1
|
Rükün T, Ercan N, Canko E, Avşar B, Dyer AG, Garcia JE, Çakmak İ, Mayack C. Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178460. [PMID: 39799650 DOI: 10.1016/j.scitotenv.2025.178460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward. We found that for doses higher than 4 % of LD50 value, the foraging honey bees no longer preferentially visited the yellow flowers within the flower patch and instead, we suspect, reverted back to baseline foraging preferences, with a complete loss of the yellow preference. Our honey bee colour vision modelling indicates that discriminating the yellow colour from the rest should have been easy cognitive task. Pesticide exposure also resulted in a significant increase in Lop1, UVop, and Blop, and a decrease in CaMKII and CREB gene expression. Our results suggest that memory loss is the most plausible mechanism to explain the alteration of bee foraging colour preference. Across bees, colour vision is highly conserved and is essential for efficient pollination services. Therefore, our findings have important implications for ecosystem health and agricultural services world-wide.
Collapse
Affiliation(s)
- Tuğçe Rükün
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye
| | - Neslim Ercan
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye
| | - Ece Canko
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye
| | - Bihter Avşar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye
| | - Adrian G Dyer
- School of Media and Communication, Royal Melbourne Institute of Technology, Melbourne, Australia
| | - Jair E Garcia
- School of Media and Communication, Royal Melbourne Institute of Technology, Melbourne, Australia
| | - İbrahim Çakmak
- Beekeeping Development-Application and Research Center, Bursa Uludağ University, Bursa, Türkiye
| | - Christopher Mayack
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye; USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Honert C, Mauser K, Jäger U, Brühl CA. Exposure of insects to current use pesticide residues in soil and vegetation along spatial and temporal distribution in agricultural sites. Sci Rep 2025; 15:1817. [PMID: 39838035 PMCID: PMC11751026 DOI: 10.1038/s41598-024-84811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
Current use pesticides (CUPs) are recognised as the largest deliberate input of bioactive substances into terrestrial ecosystems and one of the main factors responsible for the current decline in insects in agricultural areas. To quantify seasonal insect exposure in the landscape at a regional scale (Rhineland-Palatine in Germany), we analysed the presence of multiple (93) active ingredients in CUPs across three different agricultural cultivation types (with each three fields: arable, vegetable, viticulture) and neighbouring meadows. We collected monthly soil and vegetation samples over a year. A total of 71 CUP residues in different mixtures was detected, with up to 28 CUPs in soil and 25 in vegetation in single samples. The concentrations and numbers of CUPs in vegetation fluctuated over the sampling period, peaking in the summer months in the vegetation but remaining almost constant in topsoil. We calculated in-field additive risks for earthworms, collembola, and soil-living wild bees using the measured soil concentrations of CUPs. Our results call for the need to assess CUP mixture risks at low concentrations, as multiple residues are chronically present in agricultural areas. Since this risk is not addressed in regulation, we emphasise the urgent need to implement global pesticide reduction targets.
Collapse
Affiliation(s)
- Carolina Honert
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany.
| | - Ken Mauser
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| | - Ursel Jäger
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
3
|
Zou R, van Dam R, Smits N, Beij E, Bovee T, de Graaf DC, Guo Y, Peters J. Discovery of multiple bee-hazardous pesticides in ornamental plants via the Bee-Plex multi-target microsphere screening method. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136556. [PMID: 39591785 DOI: 10.1016/j.jhazmat.2024.136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Exposure to pesticides is one of the main drivers of global bee decline. However, the occurrence of pesticides in bee-attracting crops remains underexposed due to the lack of efficient on-site screening approaches for multi-analyte monitoring. Utilizing color-encoded superparamagnetic microspheres, we constructed a portable 8-plex indirect competitive microsphere-based immunoassay for the simultaneous determination of multiple bee-hazardous residues (Bee-Plex). Through a single measurement within 40 min, Bee-Plex exhibited high sensitivities with IC50values of 0.04, 0.08, 0.14, 0.15, 0.78, 0.86, 7.72, and 8.79 ng/mL for imidacloprid, parathion, fipronil, emamectin, carbofuran, chlorpyrifos, fenpropathrin and carbaryl, respectively. Moreover, the implementation of multiple broad-specific antibodies enables a wide-range screening profile for 30 pesticides and pesticide metabolites, detecting 6 neonicotinoids, 6 N-methyl carbamates 6 organophosphates, 5 avermectins, 5 pyrethroids and 2 phenylpyrazoles. The combination of Bee-Plex screening (93 % accuracy) and LC-MS/MS confirmatory analysis revealed contaminations of neonicotinoids (100 %) and avermectins (70 %) in roses, with occurrence frequencies of 79 %, 79 %, 21 %, 21 %, 7 %, and 7 % for imidacloprid, acetamiprid, clothianidin, thiacloprid, imidaclothiz, and nitenpyram, respectively. Above all, this study offers a powerful analytical tool for rapid screening of multiple bee-hazardous pesticides, offering new insights in the occurrence of multi-pesticide contamination in ornamental plants.
Collapse
Affiliation(s)
- Rubing Zou
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands; Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Ruud van Dam
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Nathalie Smits
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Erik Beij
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Toine Bovee
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Dirk C de Graaf
- Ghent University, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China.
| | - Jeroen Peters
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Schuhmann A, Scheiner R. Mixture of neonicotinoid and fungicide affects foraging activity of honeybees. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104613. [PMID: 39674529 DOI: 10.1016/j.etap.2024.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
The use of plant protection products (PPPs) is a major factor contributing to global insect decline. We here use the honeybee (Apis mellifera) as a model to study combined effects of the last neonicotinoid in the EU (acetamiprid) and different fungicides on live-long foraging flights using radio frequency identification. The mixture of the sterol-biosynthesis-inhibiting fungicide difenoconazole and the insecticide acetamiprid significantly reduced the number of foraging trips per day compared to the control and each PPP alone, while a mixture of the insecticide with the non-sterol-biosynthesis inhibiting fungicide boscalid/dimoxystrobin did not affect behaviour. This potential synergistic effect of the fungicide/insecticide mixture supports the notion that some fungicides can enhance the effect of insecticides, which did not lead to significant changes in behaviour when applied on their own. Our results emphasize the need for more studies on the interaction of different PPPs.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ricarda Scheiner
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
5
|
Thill A, Cammaerts MC, Balmori A. Biological effects of electromagnetic fields on insects: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:853-869. [PMID: 37990587 DOI: 10.1515/reveh-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/04/2023] [Indexed: 11/23/2023]
Abstract
Worldwide, insects are declining at an alarming rate. Among other causes, the use of pesticides and modern agricultural practices play a major role in this. Cumulative effects of multiple low-dose toxins and the distribution of toxicants in nature have only started to be investigated in a methodical way. Existing research indicates another factor of anthropogenic origin that could have subtle harmful effects: the increasingly frequent use of electromagnetic fields (EMF) from man-made technologies. This systematic review summarizes the results of studies investigating the toxicity of electromagnetic fields in insects. The main objective of this review is to weigh the evidence regarding detrimental effects on insects from the increasing technological infrastructure, with a particular focus on power lines and the cellular network. The next generation of mobile communication technologies, 5G, is being deployed - without having been tested in respect of potential toxic effects. With humanity's quest for pervasiveness of technology, even modest effects of electromagnetic fields on organisms could eventually reach a saturation level that can no longer be ignored. An overview of reported effects and biological mechanisms of exposure to electromagnetic fields, which addresses new findings in cell biology, is included. Biological effects of non-thermal EMF on insects are clearly proven in the laboratory, but only partly in the field, thus the wider ecological implications are still unknown. There is a need for more field studies, but extrapolating from the laboratory, as is common practice in ecotoxicology, already warrants increasing the threat level of environmental EMF impact on insects.
Collapse
|
6
|
Bruckner S, Straub L, Villamar-Bouza L, Beneduci ZJ, Neumann P, Williams GR. Life stage dependent effects of neonicotinoid exposure on honey bee hypopharyngeal gland development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117337. [PMID: 39561561 DOI: 10.1016/j.ecoenv.2024.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Functional Apis mellifera honey bee colonies rely on collaborative brood care typically performed by nurse bees with well-developed hypopharyngeal glands (HPGs). Neonicotinoids, widely used insecticides, have been shown to negatively affect HPG development when worker bees were exposed to field-realistic concentrations either as brood or adults. To date, it is unknown whether timing of neonicotinoid exposure influences the severity of these observed negative effects on HPGs. To address this, we conducted a fully-crossed field experiment assessing potential effects of a neonicotinoid blend (clothianidin and thiamethoxam combined) on worker HPGs when exposed during different life stages. We found that neonicotinoid exposure during the brood stage, but not the adult stage, significantly influenced subsequent HPG development. Since HPG morphogenesis begins during the brood stage, neonicotinoid-induced stress possibly impaired this process, resulting in smaller glands once these individuals became adult nurses. Because HPG productivity is correlated to their size, smaller glands as a result of neonicotinoid exposure could negatively affect colony functionality.
