1
|
Naiel S, Dowdall N, Zhou Q, Ali P, Hayat A, Vierhout M, Wong EY, Couto R, Yépez B, Seifried B, Moquin P, Kolb MR, Ask K, Hoare T. Modulating pro-fibrotic macrophages using yeast beta-glucan microparticles prepared by Pressurized Gas eXpanded liquid (PGX) Technology®. Biomaterials 2025; 313:122816. [PMID: 39250864 DOI: 10.1016/j.biomaterials.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Pro-fibrotic M2-like macrophages are widely implicated in the pathogenesis and progression of lung fibrosis due to their production of pro-fibrotic growth factors and cytokines. Yeast beta-glucan (YBG) microparticles have shown potential as immunomodulators that can convert macrophage polarization from a pro-fibrotic phenotype to an anti-fibrotic phenotype through the engagement of the Dectin-1 receptor. However, the processing conditions used to fabricate YBG microparticles can lead to unpredictable immunomodulatory effects. Herein, we report the use of Pressurized Gas eXpanded liquids (PGX) Technology® to fabricate YBG (PGX-YBG) microparticles with higher surface areas, lower densities, and smaller and more uniform size distributions compared to commercially available spray-dried YBGs. PGX-YBG is shown to activate Dectin-1 more efficiently in vitro while avoiding significant TLR 2/4 activation. Furthermore, PGX-YBG microparticles effectively modulate M2-like fibrosis-inducing murine and human macrophages into fibrosis-suppressing macrophages both in vitro as well as in ex vivo precision-cut murine lung slices, suggesting their potential utility as a therapeutic for addressing a broad spectrum of fibrotic end-point lung diseases.
Collapse
Affiliation(s)
- S Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - N Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Q Zhou
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - P Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - A Hayat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - M Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada
| | - E Y Wong
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - R Couto
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Yépez
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - B Seifried
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - P Moquin
- Ceapro Inc., 7824 51 Ave NW, Edmonton, AB, T6E 6W2, Canada
| | - M R Kolb
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - K Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 50 Charlton Avenue East, L314-5, Hamilton, ON, L8N 4A6, Canada.
| | - T Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
2
|
Niu Y, Liu S, Qiu Q, Fu D, Xiao Y, Liang L, Cui Y, Ye S, Xu H. Increased serum level of IL-6 predicts poor prognosis in anti-MDA5-positive dermatomyositis with rapidly progressive interstitial lung disease. Arthritis Res Ther 2024; 26:184. [PMID: 39468670 PMCID: PMC11520069 DOI: 10.1186/s13075-024-03415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUD Anti-melanoma differentiation-associated protein 5 antibody-positive dermatomyositis (anti-MDA5-positvie DM) is a subtype of dermatomyositis with a poor prognosis, characterized by rapidly progressive interstitial lung disease (RP-ILD). The study aims to investigate the significance of serum cytokines profiles and peripheral lymphocytes in predicting prognoses of anti-MDA5-positvie DM with RP-ILD. Furthermore, it seeks to analyze longitudinal data of lymphocytes during hospitalization to identify distinct trajectories and cluster patients accordingly. METHODS A total of 168 patients with anti-MDA5-positive DM were enrolled in this retrospective study from two cohorts. Univariate and multivariate Cox regression analyses were conducted to determine the predictors of 6-month all-cause mortality and RP-ILD. Group-based trajectory modeling (GBTM) was employed to model the trajectories of longitudinal peripheral lymphocytes. RESULTS In the multivariate Cox regression analysis, IL-6 ≥ 13.41pg/mL, lymphocytes < 0.5 × 109 /L, lymphocytes from 0.5 to 1.0 × 109 /L, older age, and elevated LDH were identified as independent predictors of 6-month all-cause mortality. Furthermore, IL-6 ≥ 13.41pg/mL, lymphocytes < 0.5 × 109 /L, and lymphocytes from 0.5 to 1.0 × 109 /L were found to be independent predictors of RP-ILD. Additionally, three trajectory groups of lymphocytes within the first week after admission were established based on GBTM. These groups included: Group 1, with low-level of lymphocytes that declined; Group 2, with medium-level of lymphocytes that slightly rose; and Group 3, with high-level of lymphocytes that rose. Notably, group 1 showed the highest mortality (90.7%) and all experiencing RP-ILD. Increased expression of IL-6 in lung tissues was observed in two cases with RP-ILD compared to two cases without RP-ILD. We also found the increased infiltration of CD4 + and CD8 + T cells, particularly CD8 + T cells, in lung tissues from patients with RP-ILD. CONCLUSIONS Our study demonstrated that increased level of serum IL-6 (≥ 13.41pg/mL) and severe lymphopenia were promising predictors of 6-month all-cause mortality and the occurrence of RP-ILD in anti-MDA5-positive DM patients. Furthermore, tracking distinct trajectories of lymphocytes during hospitalization can be utilized to cluster patients.
Collapse
Affiliation(s)
- Yuanyuan Niu
- Department of General Practice, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Suling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Di Fu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Yang Cui
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, Guangdong Province, 510180, China.
| | - Shanhui Ye
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou, Guangdong Province, 510120, China.
| | - Hanshi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China.
| |
Collapse
|
3
|
Dong Z, Wang X, Wang P, Bai M, Wang T, Chu Y, Qin Y. Idiopathic Pulmonary Fibrosis Caused by Damaged Mitochondria and Imbalanced Protein Homeostasis in Alveolar Epithelial Type II Cell. Adv Biol (Weinh) 2024:e2400297. [PMID: 39390651 DOI: 10.1002/adbi.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/21/2024] [Indexed: 10/12/2024]
Abstract
Alveolar epithelial Type II (ATII) cells are closely associated with early events of Idiopathic pulmonary fibrosis (IPF). Proteostasis dysfunction, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are known causes of decreased proliferation of alveolar epithelial cells and the secretion of pro-fibrotic mediators. Here, a large body of evidence is systematized and a cascade relationship between protein homeostasis, endoplasmic reticulum stress, mitochondrial dysfunction, and fibrotropic cytokines is proposed, providing a theoretical basis for ATII cells dysfunction as a possible pathophysiological initiating event for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhaoxiong Dong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
- Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chaoyang District, Beijing, 100101, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Xiaolong Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Mingjian Bai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100101, China
| | - Tianyu Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100101, China
| | - Yanhui Chu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yan Qin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
- Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
4
|
Yuan Y. Imbalance of dendritic cell function in pulmonary fibrosis. Cytokine 2024; 181:156687. [PMID: 38963940 DOI: 10.1016/j.cyto.2024.156687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease. The pathogenesis of PF remains unclear, and there are currently no effective treatments or drugs that can completely cure PF. The primary cause of PF is an imbalance of inflammatory response and inappropriate repair following lung injury. Dendritic cells (DCs), as one of the immune cells in the body, play an important role in regulating immune response, immune tolerance, and promoting tissue repair following lung injury. However, the role of DCs in the PF process is ambiguous or even contradictory in the existing literature. On the one hand, DCs can secrete transforming growth factor β(TGF-β), stimulate Th17 cell differentiation, stimulate fibroblast proliferation, and promote the generation of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α), thereby promoting PF. On the other hand, DCs suppress PF through mechanisms including the secretion of IL-10 to inhibit effector T cell activity in the lungs and promote the function of regulatory T cells (Tregs), as well as by expressing matrix metalloproteinases (MMPs) which facilitate the degradation of the extracellular matrix (ECM). This article will infer possible reasons for the different roles of DCs in PF and analyze possible reasons for the functional imbalance of DCs in pulmonary fibrosis from the complexity and changes of the pulmonary microenvironment, autophagy defects of DCs, and changes in the pulmonary physical environment.
Collapse
Affiliation(s)
- Yuan Yuan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China.
| |
Collapse
|
5
|
Xu Y, Ying L, Lang JK, Hinz B, Zhao R. Modeling mechanical activation of macrophages during pulmonary fibrogenesis for targeted anti-fibrosis therapy. SCIENCE ADVANCES 2024; 10:eadj9559. [PMID: 38552026 PMCID: PMC10980276 DOI: 10.1126/sciadv.adj9559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Pulmonary fibrosis is an often fatal lung disease. Immune cells such as macrophages were shown to accumulate in the fibrotic lung, but their contribution to the fibrosis development is unclear. To recapitulate the involvement of macrophages in the development of pulmonary fibrosis, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissues became mechanically activated. The resulting co-alignment of macrophages, collagen fibers, and fibroblasts promoted widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMβ2 and Rho-associated kinase 2. These results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by macrophages. The cocultured microtissue model is a powerful tool to study the immune-stromal cell interactions and the anti-fibrosis drug mechanism.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Linxuan Ying
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jennifer K. Lang
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York; Veterans Affairs Western New York Health Care System, University at Buffalo, State University of New York; Department of Biomedical Engineering, University at Buffalo, State University of New York; Department of Medicine, University at Buffalo, State University of New York; Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
6
|
Sato S, Koyama K, Ogawa H, Murakami K, Imakura T, Yamashita Y, Kagawa K, Kawano H, Hara E, Nishioka Y. A novel BRD4 degrader, ARV-825, attenuates lung fibrosis through senolysis and antifibrotic effect. Respir Investig 2023; 61:781-792. [PMID: 37741093 DOI: 10.1016/j.resinv.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Recent studies suggest that cellular senescence is related to the pathogenesis of idiopathic pulmonary fibrosis. However, cellular senescence has yet to be targeted therapeutically in clinical practice. ARV825, a recently developed BRD4 degrader, has been reported as a novel senolytic drug. Conversely, it has also been reported that BRD4 regulates the pro-fibrotic gene expression of fibroblasts. Therefore, this study focuses on the senolytic and anti-fibrotic effects of ARV825 and evaluated these effects on lung fibrosis. METHODS Lung fibroblasts were induced to senescence through serial passage. The expression of senescence markers and pro-fibrotic markers were determined through quantitative PCR or immunoblot analysis. Lung fibrosis was induced in mice through intratracheal administration of bleomycin. Mice treated with ARV825 underwent histological analysis of lung fibrosis using the Ashcroft score. Total lung collagen was quantified through a hydroxyproline assay. Respiratory mechanics analysis was performed using the flexiVent system. RESULTS For senescent cells, ARV825 induced the expression of an apoptosis marker while reducing the expression of BRD4 and senescence markers. On the other hand, for early passage pre-senescent cells, ARV825 reduced the expression of collagen type 1 and α-smooth muscle actin. In an experimental mouse model of lung fibrosis, ARV825 attenuated lung fibrosis and improved lung function. Immunohistochemical staining revealed a significant decrease in the number of senescent alveolar type 2 cells in lung tissue due to ARV825 treatment. CONCLUSIONS These results suggest that ARV825 may impact the progressive and irreversible course of fibrotic lung diseases.
