1
|
Wang B, Tian Z, Yu Z, Cui A, Jiang Y, Huang H, Xu Y. Differential activation of six galanin receptors by the spexin peptide in yellowtail kingfish (Seriola lalandi). Gen Comp Endocrinol 2024; 359:114629. [PMID: 39426688 DOI: 10.1016/j.ygcen.2024.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Spexin (SPX1) is a novel neuropeptide composed of 14 amino acids and well conserved across vertebrates, and it has been implicated in various physiological functions via galanin receptor 2 (GALR2) and GALR3. However, the detailed signaling pathways mediating its actions in target cells are still largely unknown. Accordingly, we addressed this issue in the present study using yellowtail kingfish as a model. SPX1 significantly increased CRE-luc activity in COS-7 cells expressing its cognate receptors GALR2a and GALR2b, and this stimulatory effect was attenuated by two inhibitors of the PKA pathway. Similarly, an evident induction of SRE-luc activity was observed when COS-7 cells transfected with GALR1b, GALR2a, GALR2b, GALR type 1, or GALR type 2 were challenged with SPX1, and two blockers of the PKC pathway suppressed this stimulatory action. Moreover, SPX1 markedly elevated NFAT-RE-luc activity in COS-7 cells expressing GALR1a, GALR2a, or GALR2b, and this promotion was inhibited by two antagonists of the Ca2+ route. Overall, our results have revealed that activation of six yellowtail kingfish galanin receptors by the SPX1 peptide may occur with different downstream signaling events, which could account for its pleotropic functions.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Zhenfang Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhihua Yu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Aijun Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Fang P, She Y, Yu M, Yan J, Yu X, Zhao J, Jin Y, Min W, Shang W, Zhang Z. Novel hypothalamic pathways for metabolic effects of spexin. Pharmacol Res 2024; 208:107399. [PMID: 39245191 DOI: 10.1016/j.phrs.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Nanjing Pukou People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
3
|
Yilmaz N, Yasi N RZI, Yildiz A. Intracerebroventricular injection of spexin stimulates the hypothalamic-pituitary-testicular axis and increases the secretion of male reproductive hormones in rats. Ann Anat 2024; 255:152300. [PMID: 38971451 DOI: 10.1016/j.aanat.2024.152300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Male reproductive functions are regulated in the hypothalamic-pituitary-gonadal (HPG) axis. Any problem in this axis would lead to the deterioration of reproductive functions. The present study aimed to investigate the effects of intracerebroventricular (icv) Spexin (SPX) infusion on the HPG axis in detail. METHODS 40 Wistar albino rats were divided into four groups: control, sham, SPX 30 nmol and SPX 100 nmol (n=10). 30 nmol/1 µl/hour SPX was administered icv to the rats in the SPX 30 nmol group for 7 days, while rats in the SPX 100 nmol group were administered 100 nmol/1 µl/hour SPX. On the 7th day, the rats were decapitated, blood and tissue samples were collected. Serum LH, FSH and testosterone levels were determined with the ELISA method, GnRH mRNA expression level was determined in hypothalamus with the RT-PCR method. Seminiferous tubule diameter and epithelial thickness were determined with the hematoxylin-eosin staining method. RESULTS SPX infusion was increased GnRH mRNA expression in the hypothalamus tissue independent of the dose (p<0.05). Serum LH, FSH and testosterone levels in the SPX groups were increased when compared to the control and sham groups independent of the dose (p <0.05). Histological analysis revealed that SPX infusion did not lead to any changes in seminiferous epithelial thickness, while the tubule diameter increased in the SPX groups (p<0.05). CONCLUSION The study findings demonstrated that icv SPX infusion stimulated the HPG axis and increased the secretion of male reproductive hormones.
Collapse
Affiliation(s)
- Nesibe Yilmaz
- Karabük University, Faculty of Medicine, Department of Anatomy, Karabük, Turkey.
| | | | - Azibe Yildiz
- İnönü University, Faculty of Medicine, Department of Histology and Embriyology, Malatya, Turkey
| |
Collapse
|
4
|
Gambaro SE, Zubiría MG, Giordano AP, Castro PF, Garraza C, Harnichar AE, Alzamendi A, Spinedi E, Giovambattista A. Role of Spexin in White Adipose Tissue Thermogenesis under Basal and Cold-Stimulated Conditions. Int J Mol Sci 2024; 25:1767. [PMID: 38339044 PMCID: PMC10855774 DOI: 10.3390/ijms25031767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.