Collapse
Affiliation(s)
- Selina Bruckner
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA; Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| | - Laura Villamar-Bouza
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; European Food Safety Authority (EFSA), Pesticide Unit, Parma, Italy
| | - Zachary J Beneduci
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Swiss Bee Research Center, Agroscope, Bern, Switzerland.
| | - Geoffrey R Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA; Swiss Bee Research Center, Agroscope, Bern, Switzerland.
| |
Collapse
|
7
|
Basu P, Ngo HT, Aizen MA, Garibaldi LA, Gemmill-Herren B, Imperatriz-Fonseca V, Klein AM, Potts SG, Seymour CL, Vanbergen AJ. Pesticide impacts on insect pollinators: Current knowledge and future research challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176656. [PMID: 39366587 DOI: 10.1016/j.scitotenv.2024.176656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
With the need to intensify agriculture to meet growing food demand, there has been significant rise in pesticide use to protect crops, but at different rates in different world regions. In 2016, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) global assessment on pollinators, pollination and food production identified pesticides as one of the major drivers of pollinator decline. This assessment highlighted that studies on the effects of pesticides on pollinating insects have been limited to only a few species, primarily from developed countries. Given the worldwide variation in the scale of intensive agricultural practices, pesticide application intensities are likely to vary regionally and consequently the associated risks for insect pollinators. We provide the first long-term, global analysis of inter-regional trends in the use of different classes of pesticide between 1995 and 2020 (FAOSTAT) and a review of literature since the IPBES pollination assessment (2016). All three pesticide classes use rates varied greatly with some countries seeing increased use by 3000 to 4000 % between 1995 and 2020, while for most countries, growth roughly doubled. We present forecast models to predict regional trends of different pesticides up to 2030. Use of all three pesticide classes is to increase in Africa and South America. Herbicide use is to increase in North America and Central Asia. Fungicide use is to increase across all Asian regions. In each of the respective regions, we also examined the number of studies since 2016 in relation to pesticide use trends over the past twenty-five years. Additionally, we present a comprehensive update on the status of knowledge on pesticide impacts on different pollinating insects from literature published during 2016-2022. Finally, we outline several research challenges and knowledge gaps with respect to pesticides and highlight some regional and international conservation efforts and initiatives that address pesticide reduction and/or elimination.
Collapse
Affiliation(s)
- P Basu
- Department of Zoology, University of Calcutta, Kolkata, India.
| | - H T Ngo
- Food and Agriculture Organization of the United Nations (UN FAO), Regional Office for Latin America and the Caribbean (RLC), Región Metropolitana, Santiago, Chile
| | - M A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - L A Garibaldi
- National University of Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina; National Council of Scientific and Technical Research, Institute of Research in Natural Resources, Agroecology and Rural Development, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - A M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | | | - C L Seymour
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, South Africa; FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - A J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
8
|
Blanco-Moreno JM, Caballero-López B, Cook SM, Foster SP, Frydryszak D, Laskowski R, Ortega-Ramos P, Rasko M, Reichardt P, Sousa JP, Sowa G, Śliwińska-Grochot R, Winkler J. Species Sensitivity Distribution (SSD) profiles towards λ-cyhalothrin for key ecosystem service provider (ESP) species across five European countries representing different pedoclimatic zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176412. [PMID: 39322074 DOI: 10.1016/j.scitotenv.2024.176412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Although our understanding of the dramatic worldwide loss of biodiversity in recent decades is far from adequate, one of the main factors in areas dominated by agriculture is undoubtedly the widespread use of synthetic pesticides. Unfortunately, the ecological risk assessment (EcoRA) for pesticides is based on a few single-species bioassays which do not allow for the evaluation of risks to whole communities. Here we present the results of an experimental assessment of the risk to the ecosystem service provider (ESP) communities - pest control agents - from exposure to the commonly used pyrethroid insecticide, λ-cyhalothrin. The study was performed in five European countries (Germany, Poland, Portugal, Spain, United Kingdom) representing different pedoclimatic zones. Representatives of the most common species of the ESP communities in each country were exposed in a standardized insecticide-coated glass vials bioassay to five doses of λ-cyhalothrin: 0.8 %, 4 %, 20 %, 100 %, and 200 % of the recommended field dose (RFD) plus an untreated control. Based on the calculated LD50s, species sensitivity distributions (SSDs) were estimated for each country and on combined data. In all five countries, the estimated hazardous concentration for 5 % of the species (HD5) was between 0.23 % and 1.67 % RFD, with HD5 = 0.44 % RFD based on combined data. At the RFD = 7.5 g a.i./ha (active ingredient per hectare), the predicted affected fraction of the ESP communities was between 96.4 % and 99.9 % of the species (98.5 % for combined data). The results indicate an extremely high risk to ESP communities across Europe associated with the use of λ-cyhalothrin at the recommended doses when these species are exposed to insecticide treatment. We recommend that EcoRA should include multi-species approaches, such as SSD, to better protect entire ESP communities from the negative impacts of pesticides.
Collapse
Affiliation(s)
- José M Blanco-Moreno
- Agroecology Group, Botany and Mycology Unit, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Berta Caballero-López
- Department of Arthropods, Natural Sciences Museum of Barcelona, Castell dels Tres Dragons, Picasso Av., 08003 Barcelona, Spain.
| | - Samantha M Cook
- Protecting Crops & Environment, Rothamsted Research, Harpenden, UK.
| | - Stephen P Foster
- Protecting Crops & Environment, Rothamsted Research, Harpenden, UK.
| | - Danuta Frydryszak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | - Mykola Rasko
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Portugal
| | - Pauline Reichardt
- Department of Organic Agriculture, Agricultural and Biosystems Engineering, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - José Paulo Sousa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Portugal.
| | - Grzegorz Sowa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Renata Śliwińska-Grochot
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Julian Winkler
- Department of Organic Agriculture, Agricultural and Biosystems Engineering, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany.
| |
Collapse
|
9
|
Siviter H, DeVore J, Gray LK, Ivers NA, Lopez EA, Riddington IM, Stuligross C, Jha S, Muth F. A novel pesticide has lethal consequences for an important pollinator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175935. [PMID: 39218110 DOI: 10.1016/j.scitotenv.2024.175935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Wild bees pollinate crops and wildflowers where they are frequently exposed to pesticides. Neonicotinoids are the most commonly used insecticide globally, but restrictions on their use and rising pest resistance have increased the demand for alternative pesticides. Flupyradifurone is a novel insecticide that has been licenced globally for use on bee-visited crops. Here, in a semi-field experiment, we exposed solitary bees (Osmia lignaria) to a commercial pesticide formulation (Sivanto Prime) containing flupyradifurone at label-recommended rates. We originally designed the experiment to examine sublethal effects, but contrary to our expectations, 100 % of bees released into pesticide-treated cages died within 3 days of exposure, compared to 0 % in control plots. Bees exposed to flupyradifurone a few days after the initial application survived but endured prolonged sublethal effects, including lower nesting success, impairment to foraging efficiency, and higher mortality. These results demonstrate that exposure to this novel insecticide poses significant threats to solitary bees and add to a growing body of evidence indicating that this pesticide can have negative impacts on wild bees at field-realistic concentrations. In the short-term, we recommend that commercial formulations containing flupyradifurone should be restricted to non-flowering crops while a reassessment of its safety can be conducted. In the long-term, environmental risk assessors should continue to develop risk assessments that are truly holistic and incorporate the ecological and life history traits of multiple pollinator species.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; School of Biological Sciences, University of Bristol, 24, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Jennie DeVore
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Lily K Gray
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Nicholas A Ivers
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Entomology, Pennsylvania State University, 547 ASI Bldg., University Park, PA 16802, USA
| | - Elizabeth A Lopez
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Ian M Riddington
- Department of Chemistry, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Clara Stuligross
- Department of Entomology and Nematology, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA; Department of Entomology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Lady Bird Johnson Wildflower Center, Austin, TX 78739, USA
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neurobiology, Physiology, and Behavior, 196 Briggs Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|
10
|
Nebauer CA, Prucker P, Ruedenauer FA, Kollmann J, Leonhardt SD. Bumblebees under stress: Interacting effects of pesticides and heatwaves on colony development and longevity. iScience 2024; 27:111050. [PMID: 39559759 PMCID: PMC11570329 DOI: 10.1016/j.isci.2024.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Pollinator decline is linked to intensified agricultural practices, pathogens, climate change, and several other factors. We investigated the combined impact of heat and pesticide stress on food consumption, survival, and reproductive fitness of bumble bees. As climate change is expected to intensify heatwaves, we simulated a present-day and a future heatwave scenario (as expected in 50 years). In both scenarios, we exposed microcolonies to three widely used pesticides: azoxystrobin (fungicide), flupyradifurone, and sulfoxaflor (both insecticides)-mixed into pollen and nectar in field-realistic concentrations. We found that bees always consumed the least of sulfoxaflor-treated food, whereas consumption did not differ between other treatments or heatwave scenarios. Surprisingly, pesticide-stressed colonies performed slightly better in the future heatwave scenario in terms of reproductive fitness and survival. Sulfoxaflor consistently had the strongest negative effect, reducing survival rates, brood development, and food consumption, although effects were less severe in the future heatwave scenario.
Collapse
Affiliation(s)
- Carmen A. Nebauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Paula Prucker
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Fabian A. Ruedenauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Johannes Kollmann
- Restoration Ecology, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Sara D. Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Willis Chan DS, Rondeau S. Understanding and comparing relative pesticide risk among North American wild bees from their association with agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175378. [PMID: 39122043 DOI: 10.1016/j.scitotenv.2024.175378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In North America, approximately 21 % (739 species) of the total wild bee diversity is known to be associated with crops, with bee species varying in the extent of this association. While current evaluations of pesticide effects on bees primarily focus on a limited subset of species, a new focus is needed to ensure comprehensive protection of all wild bees in agricultural contexts. This study introduces a novel approach to characterize and compare the relative potential pesticide risk for wild bee species of their association with crops. Using intrinsic bee vulnerability traits and extrinsic factors like crop toxic loads and association strength, we calculated Bee-Crop Risk Scores for 594 wild bee species, identifying those experiencing the highest potential risk from pesticide exposure in North American agroecosystems. We discuss the influence of intrinsic and extrinsic factors on the relative potential risk calculated and outline avenues for refining our approach. As most species facing the highest potential risk from pesticide exposure across North America are ground-nesters, our study suggests that species (e.g., Osmia spp., Megachile spp.) commonly proposed as models for pesticide risk assessments may not accurately represent risk for those bee species facing the highest potential risk in agricultural contexts.