Collapse
Affiliation(s)
- Seidai Sato
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuya Koyama
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kojin Murakami
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Imakura
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuya Yamashita
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kozo Kagawa
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Kawano
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
7
|
Parhizkari N, Eidi M, Mahdavi-Ortakand M, Ebrahimi-Kia Y, Zarei S, Pazoki Z. The effect of oral treatment of royal jelly on the expression of the PDGF-β gene in the skin wound of male mice. J Tissue Viability 2023; 32:536-540. [PMID: 37679248 DOI: 10.1016/j.jtv.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
AIMS OF THE STUDY Royal jelly (RJ) is one of the most widely used drugs in traditional medicine. One of its important applications is the repair of skin damage, although the path of its mechanism is still unknown. Platelet-derived growth factor-beta (PDGF-beta) is one of the important factors in wound healing and it has been observed that PDGF-β expression decreases with increasing age. In this study, for the first time, the effect of RJ on skin wounds has been investigated through the expression of PDGF-β and tissue studies. MATERIALS AND METHODS 25 small laboratory male BALB/c mice were selected randomly and after creating a 5 mm wound on the back of their neck, they were treated with doses of 2.5, 10, and 40 mg/kg body weight, After sampling from the healed wound in 9th day, histopathological studies and the expression of PDGF-β gene were performed by Real-time PCR method. RESULTS The findings of the present study showed that royal jelly caused a significant increase in PDGF-β (10.99 times) compared to the healthy group. Also, royal jelly increased the formation of covering tissue or epithelium, the synthesis of collagen, the presence of inflammatory cells, and the formation of new blood vessels. CONCLUSION The oral treatment of royal jelly is probably effective in skin wound healing by changing the expression of PDGF-β.
Collapse
Affiliation(s)
- Narges Parhizkari
- Department of Cellular and Molecular, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Eidi
- Department of Biology, Biological Sciences College, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Masoumeh Mahdavi-Ortakand
- Department of Biology, Biological Sciences College, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Yasaman Ebrahimi-Kia
- Anatomical Sciences & Cognitive Neuroscience Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedemaryam Zarei
- Department of Biology, Biological Sciences College, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Zahra Pazoki
- Department of Biology, Biological Sciences College, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
8
|
Wolf CL, Pruett C, Lighter D, Jorcyk CL. The clinical relevance of OSM in inflammatory diseases: a comprehensive review. Front Immunol 2023; 14:1239732. [PMID: 37841259 PMCID: PMC10570509 DOI: 10.3389/fimmu.2023.1239732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine involved in a variety of inflammatory responses such as wound healing, liver regeneration, and bone remodeling. As a member of the interleukin-6 (IL-6) family of cytokines, OSM binds the shared receptor gp130, recruits either OSMRβ or LIFRβ, and activates a variety of signaling pathways including the JAK/STAT, MAPK, JNK, and PI3K/AKT pathways. Since its discovery in 1986, OSM has been identified as a significant contributor to a multitude of inflammatory diseases, including arthritis, inflammatory bowel disease, lung and skin disease, cardiovascular disease, and most recently, COVID-19. Additionally, OSM has also been extensively studied in the context of several cancer types including breast, cervical, ovarian, testicular, colon and gastrointestinal, brain,lung, skin, as well as other cancers. While OSM has been recognized as a significant contributor for each of these diseases, and studies have shown OSM inhibition is effective at treating or reducing symptoms, very few therapeutics have succeeded into clinical trials, and none have yet been approved by the FDA for treatment. In this review, we outline the role OSM plays in a variety of inflammatory diseases, including cancer, and outline the previous and current strategies for developing an inhibitor for OSM signaling.
Collapse
Affiliation(s)
- Cody L. Wolf
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
| | - Clyde Pruett
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Darren Lighter
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
9
|
Li Y, He S, Zhao Y, Jiang H, Lyu Z. Unraveling the mechanism of tetrandrine combined with Buyang Huanwu Decoction against silicosis using network pharmacology and molecular docking analyses. Medicine (Baltimore) 2023; 102:e34716. [PMID: 37565873 PMCID: PMC10419795 DOI: 10.1097/md.0000000000034716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Silicosis is an incurable chronic disease characterized by lung fibrosis and inflammation. The combination of tetrandrine and Buyang Huanwu Decoction (BYHWD) has a curative effect on silicosis. However, the mechanism of action and the key active constituent in BYHWD are still unclear. The present study employed network pharmacology and molecular docking to determine the mechanism of action and the key active components of BYHWD of Tetrandrine in combination with BYHWD for silicosis. The primary elements and targets of BYHWD were obtained from the Traditional Chinese Medicine Systems Pharmacology and analysis platform. The targets associated with tetrandrine and silicosis were identified and extracted from the Comparative Toxicogenomics Database and GeneCards database. The potential targets for the treatment of silicosis using a combination of Tetrandrine and BYHWD were identified by considering the overlapping targets between compound drugs and silicosis. These targets were then utilized to construct protein-protein interaction networks, compound drug-ingredient-target networks, and perform enrichment analyses. The top 5 active ingredients present in the compound drug-ingredient-target network are tetrandrine, quercetin, luteolin, kaempferol, and beta-carotene. Similarly, the top 6 hub genes in the protein-protein interaction network are FGF2, MMP-9, MMP-1, IL-10, IL-17A, and IL-6. The molecular docking suggested that the active components may easily access the active pocket of the hub gene. The in-silico investigation suggested that quercetin might be the active component in BYHWD responsible for therapeutic effectiveness against silicosis. This study identified the active compound and potential molecular mechanism underlying the therapeutic effects of BYHWD in combination with tetrandrine for treating silicosis. Notably, we found that quercetin may serve as the key compound in BYHWD for the treatment of silicosis.
Collapse
Affiliation(s)
- Yi Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Song He
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Youdan Zhao
- Department of Senior Cadres Ward, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhan Jiang
- Nursing College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhi Lyu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Senior Cadres Ward, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Thapa B, Pak S, Chung D, Shin HK, Lee SH, Lee K. Cell-penetrating TLR inhibitor peptide alleviates ulcerative colitis by the functional modulation of macrophages. Front Immunol 2023; 14:1165667. [PMID: 37215126 PMCID: PMC10196052 DOI: 10.3389/fimmu.2023.1165667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Toll-like receptors (TLRs) have a crucial role not only in triggering innate responses against microbes but in orchestrating an appropriate adaptive immunity. However, deregulated activation of TLR signaling leads to chronic inflammatory conditions such as inflammatory bowel disease (IBD). In this study, we evaluated the immunomodulatory potential of a TLR inhibitor in the form of a cell-penetrating peptide using an ulcerative colitis animal model. A peptide derived from the TIR domain of the TLR adaptor molecule TIRAP that was conjugated with a cell-penetrating sequence (cpTLR-i) suppressed the induction of pro-inflammatory cytokines such as TNF-α and IL-1β in macrophages. In DSS-induced colitis mice, cpTLR-i treatment ameliorated colitis symptoms, colonic tissue damage, and mucosal inflammation. Intriguingly, cpTLR-i attenuated the induction of TNF-α-expressing proinflammatory macrophages while promoting that of regulatory macrophages expressing arginase-1 and reduced type 17 helper T cell (Th17) responses in the inflamed colonic lamina propria. An in vitro study validated that cpTLR-i enhanced the differentiation of monocyte-driven macrophages into mature macrophages with a regulatory phenotype in a microbial TLR ligand-independent manner. Furthermore, the cocultivation of CD4 T cells with macrophages revealed that cpTLR-i suppressed the activation of Th17 cells through the functional modulation of macrophages. Taken together, our data show the immunomodulatory potential of the TLR inhibitor peptide and suggest cpTLR-i as a novel therapeutic candidate for the treatment of IBD.
Collapse
Affiliation(s)
- Bikash Thapa
- Institute of Bioscience & Biotechnology, Hallym University, Chuncheon, Republic of Korea
| | - Seongwon Pak
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Dohyeon Chung
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | | | - Seong Ho Lee
- R&D Center, Genesen Co., Ltd, Seoul, Republic of Korea
| | - Keunwook Lee
- Institute of Bioscience & Biotechnology, Hallym University, Chuncheon, Republic of Korea
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
11
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
12
|
Gole L, Liu F, Ong KH, Li L, Han H, Young D, Marini GPL, Wee A, Zhao J, Rao H, Yu W, Wei L. Quantitative image-based collagen structural features predict the reversibility of hepatitis C virus-induced liver fibrosis post antiviral therapies. Sci Rep 2023; 13:6384. [PMID: 37076590 PMCID: PMC10115775 DOI: 10.1038/s41598-023-33567-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
The novel targeted therapeutics for hepatitis C virus (HCV) in last decade solved most of the clinical needs for this disease. However, despite antiviral therapies resulting in sustained virologic response (SVR), a challenge remains where the stage of liver fibrosis in some patients remains unchanged or even worsens, with a higher risk of cirrhosis, known as the irreversible group. In this study, we provided novel tissue level collagen structural insight into early prediction of irreversible cases via image based computational analysis with a paired data cohort (of pre- and post-SVR) following direct-acting-antiviral (DAA)-based treatment. Two Photon Excitation and Second Harmonic Generation microscopy was used to image paired biopsies from 57 HCV patients and a fully automated digital collagen profiling platform was developed. In total, 41 digital image-based features were profiled where four key features were discovered to be strongly associated with fibrosis reversibility. The data was validated for prognostic value by prototyping predictive models based on two selected features: Collagen Area Ratio and Collagen Fiber Straightness. We concluded that collagen aggregation pattern and collagen thickness are strong indicators of liver fibrosis reversibility. These findings provide the potential implications of collagen structural features from DAA-based treatment and paves the way for a more comprehensive early prediction of reversibility using pre-SVR biopsy samples to enhance timely medical interventions and therapeutic strategies. Our findings on DAA-based treatment further contribute to the understanding of underline governing mechanism and knowledge base of structural morphology in which the future non-invasive prediction solution can be built upon.
Collapse
Affiliation(s)
- Laurent Gole
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China
| | - Kok Haur Ong
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Longjie Li
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Hao Han
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - David Young
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - Gabriel Pik Liang Marini
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore, Singapore
| | - Jingmin Zhao
- Department of Pathology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Huiying Rao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China.
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore.
- Bioinformatics Institute, A*STAR, Singapore, Singapore.
| | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China.
- Department of Hepatobiliary and Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
13
|
Chen YH, Nguyen D, Brindley S, Ma T, Xia T, Brune J, Brown JM, Tsai CSJ. The dependence of particle size on cell toxicity for modern mining dust. Sci Rep 2023; 13:5101. [PMID: 36991007 PMCID: PMC10060429 DOI: 10.1038/s41598-023-31215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractProgressive massive pulmonary fibrosis among coal miners has unexpectedly increased. It would likely due to the greater generation of smaller rock and coal particles produced by powerful equipment used in modern mines. There is limited understanding of the relationship between micro- or nanoparticles with pulmonary toxicity. This study aims to determine whether the size and chemical characteristics of typical coal-mining dust contribute to cellular toxicity. Size range, surface features, morphology, and elemental composition of coal and rock dust from modern mines were characterized. Human macrophages and bronchial tracheal epithelial cells were exposed to mining dust of three sub- micrometer and micrometer size ranges at varying concentrations, then assessed for cell viability and inflammatory cytokine expression. Coal had smaller hydrodynamic size (180–3000 nm) compared to rock (495–2160 nm) in their separated size fractions, more hydrophobicity, less surface charge, and consisted of more known toxic trace elements (Si, Pt, Fe, Al, Co). Larger particle size had a negative association with in-vitro toxicity in macrophages (p < 0.05). Fine particle fraction, approximately 200 nm for coal and 500 nm for rock particles, explicitly induced stronger inflammatory reactions than their coarser counterparts. Future work will study additional toxicity endpoints to further elucidate the molecular mechanism causing pulmonary toxicity and determine a dose–response curve.