Collapse
Affiliation(s)
- Sabrina E. Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - María G. Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Alejandra P. Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Patricia F. Castro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Carolina Garraza
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Alejandro E. Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Eduardo Spinedi
- CENEXA (UNLP-CONICET), La Plata Medical School-UNLP, Calles 60 y 120, La Plata 1900, Argentina;
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| |
Collapse
|
5
|
Gallagher DM, O'Harte FPM, Irwin N. An update on galanin and spexin and their potential for the treatment of type 2 diabetes and related metabolic disorders. Peptides 2024; 171:171096. [PMID: 37714335 DOI: 10.1016/j.peptides.2023.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Daniel M Gallagher
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Finbarr P M O'Harte
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
6
|
Yilmaz U, Tanbek K. Spexin may induce mitochondrial biogenesis in white and brown adipocytes via the hypothalamus-pituitary-thyroid (HPT) axis. Physiol Behav 2024; 273:114401. [PMID: 37939828 DOI: 10.1016/j.physbeh.2023.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
AIM The present study aimed to investigate the effect of the intracerebroventricular (icv) administration of spexin on the hypothalamus-pituitary-thyroid (HPT) axis (TRH, TSH, T4 and T3 hormones) and energy expenditure (PGC-1α and UCP1 genes) in white adipose (WAT) and brown adipose tissues (BAT) in rats. Furthermore, the study aimed to determine the effects of spexin on food-water consumption and body weight of rats. MATERIAL AND METHOD The study was conducted with 40 male rats that were divided into 4 groups: Control, Sham, Spexin 30 and Spexin 100 (n = 10). Spexin (1 μl/hour) was administered to rats other than those in the control group for 7 days with osmotic minipumps intracerebroventricularly, artificial cerebrospinal fluid (vehicle) was administered to the Sham group, and 30 nMol and 100 nMol spexin was infused to the Spexin 30 and Spexin 100 groups, respectively. Food-water consumption and body weight of the rats were monitored during the experiments. After the seven-day infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined with ELISA on rat blood samples. Also, TRH gene expression levels from the hypothalamus tissues and PGC-1α and UCP1 expression levels from WAT and BAT were determined by real-time PCR. FINDINGS It was determined that icv spexin infusion reduced daily food consumption and body weight without leading to a significant change in water consumption (p < 0.05). Icv spexin infusion significantly decreased serum TSH, and increased fT4 and fT3 levels when compared to control and sham groups (p < 0.05). Moreover, icv spexin infusion increased the TRH expressions in the hypothalamus tissues and PGC-1α UCP1 in the WAT and BAT (p < 0.05). CONCLUSION Icv Spexin infusion may have effects on food consumption and body weight as well as, thyroid hormones and energy metabolism.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
7
|
Cichoń L, Pałasz A, Wilczyński KM, Suszka-Świtek A, Żmijowska A, Jelonek I, Janas-Kozik M. Evaluation of Peripheral Blood Concentrations of Phoenixin, Spexin, Nesfatin-1 and Kisspeptin as Potential Biomarkers of Bipolar Disorder in the Pediatric Population. Biomedicines 2023; 12:84. [PMID: 38255190 PMCID: PMC10813295 DOI: 10.3390/biomedicines12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
There are some initial suggestions in the literature that phoenixin, spexin, nesfatin-1 and kisspeptin may play a role in the pathogenesis of affective disorders. Therefore, they may also be cautiously considered as potential diagnostic or predictive biomarkers of BD. This study aimed to evaluate the levels of the aforementioned neuropeptides in the peripheral blood of children and adolescents with bipolar. This study included 122 individuals: 67 persons with diagnosed bipolar disorder types I and II constituted the study group, and 55 healthy persons were included in the control group. Statistically significant differences in the concentrations of neuropeptides between the control and study groups were noted in relation to nesfatin-1 and spexin (although spexin lost statistical significance after introducing the Bonferroni correction). In a logistic regression analysis, an increased risk of bipolar disorder was noted for a decrease in nesfatin-1 concentration. Lower levels of nesfatin-1 seemed to be a significant risk factor for the development of bipolar disorder types I and II. Furthermore, the occurrence of bipolar disorder was associated with significantly elevated levels of spexin. None of the analyzed neuropeptides was significantly correlated with the number of symptoms of bipolar disorder.
Collapse
Affiliation(s)
- Lena Cichoń
- Department of Developmental Age Psychiatry and Psychotherapy, John Paul II Pediatric Centre in Sosnowiec, Faculty of Medical Sciences, Medical University of Silesia in Katowice, ul. Zapolskiej 3, 41-218 Sosnowiec, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, ul. Medyków 18, 40-752 Katowice, Poland
| | - Krzysztof M. Wilczyński
- Department of Developmental Age Psychiatry and Psychotherapy, John Paul II Pediatric Centre in Sosnowiec, Faculty of Medical Sciences, Medical University of Silesia in Katowice, ul. Zapolskiej 3, 41-218 Sosnowiec, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, ul. Medyków 18, 40-752 Katowice, Poland
| | - Anna Żmijowska
- Department of Developmental Age Psychiatry and Psychotherapy, John Paul II Pediatric Centre in Sosnowiec, Faculty of Medical Sciences, Medical University of Silesia in Katowice, ul. Zapolskiej 3, 41-218 Sosnowiec, Poland
| | - Ireneusz Jelonek
- Department of Developmental Age Psychiatry and Psychotherapy, John Paul II Pediatric Centre in Sosnowiec, Faculty of Medical Sciences, Medical University of Silesia in Katowice, ul. Zapolskiej 3, 41-218 Sosnowiec, Poland
| | - Małgorzata Janas-Kozik
- Department of Developmental Age Psychiatry and Psychotherapy, John Paul II Pediatric Centre in Sosnowiec, Faculty of Medical Sciences, Medical University of Silesia in Katowice, ul. Zapolskiej 3, 41-218 Sosnowiec, Poland
| |
Collapse
|
8
|
Dajnowska A, Osiak-Wicha C, Piech M, Muszyński S, Tomaszewska E, Ropka-Molik K, Krzysiak MK, Arciszewski MB. Immunoexpression of Spexin in Selected Segments of the Bovine ( Bos taurus taurus) Gastrointestinal Tract. Animals (Basel) 2023; 13:3789. [PMID: 38136826 PMCID: PMC10741206 DOI: 10.3390/ani13243789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In the expansive domain of neuropeptide investigation, spexin (SPX) has emerged as a captivating subject, exerting a significant impact on diverse physiological processes. Initially identified in mice, SPX's distribution transcends various organs, suggesting its potential regulatory roles. Despite extensive research in smaller species, a notable gap exists in our comprehension of SPX in larger mammals, particularly ruminants. Our study meticulously explores the immunolocalization of SPX within the gastrointestinal organs of bovines, with a specific focus on the abomasum, jejunum, and colon. Tissue samples from Holstein-Friesian cattle underwent careful processing, and gene mRNA expression levels, particularly GALR2 and SPX, were assessed. Intriguingly, our findings revealed that GALR2 expression was highest in the jejunum, signifying a potentially critical role in this digestive segment. Immunohistochemistry further unveiled distinct patterns of SPX immunoreactivity in each examined region-abomasum, jejunum, and colon-highlighting nuanced, region-specific responses. Notably, the abomasum and jejunum predominantly exhibited positive immunoreactivity in the submucosal plexus, while the colon, in contrast, demonstrated a higher degree of immunoreactivity in myenteric plexus neurons. Our investigation, grounded in the hypothesis of ubiquitous SPX distribution in ruminants, delves deeper into the intricate role of SPX within the enteric nervous system. This study meticulously explores the spatial distribution of SPX within the myenteric and submucosal plexuses, integral components of the enteric nervous system. These findings significantly enhance our understanding of SPX's potential roles in gastrointestinal regulation in bovines, providing a unique perspective on larger mammals and enriching our comprehension of this intriguing neuropeptide's significance in various physiological processes.