Collapse
Affiliation(s)
- D Susan Willis Chan
- School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| | - Sabrina Rondeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Esquivel-Román A, Baena-Díaz F, Bustos-Segura C, De Gasperin O, González-Tokman D. Synergistic effects of elevated temperature with pesticides on reproduction, development and survival of dung beetles. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02825-0. [PMID: 39521745 DOI: 10.1007/s10646-024-02825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
In times of global change, high temperatures can increase the negative effects of pesticides and other stressors. The goal of this study was to evaluate, under controlled laboratory conditions, the effect of a moderate increase in temperature in combination with ivermectin (an antiparasitic medication used in cattle that is excreted in dung), an herbicide, and parasitic pressure, on the reproductive success, development time and adult survival of dung beetles Euoniticellus intermedius. Whereas high temperature increased the number and proportion of emerged offspring, it had synergistic negative effects in combination with the ivermectin, herbicide and parasite treatments. Moreover, high temperature in combination with ivermectin and with parasitism caused a synergistic increase of adult offspring mortality and, in combination with the herbicide, it synergistically accelerated development. These results indicate that high temperatures can enhance the negative effects of other stressors and act synergistically with them, harming dung beetles, a group with high ecological and economic value in natural and productive ecosystems. Although adult sex ratio was not affected by experimental treatments, contrasting responses were found between males and females, supporting the idea that both sexes use different physiological mechanisms to cope with the same environmental challenges. The effects that combined stressors have on insects deepen our understanding of why we are losing beneficial species and their functions in times of drastic environmental changes.
Collapse
Affiliation(s)
| | - Fernanda Baena-Díaz
- Red de Ecoetología, Instituto de Ecología, A.C. El Haya, Xalapa, Veracruz, Mexico
| | - Carlos Bustos-Segura
- University of Neuchâtel, Neuchâtel, Switzerland
- Sensory Ecology Department, Institute of Ecology and Environmental Sciences of Paris, INRAE, Versailles, France
| | - Ornela De Gasperin
- Red de Ecoetología, Instituto de Ecología, A.C. El Haya, Xalapa, Veracruz, Mexico
- Laboratorio Nacional CONAHCyT de Biología del Cambio Climático (LNCBioCC), Benito Juárez, México
| | | |
Collapse
|
13
|
Christen V, Jeker L, Lim KS, Menz MHM, Straub L. Insecticide exposure alters flight-dependent gene-expression in honey bees, Apis mellifera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177166. [PMID: 39471959 DOI: 10.1016/j.scitotenv.2024.177166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The increased reports of wild bee declines and annual losses of managed bees pose a significant threat to biodiversity and agricultural productivity. While these losses and declines are likely driven by various factors, the exposure of bees to agrochemicals has raised significant concern due to their ubiquitous use and potential adverse effects. Despite numerous studies suggesting neonicotinoids can negatively affect bees at the behavioral and molecular level, data linking these two factors remains sparse. Here we provide data on the impact of an acute dose of the neonicotinoid thiamethoxam on the flight performance and molecular transcription profiles of foraging honey bees (Apis mellifera). Using a controlled experimental design with tethered flight mills, we measured flight distance, duration, and speed, alongside the expression of genes involved in energy metabolism, hormone regulation, and biosynthesis. Acute thiamethoxam exposure resulted in hyperactive flight behavior but led to significant dysregulation of genes associated with oxidative phosphorylation, indicating potential disruptions in cellular energy production. These molecular changes were particularly evident when bees engaged in flight activities, suggesting that the combined stress of pesticide exposure and physical exertion exacerbates negative outcomes. Our study provides new insights into the molecular mechanisms underlying neonicotinoid-induced impairments in bee physiology that can help understand the potential long-term consequences of xenobiotic exposure on the foraging abilities of bees and ultimately fitness.
Collapse
Affiliation(s)
- Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| | - Lukas Jeker
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| | - Ka S Lim
- Computational and Analytical Science, Rothamsted Research, Harpenden ALF 2JQ, UK
| | - Myles H M Menz
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia; Max Planck Institute of Animal Behavior, Department of Migration, Radolfzell, Germany
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| |
Collapse
|
14
|
Gandara L, Jacoby R, Laurent F, Spatuzzi M, Vlachopoulos N, Borst NO, Ekmen G, Potel CM, Garrido-Rodriguez M, Böhmert AL, Misunou N, Bartmanski BJ, Li XC, Kutra D, Hériché JK, Tischer C, Zimmermann-Kogadeeva M, Ingham VA, Savitski MM, Masson JB, Zimmermann M, Crocker J. Pervasive sublethal effects of agrochemicals on insects at environmentally relevant concentrations. Science 2024; 386:446-453. [PMID: 39446951 DOI: 10.1126/science.ado0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Insect biomass is declining globally, likely driven by climate change and pesticide use, yet systematic studies on the effects of various chemicals remain limited. In this work, we used a chemical library of 1024 molecules-covering insecticides, herbicides, fungicides, and plant growth inhibitors-to assess the impact of sublethal pesticide doses on insects. In Drosophila melanogaster, 57% of chemicals affected larval behavior, and a higher proportion compromised long-term survivability. Exposure to sublethal doses also induced widespread changes in the phosphoproteome and changes in development and reproduction. The negative effects of agrochemicals were amplified when the temperature was increased. We observed similar behavioral changes across multiple insect species, including mosquitoes and butterflies. These findings suggest that widespread sublethal pesticide exposure can alter insect behavior and physiology, threatening long-term population survival.
Collapse
Affiliation(s)
| | - Richard Jacoby
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | - Noa O Borst
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gülina Ekmen
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Antonia L Böhmert
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | | | - Xueying C Li
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dominik Kutra
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | - Victoria A Ingham
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Justin Crocker
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
15
|
Bosco L, Yañez O, Schauer A, Maurer C, Cushman SA, Arlettaz R, Jacot A, Seuberlich T, Neumann P, Schläppi D. Landscape structure affects temporal dynamics in the bumble bee virome: Landscape heterogeneity supports colony resilience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174280. [PMID: 38942311 DOI: 10.1016/j.scitotenv.2024.174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Virus spillovers from managed honey bees, Apis mellifera, are thought to contribute to the decline of wild pollinators, including bumble bees. However, data on the impact of such viruses on wild pollinators remain scarce, and the influence of landscape structure on virus dynamics is poorly understood. In this study, we deployed bumble bee colonies in an agricultural landscape and studied changes in the bumble bee virome during field placement under varying habitat composition and configuration using a multiscale analytical framework. We estimated prevalence of viruses and viral loads (i.e. number of viral genomic equivalent copies) in bumble bees before and after placing them in the field using next generation sequencing and quantitative PCR. The results show that viral loads and number of different viruses present increased during placement in the field and that the virus composition of the colonies shifted from an initial dominance of honey bee associated viruses to a higher number (in both viral loads and number of viruses present) of bumble bee associated viruses. Especially DWV-B, typical for honey bees, drastically decreased after the time in the field. Viral loads prior to placing colonies in the field showed no effect on colony development, suggesting low impacts of these viruses in field settings. Notably, we further demonstrate that increased habitat diversity results in a lower number of different viruses present in Bombus colonies, while colonies in areas with well-connected farmland patches decreased in their total viral load after field placement. Our results emphasize the importance of landscape heterogeneity and connectivity for wild pollinator health and that these influences predominate at fine spatial scales.
Collapse
Affiliation(s)
- Laura Bosco
- LUOMUS - Finnish Museum of Natural History, PL 17 - P.O. Box 17, 00014, University of Helsinki, Finland; Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Alexandria Schauer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Corina Maurer
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.
| | - Samuel A Cushman
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Raphaël Arlettaz
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Alain Jacot
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Ornithological Institute, Regional Office Valais, 1950 Sion, Switzerland.
| | - Torsten Seuberlich
- Division of Neurological Sciences, University of Bern, Bern, Switzerland.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Daniel Schläppi
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; School of Biological Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, BS8 1TQ Bristol, United Kingdom.
| |
Collapse
|
16
|
Ding Y, Zheng JT, Wang YN, Wu D, Zhu D. Presence of microplastics enhanced the toxicity of silver nanoparticles on the collembolan Folsomia candida. CHEMOSPHERE 2024; 366:143557. [PMID: 39424157 DOI: 10.1016/j.chemosphere.2024.143557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
There is growing interest in interactions of microplastics (MPs) with other pollutants. However, there is limited understanding of the combined effects of MPs and silver nanoparticles (AgNPs) on nontarget soil organisms. This work aimed to examine the effects of exposure to various AgNPs' concentrations alone (0, 0.1, 1, 10, 100, 1000 mg kg-1, 50 nm) and in combination with polyvinyl chloride microplastics (PVC MPs, 80-250 μm) at 0.1% concentration for 28 days on reproduction, Ag accumulation, C/N ratio, and isotopic fractionation of the standard soil fauna collembolan Folsomia candida. Results showed that compared to the AgNPs exposure alone, the presence of MPs significantly reduced reproduction by 51.4% and markedly increased Ag content in collembolans by 87.7% at 1000 mg kg-1 AgNPs, which evidenced a synergistic effect. Co-exposure to MPs and AgNPs resulted in a noticeable reduction in the C/N ratio in F. candida body tissues by 9.90% and 5.27% at 1 and 10 mg kg-1 AgNPs, respectively, showing additive and synergistic effects. Additionally, this co-exposure altered stable isotope fractionation, with the highest increments of δ15N by 32.3% and inhibition of δ13C by 2.62%, demonstrating the turnover of nutrients shift in the collembolan tissues. Collectively, this study demonstrates that con-current exposure to environmentally relevant concentration of MPs and relatively high doses of AgNPs synergistically induces toxic effects on F. candida, leading to Ag accumulation and reproduction decline. These findings imply that MPs could alter collembolans' responses to AgNPs exposure, potentially enhancing the metal ions' bioavailability in soil environments and posing ecotoxicological threats to soil-dwelling organisms.