Collapse
|
14
|
Liu Y, Zhang M, Liao Y, Chen H, Su D, Tao Y, Li J, Luo K, Wu L, Zhang X, Yang R. Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing. Front Immunol 2023; 14:1142088. [PMID: 36999022 PMCID: PMC10044346 DOI: 10.3389/fimmu.2023.1142088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
IntroductionFull-thickness skin wound healing remains a serious undertaking for patients. While stem cell-derived exosomes have been proposed as a potential therapeutic approach, the underlying mechanism of action has yet to be fully elucidated. The current study aimed to investigate the impact of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exosomes) on the single-cell transcriptome of neutrophils and macrophages in the context of wound healing.MethodsUtilizing single-cell RNA sequencing, the transcriptomic diversity of neutrophils and macrophages was analyzed in order to predict the cellular fate of these immune cells under the influence of hucMSC-Exosomes and to identify alterations of ligand-receptor interactions that may influence the wound microenvironment. The validity of the findings obtained from this analysis was subsequently corroborated by immunofluorescence, ELISA, and qRT-PCR. Neutrophil origins were characterized based on RNA velocity profiles.ResultsThe expression of RETNLG and SLC2A3 was associated with migrating neutrophils, while BCL2A1B was linked to proliferating neutrophils. The hucMSC-Exosomes group exhibited significantly higher levels of M1 macrophages (215 vs 76, p < 0.00001), M2 macrophages (1231 vs 670, p < 0.00001), and neutrophils (930 vs 157, p < 0.00001) when compared to control group. Additionally, it was observed that hucMSC-Exosomes elicit alterations in the differentiation trajectories of macrophages towards more anti-inflammatory phenotypes, concomitant with changes in ligand-receptor interactions, thereby facilitating healing.DiscussionThis study has revealed the transcriptomic heterogeneity of neutrophils and macrophages in the context of skin wound repair following hucMSC-Exosomes interventions, providing a deeper understanding of cellular responses to hucMSC-Exosomes, a rising target of wound healing intervention.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yong Liao
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Dandan Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yuandong Tao
- Department of Pediatric Urology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiangbo Li
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing, China
| | - Kai Luo
- Biomedical Treatment Center, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lihua Wu
- Biomedical Treatment Center, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xingyue Zhang
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Rongya Yang
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Rongya Yang,
| |
Collapse
|
15
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
16
|
Ariyaratne A, Kim SY, Pollo SMJ, Perera S, Liu H, Nguyen WNT, Coria AL, Luzzi MDC, Bowron J, Szabo EK, Patel KD, Wasmuth JD, Nair MG, Finney CAM. Trickle infection with Heligmosomoides polygyrus results in decreased worm burdens but increased intestinal inflammation and scarring. Front Immunol 2022; 13:1020056. [PMID: 36569914 PMCID: PMC9773095 DOI: 10.3389/fimmu.2022.1020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Intestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known. Results Using a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression. Discussion To our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.
Collapse
Affiliation(s)
- Anupama Ariyaratne
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Stephen M. J. Pollo
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shashini Perera
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - William N. T. Nguyen
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon Coria
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Mayara de Cassia Luzzi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Joel Bowron
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Edina K. Szabo
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Kamala D. Patel
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - James D. Wasmuth
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Constance A. M. Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
MacDonald K, Botelho F, Ashkar AA, Richards CD. Type I Interferon Signaling is Required for Oncostatin-M Driven Inflammatory Responses in Mouse Lung. J Interferon Cytokine Res 2022; 42:568-579. [DOI: 10.1089/jir.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Fernando Botelho
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | | | - Carl D. Richards
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
19
|
Li Y, Zhao J, Yin Y, Li K, Zhang C, Zheng Y. The Role of IL-6 in Fibrotic Diseases: Molecular and Cellular Mechanisms. Int J Biol Sci 2022; 18:5405-5414. [PMID: 36147459 PMCID: PMC9461670 DOI: 10.7150/ijbs.75876] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Fibrosis is a detrimental outcome of most chronic inflammatory disorders and is defined by the buildup of excess extracellular matrix (ECM) components, which eventually leads to organ failure and death. Interleukin 6 (IL-6) is promptly produced by immune cells in response to tissue injuries and has a wide range of effects on cellular processes such as acute responses, hematopoiesis, and immune reactions. Furthermore, high levels of IL-6 have been found in a variety of chronic inflammatory disorders characterized by fibrosis, and this factor plays a significant role in fibrosis in various organs via Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) activation. Here, we review what is known about the role of IL-6 in fibrosis and why targeting IL-6 for fibrotic disease treatment makes sense.
Collapse
Affiliation(s)
- Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Ke Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
20
|
Humphries DC, Mills R, Boz C, McHugh BJ, Hirani N, Rossi AG, Pedersen A, Schambye HT, Slack RJ, Leffler H, Nilsson UJ, Wang W, Sethi T, Mackinnon AC. Galectin-3 inhibitor GB0139 protects against acute lung injury by inhibiting neutrophil recruitment and activation. Front Pharmacol 2022; 13:949264. [PMID: 36003515 PMCID: PMC9393216 DOI: 10.3389/fphar.2022.949264] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Rationale: Galectin-3 (Gal-3) drives fibrosis during chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Effective pharmacological therapies available for ALI are limited; identifying novel concepts in treatment is essential. GB0139 is a Gal-3 inhibitor currently under clinical investigation for the treatment of idiopathic pulmonary fibrosis. We investigate the role of Gal-3 in ALI and evaluate whether its inhibition with GB0139 offers a protective role. The effect of GB0139 on ALI was explored in vivo and in vitro. Methods: The pharmacokinetic profile of intra-tracheal (i.t.) GB0139 was investigated in C57BL/6 mice to support the daily dosing regimen. GB0139 (1–30 µg) was then assessed following acute i.t. lipopolysaccharide (LPS) and bleomycin administration. Histology, broncho-alveolar lavage fluid (BALf) analysis, and flow cytometric analysis of lung digests and BALf were performed. The impact of GB0139 on cell activation and apoptosis was determined in vitro using neutrophils and THP-1, A549 and Jurkat E6 cell lines. Results: GB0139 decreased inflammation severity via a reduction in neutrophil and macrophage recruitment and neutrophil activation. GB0139 reduced LPS-mediated increases in interleukin (IL)-6, tumor necrosis factor alpha (TNFα) and macrophage inflammatory protein-1-alpha. In vitro, GB0139 inhibited Gal-3-induced neutrophil activation, monocyte IL-8 secretion, T cell apoptosis and the upregulation of pro-inflammatory genes encoding for IL-8, TNFα, IL-6 in alveolar epithelial cells in response to mechanical stretch. Conclusion: These data indicate that Gal-3 adopts a pro-inflammatory role following the early stages of lung injury and supports the development of GB0139, as a potential treatment approach in ALI.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Galecto Inc. Nine Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Ross Mills
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Cecilia Boz
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian J. McHugh
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Nikhil Hirani
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriano G. Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Wei Wang
- Department of Asthma, Allergy and Respiratory Science, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Tariq Sethi
- Galecto Inc, Copenhagen, Denmark
- Department of Asthma, Allergy and Respiratory Science, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Alison C. Mackinnon
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Galecto Inc. Nine Edinburgh BioQuarter, Edinburgh, United Kingdom
- *Correspondence: Alison C. Mackinnon,
| |
Collapse
|
21
|
Fernandez GJ, Ramírez-Mejia JM, Urcuqui-Inchima S. Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. J Nutr Biochem 2022; 109:109105. [PMID: 35858666 DOI: 10.1016/j.jnutbio.2022.109105] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
Vitamin D is associated with the stimulation of innate immunity, inflammation, and host defense against pathogens. Macrophages express receptors of Vitamin D, regulating transcription of genes related to immune processes. However, the transcriptional and post-transcriptional strategies controlling gene expression in differentiated macrophages, and how they are influenced by Vitamin D are not well understood. We studied whether Vitamin D enhances immune response by regulating the expression of microRNAs and mRNAs. Analysis of the transcriptome showed differences in expression of 199 genes, of which 68% were up-regulated, revealing the cell state of monocyte-derived macrophages differentiated with Vitamin D (D3-MDMs) as compared to monocyte-derived macrophages (MDMs). The differentially expressed genes appear to be associated with pathophysiological processes, including inflammatory responses, and cellular stress. Transcriptional motifs in promoter regions of up- or down-regulated genes showed enrichment of VDR motifs, suggesting possible roles of transcriptional activator or repressor in gene expression. Further, microRNA-Seq analysis indicated that there were 17 differentially expressed miRNAs, of which, 7 were up-regulated and 10 down-regulated, suggesting that Vitamin D plays a critical role in the regulation of miRNA expression during macrophages differentiation. The miR-6501-3p, miR-1273h-5p, miR-665, miR-1972, miR-1183, miR-619-5p were down-regulated in D3-MDMs compared to MDMs. The integrative analysis of miRNA and mRNA expression profiles predict that miR-1972, miR-1273h-5p, and miR-665 regulate genes PDCD1LG2, IL-1B, and CD274, which are related to the inflammatory response. Results suggest an essential role of Vitamin D in macrophage differentiation that modulates host response against pathogens, inflammation, and cellular stress.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Julieta M Ramírez-Mejia
- Research group CIBIOP, Department of Biological Sciences, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
22
|
Zhou J, Yang J, Dong Y, Shi Y, Zhu E, Yuan H, Li X, Wang B. Oncostatin M receptor regulates osteoblast differentiation via extracellular signal-regulated kinase/autophagy signaling. Stem Cell Res Ther 2022; 13:278. [PMID: 35765036 PMCID: PMC9241272 DOI: 10.1186/s13287-022-02958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Oncostatin M receptor (OSMR), as one of the receptors for oncostatin M (OSM), has previously been shown to mediate the stimulatory role of OSM in osteoclastogenesis and bone resorption. However, it remains to be clarified whether and how OSMR affects the differentiation of osteoblasts. Methods The expression level of OSMR during osteoblast and adipocyte differentiation was examined. The role of OSMR in the differentiation was investigated using in vitro gain-of-function and loss-of-function experiments. The mechanisms by which OSMR regulates bone cell differentiation were explored. Finally, in vivo function of OSMR in cell fate determination and bone homeostasis was studied after transplantation of OSMR-silenced bone marrow stromal cells (BMSCs) to the marrow of ovariectomized mice. Results OSMR was regulated during osteogenic and adipogenic differentiation of marrow stromal progenitor cells and increased in the metaphysis of ovariectomized mice. OSMR suppressed osteogenic differentiation and stimulated adipogenic differentiation of progenitor cells. Mechanistic investigations showed that OSMR inhibited extracellular signal-regulated kinase (ERK) and autophagy signaling. The downregulation of autophagy, which was mediated by ERK inhibition, suppressed osteogenic differentiation of progenitor cells. Additionally, inactivation of ERK/autophagy signaling attenuated the stimulation of osteogenic differentiation induced by Osmr siRNA. Furthermore, transplantation of BMSCs in which OSMR was silenced to the marrow of mice promoted osteoblast differentiation, attenuated fat accumulation and osteoclast differentiation, and thereby relieved the osteopenic phenotype in the ovariectomized mice. Conclusions Our study has for the first time established the direct role of OSMR in regulating osteogenic differentiation of marrow stromal progenitor cells through ERK-mediated autophagy signaling. OSMR thus contributes to bone homeostasis through dual regulation of osteoblasts and osteoclasts. It also suggests that OSMR may be a potential target for the treatment of metabolic disorders such as osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02958-1.