Collapse
Affiliation(s)
- Aleksandra Dajnowska
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (A.D.); (C.O.-W.); (M.P.)
| | - Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (A.D.); (C.O.-W.); (M.P.)
| | - Małgorzata Piech
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (A.D.); (C.O.-W.); (M.P.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Michał K. Krzysiak
- Białowieża National Park, Park Pałacowy 11, 17-230 Białowieża, Poland;
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45 E, 15-351 Białystok, Poland
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (A.D.); (C.O.-W.); (M.P.)
| |
Collapse
|
9
|
Cha JJ, Park BY, Yoon SG, Park HJ, Yoo JA, Ghee JY, Cha DR, Seong JY, Kang YS. Spexin-based galanin receptor 2 agonist improves renal injury in mice with type 2 diabetes. Anim Cells Syst (Seoul) 2023; 27:187-196. [PMID: 37789932 PMCID: PMC10543361 DOI: 10.1080/19768354.2023.2263067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
The spexin-based GALR2 agonist (NS200) is a novel drug, which has shown antidepressant and anxiolytic action in a recent experimental study. In this study, we investigated the effects of NS200 on renal injury in an animal model of type 2 diabetes. Eight-week-old diabetic db/db mice were administered NS200 for 12 weeks. NS200 was intraperitoneally administered at a dose of 1.0 mg/kg/day. Metabolic parameters and structural and molecular changes in the kidneys were compared among the three groups: non-diabetic db/m control, db/db mice, and NS200-treated db/db mice. In db/db mice, NS200 administration did not impact the body weight, food and water intake, urinary volume, fasting blood glucose level, or HbA1c levels. Insulin and glucose tolerance were also unaffected by NS200 treatment. However, NS200 improved urinary albumin excretion and glomerulosclerosis in diabetic kidneys. Activation of TGFβ1 and insulin signaling pathways, such as PI3 K /AKT/ERK, were inhibited by NS200. In conclusion, a spexin-based GALR2 agonist attenuated diabetic nephropathy by alleviating renal fibrosis in mice with type 2 diabetes. Spexin-based GALR2 agonists have considerable potential as novel treatment agents in diabetic nephropathy.
Collapse
Affiliation(s)
- Jin Joo Cha
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Boo Yeon Park
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Sung Gi Yoon
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Hye Jin Park
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Ji Ae Yoo
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Jung Yeon Ghee
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Jae Young Seong
- Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Sun Kang
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Fang P, She Y, Yu M, Min W, Shang W, Zhang Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res Rev 2023; 84:101829. [PMID: 36563906 DOI: 10.1016/j.arr.2022.101829] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Obesity and type 2 diabetes account for a considerable proportion of the global burden of age-related metabolic diseases. In age-related metabolic diseases, tissue crosstalk and metabolic regulation have been primarily linked to endocrine processes. Skeletal muscle and adipose tissue are endocrine organs that release myokines and adipokines into the bloodstream, respectively. These cytokines regulate metabolic responses in a variety of tissues, including skeletal muscle and adipose tissue. However, the intricate mechanisms underlying adipose-muscle crosstalk in age-related metabolic diseases are not fully understood. Recent exciting evidence suggests that myokines act to control adipose tissue functions, including lipolysis, browning, and inflammation, whereas adipokines mediate the beneficial actions of adipose tissue in the muscle, such as glucose uptake and metabolism. In this review, we assess the mechanisms of adipose-muscle crosstalk in age-related disorders and propose that the adipokines adiponectin and spexin, as well as the myokines irisin and interleukin-6 (IL-6), are crucial for maintaining the body's metabolic balance in age-related metabolic disorders. In addition, these changes of adipose-muscle crosstalk in response to exercise or dietary flavonoid consumption are part of the mechanisms of both functions in the remission of age-related metabolic disorders. A better understanding of the intricate relationships between adipose tissue and skeletal muscle could lead to more potent therapeutic approaches to prolong life and prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
11
|
Social stress-induced serotonin dysfunction activates spexin in male Nile tilapia ( Oreochromis Niloticus). Proc Natl Acad Sci U S A 2023; 120:e2117547120. [PMID: 36623187 PMCID: PMC9934202 DOI: 10.1073/pnas.2117547120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Social disturbance in interpersonal relationships is the primary source of stress in humans. Spexin (SPX, SPX1a in cichlid), an evolutionarily conserved neuropeptide with diverse physiological functions, is up-regulated in the brain during chronic social defeat stress in teleost. On the other hand, repeated exposure to social stress can lead to dysregulation of the monoaminergic system and increase the vulnerability of developing depression. Since dysfunction of the serotonin (5-hydroxytryptamine, 5-HT) system is associated with social stress and the pathophysiology of depression, the present study investigated the regulatory relationship between the central 5-HT system and SPX1a in the male teleost, Nile tilapia (Oreochromis niloticus). To identify stress factors that regulate SPX1a gene expression, cortisol, dexamethasone (DEX), and 5-HT were used to treat tilapia brain primary cultures. Our study shows cortisol and DEX treatment had no effect on SPX1a gene expression, but SPX1a gene expression was down-regulated following 5-HT treatment. Anatomical localization showed a close association between 5-HT immunoreactive projections and SPX1a neurons in the semicircular torus. In addition, 5-HT receptors (5-HT2B) were expressed in SPX1a neurons. SPX1a immunoreactive neurons and SPX1a gene expression were significantly increased in socially defeated tilapia. On the other hand, citalopram (antidepressant, 5-HT antagonist) treatment to socially defeated tilapia normalized SPX1a gene expression to control levels. Taken together, the present study shows that 5-HT is an upstream regulator of SPX1a and that the inhibited 5-HT activates SPX1a during social defeat.