Collapse
Affiliation(s)
- Ying Ding
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Jin-Ting Zheng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Ya-Ning Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Bogo G, Caringi V, Albertazzi S, Capano V, Colombo R, Dettori A, Guerra I, Lora G, Bortolotti L, Medrzycki P. Residues of agrochemicals in beebread as an indicator of landscape management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174075. [PMID: 38897461 DOI: 10.1016/j.scitotenv.2024.174075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The agricultural intensification represents a major threat to biodiversity, with negative effects on the ecosystem. In particular, habitat loss and degradation, along with pesticide use have been recognised as primary factors contributing to the actual global decline of pollinators. Here we investigated the quality of agroecosystems in the Emilia-Romagna region (Northern Italy) within the national monitoring project BeeNet. We analysed pesticide residues in 100 samples of beebread collected in 25 BeeNet stations in March and June 2021 and 2022. We evaluated diversity and concentration of these chemicals, their risk (TWC) to honey bees, and their correlation with land use. Overall, in 84 % of the samples we found 63 out of 373 different pesticide residues, >90 % of them belonging to fungicides and insecticides. The TWC exceeded the risk threshold in seven samples (TWCmix), mostly due to only one or two compounds. We also found 15 compounds not approved in the EU as plant protection products (PPPs), raising concerns about illegal use or contamination through beeswax recycling. Samples collected in 2021 and in June presented a significantly higher number of active ingredients and TWC than those collected in 2022 and in March. The TWC calculated on single compounds (TWCcom) exceeded the risk threshold in case of four insecticides, namely carbaryl, fipronil, imidacloprid and thiamethoxam (although each detected in only one sample). Finally, both TWC and number of active ingredients were moderately or highly positively correlated with the percentage of area covered by orchards. Considering that we found on average more than five different molecules per sample, and that we ignored potential synergistic effects, the results of this work highlight the alarming situation regarding pesticide treatments and toxicity risk for bees linked to the current agricultural practices, and the need for implementing sustainable and pollinator-friendly strategies.
Collapse
Affiliation(s)
- Gherardo Bogo
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Valeria Caringi
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy.
| | - Sergio Albertazzi
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Vittorio Capano
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Roberto Colombo
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Amanda Dettori
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Irene Guerra
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Giulia Lora
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Piotr Medrzycki
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| |
Collapse
|
18
|
Nakarada Đ, Glavinić U, Ristanić M, Popović M, Stevanović J, Stanimirović Z, Mojović M. Bridging the buzz: In vivo EPR imaging unlocking the secrets of honey bee health. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:880-884. [PMID: 38924358 DOI: 10.1002/jez.2845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Honey bees play a pivotal role in shaping ecosystems and sustaining human health as both pollinators and producers of health-promoting products. However, honey bee colony mortality is on the rise globally, driven by various factors, including parasites, pesticides, habitat loss, poor nutrition, and climate change. This has far-reaching consequences for the environment, economy, and human welfare. While efforts to address these issues are underway, the current progress in electron paramagnetic resonance (EPR) instrumentation affords using the immense potential of this magnetic resonance technique to study small samples such as honey bees. This paper presents the pioneering 2D in vivo EPR imaging experiment on a honey bee, revealing the ongoing redox-status of bees' intestines. This way, by monitoring the spatio-temporal changes of the redox-active spin-probes' EPR signal, it is possible to gain access to valuable information on the course of ongoing bees' pathologies and the prospect of following-up on the efficiency of applied therapies. Employing a selection of diverse spin-probes could further reveal pH levels and oxygen concentrations in bee tissues, allowing a noninvasive assessment of bee physiology. This approach offers promising strategies for safeguarding pollinators and understanding their biology, fostering their well-being and ecological harmony.
Collapse
Affiliation(s)
- Đura Nakarada
- Center for Physical Chemistry of Biological Systems, BioScope Labs, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Popović
- Center for Physical Chemistry of Biological Systems, BioScope Labs, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Miloš Mojović
- Center for Physical Chemistry of Biological Systems, BioScope Labs, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Botina LL, Barbosa WF, Viana TA, de Oliveira Faustino A, Martins GF. Physiological responses of the stingless bee Partamona helleri to oral exposure to three agrochemicals: impact on antioxidant enzymes and hemocyte count. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54648-54658. [PMID: 39207621 DOI: 10.1007/s11356-024-34790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Agrochemicals pose significant threats to the survival of bees, yet the physiological impacts of sublethal doses on stingless bees remain poorly understood. This study investigated the effects of acute oral exposure to three commercial formulations of agrochemicals [CuSO4 (leaf fertilizer), glyphosate (herbicide), and spinosad (bioinsecticide)] on antioxidant enzymes, malondialdehyde content (MDA), nitric oxide (NO) levels, and total hemocyte count (THC) in the stingless bee Partamona helleri. Foragers were exposed to lethal concentrations aimed to kill 5% (LC5) of CuSO4 (120 μg mL-1) or spinosad (0.85 μg mL-1) over a 24-h period. Glyphosate-exposed bees received the recommended label concentration (7400 μg mL-1), as they exhibited 100% survival after exposure. Ingestion of CuSO4 or glyphosate-treated diets by bees was reduced. Levels of NO and catalase (CAT) remained unaffected at 0 h or 24 h post-exposure. Superoxide dismutase (SOD) activity was higher at 0 h compared to 24 h, although insignificantly so when compared to the control. Exposure to CuSO4 reduced glutathione S-transferase (GST) activity at 0 h but increased it after 24 h, for both CuSO4 and glyphosate. MDA levels decreased after 0 h exposure to CuSO4 or spinosad but increased after 24 h exposure to all tested agrochemicals. THC showed no difference among glyphosate or spinosad compared to the control or across time. However, CuSO4 exposure significantly increased THC. These findings shed light on the physiological responses of stingless bees to agrochemicals, crucial for understanding their overall health.
Collapse
Affiliation(s)
- Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
20
|
Wu T, Choi YS, Kim DW, Wei X, Kang Y, Han B, Yang S, Gao J, Dai P. Interactive effects of chlorothalonil and Varroa destructor on Apis mellifera during adult stage. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106107. [PMID: 39277411 DOI: 10.1016/j.pestbp.2024.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Dong Won Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Xiaoping Wei
- Modern Agricultural Development Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
21
|
Bertrand C, Aviron S, Pelosi C, Faburé J, Le Perchec S, Mamy L, Rault M. Effects of plant protection products on ecosystem functions provided by terrestrial invertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34534-w. [PMID: 39141266 DOI: 10.1007/s11356-024-34534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and "cocktail" effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.
Collapse
Affiliation(s)
- Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphanie Aviron
- INRAE, Institut Agro Rennes-Angers, ESA, UMR 0980 BAGAP, 35042, Rennes, France
| | - Céline Pelosi
- UMR EMMAH, INRAE, Avignon Université, 84000, Avignon, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, IRD, France.
| |
Collapse
|
22
|
Albacete S, Sancho G, Azpiazu C, Sgolastra F, Rodrigo A, Bosch J. Exposure to sublethal levels of insecticide-fungicide mixtures affect reproductive success and population growth rates in the solitary bee Osmia cornuta. ENVIRONMENT INTERNATIONAL 2024; 190:108919. [PMID: 39094406 DOI: 10.1016/j.envint.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
In agricultural environments, bees are routinely exposed to combinations of pesticides. For the most part, exposure to these pesticide mixtures does not result in acute lethal effects, but we know very little about potential sublethal effects and their consequences on reproductive success and population dynamics. In this study, we orally exposed newly emerged females of the solitary bee Osmia cornuta to environmentally-relevant levels of acetamiprid (a cyano-substituted neonicotinoid insecticide) singly and in combination with tebuconazole (a sterol-biosynthesis inhibitor (SBI) fungicide). The amount of feeding solution consumed during the exposure phase was lowest in bees exposed to the pesticide mixture. Following exposure, females were individually marked and released into oilseed rape field cages to monitor their nesting performance and assess their reproductive success. The nesting performance and reproductive success of bees exposed to the fungicide or the insecticide alone were similar to those of control bees and resulted in a 1.3-1.7 net population increases. By contrast, bees exposed to the pesticide mixture showed lower establishment, shortened nesting period, and reduced fecundity. Together, these effects led to a 0.5-0.6 population decrease. Female establishment and shortened nesting period were the main population bottlenecks. We found no effects of the pesticide mixture on nest provisioning rate, offspring body weight or sex ratio. Our study shows how sublethal pesticide exposure may affect several components of bee reproductive success and, ultimately, population growth. Our results calls for a rethinking of pollinator risk assessment schemes, which should target not only single compounds but also combinations of compounds likely to co-occur in agricultural environments.
Collapse
Affiliation(s)
- Sergio Albacete
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain.
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Celeste Azpiazu
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain; Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), 08034 Barcelona, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Anselm Rodrigo
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| |
Collapse
|
23
|
Ferrante F, Pasquini E, Cappa F, Bellocchio L, Baracchi D. Unravelling the microplastic menace: Different polymers additively increase bee vulnerability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124087. [PMID: 38703977 DOI: 10.1016/j.envpol.2024.124087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) are growing and ubiquitous environmental pollutants and represent one of the greatest contemporary challenges caused by human activities. Current research has predominantly examined the singular toxicological effects of individual polymers, neglecting the prevailing reality of organisms confronted with complex contaminant mixtures and potential synergistic effects. To fill this research gap, we investigated the lethal and sublethal effects of two common MPs, polystyrene (PS - 4.8-5.8 μm) and poly(methyl methacrylate) (PMMA - 1-40 μm), and their combination (MIX), on the pollinating insect Apis mellifera. For each treatment, we evaluated the oral toxicity of two ecologically relevant and one higher concentration (0.5, 5 and 50 mg/L) and analysed their effects on the immune system and worker survival. As immune activation can alter the cuticular hydrocarbon profile of honey bees, we used gas chromatography-mass spectrometry (GC-MS) to investigate whether MPs lead to changes in the chemical profile of foragers and behavioural assay to test whether such changes affect behavioural patterns of social recognition, undermining overall colony integrity. The results indicate an additive negative effect of PS and PMMA on bee survival and immune response, even at ecologically relevant concentrations. Furthermore, alterations in cuticle profiles were observed with both MPs at the highest and intermediate concentrations, with PMMA being mainly responsible. Both MPs exposure resulted in a reduction in the abundance of several cuticular compounds. Hive entry guards did not show increased inspection or aggressive behaviour towards exposed foragers, allowing them to enter the colony without being treated differently from uncontaminated foragers. These findings raise concerns not only for the health of individual bees, but also for the entire colony, which could be at risk if contaminated nestmates enter the colony undetected, allowing MPs to spread throughout the hive.
