Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
42
|
Khalid K, Lim HX, Hwang JS, Poh CL. The Development of Epitope-Based Recombinant Protein Vaccines against SARS-CoV-2. AAPS J 2024; 26:93. [PMID: 39138686 DOI: 10.1208/s12248-024-00963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
The COVID-19 pandemic continues to cause infections and deaths, which are attributable to the SARS-CoV-2 Omicron variant of concern (VOC). Moderna's response to the declining protective efficacies of current SARS-CoV-2 vaccines against Omicron was to develop a bivalent booster vaccine based on the Spike (S) protein from the Wuhan and Omicron BA.4/BA.5 strains. This approach, while commendable, is unfeasible in light of rapidly emerging mutated viral strains. PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2024. Articles included focused on specific themes such as the clinical history of recombinant protein vaccine development against different diseases, including COVID-19, the production of recombinant protein vaccines using different host expression systems, aspects to consider in recombinant protein vaccine development, and overcoming problems associated with large-scale recombinant protein vaccine production. In silico approaches to identify conserved and immunogenic epitopes could provide broad protection against SARS-CoV-2 VOCs but require validation in animal models. The recombinant protein vaccine development platform has shown a successful history in clinical development. Recombinant protein vaccines incorporating conserved epitopes may utilize a number of expression systems, such as yeast (Saccharomyces cerevisiae), baculovirus-insect cells (Sf9 cells), and Escherichia coli (E. coli). Current multi-epitope subunit vaccines against SARS-CoV-2 utilizing synthetic peptides are unfeasible for large-scale immunizations. Recombinant protein vaccines based on conserved and immunogenic proteins produced using E. coli offer high production yields, convenient purification, and cost-effective production of large-scale vaccine quantities capable of protecting against the SARS-CoV-2 D614G strain and its VOCs.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Hui Xuan Lim
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - Chit Laa Poh
- ALPS Global Holding Berhad, 1 Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia.
| |
Collapse
|
43
|
Harrison K, Carlos PW, Ullrich S, Aggarwal A, Johansen-Leete J, Sasi VM, Barter I, Maxwell JWC, Bedding MJ, Larance M, Turville S, Norman A, Jackson CJ, Nitsche C, Payne RJ. Exploiting Hydrophobic Amino Acid Scanning to Develop Cyclic Peptide Inhibitors of the SARS-CoV-2 Main Protease with Antiviral Activity. Chemistry 2024; 30:e202401606. [PMID: 38801240 DOI: 10.1002/chem.202401606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The development of novel antivirals is crucial not only for managing current COVID-19 infections but for addressing potential future zoonotic outbreaks. SARS-CoV-2 main protease (Mpro) is vital for viral replication and viability and therefore serves as an attractive target for antiviral intervention. Herein, we report the optimization of a cyclic peptide inhibitor that emerged from an mRNA display selection against the SARS-CoV-2 Mpro to enhance its cell permeability and in vitro antiviral activity. By identifying mutation-tolerant amino acid residues within the peptide sequence, we describe the development of a second-generation Mpro inhibitor bearing five cyclohexylalanine residues. This cyclic peptide analogue exhibited significantly improved cell permeability and antiviral activity compared to the parent peptide. This approach highlights the importance of optimizing cyclic peptide hits for activity against intracellular targets such as the SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Katriona Harrison
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Patrick W Carlos
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jason Johansen-Leete
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Vishnu Mini Sasi
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Isabel Barter
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Max J Bedding
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
44
|
Su CI, Chuang ZS, Shie CT, Wang HI, Kao YT, Yu CY. A cis-acting ligase ribozyme generates circular RNA in vitro for ectopic protein functioning. Nat Commun 2024; 15:6607. [PMID: 39098891 PMCID: PMC11298514 DOI: 10.1038/s41467-024-51044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Delivering synthetic protein-coding RNA bypassing the DNA stage for ectopic protein functioning is a novel therapeutic strategy. Joining the linear RNA head-to-tail covalently could be a state-of-the-art strategy for functioning longer. Here we enroll a cis-acting ligase ribozyme (RzL) to generate circular RNA (circRNA) in vitro for ectopic protein expression. The RNA circularization is confirmed by masking the 5' phosphate group, resisting exonuclease RNase R digestion, failing for further tailing, and sequencing the RT-PCR products of the joined region. Interestingly, one internal ribosome entry site (IRES) renders circRNA translation competent, but two IRES in cis, not trans, hamper the translation. The circRNA with highly potent in translation is conferred for antiviral functioning. Accompanying specific guided RNA, a circRNA expressing ribonuclease Cas13 shows excellent potential against the corresponding RNA virus, further extending circRNA functioning in its growing list of applications.
Collapse
Affiliation(s)
- Chan-I Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Zih-Shiuan Chuang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
- National Infectious Diseases Bank, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chi-Ting Shie
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Hsin-I Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Yu-Ting Kao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan.
- National Infectious Diseases Bank, National Health Research Institutes, Miaoli, 350, Taiwan.