Collapse
Affiliation(s)
- Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Junying Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.,College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yuan Dong
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.,College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yaru Shi
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.
| |
Collapse
|
23
|
Denton CP, del Galdo F, Khanna D, Vonk MC, Chung L, Johnson SR, Varga J, Furst DE, Temple J, Zecchin C, Csomor E, Lee A, Wisniacki N, Flint SM, Reid J. Biological and clinical insights from a randomized phase 2 study of an anti-oncostatin M monoclonal antibody in systemic sclerosis. Rheumatology (Oxford) 2022; 62:234-242. [PMID: 35583273 PMCID: PMC9788816 DOI: 10.1093/rheumatology/keac300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The cytokine oncostatin M (OSM) is implicated in the pathology of SSc. Inhibiting OSM signalling using GSK2330811 (an anti-OSM monoclonal antibody) in patients with SSc has the potential to slow or stop the disease process. METHODS This multicentre, randomized, double-blind, placebo-controlled study enrolled participants ≥18 years of age with active dcSSc. Participants were randomized 3:1 (GSK2330811:placebo) in one of two sequential cohorts to receive GSK2330811 (cohort 1: 100 mg; cohort 2: 300 mg) or placebo s.c. every other week for 12 weeks. The primary endpoint was safety; blood and skin biopsy samples were collected to explore mechanistic effects on inflammation and fibrosis. Clinical efficacy was an exploratory endpoint. RESULTS Thirty-five participants were randomized to placebo (n = 8), GSK2330811 100 mg (n = 3) or GSK2330811 300 mg (n = 24). Proof of mechanism, measured by coordinate effects on biomarkers of inflammation or fibrosis, was not demonstrated following GSK2330811 treatment. There were no meaningful differences between GSK2330811 and placebo for any efficacy endpoints. The safety and tolerability of GSK2330811 were not favourable in the 300 mg group, with on-target, dose-dependent adverse events related to decreases in haemoglobin and platelet count that were not observed in the 100 mg or placebo groups. CONCLUSION Despite a robust and novel experimental medicine approach and evidence of target engagement, anticipated SSc-related biologic effects of GSK2330811 were not different from placebo and safety was unfavourable, suggesting OSM inhibition may not be a useful therapeutic strategy in SSc. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT03041025; EudraCT, 2016-003417-95.
Collapse
Affiliation(s)
- Christopher P Denton
- Correspondence to: Christopher Denton, Centre for Rheumatology and Connective Tissue Diseases, University College London, Division of Medicine, Rowland Hill Street, London NW3 2PF, UK. E-mail:
| | - Francesco del Galdo
- Institute of Rheumatic and Musculoskeletal Medicine, and Biomedical Research Centre, University of Leeds, Leeds, UK
| | - Dinesh Khanna
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Madelon C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lorinda Chung
- Stanford University School of Medicine and Palo Alto VA Health Care System, Palo Alto, CA, USA
| | - Sindhu R Johnson
- Toronto Scleroderma Program, Toronto Western Hospital,Mount Sinai Hospital, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - John Varga
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA,Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Daniel E Furst
- University of California, Los Angeles, Los Angeles, CA,University of Washington, Seattle, WA, USA,University of Florence, Florence, Italy
| | | | | | | | - Amy Lee
- GlaxoSmithKline, Mississauga, Canada
| | | | | | | |
Collapse
|
24
|
Jaffar J, McMillan L, Wilson N, Panousis C, Hardy C, Cho HJ, Symons K, Glaspole I, Westall G, Wong M. Coagulation Factor-XII induces interleukin-6 by primary lung fibroblasts: A role in idiopathic pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol 2021; 322:L258-L272. [PMID: 34873957 DOI: 10.1152/ajplung.00165.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The mechanisms driving idiopathic pulmonary fibrosis (IPF) remain undefined, however it is postulated that coagulation imbalances may play a role. The impact of blood-derived clotting factors, including factor XII (FXII) has not been investigated in the context of IPF. Methods Plasma levels of FXII were measured by ELISA in patients with IPF and age-matched healthy donors. Expression of FXII in human lung tissue was quantified using multiplex immunohistochemistry and western blotting. Mechanistic investigation of FXII activity was assessed in vitro on primary lung fibroblasts using qPCR and specific receptor/FXII inhibition. The functional outcome of FXII on fibroblast migration was examined by high-content image analysis. Findings Compared to 35 healthy donors, plasma levels of FXII were not higher in IPF (n=27, p>0·05). Tissue FXII was elevated in IPF (n=11) and increased numbers of FXII+ cells were found in IPF (n=8) lung tissue compared to non-diseased controls (n=6, p<0·0001). Activated FXII induced IL6 mRNA and IL-6 protein in fibroblasts that was blocked by anti-FXII antibody, CSL312. FXII-induced IL-6 production via PAR-1 and NF-kB. FXII induced migration of fibroblasts in a concentration-dependent manner. Interpretation FXII is normally confined to the circulation but leaks from damaged vessels into the lung interstitium in IPF where it 1) induces IL-6 production and 2) enhances migration of resident fibroblasts, critical events that drive chronic inflammation and therefore, contribute to fibrotic disease progression. Targeting FXII-induced fibroblastic processes in IPF may ameliorate pulmonary fibrosis. Funding National Health and Medical Research Council CRE in Lung Fibrosis and CSL Ltd.
Collapse
Affiliation(s)
- Jade Jaffar
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | | | | | | | | | - Hyun Jung Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Australia
| | - Karen Symons
- Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Ian Glaspole
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Glen Westall
- Department of Immunology and Pathology, Monash University, Australia.,Department of Respiratory Medicine, The Alfred Hospital, Australia
| | - Mae Wong
- CSL Limited, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Cass SP, Mekhael O, Thayaparan D, McGrath JJC, Revill SD, Fantauzzi MF, Wang P, Reihani A, Hayat AI, Stevenson CS, Dvorkin-Gheva A, Botelho FM, Stämpfli MR, Ask K. Increased Monocyte-Derived CD11b + Macrophage Subpopulations Following Cigarette Smoke Exposure Are Associated With Impaired Bleomycin-Induced Tissue Remodelling. Front Immunol 2021; 12:740330. [PMID: 34603325 PMCID: PMC8481926 DOI: 10.3389/fimmu.2021.740330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
Rationale The accumulation of macrophages in the airways and the pulmonary interstitium is a hallmark of cigarette smoke-associated inflammation. Notably, pulmonary macrophages are not a homogenous population but consist of several subpopulations. To date, the manner in which cigarette smoke exposure affects the relative composition and functional capacity of macrophage subpopulations has not been elucidated. Methods Using a whole-body cigarette smoke exposure system, we investigated the impact of cigarette smoke on macrophage subpopulations in C57BL/6 mice using flow cytometry-based approaches. Moreover, we used bromodeoxyuridine labelling plus Il1a-/- and Il1r1-/- mice to assess the relative contribution of local proliferation and monocyte recruitment to macrophage accumulation. To assess the functional consequences of altered macrophage subpopulations, we used a model of concurrent bleomycin-induced lung injury and cigarette smoke exposure to examine tissue remodelling processes. Main Results Cigarette smoke exposure altered the composition of pulmonary macrophages increasing CD11b+ subpopulations including monocyte-derived alveolar macrophages (Mo-AM) as well as interstitial macrophages (IM)1, -2 and -3. The increase in CD11b+ subpopulations was observed at multiple cigarette smoke exposure timepoints. Bromodeoxyuridine labelling and studies in Il1a-/- mice demonstrated that increased Mo-AM and IM3 turnover in the lungs of cigarette smoke-exposed mice was IL-1α dependent. Compositional changes in macrophage subpopulations were associated with impaired induction of fibrogenesis including decreased α-smooth muscle actin positive cells following intratracheal bleomycin treatment. Mechanistically, in vivo and ex vivo assays demonstrated predominant macrophage M1 polarisation and reduced matrix metallopeptidase 9 activity in cigarette smoke-exposed mice. Conclusion Cigarette smoke exposure modified the composition of pulmonary macrophage by expanding CD11b+ subpopulations. These compositional changes were associated with attenuated fibrogenesis, as well as predominant M1 polarisation and decreased fibrotic activity. Overall, these data suggest that cigarette smoke exposure altered the composition of pulmonary macrophage subpopulations contributing to impaired tissue remodelling.
Collapse
Affiliation(s)
- Steven P Cass
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Olivia Mekhael
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Joshua J C McGrath
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Spencer D Revill
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Matthew F Fantauzzi
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Peiyao Wang
- Department Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Amir Reihani
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Aaron I Hayat
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Christopher S Stevenson
- Janssen Disease Interception Accelerator, Janssen Pharmaceutical Companies of Johnson and Johnson, Raritan, NJ, United States
| | - Anna Dvorkin-Gheva
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Fernando M Botelho
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Martin R Stämpfli
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Xue Z, Zhao F, Sang X, Qiao Y, Shao R, Wang Y, Gao S, Fan G, Zhu Y, Yang J. Combination therapy of tanshinone IIA and puerarin for pulmonary fibrosis via targeting IL6-JAK2-STAT3/STAT1 signaling pathways. Phytother Res 2021; 35:5883-5898. [PMID: 34427348 DOI: 10.1002/ptr.7253] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/21/2022]
Abstract
Efficient therapy of idiopathic pulmonary fibrosis (IPF) is still a major challenge. The current studies with single-target drug therapy are the pessimistic approaches due to the complex characteristics of IPF. Here, a combination therapy of Tanshinone IIA and Puerarin for IPF was proposed to alleviate IPF due to their antiinflammatory and anti-fibrotic effects. In vivo, the combination therapy could significantly attenuate the area of ground glass opacification that was presented by 85% percentile density score of the micro-CT images when compared to single conditions. In addition, the combination therapy enormously improved the survival rate and alleviated pathological changes in bleomycin (BLM)-induced IPF mice. By using a wide spectrum of infiltration biomarkers in immunofluorescence assay in pathological sections, we demonstrate that fewer IL6 related macrophage infiltration and fibrosis area after this combination therapy, and further proved that IL6-JAK2-STAT3/STAT1 is the key mechanism of the combination therapy. In vitro, combination therapy markedly inhibited the fibroblasts activation and migration which was induced by TGF-β1 or/and IL6 through JAK2-STAT3/STAT1 signaling pathway. This study demonstrated that combination therapeutic effect of TanIIA and Pue on IPF may be related to the reduced inflammatory response targeting IL6, which could be an optimistic and effective approach for IPF.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangzhe Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoqing Sang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuchuan Qiao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rui Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Gao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Mekhael O, Naiel S, Vierhout M, Hayat AI, Revill SD, Abed S, Inman MD, Kolb MRJ, Ask K. Mouse Models of Lung Fibrosis. Methods Mol Biol 2021; 2299:291-321. [PMID: 34028751 DOI: 10.1007/978-1-0716-1382-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The drug discovery pipeline, from discovery of therapeutic targets through preclinical and clinical development phases, to an approved product by health authorities, is a time-consuming and costly process, where a lead candidates' success at reaching the final stage is rare. Although the time from discovery to final approval has been reduced over the last decade, there is still potential to further optimize and streamline the evaluation process of each candidate as it moves through the different development phases. In this book chapter, we describe our preclinical strategies and overall decision-making process designed to evaluate the tolerability and efficacy of therapeutic candidates suitable for patients diagnosed with fibrotic lung disease. We also describe the benefits of conducting preliminary discovery trials, to aid in the selection of suitable primary and secondary outcomes to be further evaluated and assessed in subsequent internal and external validation studies. We outline all relevant research methodologies and protocols routinely performed by our research group and hope that these strategies and protocols will be a useful guide for biomedical and translational researchers aiming to develop safe and beneficial therapies for patients with fibrotic lung disease.