Collapse
Affiliation(s)
- Federico Ferrante
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy; Department of Ecological and Biological Sciences, University of Viterbo, Largo dell'Università, 01100, Viterbo, Italy
| | - Elisa Pasquini
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy; Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, Italy
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy
| | - Lorenzo Bellocchio
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
24
|
Misiewicz A, Filipiak ZM, Kadyrova K, Bednarska AJ. Combined effects of three insecticides with different modes of action on biochemical responses of the solitary bee Osmia bicornis. CHEMOSPHERE 2024; 359:142233. [PMID: 38705404 DOI: 10.1016/j.chemosphere.2024.142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Bees are simultaneously exposed to a variety of pesticides, which are often applied in mixtures and can cause lethal and sublethal effects. The combined effects of pesticides, however, are not measured in the current risk assessment schemes. Additionally, the sublethal effects of pesticides on a variety of physiological processes are poorly recognized in bees, especially in non-Apis solitary bees. In this study, we used a full-factorial design to examine the main and interactive effects of three insecticide formulations with different modes of action (Mospilan 20 SP, Sherpa 100 EC, and Dursban 480 EC) on bee biochemical processes. We measured acetylcholinesterase (AChE), glutathione S-transferase (GST) and esterase (EST) activities, as well as a nonenzymatic biomarker associated with energy metabolism, i.e., ATP level. All studied endpoints were affected by Sherpa 100 EC, and the activities of AChE and EST as well as ATP levels were affected by Dursban 480 EC. Moreover, complex interactions between all three insecticides affected ATP levels, showing outcomes that cannot be predicted when testing each insecticide separately. The results indicate that even if interactive effects are sometimes difficult to interpret, there is a need to study such interactions if laboratory-generated toxicity data are to be extrapolated to field conditions.
Collapse
Affiliation(s)
- Anna Misiewicz
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Zuzanna M Filipiak
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| | - Kamila Kadyrova
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
25
|
Guo D, Wang Y, Li Z, Zhang DX, Wang C, Wang H, Liu Z, Liu F, Guo X, Wang N, Xu B, Gao Z. Effects of abamectin nanocapsules on bees through host physiology, immune function, and gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172738. [PMID: 38670362 DOI: 10.1016/j.scitotenv.2024.172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pesticide usage is a common practice to increase crop yields. Nevertheless, the existence of pesticide residues in the surrounding environment presents a significant hazard to pollinators, specifically the potential undisclosed dangers related to emerging nanopesticides. This study examines the impact of abamectin nanocapsules (AbaNCs), created through electrostatic self-assembly, as an insecticide on honey bees. It was determined that AbaNCs upregulated detoxification genes, including CYP450, as well as antioxidant and immune genes in honey bees. Furthermore, AbaNCs affected the activity of crucial enzymes such as superoxide dismutase (SOD). Although no apparent damage was observed in bee gut tissue, AbaNCs significantly decreased digestive enzyme activity. Microbiome sequencing revealed that AbaNCs disrupted gut microbiome, resulting in a reduction of beneficial bacteria such as Bifidobacterium and Lactobacillus. Additionally, these changes in the gut microbiome were associated with decreased activity of digestive enzymes, including lipase. This study enhances our understanding of the impact of nanopesticides on pollinating insects. Through the revelation of the consequences arising from the utilization of abamectin nanocapsules, we have identified potential stress factors faced by these pollinators, enabling the implementation of improved protective measures.
Collapse
Affiliation(s)
- Dezheng Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhongyu Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Da-Xia Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
26
|
Reis AB, Oliveira MSD, Souza DDS, Gomes DS, Silva LLD, Martínez LC, Serrão JE. Exploring the effects of the acaricide cyflumetofen on the vital organs of the honey bee Apis mellifera (Hymenoptera: Apidae) workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172640. [PMID: 38670351 DOI: 10.1016/j.scitotenv.2024.172640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Bees are important for maintaining ecosystems, pollinating crops and producing marketable products. In recent years, a decline in bee populations has been reported, with multifactorial causes, including the intensification of pesticide use in agriculture. Among pesticides, cyflumetofen is an insecticide and acaricide used in apple, coffee and citrus crops, whose main pollinator is the honey bee Apis mellifera. Therefore, this bee is a potential target of cyflumetofen during foraging. This study evaluated the histopathological and cytological damage in the midgut, hypopharyngeal glands and fat body of A. mellifera workers exposed to LC50 of cyflumetofen. The midgut epithelium of exposed bees presented cytoplasmic vacuolization, release of vesicles and cell fragments, which indicate autophagy, increased production of digestive enzymes and cell death, respectively. The cytological analysis of the midgut revealed the dilation of the basal labyrinth and the presence of spherocrystals in the digestive cells. The hypopharyngeal glands produced greater amounts of secretion in treated bees, whereas no changes were observed in the fat body. The results indicate that acute exposure to cyflumetofen negatively affect A. mellifera, causing damage to the midgut and changes in the hypopharyngeal glands, which may compromise the survival and foraging of this pollinator.
Collapse
Affiliation(s)
- Aline Beatriz Reis
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Mateus Soares de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Diego Dos Santos Souza
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Laryssa Lemos da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Luis Carlos Martínez
- Facultad de Ciencias Agrícolas, Universidad de Nariño, 602-7244309 Pasto, Nariño, Colombia.
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Kang Y, Wu T, Han B, Yang S, Wang X, Wang Q, Gao J, Dai P. Interaction of acetamiprid, Varroa destructor, and Nosema ceranae in honey bees. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134380. [PMID: 38657514 DOI: 10.1016/j.jhazmat.2024.134380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Health of honey bees is threatened by a variety of stressors, including pesticides and parasites. Here, we investigated effects of acetamiprid, Varroa destructor, and Nosema ceranae, which act either alone or in combination. Our results suggested that interaction between the three factors was additive, with survival risk increasing as the number of stressors increased. Although exposure to 150 μg/L acetamiprid alone did not negatively impact honey bee survival, it caused severe damage to midgut tissue. Among the three stressors, V. destructor posed the greatest threat to honey bee survival, and N. ceranae exacerbated intestinal damage and increased thickness of the midgut wall. Transcriptomic analysis indicated that different combinations of stressors elicited specific gene expression responses in honey bees, and genes involved in energy metabolism, immunity, and detoxification were altered in response to multiple stressor combinations. Additionally, genes associated with Toll and Imd signalling, tyrosine metabolism, and phototransduction pathway were significantly suppressed in response to different combinations of multiple stressors. This study enhances our understanding of the adaptation mechanisms to multiple stressors and aids in development of suitable protective measures for honey bees. ENVIRONMENTAL IMPLICATION: We believe our study is environmentally relevant for the following reasons: This study investigates combined effects of pesticide, Varroa destructor, and Nosema ceranae. These stressors are known to pose a threat to long-term survival of honey bees (Apis mellifera) and stability of the ecosystems. The research provides valuable insights into the adaptive mechanisms of honey bees in response to multiple stressors and developing effective conservation strategies. Further research can identify traits that promote honey bee survival in the face of future challenges from multiple stressors to maintain the overall stability of environment.
Collapse
Affiliation(s)
- Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Wang
- Beijing Apicultural Station, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
28
|
Strang CG, Rondeau S, Baert N, McArt SH, Raine NE, Muth F. Field agrochemical exposure impacts locomotor activity in wild bumblebees. Ecology 2024; 105:e4310. [PMID: 38828716 DOI: 10.1002/ecy.4310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 06/05/2024]
Abstract
Agricultural intensification has been identified as one of the key causes of global insect biodiversity losses. These losses have been further linked to the widespread use of agrochemicals associated with modern agricultural practices. Many of these chemicals are known to have negative sublethal effects on commercial pollinators, such as managed honeybees and bumblebees, but less is known about the impacts on wild bees. Laboratory-based studies with commercial pollinators have consistently shown that pesticide exposure can impact bee behavior, with cascading effects on foraging performance, reproductive success, and pollination services. However, these studies typically assess only one chemical, neglecting the complexity of real-world exposure to multiple agrochemicals and other stressors. In the summer of 2020, we collected wild-foraging workers of the common eastern bumblebee, Bombus impatiens, from five squash (Cucurbita) agricultural sites (organic and conventional farms), selected to represent a range of agrochemical, including neonicotinoid insecticide, use. For each bee, we measured two behaviors relevant to foraging success and previously shown to be impacted by pesticide exposure: sucrose responsiveness and locomotor activity. Following behavioral testing, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) chemical analysis to detect and quantify the presence of 92 agrochemicals in each bumblebee. Bees collected from our sites did not vary in pesticide exposure as expected. While we found a limited occurrence of neonicotinoids, two fungicides (azoxystrobin and difenoconazole) were detected at all sites, and the pesticide synergist piperonyl butoxide (PBO) was present in all 123 bees. We found that bumblebees that contained higher levels of PBO were less active, and this effect was stronger for larger bumblebee workers. While PBO is unlikely to be the direct cause of the reduction in bee activity, it could be an indicator of exposure to pyrethroids and/or other insecticides that we were unable to directly quantify, but which PBO is frequently tank-mixed with during pesticide applications on crops. We did not find a relationship between agrochemical exposure and bumblebee sucrose responsiveness. To our knowledge, this is the first evidence of a sublethal behavioral impact of agrochemical exposure on wild-foraging bees.