Collapse
|
12
|
She Y, Ge R, Gu X, Fang P, Zhang Z. Cardioprotective effects of neuropeptide galanin: Focusing on its roles against diabetic heart. Peptides 2023; 159:170918. [PMID: 36435275 DOI: 10.1016/j.peptides.2022.170918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Following an unprecedented rise in the number of the aged, the incidence of age-related diseases, such as diabetes and cardiovascular disease, is consequently increasing in the world. Type 2 diabetes mellitus (T2DM) is associated with excess cardiovascular morbidity and mortality. The diabetic heart is characterized by increased cardiomyocyte stiffness and fibrotic changes. Despite many factors resulting in cardiomyocyte injury and dysfunction in diabetes, insulin resistance is still a critical etiology of diabetic cardiomyopathy. Preclinical and clinical studies have revealed an intriguing role for galanin in the pathogenesis of insulin resistance and diabetic heart disease. A significant change in plasma galanin levels occurred in patients suffering from type 2 diabetes or cardiomyocyte injury. In turn, galanin may also distinctly mitigate hyperglycemia and insulin resistance in diabetes as well as increase glucose metabolism and mitochondrial biogenesis in cardiac muscle. Here, we critically review current data about the multivariate relationship among galanin, insulin resistance, and cardiac muscle to comprehensively evaluate the protective role of galanin and its receptors for the diabetic heart and to determine whether galanin receptor 2 agonists potentially represent a feasible way to treat diabetic cardiomyopathy in the future.
Collapse
Affiliation(s)
- Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Ran Ge
- Key Laboratory for Metabolic Diseases in Chinese Medicine & Hanlin College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuewen Gu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine & Hanlin College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
13
|
Meng F, Yu Y, Li J, Han X, Du X, Cao X, Liang Q, Huang A, Kong F, Huang L, Zeng X, Bu G. Characterization of spexin (SPX) in chickens: molecular cloning, functional analysis, tissue expression and its involvement in appetite regulation. Poult Sci 2022; 102:102279. [PMID: 36402041 PMCID: PMC9673105 DOI: 10.1016/j.psj.2022.102279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Spexin (SPX) is a conservative tetradecapeptide which has been proven to participate in multiple physiological processes, including anxiety, feed intake, and energy metabolism in fish and mammals. However, whether SPX exists and functions in birds remain largely unknown. Using chicken (c-) as a model, the full-length cDNA encoding cSPX precursor was cloned, and it was predicted to generate a mature peptide with 14 amino acids conserved across vertebrates. The pGL4-SRE-luciferase reporter system-based functional analysis demonstrated that cSPX was effective in activating chicken galanin type Ⅱ receptor (cGALR2), cGALR2-like receptor (cGALR2L) and galanin type Ⅲ receptor (cGALR3), thus to stimulate intracellular MAPK/ERK signaling pathway. Quantitative real-time PCR revealed that SPX was widely expressed in chicken tissues, especially abundant in the central nervous system, pituitary, testes, and pancreas. Interestingly, it was noted that chicken hypothalamic SPX mRNA could be up-regulated by 24-h and 36-h fasting, heralding its latent capacity in appetite regulation. In accordance with this speculation, peripheral injection of cSPX was proved to be functional in reducing feed intake of 3-wk-old chicks. Furthermore, we found that cSPX could reduce the expression of AgRP and MCH, with a concurrent rise in CART1 mRNA level in the hypothalamic of chicks. Collectively, our findings not only provide the evidences that SPX can act as a satiety factor by orchestrating the expression of key feeding regulators in the chicken hypothalamus but also help to facilitate a better understanding of its functional evolution across vertebrates.
Collapse
|
14
|
Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav Sci (Basel) 2022; 12:262. [PMID: 36004833 PMCID: PMC9405013 DOI: 10.3390/bs12080262] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In modern society, there has been a rising trend of depression and anxiety. This trend heavily impacts the population's mental health and thus contributes significantly to morbidity and, in the worst case, to suicides. Modern medicine, with many antidepressants and anxiolytics at hand, is still unable to achieve remission in many patients. The pathophysiology of depression and anxiety is still only marginally understood, which encouraged researchers to focus on neuropeptides, as they are a vast group of signaling molecules in the nervous system. Neuropeptides are involved in the regulation of many physiological functions. Some act as neuromodulators and are often co-released with neurotransmitters that allow for reciprocal communication between the brain and the body. Most studied in the past were the antidepressant and anxiolytic effects of oxytocin, vasopressin or neuropeptide Y and S, or Substance P. However, in recent years, more and more novel neuropeptides have been added to the list, with implications for the research and development of new targets, diagnostic elements, and even therapies to treat anxiety and depressive disorders. In this review, we take a close look at all currently studied neuropeptides, their related pathways, their roles in stress adaptation, and the etiology of anxiety and depression in humans and animal models. We will focus on the latest research and information regarding these associated neuropeptides and thus picture their potential uses in the future.