Collapse
Affiliation(s)
- Olivia Mekhael
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Aaron I Hayat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Spencer D Revill
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Soumeya Abed
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Mark D Inman
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.
| |
Collapse
|
28
|
Boumaza A, Gay L, Mezouar S, Bestion E, Diallo AB, Michel M, Desnues B, Raoult D, La Scola B, Halfon P, Vitte J, Olive D, Mege JL. Monocytes and Macrophages, Targets of Severe Acute Respiratory Syndrome Coronavirus 2: The Clue for Coronavirus Disease 2019 Immunoparalysis. J Infect Dis 2021; 224:395-406. [PMID: 33493287 PMCID: PMC7928817 DOI: 10.1093/infdis/jiab044] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background Covid-19 clinical expression is pleiomorphic, severity is related to age and comorbidities such as diabetes and hypertension, and pathophysiology involves aberrant immune activation and lymphopenia. We wondered if the myeloid compartment was affected during Covid-19 and if monocytes and macrophages could be infected by SARS-CoV-2. Methods Monocytes and monocyte-derived macrophages from Covid-19 patients and controls were infected with SARS-CoV-2, and extensively investigated with immunofluorescence, viral RNA extraction and quantification, total RNA extraction followed by reverse transcription and q-PCR using specific primers, supernatant cytokines (IL-10, TNF-α, IL-1β, IFN-β, TGF-β1 and IL-6), flow cytometry. The effect of M1- versus M2-type or no polarization prior to infection was assessed. Results SARS-CoV-2 efficiently infected monocytes and MDMs but their infection is abortive. Infection was associated with immunoregulatory cytokines secretion and the induction of a macrophagic specific transcriptional program characterized by the upregulation of M2-type molecules. In vitro polarization did not account for permissivity to SARS-CoV-2, since M1- and M2-type MDMs were similarly infected. In Covid-19 patients, monocytes exhibited lower counts affecting all subsets, decreased expression of HLA-DR, and increased expression of CD163, irrespective of severity. Conclusion SARS-CoV-2 drives monocytes and macrophages to induce host immunoparalysis for the benefit of Covid-19 progression.
Collapse
Affiliation(s)
- Asma Boumaza
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France
| | - Laetitia Gay
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France.,ImCheck Therapeutics, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France
| | - Eloïne Bestion
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France.,Genoscience Pharma, Marseille, France
| | - Aïssatou Bailo Diallo
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France
| | - Moise Michel
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France
| | - Benoit Desnues
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France
| | - Philippe Halfon
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France.,ImCheck Therapeutics, Marseille, France
| | - Joana Vitte
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France
| | - Daniel Olive
- Centre de recherche en cancérologie de Marseille, Inserm Unité mixte de recherche 1068, Centre National de la Recherche Scientifique Unité mixte de recherche 7258, Institut Paoli Calmettes, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Université, Institut de recherche pour le développement, Assitance publique-hopitaux de Marseille, Microbe, Phylogeny and infection, Marseille, France.,Institut hospitalo-universitaire Méditerranée infection, Marseille, France.,Aix-Marseille Université, Assistance publique-hoptiaux de Marseille, Hopital de la Conception, Laboratoire d'Immunologie, Marseille, France
| |
Collapse
|
29
|
Hill DG, Ward A, Nicholson LB, Jones GW. Emerging roles for IL-6 family cytokines as positive and negative regulators of ectopic lymphoid structures. Cytokine 2021; 146:155650. [PMID: 34343865 DOI: 10.1016/j.cyto.2021.155650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
IL-6 family cytokines display broad effects in haematopoietic and non-haematopoietic cells that regulate immune homeostasis, host defence, haematopoiesis, development, reproduction and wound healing. Dysregulation of these activities places this cytokine family as important mediators of autoimmunity, chronic inflammation and cancer. In this regard, ectopic lymphoid structures (ELS) are a pathological hallmark of many tissues affected by chronic disease. These inducible lymphoid aggregates form compartmentalised T cell and B cell zones, germinal centres, follicular dendritic cell networks and high endothelial venules, which are defining qualities of peripheral lymphoid organs. Accordingly, ELS can support local antigen-specific responses to self-antigens, alloantigens, pathogens and tumours. ELS often correlate with severe disease progression in autoimmune conditions, while tumour-associated ELS are associated with enhanced anti-tumour immunity and a favourable prognosis in cancer. Here, we discuss emerging roles for IL-6 family cytokines as regulators of ELS development, maintenance and activity and consider how modulation of these activities has the potential to aid the successful treatment of autoimmune conditions and cancers where ELS feature.
Collapse
Affiliation(s)
- David G Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Amy Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
30
|
Jafarzadeh A, Nemati M, Jafarzadeh S. Contribution of STAT3 to the pathogenesis of COVID-19. Microb Pathog 2021; 154:104836. [PMID: 33691172 PMCID: PMC7937040 DOI: 10.1016/j.micpath.2021.104836] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Hyper-inflammatory responses, lymphopenia, unbalanced immune responses, cytokine storm, large viral replication and massive cell death play fundamental roles in the pathogenesis of COVID-19. Extreme production of many kinds of pro-inflammatory cytokines and chemokines occur in severe COVID-19 that called cytokine storm. Signal transducer and activator of transcription-3 (STAT-3) present in the cytoplasm in an inactive form and can be stimulated by a vast range of cytokines, chemokines and growth factors. Thus, STAT-3 can participate in the induction of inflammatory responses during coronavirus infections. STAT-3 can also suppress anti-virus interferon response and induce unbalanced anti-virus adaptive immune response, through influencing Th17-, Th1-, Treg-, and B cell-mediated functions. Furthermore, STAT-3 can contribute to the M2 macrophage polarization, lung fibrosis and thrombosis. Moreover, STAT-3 may be directly targeted by some virus-derived protein and operate as a pro-viral or anti-viral element in a virus-specific process. Here, the possible contribution of STAT-3 to the pathogenesis of COVID-19 was explained, while providing potential approaches to target this transcription factor in an attempt for COVID-19 treatment.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
31
|
Buechler MB, Fu W, Turley SJ. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 2021; 54:903-915. [PMID: 33979587 DOI: 10.1016/j.immuni.2021.04.021] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts and macrophages are present in all tissues, and mounting evidence supports that these cells engage in direct communication to influence the overall tissue microenvironment and affect disease outcomes. Here, we review the current understanding of the molecular mechanisms that underlie fibroblast-macrophage interactions in health, fibrosis, and cancer. We present an integrated view of fibroblast-macrophage interactions that is centered on the CSF1-CSF1R axis and discuss how additional molecular programs linking these cell types can underpin disease onset, progression, and resolution. These programs may be tissue and context dependent, affected also by macrophage and fibroblast origin and state, as seen most clearly in cancer. Continued efforts to understand these cells and the means by which they interact may provide therapeutic approaches for the treatment of fibrosis and cancer.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Wenxian Fu
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
32
|
Dawson RE, Jenkins BJ, Saad MI. IL-6 family cytokines in respiratory health and disease. Cytokine 2021; 143:155520. [PMID: 33875334 DOI: 10.1016/j.cyto.2021.155520] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.
Collapse
Affiliation(s)
- Ruby E Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
33
|
Piñeiro-Hermida S, Autilio C, Martínez P, Bosch F, Pérez-Gil J, Blasco MA. Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging. J Cell Biol 2021; 219:152010. [PMID: 32777016 PMCID: PMC7659728 DOI: 10.1083/jcb.202002120] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Short/dysfunctional telomeres are at the origin of idiopathic pulmonary fibrosis (IPF) in patients mutant for telomere maintenance genes. However, it remains unknown whether physiological aging leads to short telomeres in the lung, thus leading to IPF with aging. Here, we find that physiological aging in wild-type mice leads to telomere shortening and a reduced proliferative potential of alveolar type II cells and club cells, increased cellular senescence and DNA damage, increased fibroblast activation and collagen deposits, and impaired lung biophysics, suggestive of a fibrosis-like pathology. Treatment of both wild-type and telomerase-deficient mice with telomerase gene therapy prevented the onset of lung profibrotic pathologies. These findings suggest that short telomeres associated with physiological aging are at the origin of IPF and that a potential treatment for IPF based on telomerase activation would be of interest not only for patients with telomerase mutations but also for sporadic cases of IPF associated with physiological aging.
Collapse
Affiliation(s)
- Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Fátima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| |
Collapse
|
34
|
Yombo DJK, Odayar V, Gupta N, Jegga AG, Madala SK. The Protective Effects of IL-31RA Deficiency During Bleomycin-Induced Pulmonary Fibrosis. Front Immunol 2021; 12:645717. [PMID: 33815402 PMCID: PMC8017338 DOI: 10.3389/fimmu.2021.645717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe fibrotic lung disease characterized by excessive collagen deposition and progressive decline in lung function. Th2 T cell-derived cytokines including IL-4 and IL-13 have been shown to contribute to inflammation and fibrotic remodeling in multiple tissues. Interleukin-31 (IL-31) is a newly identified cytokine that is predominantly produced by CD4 Th2 T cells, but its signaling receptor IL-31RA is primarily expressed by non-hematopoietic cells. However, the potential role of the IL-31-IL31RA axis in pulmonary inflammation and fibrosis has remained largely unknown. To determine the role of IL-31RA deficiency in pulmonary fibrosis, wildtype, and IL-31RA knockout mice were treated with bleomycin and measured changes in collagen deposition and lung function. Notably, the loss of IL-31 signaling attenuated collagen deposition and lung function decline during bleomycin-induced pulmonary fibrosis. The total lung transcriptome analysis showed a significant reduction in fibrosis-associated gene transcripts including extracellular matrix and epithelial cell-associated gene networks. Furthermore, the lungs of human IPF showed an elevated expression of IL-31 when compared to healthy subjects. In support, the percentage of IL-31 producing CD4+ T cells was greater in the lungs and PBMCs from IPF patients compared to healthy controls. Our findings suggest a pathogenic role for IL-31/IL-31RA signaling during bleomycin-induced pulmonary fibrosis. Thus, therapeutic targeting the IL-31-IL-31RA axis may prevent collagen deposition, improve lung function, and have therapeutic potential in pulmonary fibrosis.