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
45
|
Colom MS, Vučinić J, Adolf‐Bryfogle J, Bowman JW, Verel S, Moczygemba I, Schiex T, Simoncini D, Bahl CD. Complete combinatorial mutational enumeration of a protein functional site enables sequence-landscape mapping and identifies highly-mutated variants that retain activity. Protein Sci 2024; 33:e5109. [PMID: 38989563 PMCID: PMC11237556 DOI: 10.1002/pro.5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Understanding how proteins evolve under selective pressure is a longstanding challenge. The immensity of the search space has limited efforts to systematically evaluate the impact of multiple simultaneous mutations, so mutations have typically been assessed individually. However, epistasis, or the way in which mutations interact, prevents accurate prediction of combinatorial mutations based on measurements of individual mutations. Here, we use artificial intelligence to define the entire functional sequence landscape of a protein binding site in silico, and we call this approach Complete Combinatorial Mutational Enumeration (CCME). By leveraging CCME, we are able to construct a comprehensive map of the evolutionary connectivity within this functional sequence landscape. As a proof of concept, we applied CCME to the ACE2 binding site of the SARS-CoV-2 spike protein receptor binding domain. We selected representative variants from across the functional sequence landscape for testing in the laboratory. We identified variants that retained functionality to bind ACE2 despite changing over 40% of evaluated residue positions, and the variants now escape binding and neutralization by monoclonal antibodies. This work represents a crucial initial stride toward achieving precise predictions of pathogen evolution, opening avenues for proactive mitigation.
Collapse
Affiliation(s)
- Mireia Solà Colom
- Institute for Protein InnovationBostonMassachusettsUSA
- Division of Hematology/OncologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Present address:
AI ProteinsBostonMassachusettsUSA
| | - Jelena Vučinić
- Université Fédérale de Toulouse, IRIT UMR 5505, ANITI, Université Toulouse CapitoleToulouseFrance
| | - Jared Adolf‐Bryfogle
- Institute for Protein InnovationBostonMassachusettsUSA
- Division of Hematology/OncologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - James W. Bowman
- Institute for Protein InnovationBostonMassachusettsUSA
- Division of Hematology/OncologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Present address:
AI ProteinsBostonMassachusettsUSA
| | | | - Isabelle Moczygemba
- Institute for Protein InnovationBostonMassachusettsUSA
- Division of Hematology/OncologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Present address:
AI ProteinsBostonMassachusettsUSA
| | - Thomas Schiex
- MIAT, Université Fédérale de Toulouse, ANITI, INRAE UR 875ToulouseFrance
| | - David Simoncini
- Université Fédérale de Toulouse, IRIT UMR 5505, ANITI, Université Toulouse CapitoleToulouseFrance
| | - Christopher D. Bahl
- Institute for Protein InnovationBostonMassachusettsUSA
- Division of Hematology/OncologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Present address:
AI ProteinsBostonMassachusettsUSA
| |
Collapse
|
46
|
Yoosefian M, Sabaghian H, Kermanshahaninezhad SO. The interplay of COVID-19 and HIV: A comprehensive review of clinical outcomes and demographic associations. J Natl Med Assoc 2024; 116:362-377. [PMID: 39138033 DOI: 10.1016/j.jnma.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
AIM The COVID-19 pandemic posed unprecedented challenges to global healthcare, particularly affecting respiratory systems and impacting individuals with pre-existing conditions, including those with HIV. METHOD HIV's impact on clinical outcomes was assessed in four Statistical Population, synchronized with control groups. The study also explored the influence of SARS-CoV-2 and COVID-19 treatments. Ultimately, a comparison was drawn between patients with and without HIV. RESULTS In the first Statistical Population of COVID-19 patients with HIV, predominantly African-American men with risk factors such as obesity, hypertension, and diabetes were present. Diagnostic results showed no significant differences between the two groups. In the second Statistical Population, half of the patients were asymptomatic, with diagnoses mostly based on clinical symptoms; 6 individuals developed severe respiratory illness. In the third Statistical Population, 81 % of patients were treated at home, and all hospitalized patients had CD4+ lymphocyte counts above 350 cells/mm³. Most patients improved, with fatalities attributed to comorbid conditions. In the fourth Statistical Population, HIV patients were less likely to benefit from antimicrobial drugs, and mortality was higher, though synchronized analysis did not reveal significant differences. CONCLUSION HIV patients are more susceptible to COVID-19, but the direct impact is less significant than other factors. Additional factors contribute to increased risk, while early improvement, accurate diagnosis, and intensive care reduce fatalities.