Collapse
Affiliation(s)
- Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Ivan Grgac
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| |
Collapse
|
15
|
Sherman SB, Harberson M, Rashleigh R, Gupta N, Powers R, Talla R, Thusu A, Hill JW. Spexin modulates molecular thermogenic profile of adipose tissue and thermoregulatory behaviors in female C57BL/6 mice. Horm Behav 2022; 143:105195. [PMID: 35580373 PMCID: PMC10150790 DOI: 10.1016/j.yhbeh.2022.105195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Thermoregulation is the physiological process by which an animal regulates body temperature in response to its environment. It is known that galanin, a neuropeptide widely distributed throughout the central nervous system and secreted by the gut, plays a role in thermoregulatory behaviors and metabolism. We tested the ability of the novel neuropeptide spexin, which shares sequence homology to galanin, to regulate these functions in female mice. Supraphysiological levels of spexin in C57BL/6 mice did not lead to weight loss after 50 days of treatment. Behavioral analysis of long-term spexin treatment showed it decreased anxiety and increased thermoregulatory nest building, which was not observed when mice were housed at thermoneutral temperatures. Treatment also disrupted the thermogenic profile of brown and white adipose tissue, decreasing mRNA expression of Ucp1 in BAT and immunodetection of β3-adrenergic receptors in gWAT. Our results reveal novel functions for spexin as a modulator of thermoregulatory behaviors and adipose tissue metabolism.
Collapse
Affiliation(s)
- Shermel B Sherman
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Mitchell Harberson
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Rebecca Rashleigh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Niraj Gupta
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Bioengineering, University of Toledo, Toledo, OH 43604, United States
| | - Riley Powers
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Ramya Talla
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Ashima Thusu
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Bioengineering, University of Toledo, Toledo, OH 43604, United States
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States.
| |
Collapse
|
16
|
Yu M, Ju M, Fang P, Zhang Z. Emerging central and peripheral actions of spexin in feeding behavior, leptin resistance and obesity. Biochem Pharmacol 2022; 202:115121. [PMID: 35679893 DOI: 10.1016/j.bcp.2022.115121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Consumption of a high calorie diet with irregular eating and sedentary behavior habits is typical of the current suboptimal lifestyle, contributing to the development of metabolic diseases such as obesity and type 2 diabetes mellitus. Most notably, the disorder of adipokine secretion in visceral adiposity is a major contributor to metabolic diseases with advancing age. In this regard, spexin and leptin are established as anorexigenic adipokines that can modulate adipogenesis and glucose metabolism by suppressing food intake or increasing energy expenditure, respectively. Emerging evidence points out that spexin levels are lower in the serum and adipose tissue of patients with obesity and/or insulin resistance, whereas circulating levels of leptin are higher in obesity and comorbidities. In turn, spexin and leptin pharmacologically induce beneficial effects on the brain's modulation of food intake and energy expenditure. On the other hand, endocrine crosstalk via spexin and leptin has also been reported in patients suffering from obesity and diabetes. Spexin plays a crucial role in the regulation of leptin secretion and leptin resistance. It should therefore be taken into account that studying the role of spexin in leptin regulation will help us combat the pathologies of obesity caused by leptin resistance.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Mengxian Ju
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
17
|
Albeltagy ES, Abd Elbaky NM. Association of lower circulating Spexin levels with higher body mass indices and glucose metabolic profiles in adult subjects in Egypt. HUMAN NUTRITION & METABOLISM 2022; 27:200137. [DOI: 10.1016/j.hnm.2021.200137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Yu M, Wang M, Han S, Han L, Kan Y, Zhao J, Yu X, Yan J, Jin Y, Zhang Z, Shang W, Fang P. Spexin ameliorates skeletal muscle insulin resistance through activation of GAL2 receptor. Eur J Pharmacol 2022; 917:174731. [PMID: 34973950 DOI: 10.1016/j.ejphar.2021.174731] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 01/12/2023]
Abstract
Skeletal muscle is a principal tissue involved in energy expenditure and glucose metabolism. Although the results of our and other studies show that spexin could decrease food intake and obesity, the specific metabolic effect of spexin on glucose metabolism of skeletal muscle is still unclear. The aim of this study is to investigate whether spexin might mitigate obesity-induced insulin resistance in skeletal muscles and to explore its underlying mechanisms. The high fat diet-fed mice were treated with 50 μg/kg/d spexin for 21 consecutive days, and the differentiated myotubes of L6 were treated with spexin (200, 400, 800 nM) in the absence or presence of M871 (800 nM) for 12 h respectively. Besides, the galanin type 2 (GAL2) receptor knockdown myotubes were treated with 800 nM spexin for 12 h in this study. The present findings showed that spexin reversed hyperglycemia and glucose intolerance as well as insulin intolerance and insulin resistance in the mice fed with high fat diet. Furthermore, spexin markedly augmented the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) expression and deacetylation, and further triggered glucose transporter 4 (GLUT4) expression and trafficking in myotubes through p38 mitogen-activated protein kinase (P38MAPK) and protein kinase B (AKT) activation. More importantly, the elevation of glucose consumption related genes by spexin were abolished by GAL2 receptor antagonist or silencing of GAL2 receptor in myotubes. In conclusion, our findings provide a novel insight that spexin can protect against insulin resistance and increase glucose consumption in skeletal muscles mainly through activation of GAL2/GLUT4 signal pathway. Spexin might therefore be a novel therapeutic target for hyperglycemia and insulin resistance in clinic.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Wenbing Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| |
Collapse
|
19
|