Collapse
Affiliation(s)
- Dan J K Yombo
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Varshini Odayar
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
35
|
She YX, Yu QY, Tang XX. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov 2021; 7:52. [PMID: 33723241 PMCID: PMC7960958 DOI: 10.1038/s41420-021-00437-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.
Collapse
Affiliation(s)
- Yi Xin She
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Yang Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Tat V, Ayaub EA, Ayoub A, Vierhout M, Naiel S, Padwal MK, Abed S, Mekhael O, Tandon K, Revill SD, Yousof T, Bellaye PS, Kolb PS, Dvorkin-Gheva A, Naqvi A, Cutz JC, Hambly N, Kato J, Vaughan M, Moss J, Kolb MRJ, Ask K. FK506-Binding Protein 13 Expression Is Upregulated in Interstitial Lung Disease and Correlated with Clinical Severity. A Potentially Protective Role. Am J Respir Cell Mol Biol 2021; 64:235-246. [PMID: 33253593 DOI: 10.1165/rcmb.2020-0121oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a progressive lung disease characterized by myofibroblast accumulation and excessive extracellular matrix deposition. We sought to investigate the role of FKBP13 (13-kD FK506-binding protein), an endoplasmic reticulum-resident molecular chaperone, in various forms of pulmonary fibrosis. We first characterized the gene and protein expression of FKBP13 in lung biopsy specimens from 24 patients with idiopathic pulmonary fibrosis and 17 control subjects. FKBP13 expression was found to be elevated in the fibrotic regions of idiopathic pulmonary fibrosis lung tissues and correlated with declining forced vital capacity and dyspnea severity. FKBP13 expression was also increased in lung biopsy specimens of patients with hypersensitivity pneumonitis, rheumatoid arthritis, and sarcoidosis-associated interstitial lung disease. We next evaluated the role of this protein using FKBP13-/- mice in a bleomycin model of pulmonary fibrosis. Animals were assessed for lung function and histopathology at different stages of lung injury including the inflammatory (Day 7), fibrotic (Day 21), and resolution (Day 50) phases. FKBP13-/- mice showed increased infiltration of inflammatory cells and cytokines at Day 7, increased lung elastance and fibrosis at Day 21, and impaired resolution of fibrosis at Day 50. These changes were associated with an increased number of cells that stained positive for TUNEL and cleaved caspase 3 in the FKBP13-/- lungs, indicating a heightened cellular sensitivity to bleomycin. Our findings suggest that FKBP13 is a potential biomarker for severity of interstitial lung diseases and that it has a biologically relevant role in protecting mice against bleomycin-induced injury, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Victor Tat
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Ehab A Ayaub
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Anmar Ayoub
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Manreet K Padwal
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Soumeya Abed
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Olivia Mekhael
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Karun Tandon
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Spencer D Revill
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Tamana Yousof
- Department of Medicine, Firestone Institute for Respiratory Health, and
| | - Pierre-Simon Bellaye
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Philipp S Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Asghar Naqvi
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Jean-Claude Cutz
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Nathan Hambly
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Jiro Kato
- Pulmonary Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Martha Vaughan
- Pulmonary Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joel Moss
- Pulmonary Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, and.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
37
|
Ellison-Hughes GM, Colley L, O'Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The Role of MSC Therapy in Attenuating the Damaging Effects of the Cytokine Storm Induced by COVID-19 on the Heart and Cardiovascular System. Front Cardiovasc Med 2020; 7:602183. [PMID: 33363221 PMCID: PMC7756089 DOI: 10.3389/fcvm.2020.602183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a "cytokine storm," featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.
Collapse
Affiliation(s)
- Georgina M. Ellison-Hughes
- Faculty of Life Sciences & Medicine, Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London Guy's Campus, London, United Kingdom
| | - Liam Colley
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Katie A. O'Brien
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas A. Agbaedeng
- Faculty of Health & Medical Sciences, Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
38
|
IL-33 Mediates Lung Inflammation by the IL-6-Type Cytokine Oncostatin M. Mediators Inflamm 2020; 2020:4087315. [PMID: 33376451 PMCID: PMC7744230 DOI: 10.1155/2020/4087315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin-1 family member IL-33 participates in both innate and adaptive T helper-2 immune cell responses in models of lung disease. The IL-6-type cytokine Oncostatin M (OSM) elevates lung inflammation, Th2-skewed cytokines, alternatively activated (M2) macrophages, and eosinophils in C57Bl/6 mice in vivo. Since OSM induces IL-33 expression, we here test the IL-33 function in OSM-mediated lung inflammation using IL-33-/- mice. Adenoviral OSM (AdOSM) markedly induced IL-33 mRNA and protein levels in wild-type animals while IL-33 was undetectable in IL-33-/- animals. AdOSM treatment showed recruitment of neutrophils, eosinophils, and elevated inflammatory chemokines (KC, eotaxin-1, MIP1a, and MIP1b), Th2 cytokines (IL-4/IL-5), and arginase-1 (M2 macrophage marker) whereas these responses were markedly diminished in IL-33-/- mice. AdOSM-induced IL-33 was unaffected by IL-6-/- deficiency. AdOSM also induced IL-33R+ ILC2 cells in the lung, while IL-6 (AdIL-6) overexpression did not. Flow-sorted ILC2 responded in vitro to IL-33 (but not OSM or IL-6 stimulation). Matrix remodelling genes col3A1, MMP-13, and TIMP-1 were also decreased in IL-33-/- mice. In vitro, IL-33 upregulated expression of OSM in the RAW264.7 macrophage cell line and in bone marrow-derived macrophages. Taken together, IL-33 is a critical mediator of OSM-driven, Th2-skewed, and M2-like responses in mouse lung inflammation and contributes in part through activation of ILC2 cells.
Collapse
|
39
|
Jones MM, Vanyo ST, Ibraheem W, Maddi A, Visser MB. Treponema denticola stimulates Oncostatin M cytokine release and de novo synthesis in neutrophils and macrophages. J Leukoc Biol 2020; 108:1527-1541. [PMID: 32678942 PMCID: PMC8265777 DOI: 10.1002/jlb.4ma0620-072rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine elevated in a number of inflammatory conditions including periodontal disease. OSM is produced by a variety of immune cells and has diverse functionality such as regulation of metabolic processes, cell differentiation, and the inflammatory response to bacterial pathogens. The oral cavity is under constant immune surveillance including complementary neutrophil and macrophage populations, due to a persistent symbiotic bacterial presence. Periodontal disease is characterized by a dysbiotic bacterial community, with an abundance of Treponema denticola. Despite strong associations with severe periodontal disease, the source and mechanism of the release of OSM have not been defined in the oral cavity. We show that OSM protein is elevated in the gingival epithelium and immune cell infiltrate during periodontal disease. Furthermore, salivary and oral neutrophil OSM is elevated in correlation with the presence of T. denticola. In an air pouch infection model, T. denticola stimulated higher levels of OSM than the oral pathogen Porphorymonas gingivalis, despite differential recruitment of innate immune cells suggesting T. denticola has distinct properties to elevate OSM levels. OSM release and transcription were increased in isolated human blood, oral neutrophils, or macrophages exposed to T. denticola in vitro as measured by ELISA, qPCR, and microscopy. Using transcription, translation, and actin polymerization inhibition, we found that T. denticola stimulates both OSM release through degranulation and de novo synthesis in neutrophils and also OSM release and synthesis in macrophages. Differential induction of OSM by T. denticola may promote clinical periodontal disease.
Collapse
Affiliation(s)
- Megan M Jones
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Stephen T Vanyo
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Wael Ibraheem
- Department of Periodontics and Endodontics, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Abhiram Maddi
- Department of Periodontics and Endodontics, University at Buffalo, The State University of New York, Buffalo, New York, USA
- Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Michelle B Visser
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
40
|
Li M, Wei X, Li Y, Feng T, Jiang L, Zhu H, Yu X, Tang J, Chen G, Zhang J, Zhang X. PM2.5 in poultry houses synergizes with Pseudomonas aeruginosa to aggravate lung inflammation in mice through the NF-κB pathway. J Vet Sci 2020; 21:e46. [PMID: 32476320 PMCID: PMC7263920 DOI: 10.4142/jvs.2020.21.e46] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background High concentrations of particulate matter less than 2.5 µm in diameter (PM2.5) in poultry houses is an important cause of respiratory disease in animals and humans. Pseudomonas aeruginosa is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. When excessively high concentrations of PM2.5 in poultry houses damage the respiratory system and impair host immunity, secondary infections with P. aeruginosa can occur and produce a more intense inflammatory response, resulting in more severe lung injury. Objectives In this study, we focused on the synergistic induction of inflammatory injury in the respiratory system and the related molecular mechanisms induced by PM2.5 and P. aeruginosa in poultry houses. Methods High-throughput 16S rDNA sequence analysis was used for characterizing the bacterial diversity and relative abundance of the PM2.5 samples, and the effects of PM2.5 and P. aeruginosa stimulation on inflammation were detected by in vitro and in vivo. Results Sequencing results indicated that the PM2.5 in poultry houses contained a high abundance of potentially pathogenic genera, such as Pseudomonas (2.94%). The lung tissues of mice had more significant pathological damage when co-stimulated by PM2.5 and P. aeruginosa, and it can increase the expression levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α through nuclear factor (NF)-κB pathway in vivo and in vitro. Conclusions The results confirmed that poultry house PM2.5 in combination with P. aeruginosa could aggravate the inflammatory response and cause more severe respiratory system injuries through a process closely related to the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Meng Li
- College of Life Science, Ludong University, Yantai 264000, China.,Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Xiuli Wei
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Tao Feng
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Linlin Jiang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Hongwei Zhu
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Xin Yu
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Jinxiu Tang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Guozhong Chen
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Jianlong Zhang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China.