Collapse
Affiliation(s)
- Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran; Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran.
| | - Hanieh Sabaghian
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | | |
Collapse
|
47
|
Bouazzaoui A, Abdellatif AA. Vaccine delivery systems and administration routes: Advanced biotechnological techniques to improve the immunization efficacy. Vaccine X 2024; 19:100500. [PMID: 38873639 PMCID: PMC11170481 DOI: 10.1016/j.jvacx.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Since the first use of vaccine tell the last COVID-19 pandemic caused by spread of SARS-CoV-2 worldwide, the use of advanced biotechnological techniques has accelerated the development of different types and methods for immunization. The last pandemic showed that the nucleic acid-based vaccine, especially mRNA, has an advantage in terms of development time; however, it showed a very critical drawback namely, the higher costs when compared to other strategies, and its inability to protect against new variants. This showed the need of more improvement to reach a better delivery and efficacy. In this review we will describe different vaccine delivery systems including, the most used viral vector, and also variable strategies for delivering of nucleic acid-based vaccines especially lipid-based nanoparticles formulation, polymersomes, electroporation and also the new powerful tools for the delivery of mRNA, which is based on the use of cell-penetrating peptides (CPPs). Additionally, we will also discuss the main challenges associated with each system. Finlay, the efficacy and safety of the vaccines depends not only on the formulations and delivery systems, but also the dosage and route of administration are also important players, therefore we will see the different routes for the vaccine administration including traditionally routes (intramuscular, Transdermal, subcutaneous), oral inhalation or via nasal mucosa, and will describe the advantages and disadvantage of each administration route.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ahmed A.H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Qassim, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| |
Collapse
|
48
|
Luo PK, Ho HM, Chiang MC, Chu LA, Chuang YH, Lyu PC, Hu IC, Chang WA, Peng SY, Jayakumar J, Chen HL, Huang MH, Sung HW. pH-Responsive β-Glucans-Complexed mRNA in LNPs as an Oral Vaccine for Enhancing Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404830. [PMID: 38895941 DOI: 10.1002/adma.202404830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Indexed: 06/21/2024]
Abstract
mRNA vaccines for cancer immunotherapy are commonly delivered using lipid nanoparticles (LNPs), which, when administered intravenously, may accumulate in the liver, potentially limiting their therapeutic efficacy. To overcome this challenge, the study introduces an oral mRNA vaccine formulation tailored for efficient uptake by immune cells in the gastrointestinal (GI) tract, known for its high concentration of immune cells, including dendritic cells (DCs). This formulation comprises mRNA complexed with β-glucans (βGlus), a potential adjuvant for vaccines, encapsulated within LNPs (βGlus/mRNA@LNPs). The βGlus/mRNA complexes within the small compartments of LNPs demonstrate a distinctive ability to partially dissociate and reassociate, responding to pH changes, effectively shielding mRNA from degradation in the harsh GI environment. Upon oral administration to tumor-bearing mice, βGlus/mRNA@LNPs are effectively taken up by intestinal DCs and local nonimmune cells, bypassing potential liver accumulation. This initiates antigen-specific immune responses through successful mRNA translation, followed by drainage into the mesenteric lymph nodes to stimulate T cells and trigger specific adaptive immune responses, ultimately enhancing antitumor effects. Importantly, the vaccine demonstrates safety, with no significant inflammatory reactions observed. In conclusion, the potential of oral βGlus/mRNA@LNPs delivery presents a promising avenue in cancer immunotherapy, offering needle-free and user-friendly administration for widespread adoption and self-administration.
Collapse
Affiliation(s)
- Po-Kai Luo
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350401, Taiwan ROC
| | - Min-Chun Chiang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Ya-Han Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - I-Chen Hu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Wan-An Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Sheng-Yao Peng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Jayachandran Jayakumar
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350401, Taiwan ROC
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan ROC
| |
Collapse
|
49
|
Ding X, Sun M, Guo F, Qian X, Yuan H, Lou W, Wang Q, Lei X, Zeng W. Picrasidine S Induces cGAS-Mediated Cellular Immune Response as a Novel Vaccine Adjuvant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310108. [PMID: 38900071 PMCID: PMC11348072 DOI: 10.1002/advs.202310108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Indexed: 06/21/2024]
Abstract
New adjuvants that trigger cellular immune responses are urgently needed for the effective development of cancer and virus vaccines. Motivated by recent discoveries that show activation of type I interferon (IFN-I) signaling boosts T cell immunity, this study proposes that targeting this pathway can be a strategic approach to identify novel vaccine adjuvants. Consequently, a comprehensive chemical screening of 6,800 small molecules is performed, which results in the discovery of the natural compound picrasidine S (PS) as an IFN-I inducer. Further analysis reveals that PS acts as a powerful adjuvant, significantly enhancing both humoral and cellular immune responses. At the molecular level, PS initiates the activation of the cGAS-IFN-I pathway, leading to an enhanced T cell response. PS vaccination notably increases the population of CD8+ central memory (TCM)-like cells and boosts the CD8+ T cell-mediated anti-tumor immune response. Thus, this study identifies PS as a promising candidate for developing vaccine adjuvants in cancer prevention.
Collapse
Affiliation(s)
- Xiaofan Ding
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Mengxue Sun
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Haoyu Yuan
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Wenjiao Lou
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Qixuan Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute of Cancer ResearchShen Zhen Bay LaboratoryShen Zhen518107China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciencesand Beijing Key Laboratory for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineTaiyuan030001China
- Tsinghua‐Peking Center for Life SciencesBeijing100084China
| |
Collapse
|
50
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|