Gołyszny M, Obuchowicz E, Zieliński M. Neuropeptides as regulators of the hypothalamus-pituitary-gonadal (HPG) axis activity and their putative roles in stress-induced fertility disorders. Neuropeptides 2022; 91:102216. [PMID: 34974357 DOI: 10.1016/j.npep.2021.102216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Neuropeptides being regulators of the hypothalamus-pituitary-adrenal (HPA) axis activity, also affect the function of the hypothalamus-pituitary-gonadal (HPG) axis by regulating gonadotrophin-releasing hormone (GnRH) secretion from hypothalamic neurons. Here, we review the available data on how neuropeptides affect HPG axis activity directly or indirectly via their influence on the HPA axis. The putative role of neuropeptides in stress-induced infertility, such as polycystic ovary syndrome, is also described. This review discusses both well-known neuropeptides (i.e., kisspeptin, Kp; oxytocin, OT; arginine-vasopressin, AVP) and more recently discovered peptides (i.e., relaxin-3, RLN-3; nesfatin-1, NEFA; phoenixin, PNX; spexin, SPX). For the first time, we present an up-to-date review of all published data regarding interactions between the aforementioned neuropeptide systems. The reviewed literature suggest new pathophysiological mechanisms leading to fertility disturbances that are induced by stress.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| |
Collapse
|
20
|
Mohd Zahir I, Ogawa S, Dominic NA, Soga T, Parhar IS. Spexin and Galanin in Metabolic Functions and Social Behaviors With a Focus on Non-Mammalian Vertebrates. Front Endocrinol (Lausanne) 2022; 13:882772. [PMID: 35692389 PMCID: PMC9174643 DOI: 10.3389/fendo.2022.882772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 01/31/2023] Open
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides that are phylogenetically related and have descended from a common ancestral gene. Considerable attention has been given to these two multifunctional neuropeptides because they share GAL receptors 1,2, and 3. Since GAL and SPX-synthesizing neurons have been detected in several brain areas, therefore, it can be speculated that SPX and GAL are involved in various neurophysiological functions. Several studies have shown the functions of these two neuropeptides in energy regulation, reproduction, and response to stress. SPX acts as a satiety factor to suppress food intake, while GAL has the opposite effect as an orexigenic factor. There is evidence that SPX acts as an inhibitor of reproductive functions by suppressing gonadotropin release, while GAL modulates the activity of gonadotropin-releasing hormone (GnRH) neurons in the brain and gonadotropic cells in the pituitary. SPX and GAL are responsive to stress. Furthermore, SPX can act as an anxiolytic factor, while GAL exerts anti-depressant and pro-depressive effects depending on the receptor it binds. This review describes evidence supporting the central roles of SPX and GAL neuropeptides in energy balance, reproduction, stress, and social behaviors, with a particular focus on non-mammalian vertebrate systems.
Collapse
Affiliation(s)
- Izzati Mohd Zahir
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Tomoko Soga
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar,
| |
Collapse
|
21
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
22
|
Fang P, Ge R, She Y, Zhao J, Yan J, Yu X, Jin Y, Shang W, Zhang Z. Adipose tissue spexin in physical exercise and age-associated diseases. Ageing Res Rev 2022; 73:101509. [PMID: 34752956 DOI: 10.1016/j.arr.2021.101509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
It is known that a strong association exists between a suboptimal lifestyle (physical inactivity and sedentary behavior and/or high calorie diet) and increased propensity of developing age-associated diseases, such as obesity and T2DM. Physical exercise can alleviate obesity-induced insulin resistance and T2DM, however, the precise mechanism for this outcome is not fully understood. The endocrine disorder of adipose tissue in obesity plays a critical role in the development of insulin resistance. In this regard, spexin has been recently described as an adipokine that plays an important role in the pathophysiology of obesity-induced insulin resistance and T2DM. In obese states, expression of adipose tissue spexin is reduced, inducing the adipose tissue and skeletal muscle more susceptible to insulin resistance. Emerging evidences point out that exercise can increase spexin expression. In return, spexin could exert the exercise-protective roles to ameliorate insulin resistance, suggesting that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance and T2DM, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. This review summarizes our and others' recent studies regarding the effects of obesity on adipose tissue spexin induction, along with the potential effect of exercise on this response in obese context, and provides a new insight into the multivariate relationship among exercise, spexin and T2DM. It should be therefore taken into account that a combination of spexin and exercise training is an effective therapeutic strategy for age-associated diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China.
| | - Ran Ge
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
23
|
Spexin: Its role, regulation, and therapeutic potential in the hypothalamus. Pharmacol Ther 2021; 233:108033. [PMID: 34763011 DOI: 10.1016/j.pharmthera.2021.108033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Spexin is the most recently discovered member of the galanin/kisspeptin/spexin family of peptides. This 14-amino acid peptide is highly conserved and is implicated in homeostatic functions including, but not limited to, metabolism, energy homeostasis, and reproduction. Spexin is expressed by neurons in the hypothalamus, which coordinate energy homeostasis and reproduction. Critically, levels of spexin appear to be altered in disorders related to energy homeostasis and reproduction, such as obesity, diabetes, and polycystic ovarian syndrome. In this review, we discuss the evidence for the involvement of spexin in the hypothalamic control of energy homeostasis and reproduction. The anorexigenic properties of spexin have been attributed to its effects on the energy-regulating neuropeptide Y/agouti-related peptide neurons and proopiomelanocortin neurons. While the role of spexin in reproduction remains unclear, there is evidence that gonadotropin-releasing hormone expressing neurons may produce and respond to spexin. Furthermore, we discuss the disorders and concomitant treatments, which have been reported to alter spexin expression, as well as the underlying signaling mechanisms that may be involved. Finally, we discuss the biochemical basis of spexin, its interaction with its cognate receptors, and how this information can be adapted to develop therapeutics for disorders related to the alteration of energy homeostasis and reproduction.