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China.
| |
Collapse
|
41
|
Chiang CC, Chen CM, Suen JL, Su HH, Hsieh CC, Cheng CM. Stimulatory effect of gastroesophageal reflux disease (GERD) on pulmonary fibroblast differentiation. Dig Liver Dis 2020; 52:988-994. [PMID: 32727693 DOI: 10.1016/j.dld.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Epidemiological studies indicate that prolonged micro-aspiration of gastric fluid is associated in gastroesophageal reflux disease with the development of chronic respiratory diseases, possibly caused by inflammation-related immunomodulation. Therefore, we sought to ascertain the effect of gastric fluid exposure on pulmonary residential cells. The expression of α-smooth muscle actin as a fibrotic marker was increased in both normal human pulmonary fibroblast cells and mouse macrophages. Gastric fluid enhanced the proliferation and migration of HFL-1 cells and stimulated the expression of inflammatory cytokines in an antibody assay. Elevated expression of the Rho signaling pathway was noted in fibroblast cells stimulated with gastric fluid or conditioned media. These results indicate that gastric fluid alone, or the mixture of proinflammatory mediators induced by gastric fluid in the pulmonary context, can stimulate pulmonary fibroblast cell inflammation, migration, and differentiation, suggesting that a wound healing process is initiated. Subsequent aberrant repair in pulmonary residential cells may lead to pulmonary fibroblast differentiation and fibrotic progression. The results point to a stimulatory effect of chronic GERD on pulmonary fibroblast differentiation, and this may promote the development of chronic pulmonary diseases in the long term.
Collapse
Affiliation(s)
- Cheng Che Chiang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ming Chen
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, Chun Shan Medicine University, Taichung Taiwan
| | - Jau Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chong Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
42
|
Matsuhira T, Nishiyama O, Tabata Y, Kaji C, Kubota-Ishida N, Chiba Y, Sano H, Iwanaga T, Tohda Y. A novel phosphodiesterase 4 inhibitor, AA6216, reduces macrophage activity and fibrosis in the lung. Eur J Pharmacol 2020; 885:173508. [PMID: 32858049 DOI: 10.1016/j.ejphar.2020.173508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 01/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an intractable disease with poor prognosis, and therapeutic options are limited. While the pathogenic mechanism is unknown, cytokines, such as transforming growth factor (TGF)-β, and immune cells, such as monocytes and macrophages, that produce them, seem to be involved in fibrosis. Some phosphodiesterase 4 (PDE4) inhibitors reportedly have anti-fibrotic potential by acting on these disease-related factors. Therefore, we evaluated the effect of a novel PDE4 inhibitor, AA6216, on nonclinical IPF-related models and samples from IPF patients. First, we examined the inhibitory effect of AA6216 on the production of TGF-β1 from a human monocytic cell line, THP-1. Second, we analyzed the impact of AA6216 on TNF-α production by human alveolar macrophages collected from patients with IPF. Finally, we investigated the anti-fibrotic potency of AA6216 on bleomycin-induced lung fibrosis in mice. We found that AA6216 significantly inhibited TGF-β1 production by THP-1 cells. It also significantly suppressed TNF-α production by alveolar macrophages from patients with IPF. In the mouse model of bleomycin-induced pulmonary fibrosis, therapeutic administration of AA6216 significantly reduced fibrosis scores, collagen-stained areas, and TGF-β1 in bronchoalveolar lavage fluid. AA6216 may represent a new agent for the treatment of IPF with a distinct mechanism of action from that of conventional anti-fibrotic agents.
Collapse
Affiliation(s)
- Takashi Matsuhira
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan; Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa, 222-8567, Japan
| | - Osamu Nishiyama
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan.
| | - Yuji Tabata
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa, 222-8567, Japan
| | - Chizuko Kaji
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa, 222-8567, Japan
| | - Natsuki Kubota-Ishida
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa, 222-8567, Japan
| | - Yasutaka Chiba
- Division of Biostatistics, Clinical Research Center, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Takashi Iwanaga
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuji Tohda
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
43
|
Epstein-Shochet G, Pham S, Beck S, Naiel S, Mekhael O, Revill S, Hayat A, Vierhout M, Bardestein-Wald B, Shitrit D, Ask K, Montgomery AB, Kolb MR, Surber MW. Inhalation: A means to explore and optimize nintedanib's pharmacokinetic/pharmacodynamic relationship. Pulm Pharmacol Ther 2020; 63:101933. [PMID: 32750409 DOI: 10.1016/j.pupt.2020.101933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
Oral nintedanib is marketed for the treatment of idiopathic pulmonary fibrosis (IPF). While effective slowing fibrosis progression, as an oral medicine nintedanib is limited. To reduce side effects and maximize efficacy, nintedanib was reformulated as a solution for nebulization and inhaled administration. To predict effectiveness treating IPF, the nintedanib pharmacokinetic/pharmacodynamic relationship was dissected. Pharmacokinetic analysis indicated oral-delivered nintedanib plasma exposure and lung tissue partitioning were not dose-proportional and resulting lung levels were substantially higher than blood. Although initial-oral absorbed nintedanib efficiently partitioned into the lung, only a quickly eliminated fraction appeared available to epithelial lining fluid (ELF). Because IPF disease appears to initiate and progress near the epithelial surface, this observation suggests short duration nintedanib exposure (oral portion efficiently partitioned to ELF) is sufficient for IPF efficacy. To test this hypothesis, exposure duration required for nintedanib activity was explored. In vitro, IPF-cellular matrix (IPF-CM) increased primary normal human fibroblast (nHLF) aggregate size and reduced nHLF cell count. IPF-CM also increased nHLF ACTA2 and COL1A expression. Whether short duration (inhalation pharmacokinetic mimic) or continuous exposure (oral pharmacokinetic mimic), nintedanib (1-100 nM) reversed these effects. In vivo, intubated silica produced a strong pulmonary fibrotic response. Once-daily (QD) 0.021, 0.21 and 2.1 mg/kg intranasal (IN; short duration inhaled exposure) and twice-daily (BID) 30 mg/kg oral (PO; long duration oral exposure) showed that at equivalent-delivered lung exposure, QD short duration inhaled nintedanib (0.21 mg/kg IN vs. 30 mg/kg PO) exhibited equivalent-to-superior activity as BID oral (reduced silica-induced elastance, alpha-smooth muscle actin, interleukin-1 beta (IL-1β) and soluble collagen). Comparatively, the increased inhaled lung dose (2.1 mg/kg IN vs. 30 mg/kg PO) exhibited increased effect by further reducing silica-induced elastance, IL-1β and soluble collagen. Neither oral nor inhaled nintedanib reduced silica-induced parenchymal collagen. Both QD inhaled and BID oral nintedanib reduced silica-induced bronchoalveolar lavage fluid macrophage and neutrophil counts with oral achieving significance. In summary, pharmacokinetic elements important for nintedanib activity can be delivered using infrequent, small inhaled doses to achieve oral equivalent-to-superior pulmonary activity.
Collapse
Affiliation(s)
- Gali Epstein-Shochet
- Meir Medical Center, Pulmonary Department, Kfar Saba, 4428164, Israel; Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, 6997801, Israel
| | - Stephen Pham
- Avalyn Pharma, 701 Pike Street, Suite 1500, Seattle, WA, 98101, United States
| | - Steven Beck
- Avalyn Pharma, 701 Pike Street, Suite 1500, Seattle, WA, 98101, United States
| | - Safaa Naiel
- McMaster University, Hamilton, ON, L8S 4L8, Canada
| | | | | | - Aaron Hayat
- McMaster University, Hamilton, ON, L8S 4L8, Canada
| | | | | | - David Shitrit
- Meir Medical Center, Pulmonary Department, Kfar Saba, 4428164, Israel; Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, 6997801, Israel
| | - Kjetil Ask
- McMaster University, Hamilton, ON, L8S 4L8, Canada; Firestone Institute for Respiratory Health, Hamilton, ON, L8N 4A6, Canada
| | - A Bruce Montgomery
- Avalyn Pharma, 701 Pike Street, Suite 1500, Seattle, WA, 98101, United States
| | - Martin R Kolb
- McMaster University, Hamilton, ON, L8S 4L8, Canada; Firestone Institute for Respiratory Health, Hamilton, ON, L8N 4A6, Canada
| | - Mark W Surber
- Avalyn Pharma, 701 Pike Street, Suite 1500, Seattle, WA, 98101, United States.
| |
Collapse
|
44
|
Leroux MM, Doumandji Z, Chézeau L, Gaté L, Nahle S, Hocquel R, Zhernovkov V, Migot S, Ghanbaja J, Bonnet C, Schneider R, Rihn BH, Ferrari L, Joubert O. Toxicity of TiO 2 Nanoparticles: Validation of Alternative Models. Int J Mol Sci 2020; 21:E4855. [PMID: 32659965 PMCID: PMC7402355 DOI: 10.3390/ijms21144855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
There are many studies concerning titanium dioxide (TiO2) nanoparticles (NP) toxicity. Nevertheless, there are few publications comparing in vitro and in vivo exposure, and even less comparing air-liquid interface exposure (ALI) with other in vitro and in vivo exposures. The identification and validation of common markers under different exposure conditions are relevant for the development of smart and quick nanotoxicity tests. In this work, cell viability was assessed in vitro by WST-1 and LDH assays after the exposure of NR8383 cells to TiO2 NP sample. To evaluate in vitro gene expression profile, NR8383 cells were exposed to TiO2 NP during 4 h at 3 cm2 of TiO2 NP/cm2 of cells or 19 μg/mL, in two settings-submerged cultures and ALI. For the in vivo study, Fischer 344 rats were exposed by inhalation to a nanostructured aerosol at a concentration of 10 mg/m3, 6 h/day, 5 days/week for 4 weeks. This was followed immediately by gene expression analysis. The results showed a low cytotoxic potential of TiO2 NP on NR8383 cells. Despite the absence of toxicity at the doses studied, the different exposures to TiO2 NP induce 18 common differentially expressed genes (DEG) which are involved in mitosis regulation, cell proliferation and apoptosis and inflammation transport of membrane proteins. Among these genes, we noticed the upregulation of Ccl4, Osm, Ccl7 and Bcl3 genes which could be suggested as early response biomarkers after exposure to TiO2 NP. On the other hand, the comparison of the three models helped us to validate the alternative ones, namely submerged and ALI approaches.
Collapse
Affiliation(s)
- Mélanie M. Leroux
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Zahra Doumandji
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Laetitia Chézeau
- Institut National de Recherche et de Sécurité, rue du Morvan, 54519 Vandœuvre-les-Nancy, France; (L.C.); (L.G.)