Collapse
Affiliation(s)
- Caroline G Strang
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Felicity Muth
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| |
Collapse
|
29
|
Wu J, Liu F, Sun J, Wei Q, Kang W, Wang F, Zhang C, Zhao M, Xu S, Han B. Toxic effects of acaricide fenazaquin on development, hemolymph metabolome, and gut microbiome of honeybee (Apis mellifera) larvae. CHEMOSPHERE 2024; 358:142207. [PMID: 38697560 DOI: 10.1016/j.chemosphere.2024.142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fenazaquin, a potent insecticide widely used to control phytophagous mites, has recently emerged as a potential solution for managing Varroa destructor mites in honeybees. However, the comprehensive impact of fenazaquin on honeybee health remains insufficiently understood. Our current study investigated the acute and chronic toxicity of fenazaquin to honeybee larvae, along with its influence on larval hemolymph metabolism and gut microbiota. Results showed that the acute median lethal dose (LD50) of fenazaquin for honeybee larvae was 1.786 μg/larva, and the chronic LD50 was 1.213 μg/larva. Although chronic exposure to low doses of fenazaquin exhibited no significant effect on larval development, increasing doses of fenazaquin resulted in significant increases in larval mortality, developmental time, and deformity rates. At the metabolic level, high doses of fenazaquin inhibited nucleotide, purine, and lipid metabolism pathways in the larval hemolymph, leading to energy metabolism disorders and physiological dysfunction. Furthermore, high doses of fenazaquin reduced gut microbial diversity and abundance, characterized by decreased relative abundance of functional gut bacterium Lactobacillus kunkeei and increased pathogenic bacterium Melissococcus plutonius. The disrupted gut microbiota, combined with the observed gut tissue damage, could potentially impair food digestion and nutrient absorption in the larvae. Our results provide valuable insights into the complex and diverse effects of fenazaquin on honeybee larvae, establishing an important theoretical basis for applying fenazaquin in beekeeping.
Collapse
Affiliation(s)
- Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
30
|
Boff S, Ayasse M. Exposure to sublethal concentration of flupyradifurone alters sexual behavior and cuticular hydrocarbon profile in Heriades truncorum, an oligolectic solitary bee. INSECT SCIENCE 2024; 31:859-869. [PMID: 37602924 DOI: 10.1111/1744-7917.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
The aboveground oligolectic bee, Heriades truncorum, is a particularly good model for studying the impact of pesticides on sexual communication, since some aspects of its mating behavior have previously been described. We have tested (1) the interference of the pesticide flupyradifurone on male precopulatory behavior and male mating partner preferences, (2) the way that the pesticide interferes in male quality assessment by the female, and (3) the effects of the pesticide on the chemical compounds in the female cuticle. We exposed bees of both sexes to a sublethal concentration of flupyradifurone. Various behaviors were registered in a mating arena with two females (one unexposed and one exposed) and one male (either unexposed or exposed). Unexposed males were quicker to attempt to mate. Treatment also impacted precopulatory behavior and male quality assessment by females. Males approached unexposed females more quickly than insecticide-exposed ones. Females exposed to insecticide produced lower amounts of some cuticular hydrocarbons (sex pheromone candidates) and appeared less choosy than unexposed females. Our findings suggest that insecticide exposure affects sexual communication, playing a role both in male preference and in male quality assessment by the female.
Collapse
Affiliation(s)
- Samuel Boff
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
31
|
He ZC, Zhang T, Peng W, Mei Q, Wang QZ, Ding F. Exploring the neurotoxicity of chiral dinotefuran towards nicotinic acetylcholine receptors: Enantioselective insights into species selectivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134020. [PMID: 38521037 DOI: 10.1016/j.jhazmat.2024.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Dinotefuran is a chiral neonicotinoid that is widely distributed in environmental matrices, but its health risks to different organisms are poorly understood. This study investigated the neurotoxic responses of honeybee/cotton aphid nicotinic acetylcholine receptors (nAChRs) to chiral dinotefuran at the enantiomeric scale and demonstrated the microscopic mechanism of species selectivity in nAChR-mediated enantioselective neurotoxicity. The findings indicated that (S)-dinotefuran had a higher affinity for honeybee nAChR than (R)-dinotefuran whereas both enantiomers exhibited similar bioactivity toward cotton aphid nAChR. The results of dynamic neurotoxic processes indicated the association of conformational changes induced by chiral dinotefuran with its macroscopic neurotoxicity, and (R)-dinotefuran, which exhibit low toxicity to honeybee, was found to induce significant conformational changes in the enantioselective neurotoxic reaction, as supported by the average root-mean-square fluctuation (0.35 nm). Energy decomposition results indicated that electrostatic contribution (ΔGele) is the critical energy term that leads to substantial enantioselectivity, and both Trp-51 (-2.57 kcal mol-1) and Arg-75 (-4.86 kcal mol-1), which form a hydrogen-bond network, are crucial residues in mediating the species selectivity for enantioselective neurotoxic responses. Clearly, this study provides experimental evidence for a comprehensive assessment of the health hazards of chiral dinotefuran.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qiong Mei
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; School of Land Engineering, Chang'an University, Xi'an 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
32
|
Shi J, Wang X, Chen Z, Mao D, Luo Y. Spatial distribution of two acaricides and five neonicotinoids in beehives and surrounding environments in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133892. [PMID: 38461662 DOI: 10.1016/j.jhazmat.2024.133892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.
Collapse
Affiliation(s)
- Jingliang Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
33
|
Ma C, Shi X, Chen S, Han J, Bai H, Li Z, Li-Byarlay H, Bai L. Combined pesticides in field doses weaken honey bee (Apis cerana F.) flight ability and analyses of transcriptomics and metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105793. [PMID: 38685207 DOI: 10.1016/j.pestbp.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 05/02/2024]
Abstract
Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 μL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.
Collapse
Affiliation(s)
- Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sihao Chen
- University of Liverpool, Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, Liverpool L69 3BX, UK; Department of Health and Environmental Sciences, Xi'an-Jiaotong Liverpool University, Suzhou 215123, China
| | - Jincai Han
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haodong Bai
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zuren Li
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Hongmei Li-Byarlay
- Agriculture Research and Development Program, Central State University, Wilberforce OH, 45384, USA.
| | - Lianyang Bai
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
34
|
Gray LK, Hulsey M, Siviter H. A novel insecticide impairs bumblebee memory and sucrose responsiveness across high and low nutrition. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231798. [PMID: 38721128 PMCID: PMC11076119 DOI: 10.1098/rsos.231798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024]
Abstract
Wild bees are important pollinators of crops and wildflowers but are exposed to a myriad of different anthropogenic stressors, such as pesticides and poor nutrition, as a consequence of intensive agriculture. These stressors do not act in isolation, but interact, and may exacerbate one another. Here, we assessed whether a field-realistic concentration of flupyradifurone, a novel pesticide that has been labelled as 'bee safe' by regulators, influenced bumblebee sucrose responsiveness and long-term memory. In a fully crossed experimental design, we exposed individual bumblebees (Bombus impatiens) to flupyradifurone at high (50% (w/w)) or low (15% (w/w)) sucrose concentrations, replicating diets that are either carbohydrate rich or poor, respectively. We found that flupyradifurone impaired sucrose responsiveness and long-term memory at both sucrose concentrations, indicating that better nutrition did not buffer the negative impact of flupyradifurone. We found no individual impact of sugar deficiency on bee behaviour and no significant interactions between pesticide exposure and poor nutrition. Our results add to a growing body of evidence demonstrating that flupyradifurone has significant negative impacts on pollinators, indicating that this pesticide is not 'bee safe'. This suggests that agrochemical risk assessments are not protecting pollinators from the unintended consequences of pesticide use.
Collapse
Affiliation(s)
- Lily K. Gray
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
| | - Marcus Hulsey
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
- University of Oklahoma, Norman, OK73019, USA
| | - Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, UK
| |
Collapse
|
35
|
Lin Z, Shen S, Wang K, Ji T. Biotic and abiotic stresses on honeybee health. Integr Zool 2024; 19:442-457. [PMID: 37427560 DOI: 10.1111/1749-4877.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Honeybees are the most critical pollinators providing key ecosystem services that underpin crop production and sustainable agriculture. Amidst a backdrop of rapid global change, this eusocial insect encounters a succession of stressors during nesting, foraging, and pollination. Ectoparasitic mites, together with vectored viruses, have been recognized as central biotic threats to honeybee health, while the spread of invasive giant hornets and small hive beetles also increasingly threatens colonies worldwide. Cocktails of agrochemicals, including acaricides used for mite treatment, and other pollutants of the environment have been widely documented to affect bee health in various ways. Additionally, expanding urbanization, climate change, and agricultural intensification often result in the destruction or fragmentation of flower-rich bee habitats. The anthropogenic pressures exerted by beekeeping management practices affect the natural selection and evolution of honeybees, and colony translocations facilitate alien species invasion and disease transmission. In this review, the multiple biotic and abiotic threats and their interactions that potentially undermine bee colony health are discussed, while taking into consideration the sensitivity, large foraging area, dense network among related nestmates, and social behaviors of honeybees.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Siyi Shen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Graham KK, McArt S, Isaacs R. High pesticide exposure and risk to bees in pollinator plantings adjacent to conventionally managed blueberry fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171248. [PMID: 38402956 DOI: 10.1016/j.scitotenv.2024.171248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Wildflower plantings adjacent to agricultural fields provide diverse floral resources and nesting sites for wild bees. However, their proximity to pest control activities in the crop may result in pesticide exposure if pesticides drift into pollinator plantings. To quantify pesticide residues in pollinator plantings, we sampled flowers and soil from pollinator plantings and compared them to samples from unenhanced field margins and crop row middles. At conventionally managed farms, flowers from pollinator plantings had similar exposure profiles to those from unenhanced field margins or crop row middles, with multiple pesticides and high and similar risk quotient (RQ) values (with pollinator planting RQ: 3.9; without pollinator planting RQ: 4.0). Whereas samples from unsprayed sites had significantly lower risk (RQ: 0.005). Soil samples had overall low risk to bees. Additionally, we placed bumble bee colonies (Bombus impatiens) in field margins of crop fields with and without pollinator plantings and measured residues in bee-collected pollen. Pesticide exposure was similar in pollen from sites with or without pollinator plantings, and risk was generally high (with pollinator planting RQ: 0.5; without pollinator planting RQ: 1.1) and not significant between the two field types. Risk was lower at sites where there was no pesticide activity (RQ: 0.3), but again there was no significant difference between management types. The insecticide phosmet, which is used on blueberry farms for control of Drosophila suzukii, accounted for the majority of elevated risk. Additionally, analysis of pollen collected by bumble bees found no significant difference in floral species richness between sites with or without pollinator plantings. Our results suggest that pollinator plantings do not reduce pesticide risk and do not increase pollen diversity collected by B. impatiens, further highlighting the need to reduce exposure through enhanced IPM adoption, drift mitigation, and removal of attractive flowering weeds prior to insecticide applications.