Collapse
|
24
|
Kuipers A, Balaskó M, Pétervári E, Koller A, Brunner SM, Moll GN, Kofler B. Intranasal Delivery of a Methyllanthionine-Stabilized Galanin Receptor-2-Selective Agonist Reduces Acute Food Intake. Neurotherapeutics 2021; 18:2737-2752. [PMID: 34859381 PMCID: PMC8804135 DOI: 10.1007/s13311-021-01155-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 11/27/2022] Open
Abstract
The regulatory (neuro)peptide galanin is widely distributed in the central and peripheral nervous systems, where it mediates its effects via three G protein-coupled receptors (GAL1-3R). Galanin has a vast diversity of biological functions, including modulation of feeding behavior. However, the clinical application of natural galanin is not practicable due to its rapid in vivo breakdown by peptidases and lack of receptor subtype specificity. Much effort has been put into the development of receptor-selective agonists and antagonists, and while receptor selectivity has been attained to some degree, most ligands show overlapping affinity. Therefore, we aimed to develop a novel ligand with specificity to a single galanin receptor subtype and increased stability. To achieve this, a lanthionine amino acid was enzymatically introduced into a galanin-related peptide. The residue's subsequent cyclization created a conformational constraint which increased the peptide's receptor specificity and proteolytic resistance. Further exchange of certain other amino acids resulted in a novel methyllanthionine-stabilized galanin receptor agonist, a G1pE-T3N-S6A-G12A-methyllanthionine[13-16]-galanin-(1-17) variant, termed M89b. M89b has exclusive specificity for GAL2R and a prolonged half-life in serum. Intranasal application of M89b to unfasted rats significantly reduced acute 24 h food intake inducing a drop in body weight. Combined administration of M89b and M871, a selective GAL2R antagonist, abolished the anorexigenic effect of M89b, indicating that the effect of M89b on food intake is indeed mediated by GAL2R. This is the first demonstration of in vivo activity of an intranasally administered lanthipeptide. Consequently, M89b is a promising candidate for clinical application as a galanin-related peptide-based therapeutic.
Collapse
Affiliation(s)
- Anneke Kuipers
- Lanthio Health B.V., Rozenburglaan 13B, 9727 DL, Groningen, Netherlands
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti út, H-7624, Pécs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti út, H-7624, Pécs, Hungary
| | - Andreas Koller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Susanne M Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Gert N Moll
- Lanthio Health B.V., Rozenburglaan 13B, 9727 DL, Groningen, Netherlands
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria.
| |
Collapse
|
25
|
Kumar S, Mankowski RT, Anton SD, Babu Balagopal P. Novel insights on the role of spexin as a biomarker of obesity and related cardiometabolic disease. Int J Obes (Lond) 2021; 45:2169-2178. [PMID: 34253845 DOI: 10.1038/s41366-021-00906-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Spexin (SPX) is a 14-amino acid neuropeptide, discovered recently using bioinformatic techniques. It is encoded by the Ch12:orf39 gene that is widely expressed in different body tissues/organs across species, and secreted into systemic circulation. Recent reports have highlighted a potentially important regulatory role of SPX in obesity and related comorbidities. SPX is also ubiquitously expressed in human tissues, including white adipose tissue. The circulating concentration of SPX is significantly lower in individuals with obesity compared to normal weight counterparts. SPX's role in obesity appears to be related to various factors, such as the regulation of energy expenditure, appetite, and eating behaviors, increasing locomotion, and inhibiting long-chain fatty acid uptake into adipocytes. Recent reports have also suggested SPX's relationship with novel biomarkers of cardiovascular disease (CVD) and glucose metabolism and evoked the potential role of SPX as a key biomarker/player in the early loss of cardiometabolic health and development of CVD and diabetes later in life. Data on age-related changes in SPX and SPX's response to various interventions are also emerging. The current review focuses on the role of SPX in obesity and related comorbidities across the life span, and its response to interventions in these conditions. It is expected that this article will provide new ideas for future research on SPX and its metabolic regulation, particularly related to cardiometabolic diseases.
Collapse
Affiliation(s)
- Seema Kumar
- Division of Pediatric Endocrinology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Stephen D Anton
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - P Babu Balagopal
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Biomedical Research, Nemours Children's Health System, Jacksonville, FL, USA.
| |
Collapse
|
26
|
Sanli S, Bulbul A, Ucar A. The effect of umbilical cord blood spexin, free 25(OH) vitamin D3 and adipocytokine levels on intrauterine growth and anthropometric measurements in newborns. Cytokine 2021; 144:155578. [PMID: 34010726 DOI: 10.1016/j.cyto.2021.155578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022]
Abstract
Spexin is a newly described peptide and is known to reduce the uptake of long-chain fatty acids into adipocytes. The serum spexin levels of obese children between the ages of 12-18 are lower. The effect of serum spexin and free 25(OH) vitamin D3 levels on intrauterine development in newborns is unknown. Our aims is to evaluate the effects of spexin and adipocytokin levels in the cord blood of term newborn babies on the weight of the baby according to the gestation age (GA) and anthropometric measurement results. Babies who were born in our hospital and whose GA was ≥37 weeks were evaluated in three groups as appropriate for GA (AGA), small for GA (SGA) and large for GA (LGA). A total of 84 babies, including an equal number of infants in AGA, SGA and LGA groups, were included in the study. Spexin, leptin, active ghrelin, free 25(OH) vitamin D3, glucose, and insulin levels in the cord blood of infants were examined at birth. The results were compared according to GA and birth weight (BW). There was no statistically significant difference between groups in terms of mean spexin, active ghrelin, free 25(OH) vitamin D3, and insulin levels. The mean leptin level was significantly higher in LGA group than SGA and AGA groups (p 0.004). The mean spexin and leptin levels were higher in girls than in boys (respectively p value 0.029, 0.003). Although there is a significant positive correlation between BW, head circumference, height, umbilical circumference, umbilical circumference/height ratio and the mean leptin levels (p < 0.001), there was no significant correlation between mean spexin, active ghrelin, free 25 (OH) vitamin D3, insulin, and glucose levels. This study suggests that spexin may not have an effect on intrauterine development.