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, rue du Morvan, 54519 Vandœuvre-les-Nancy, France; (L.C.); (L.G.)
| | - Sara Nahle
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Romain Hocquel
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland;
| | - Sylvie Migot
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Jafar Ghanbaja
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Céline Bonnet
- Université de Lorraine, CHRU-Nancy, Genetic Department, F-54000 Nancy, France;
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France;
| | - Bertrand H. Rihn
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Luc Ferrari
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Olivier Joubert
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| |
Collapse
|
45
|
Cappelletti C, Tramacere I, Cavalcante P, Schena E, Politano L, Carboni N, Gambineri A, D’Amico A, Ruggiero L, Ricci G, Siciliano G, Boriani G, Mongini TE, Vercelli L, Biagini E, Ziacchi M, D’Apice MR, Lattanzi G, Mantegazza R, Maggi L, Bernasconi P. Cytokine Profile in Striated Muscle Laminopathies: New Promising Biomarkers for Disease Prediction. Cells 2020; 9:cells9061532. [PMID: 32585971 PMCID: PMC7348753 DOI: 10.3390/cells9061532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022] Open
Abstract
Laminopathies are a wide and heterogeneous group of rare human diseases caused by mutations of the LMNA gene or related nuclear envelope genes. The variety of clinical phenotypes and the wide spectrum of histopathological changes among patients carrying an identical mutation in the LMNA gene make the prognostic process rather difficult, and classical genetic screens appear to have limited predictive value for disease development. The aim of this study was to evaluate whether a comprehensive profile of circulating cytokines may be a useful tool to differentiate and stratify disease subgroups, support clinical follow-ups and contribute to new therapeutic approaches. Serum levels of 51 pro- and anti-inflammatory molecules, including cytokines, chemokines and growth factors, were quantified by a Luminex multiple immune-assay in 53 patients with muscular laminopathy (Musc-LMNA), 10 with non-muscular laminopathy, 22 with other muscular disorders and in 35 healthy controls. Interleukin-17 (IL-17), granulocyte colony-stimulating factor (G-CSF) and transforming growth factor beta (TGF-β2) levels significantly discriminated Musc-LMNA from controls; interleukin-1β (IL-1β), interleukin-4 (IL-4) and interleukin-8 (IL-8) were differentially expressed in Musc-LMNA patients compared to those with non-muscular laminopathies, whereas IL-17 was significantly higher in Musc-LMNA patients with muscular and cardiac involvement. These findings support the hypothesis of a key role of the immune system in Musc-LMNA and emphasize the potential use of cytokines as biomarkers for these disorders.
Collapse
Affiliation(s)
- Cristina Cappelletti
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
- Correspondence: ; Tel.: +39-02-23944503/4511
| | - Irene Tramacere
- Department of Research and Clinical Development, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy;
| | - Paola Cavalcante
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
| | - Elisa Schena
- CNR Institute of Molecular Genetics, Unit of Bologna, 40136 Bologna, Italy; (E.S.); (G.L.)
- Endocrinology Unit, Department of Medical & Surgical Sciences, Alma Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy;
| | - Nicola Carboni
- Neurology Department, Hospital San Francesco of Nuoro, 08100 Nuoro, Italy;
| | - Alessandra Gambineri
- Endocrinology Unit, Department of Clinical and Medical Science, S. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Adele D’Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Lucia Ruggiero
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, 80137 Naples, Italy;
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, 56126 Pisa, Italy; (G.R.); (G.S.)
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, 56126 Pisa, Italy; (G.R.); (G.S.)
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, 41121 Modena, Italy;
| | - Tiziana Enrica Mongini
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy; (T.E.M.); (L.V.)
| | - Liliana Vercelli
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy; (T.E.M.); (L.V.)
| | - Elena Biagini
- Azienda Ospedaliero Universitaria - Policlinico di St. Orsola, Cardiology Unit, Cardio-Thoracic-Vascular Department, 40138 Bologna, Italy; (E.B.); (M.Z.)
| | - Matteo Ziacchi
- Azienda Ospedaliero Universitaria - Policlinico di St. Orsola, Cardiology Unit, Cardio-Thoracic-Vascular Department, 40138 Bologna, Italy; (E.B.); (M.Z.)
| | - Maria Rosaria D’Apice
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, Unit of Bologna, 40136 Bologna, Italy; (E.S.); (G.L.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Renato Mantegazza
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
| | - Lorenzo Maggi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
| |
Collapse
|
46
|
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53:13-24. [PMID: 32475759 PMCID: PMC7237916 DOI: 10.1016/j.cytogfr.2020.05.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 mortality is strongly associated with the development of severe pneumonia and acute respiratory distress syndrome with the worst outcome resulting in cytokine release syndrome and multiorgan failure. It is becoming critically important to identify at the early stage of the infection those patients who are prone to develop the most adverse effects. Elevated systemic interleukin-6 levels in patients with COVID-19 are considered as a relevant parameter in predicting most severe course of disease and the need for intensive care. This review discusses the mechanisms by which IL-6 may possibly contribute to disease exacerbation and the potential of therapeutic approaches based on anti-IL-6 biologics.
Collapse
Affiliation(s)
- E O Gubernatorova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - E A Gorshkova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A I Polinova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M S Drutskaya
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
47
|
Ho L, Yip A, Lao F, Botelho F, Richards CD. RELMα is Induced in Airway Epithelial Cells by Oncostatin M Without Requirement of STAT6 or IL-6 in Mouse Lungs In Vivo. Cells 2020; 9:cells9061338. [PMID: 32471168 PMCID: PMC7349350 DOI: 10.3390/cells9061338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/02/2023] Open
Abstract
Resistin-like molecule alpha (RELMα) and YM-1 are secreted proteins implicated in murine models of alternatively activated macrophage (AA/M2) accumulation and Th2-skewed inflammation. Since the gp130 cytokine Oncostatin M (OSM) induces a Th2-like cytokine and AA/M2 skewed inflammation in mouse lung, we here investigated regulation of RELMα and YM-1. Transient pulmonary overexpression of OSM by Adenovirus vector (AdOSM) markedly induced RELMα and YM-1 protein expression in total lung. In situ hybridization showed that RELMα mRNA was highly induced in airway epithelial cells (AEC) and was co-expressed with CD68 mRNA in some but not all CD68+ cells in parenchyma. IL-6 overexpression (a comparator gp130 cytokine) induced RELMα, but at significantly lower levels. IL-6 (assessing IL-6-/- mice) was not required, nor was STAT6 (IL-4/13 canonical signalling) for AdOSM-induction of RELMα in AEC. AEC responded directly to OSM in vitro as assessed by pSTAT3 activation. RELMα-deficient mice showed similar inflammatory cell infiltration and cytokine responses to wt in response to AdOSM, but showed less accumulation of CD206+ AA/M2 macrophages, reduced induction of extracellular matrix gene mRNAs for COL1A1, COL3A1, MMP13, and TIMP1, and reduced parenchymal alpha smooth muscle actin. Thus, RELMα is regulated by OSM in AEC and contributes to extracellular matrix remodelling in mouse lung.
Collapse
|
48
|
Gole L, Yeong J, Lim JCT, Ong KH, Han H, Thike AA, Poh YC, Yee S, Iqbal J, Hong W, Lee B, Yu W, Tan PH. Quantitative stain-free imaging and digital profiling of collagen structure reveal diverse survival of triple negative breast cancer patients. Breast Cancer Res 2020; 22:42. [PMID: 32375854 PMCID: PMC7204022 DOI: 10.1186/s13058-020-01282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background Stromal and collagen biology has a significant impact on tumorigenesis and metastasis. Collagen is a major structural extracellular matrix component in breast cancer, but its role in cancer progression is the subject of historical debate. Collagen may represent a protective layer that prevents cancer cell migration, while increased stromal collagen has been demonstrated to facilitate breast cancer metastasis. Methods Stromal remodeling is characterized by collagen fiber restructuring and realignment in stromal and tumoral areas. The patients in our study were diagnosed with triple-negative breast cancer in Singapore General Hospital from 2003 to 2015. We designed novel image processing and quantification pipelines to profile collagen structures using numerical imaging parameters. Our solution differentiated the collagen into two distinct modes: aggregated thick collagen (ATC) and dispersed thin collagen (DTC). Results Extracted parameters were significantly associated with bigger tumor size and DCIS association. Of numerical parameters, ATC collagen fiber density (CFD) and DTC collagen fiber length (CFL) were of significant prognostic value for disease-free survival and overall survival for the TNBC patient cohort. Using these two parameters, we built a predictive model to stratify the patients into four groups. Conclusions Our study provides a novel insight for the quantitation of collagen in the tumor microenvironment and will help predict clinical outcomes for TNBC patients. The identified collagen parameters, ATC CFD and DTC CFL, represent a new direction for clinical prognosis and precision medicine. We also compared our result with benign samples and DICS samples to get novel insight about the TNBC heterogeneity. The improved understanding of collagen compartment of TNBC may provide insights into novel targets for better patient stratification and treatment.
Collapse
Affiliation(s)
- Laurent Gole
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore
| | - Joe Yeong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kok Haur Ong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore
| | - Hao Han
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Pathology, National University Hospital, Singapore, Singapore
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Yong Cheng Poh
- Diagnostic Development Hub (DxD), A*STAR, Singapore, Singapore
| | - Sidney Yee
- Diagnostic Development Hub (DxD), A*STAR, Singapore, Singapore
| | - Jabed Iqbal
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Biopolis, Singapore, 138648, Singapore.
| | - Weimiao Yu
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Diagnostics Tower, Singapore, 169856, Singapore.
| |
Collapse
|
49
|
Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol 2020; 15:288-302. [PMID: 30953037 DOI: 10.1038/s41584-019-0212-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disease of unknown aetiology that is characterized by vascular changes in the skin and visceral organs. Autologous haematopoietic stem cell transplantation can improve skin and organ fibrosis in patients with progressive disease and a high risk of organ failure, indicating that cells originating in the bone marrow are important contributors to the pathogenesis of SSc. Animal studies also indicate a pivotal function of myeloid cells in the development of fibrosis leading to changes in the tissue architecture and dysfunction in multiple organs such as the heart, lungs, liver and kidney. In this Review, we summarize current knowledge about the function of myeloid cells in fibrogenesis that occurs in patients with SSc. Targeted therapies currently in clinical studies for SSc might affect myeloid cell-related pathways. Therefore, myeloid cells might be used as cellular biomarkers of disease through the application of high-dimensional techniques such as mass cytometry and single-cell RNA sequencing.
Collapse
Affiliation(s)
- Gabriela Kania
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Michal Rudnik
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
50
|
Richards CD, Botelho F. Oncostatin M in the Regulation of Connective Tissue Cells and Macrophages in Pulmonary Disease. Biomedicines 2019; 7:E95. [PMID: 31817403 PMCID: PMC6966661 DOI: 10.3390/biomedicines7040095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Oncostatin M (OSM), as one of the gp130/IL-6 family of cytokines, interacts with receptor complexes that include the gp130 signaling molecule and OSM receptor β OSMRβ chain subunits. OSMRβ chains are expressed relatively highly across a broad array of connective tissue (CT) cells of the lung, such as fibroblasts, smooth muscle cells, and epithelial cells, thus enabling robust responses to OSM, compared to other gp130 cytokines, in the regulation of extracellular matrix (ECM) remodeling and inflammation. OSMRβ chain expression in lung monocyte/macrophage populations is low, whereas other receptor subunits, such as that for IL-6, are present, enabling responses to IL-6. OSM is produced by macrophages and neutrophils, but not CT cells, indicating a dichotomy of OSM roles in macrophage verses CT cells in lung inflammatory disease. ECM remodeling and inflammation are components of a number of chronic lung diseases that show elevated levels of OSM. OSM-induced products of CT cells, such as MCP-1, IL-6, and PGE2 can modulate macrophage function, including the expression of OSM itself, indicating feedback loops that characterize Macrophage and CT cell interaction.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 3Z5, Canada;
| | | |
Collapse
|