Collapse
Affiliation(s)
- Kelsey K Graham
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI 48824, USA; Pollinating Insect-Biology, Management, Systematics Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 1410 N 800 E, Logan, UT 84341, USA.
| | - Scott McArt
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY 14853, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI 48824, USA; Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
37
|
Huang C, Wang H, Hai X, Wang Z, Lyu F. High Trunk Truncation as a Potential Sustainable Management Option for Asian Longhorned Beetle on Salix babylonica. INSECTS 2024; 15:278. [PMID: 38667408 PMCID: PMC11050171 DOI: 10.3390/insects15040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The Asian longhorned beetle (ALB) causes substantial economic and ecological losses, thus, an environmentally friendly management strategy is needed. Here, we propose high trunk truncation (HTT), the removal of the above 200 cm portion of trees, as a sustainable management strategy to control ALB. To examine the hypothesis, an initial step involved the assessment of various biological characteristics of ALB. Subsequently, a controlled field experiment was carried out utilizing HTT. Finally, HTT was applied in two additional ALB infestation regions. The results of the study of the biological characteristics of ALB showed that 76.31-78.88% of frass holes and 85.08-87.93% of emergence holes were located on branches above 200 cm. Adults preferred to feed on branches 2-3 cm in diameter, ALB eggs were predominantly laid on 5 cm branches, and both were primarily located above 200 cm. These results revealed a correlation between the number of ALBs and the tree crown height. The controlled field experiment showed that the number of ALBs was significantly decreased when the HTT strategy was implemented: approximately 90% of frass holes and 95% of adults were eradicated by HTT compared with the control. Different field surveys involving HTT have shown similar results. These findings provide valuable insights into a sustainable and efficient management strategy for reducing the number of ALBs.
Collapse
Affiliation(s)
- Chen Huang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (C.H.); (H.W.); (X.H.); (Z.W.)
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (C.H.); (H.W.); (X.H.); (Z.W.)
- Hebei Urban Forest Health Technology Innovation Center, Baoding 071000, China
| | - Xiaoxia Hai
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (C.H.); (H.W.); (X.H.); (Z.W.)
| | - Zhigang Wang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (C.H.); (H.W.); (X.H.); (Z.W.)
| | - Fei Lyu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (C.H.); (H.W.); (X.H.); (Z.W.)
| |
Collapse
|
38
|
Wang SY, Wang YX, Yue SS, Shi XC, Lu FY, Wu SQ, Herrera-Balandrano DD, Laborda P. G-site residue S67 is involved in the fungicide-degrading activity of a tau class glutathione S-transferase from Carica papaya. J Biol Chem 2024; 300:107123. [PMID: 38417796 PMCID: PMC10958117 DOI: 10.1016/j.jbc.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024] Open
Abstract
Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Sheng-Shuo Yue
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Yi Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Si-Qi Wu
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
39
|
Nicholson CC, Knapp J, Kiljanek T, Albrecht M, Chauzat MP, Costa C, De la Rúa P, Klein AM, Mänd M, Potts SG, Schweiger O, Bottero I, Cini E, de Miranda JR, Di Prisco G, Dominik C, Hodge S, Kaunath V, Knauer A, Laurent M, Martínez-López V, Medrzycki P, Pereira-Peixoto MH, Raimets R, Schwarz JM, Senapathi D, Tamburini G, Brown MJF, Stout JC, Rundlöf M. Pesticide use negatively affects bumble bees across European landscapes. Nature 2024; 628:355-358. [PMID: 38030722 PMCID: PMC11006599 DOI: 10.1038/s41586-023-06773-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.
Collapse
Affiliation(s)
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden.
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Tomasz Kiljanek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | | | - Marie-Pierre Chauzat
- Laboratory for Animal Health, ANSES, Paris-Est University, Maisons-Alfort, France
| | - Cecilia Costa
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, University of Murcia, Murcia, Spain
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Oliver Schweiger
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Irene Bottero
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gennaro Di Prisco
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
- Institute for Sustainable Plant Protection, The Italian National Research Council, Portici, Italy
| | - Christophe Dominik
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Simon Hodge
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Vera Kaunath
- Department of Biology, Lund University, Lund, Sweden
| | - Anina Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | - Marion Laurent
- Unit of Honey Bee Pathology, Sophia Antipolis Laboratory, ANSES, Sophia Antipolis, France
| | | | - Piotr Medrzycki
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | | | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Giovanni Tamburini
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Mark J F Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
40
|
Ribas A, Botina LL, Araújo RDS, Vidigal ML, Cristina da Silva Alves B, Martins GF. Exploring honey bee toxicological data as a proxy for assessing dimethoate sensitivity in stingless bees. CHEMOSPHERE 2024; 354:141652. [PMID: 38462182 DOI: 10.1016/j.chemosphere.2024.141652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
The high diversity and distinctive characteristics of stingless bees pose challenges in utilizing toxicity test results for agrochemical registrations. Toxicity assessments were performed on 15 stingless bee species, along with the honey bee, using the insecticide dimethoate, following adapted OECD protocols. Median lethal doses over 24 h (24 h-LD50) were determined for exposure routes (acute oral or contact) and species. Species sensitivity distribution (SSD) curves were constructed and the 5% hazard doses (HD5) were estimated based on 24 h-LD50 values. The SSD curve was adjusted as the body weight and dimethoate response were correlated. Lighter bees (<10 mg) had lower 24 h-LD50 values. Contact exposure for adjusted HD5 suggested insufficient protection for Melipona mondury, whereas the oral exposure HD5 indicated no risks for the other 14 species. Comprehensive risk assessments are crucial for understanding the agrochemical impact on stingless bees, emphasizing the need for a broader species range in formulating conservation strategies.
Collapse
Affiliation(s)
- Andreza Ribas
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Renan Dos Santos Araújo
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, 78698-000, Pontal do Araguaia, MT, Brazil.
| | - Mateus Lordelo Vidigal
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | | | | |
Collapse
|
41
|
Zhang J, Wang Y, Wurjihu S, Ruan H, Huang Y, Guo M, Kong D, Luo J, Yang M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170937. [PMID: 38360305 DOI: 10.1016/j.scitotenv.2024.170937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanbaga Wurjihu
- Plastic Surgery Hospital and Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Haonan Ruan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
42
|
Encerrado-Manriquez AM, Pouv AK, Fine JD, Nicklisch SCT. Enhancing knowledge of chemical exposures and fate in honey bee hives: Insights from colony structure and interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170193. [PMID: 38278225 DOI: 10.1016/j.scitotenv.2024.170193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Honey bees are unintentionally exposed to a wide range of chemicals through various routes in their natural environment, yet research on the cumulative effects of multi-chemical and sublethal exposures on important caste members, including the queen bee and brood, is still in its infancy. The hive's social structure and food-sharing (trophallaxis) practices are important aspects to consider when identifying primary and secondary exposure pathways for residential hive members and possible chemical reservoirs within the colony. Secondary exposures may also occur through chemical transfer (maternal offloading) to the brood and by contact through possible chemical diffusion from wax cells to all hive members. The lack of research on peer-to-peer exposures to contaminants and their metabolites may be in part due to the limitations in sensitive analytical techniques for monitoring chemical fate and dispersion. Combined application of automated honey bee monitoring and modern chemical trace analysis techniques could offer rapid progress in quantifying chemical transfer and accumulation within the hive environment and developing effective mitigation strategies for toxic chemical co-exposures. To enhance the understanding of chemical fate and toxicity within the entire colony, it is crucial to consider both the intricate interactions among hive members and the potential synergistic effects arising from combinations of chemical and their metabolites.
Collapse
Affiliation(s)
| | - Amara K Pouv
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA; Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, 3026 Bee Biology Rd., Davis, CA 95616, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
43
|
Ni JB, Jia XF, Zhang JY, Ding CJ, Tian WL, Peng WJ, Zielinska S, Xiao HW, Fang XM. Efficient degradation of imidacloprid by surface discharge cold plasma: Mechanism of interaction between ROS and molecular structure and evaluation of residual toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133066. [PMID: 38042007 DOI: 10.1016/j.jhazmat.2023.133066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Incorrect use of neonicotinoid pesticides poses a serious threat to human and pollinator health, as these substances are commonly present in bee products and even drinking water. To combat this threat, the study developed a new method of degrading the pesticide imidacloprid using surface discharge cold plasma oxidation technology. The study showed that this method achieved a very high efficiency of imidacloprid degradation of 91.4%. The main reactive oxygen species (H2O2, O3, ·OH, O2-, 1O2) effectively participated in the decomposition reaction of imidacloprid. Reactive oxygen species were more sensitive to the structure of the nitroimine group. Density functional theory (DFT) further explored the sites of reactive oxygen species attack on imidacloprid and revealed the process of energy change of attacking imidacloprid. In addition, a degradation pathway for imidacloprid was proposed, mainly involving reactive oxygen species chemisorption, a ring-opening intermediate, and complete cleavage of the nitroimine group structure. Model predictions indicated that acute oral and developmental toxicity were significantly reduced after cold plasma treatment, as confirmed by insect experiments. Animal experiments have shown that plasma treatment reduces imidacloprid damage to mice hippocampal tissue structure and inhibits the reduction of brain-derived neurotrophic factor content, thus revealing the detoxification mechanism of the body.
Collapse
Affiliation(s)
- Jia-Bao Ni
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China; College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Xiao-Fang Jia
- School of Physics, Beihang University, Beijing, China
| | | | - Chang-Jiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, China
| | - Wen-Li Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Wen-Jun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Sara Zielinska
- Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| | - Xiao-Ming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| |
Collapse
|
44
|
Tu X, Du C, He Y, Yang J, Chen J, Jin Q, Xie L, Zuo Y, Huang S, Chen W. Determination of bisphenols in beeswax based on sugaring out-assisted liquid-liquid extraction: Method development and application in survey, recycling and degradation studies. CHEMOSPHERE 2024; 351:141274. [PMID: 38253088 DOI: 10.1016/j.chemosphere.2024.141274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
The methodology of sugaring out-assisted liquid-liquid extraction (SULLE) coupled with high-performance liquid chromatography-fluorescence detection was devised for quantifying bisphenol A (BPA) and bisphenol B (BPB) in beeswax. The effectiveness of SULLE was methodically explored and proved superior to the salting out-assisted liquid-liquid extraction approach for beeswax sample preparation. The analytical performance underwent comprehensive validation, revealing detection limits of 10 μg/kg for BPA and 20 μg/kg for BPB. The method developed was employed to analyse commercial beeswax (n = 15), beeswax foundation (n = 15) and wild-build comb wax (n = 26) samples. The analysis revealed BPA presence in four commercial beeswax samples and three beeswax foundation samples, with the highest detected residue content being 88 ± 7 μg/kg. For BPB, two beeswax foundation samples were positive, with concentrations below the limits of quantification and 85 ± 4 μg/kg, respectively. No bisphenols were detected in wild-build comb wax. Furthermore, the bisphenol removal efficacy of two recycling methods-boiling in water and methanol extraction-was assessed. The findings indicated that after four recycling cycles using water boiling, 9.6% of BPA and 29.2% of BPB remained in the beeswax. Whereas methanol extraction resulted in approximately 7% residual after one recycling process. A long-term study over 210 days revealed the slow degradation of bisphenols in comb beeswax. This degradation fitted well with a first-order model, indicating half-lives (DT50) of 139 days for BPA and 151 days for BPB, respectively. This research provides the first report on bisphenol contamination in beeswax. The low removal rate during the recycling process and the gradual degradation in beeswax underscore the significance of bisphenol contamination and migration in bee hives along with their potential risk to pollinators warranting concern. Furthermore, the developed SULLE method shows promise in preparing beeswax samples to analyse other analytes.
Collapse
Affiliation(s)
- Xijuan Tu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; MOE Engineering Research Center of Bee Products Processing and Application, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunping Du
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuchang He
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji Yang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaxu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian Jin
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingfei Xie
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuqing Zuo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenbin Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; MOE Engineering Research Center of Bee Products Processing and Application, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
45
|
Schwarz JM, Knauer AC, Alaux C, Barascou L, Barraud A, Dievart V, Ghazoul J, Michez D, Albrecht M. Diverse pollen nutrition can improve the development of solitary bees but does not mitigate negative pesticide impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169494. [PMID: 38142004 DOI: 10.1016/j.scitotenv.2023.169494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Floral resource loss and pesticide exposure are major threats to bees in intensively managed agroecosystems, but interactions among these drivers remain poorly understood. Altered composition and lowered diversity of pollen nutrition may reinforce negative pesticide impacts on bees. Here we investigated the development and survival of the solitary bee Osmia bicornis provisioned with three different pollen types, as well as a mixture of these types representing a higher pollen diversity. We exposed bees of each nutritional treatment to five pesticides at different concentrations in the laboratory. Two field-realistic concentrations of three nicotinic acetylcholine receptor (nAChR) modulating insecticides (thiacloprid, sulfoxaflor and flupyradifurone), as well as of two fungicides (azoxystrobin and tebuconazole) were examined. We further measured the expression of two detoxification genes (CYP9BU1, CYP9BU2) under exposure to thiacloprid across different nutrition treatments as a potential mechanistic pathway driving pesticide-nutrition interactions. We found that more diverse pollen nutrition reduced development time, enhanced pollen efficacy (cocoon weight divided by consumed pollen weight) and pollen consumption, and increased weight of O. bicornis after larval development (cocoon weight). Contrary to fungicides, high field-realistic concentrations of all three insecticides negatively affected O. bicornis by extending development times. Moreover, sulfoxaflor and flupyradifurone also reduced pollen efficacy and cocoon weight, and sulfoxaflor reduced pollen consumption and increased mortality. The expression of detoxification genes differed across pollen nutrition types, but was not enhanced after exposure to thiacloprid. Our findings highlight that lowered diversity of pollen nutrition and high field-realistic exposure to nAChR modulating insecticides negatively affected the development of O. bicornis, but we found no mitigation of negative pesticide impacts through increased pollen diversity. These results have important implications for risk assessment for bee pollinators, indicating that negative effects of nAChR modulating insecticides to developing solitary bees are currently underestimated.
Collapse
Affiliation(s)
- Janine M Schwarz
- Agroscope, Agroecology and Environment, Zurich, Switzerland; ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland.
| | - Anina C Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| | | | - Alexandre Barraud
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Mons, Belgium
| | | | - Jaboury Ghazoul
- ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland
| | - Denis Michez
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Mons, Belgium
| | | |
Collapse
|
46
|
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
47
|
Han B, Wu J, Wei Q, Liu F, Cui L, Rueppell O, Xu S. Life-history stage determines the diet of ectoparasitic mites on their honey bee hosts. Nat Commun 2024; 15:725. [PMID: 38272866 PMCID: PMC10811344 DOI: 10.1038/s41467-024-44915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
Ectoparasitic mites of the genera Varroa and Tropilaelaps have evolved to exclusively exploit honey bees as food sources during alternating dispersal and reproductive life history stages. Here we show that the primary food source utilized by Varroa destructor depends on the host life history stage. While feeding on adult bees, dispersing V. destructor feed on the abdominal membranes to access to the fat body as reported previously. However, when V. destructor feed on honey bee pupae during their reproductive stage, they primarily consume hemolymph, indicated by wound analysis, preferential transfer of biostains, and a proteomic comparison between parasite and host tissues. Biostaining and proteomic results were paralleled by corresponding findings in Tropilaelaps mercedesae, a mite that only feeds on brood and has a strongly reduced dispersal stage. Metabolomic profiling of V. destructor corroborates differences between the diet of the dispersing adults and reproductive foundresses. The proteome and metabolome differences between reproductive and dispersing V. destructor suggest that the hemolymph diet coincides with amino acid metabolism and protein synthesis in the foundresses while the metabolism of non-reproductive adults is tuned to lipid metabolism. Thus, we demonstrate within-host dietary specialization of ectoparasitic mites that coincides with life history of hosts and parasites.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lihong Cui
- Cell Biology Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, 100084, China
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G2L3, Canada.
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
48
|
Abou-Shaara HF. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J Therm Biol 2024; 119:103784. [PMID: 38232472 DOI: 10.1016/j.jtherbio.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Honey bees, Apis mellifera, are the most important managed pollinators worldwide. They are highly impacted by various abiotic and biotic stressors, especially temperature extremes, which can lead to cellular damage and death. The induction of heat shock proteins (HSPs) has been recorded in honey bees as a response to various types of stressors. HSPs are classified into different gene families according to their molecular weights. HSPs play an important role in maintaining cellular protein homeostasis due to their contribution as molecular chaperones or co-chaperones. HSPs in honey bees have complex functions with induction even under normal colony conditions. Previous studies have suggested various functions of HSPs to protect cells from damage under exposure to environmental stressors, pollutants, and pathogens. Surprisingly, HSPs have also been found to play roles in larval development and age-related tasks. The expression of HSPs varies depending on tissue type, developmental stage, age, and stress period. This article reviews studies on HSPs (sHSPs, HSP40, HSP60, HSP70, and HSP90) in honey bees and highlights gaps in the available knowledge. This review is crucial for honey bee research, particularly in the face of climate change challenges.
Collapse
Affiliation(s)
- Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
49
|
Nakagawa S, Lagisz M, Yang Y, Drobniak SM. Finding the right power balance: Better study design and collaboration can reduce dependence on statistical power. PLoS Biol 2024; 22:e3002423. [PMID: 38190355 PMCID: PMC10773938 DOI: 10.1371/journal.pbio.3002423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Power analysis currently dominates sample size determination for experiments, particularly in grant and ethics applications. Yet, this focus could paradoxically result in suboptimal study design because publication biases towards studies with the largest effects can lead to the overestimation of effect sizes. In this Essay, we propose a paradigm shift towards better study designs that focus less on statistical power. We also advocate for (pre)registration and obligatory reporting of all results (regardless of statistical significance), better facilitation of team science and multi-institutional collaboration that incorporates heterogenization, and the use of prospective and living meta-analyses to generate generalizable results. Such changes could make science more effective and, potentially, more equitable, helping to cultivate better collaborations.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Szymon M. Drobniak
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
50
|
Fischer LR, Ramesh D, Weidenmüller A. Sub-lethal but potentially devastating - The novel insecticide flupyradifurone impairs collective brood care in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166097. [PMID: 37562619 DOI: 10.1016/j.scitotenv.2023.166097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The worldwide decline in pollinating insects is alarming. One of the main anthropogenic drivers is the massive use of pesticides in agriculture. Risk assessment procedures test pesticides for mortality rates of well-fed, parasite free individuals of a few non-target species. Sublethal and synergistic effects of co-occurring stressors are usually not addressed. Here, we present a simple, wildly applicable bio-essay to assess such effects. Using brood thermoregulation in bumblebee microcolonies as readout, we investigate how this collective ability is affected by long-term feeding exposure to the herbicide glyphosate (5 mg/l), the insecticide flupyradifurone (0.4 mg/l) and the combination of both, when co-occurring with the natural stressor of resource limitation. Documenting brood temperature and development in 53 microcolonies we find no significant effect of glyphosate, while flupyradifurone significantly impaired the collective ability to maintain the necessary brood temperatures, resulting in prolonged developmental times and a decrease in colony growth by over 50 %. This reduction in colony growth has the potential to significantly curtail the reproductive chances of colonies in the field. Our findings highlight the potentially devastating consequences of flupyradifurone use in agriculture even at sub-lethal doses and underline the urgent need for improved risk assessment procedures.
Collapse
Affiliation(s)
- Liliana R Fischer
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; School of Biological Sciences, University of East Anglia, UK.
| | - Divya Ramesh
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| | - Anja Weidenmüller
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| |
Collapse
|