Collapse
Affiliation(s)
- Senanur Sanli
- University of Health Science, Sisli Hamidiye Etfal Education and Research Hospital, Department of Pediatrics, Division of Neonatology, Istanbul, Turkey
| | - Ali Bulbul
- University of Health Science, Sisli Hamidiye Etfal Education and Research Hospital, Department of Pediatrics, Division of Neonatology, Istanbul, Turkey.
| | - Ahmet Ucar
- University of Health Science, Sisli Hamidiye Etfal Education and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Istanbul, Turkey
| |
Collapse
|
27
|
Salah NY, Zeid DA, Sabry RN, Fahmy RF, El Abd MA, Awadallah E, Omran A, El Gendy YG. Circulating spexins in children with obesity: relation to cardiometabolic risk. Eur J Clin Nutr 2021; 76:119-125. [PMID: 33850315 DOI: 10.1038/s41430-021-00912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVES The role of spexin (SPX) in energy metabolism, endocrinal homeostasis, and vasculopathy is emerging. However, scarce data are available about its role in childhood obesity and obesity-related vasculopathy. Hence, we aimed to assess the level of SPX in obese and normal-weight children, and to correlate it with aortic distensibility (AD) and aortic stiffness index (ASI). SUBJECTS/METHODS Forty obese children were compared to 40 matched normal-weighed children. Weight, height, and body mass index (BMI) z score and mean blood pressure (Bl-Pr) percentile on three different occasions were obtained. SPX, fasting triglycerides, cholesterol, low-density (LDL), high-density lipoproteins (HDL), and insulin were measured with calculation of the homeostatic model assessment insulin resistance (HOMA-IR). Internal aortic diameter was measured with calculation of AD, strain (AS), and ASI. RESULTS Children with obesity had significantly lower SPX (P = 0.004), HDL (P < 0.001), and AD (P < 0.001) and higher systolic Bl-Pr (P < 0.001), diastolic Bl-Pr (P < 0.001), LDL (P = 0.011), HOMA-IR (P < 0.001), and ASI (P < 0.001). Significant negative correlation was found between SPX and BMI z score (r = -0.646, P < 0.001), systolic Bl-Pr (r = -0.641, P < 0.001), diastolic Bl-Pr (r = -0.427, P < 0.001), HOMA-IR (r = -0.349, P = 0.028), and ASI (r = -0.389, P = 0.013), while significant positive correlation was found between SPX and AS (P < 0.001, r = 0.633) and AD (P < 0.001, r = 0.612). However, no significant correlation was found between SPX and age (r = -0.01, P = 0.953), TG (r = 0.048, P = 0.767), total cholesterol (r = -0.023, P = 0.887), LDL (r = -0.299, P = 0.061), and HDL (r = 0.193, P = 0.232). CONCLUSIONS Children with obesity had significantly lower SPX than controls. SPX was correlated with BMI, Bl-Pr, HOMA-IR, and vasculopathy in children with obesity independent of their age and lipid profile. Further studies should explore the pathomechanism of SPX and its potential role in the management of obesity and obesity-related cardiometabolic risk.
Collapse
Affiliation(s)
- Nouran Y Salah
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Dina Abu Zeid
- Child Health Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Rania N Sabry
- Child Health Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Reham F Fahmy
- Child Health Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Mona A El Abd
- Child Health Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Eman Awadallah
- Department of Clinical and Chemical Pathology, National Research Centre, Giza, Egypt
| | - Azza Omran
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmin G El Gendy
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
28
|
El-Saka MH, Abo El Gheit RE, El Saadany A, Alghazaly GM, Marea KE, Madi NM. Effect of spexin on renal dysfunction in experimentally obese rats: potential mitigating mechanisms via galanin receptor-2. Arch Physiol Biochem 2021:1-10. [PMID: 33632048 DOI: 10.1080/13813455.2021.1887265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study declared effect of spexin (SPX) on renal dysfunction in obese rats and its potential mitigating mechanisms which could mediated via galanin receptor-2 (GALR-2). Thirty two 32 Wistar male rats were arranged into four groups: control, high fat/fructose diet (HFFD), HFFD + SPX and HFFD + M871 (galanin receptor 2 antagonist)+SPX. At the termination of the experiment, urine volume, body mass index, Lee index and mean arterial blood pressure were assessed. Renal function was evaluated. Lipid profile, fasting glucose, insulin, insulin resistance and SPX levels were estimated. Also, renal histopathological, immunohistochemical and relative gene expression of renal tissue were done. Also, renal protein carbonyl, reduced glutathione, interferon gamma, monocyte chemoattractant protein-1, interleukin-10 and hydroxyproline were determined.Our results explored that SPX treatment prominently mitigated the metabolic changes and renal dysfunction induced by HFFD via GALR-2. SPX improved insulin resistance, dyslipidemia, renal oxidative stress, inflammation, apoptosis, and fibrosis. So, SPX can be considered as prospective therapeutic agent for treating renal dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Karima E Marea
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nermin M Madi
- Department of Physiology, Tanta University, Tanta, Egypt
| |
Collapse
|
29
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
30
|
Wong MKH, Chen Y, He M, Lin C, Bian Z, Wong AOL. Mouse Spexin: (II) Functional Role as a Satiety Factor inhibiting Food Intake by Regulatory Actions Within the Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:681647. [PMID: 34276562 PMCID: PMC8283969 DOI: 10.3389/fendo.2021.681647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Spexin (SPX) is a pleiotropic peptide with highly conserved protein sequence from fish to mammals and its biological actions are mediated by GalR2/GalR3 receptors expressed in target tissues. Recently, SPX has been confirmed to be a novel satiety factor in fish species but whether the peptide has a similar function in mammals is still unclear. Using the mouse as a model, the functional role of SPX in feeding control and the mechanisms involved were investigated. After food intake, serum SPX in mice could be up-regulated with elevations of transcript expression and tissue content of SPX in the glandular stomach but not in other tissues examined. As revealed by immunohistochemical staining, food intake also intensified SPX signals in the major cell types forming the gastric glands (including the foveolar cells, parietal cells, and chief cells) within the gastric mucosa of glandular stomach. Furthermore, IP injection of SPX was effective in reducing food intake with parallel attenuation in transcript expression of NPY, AgRP, NPY type 5 receptor (NPY5R), and ghrelin receptor (GHSR) in the hypothalamus, and these inhibitory effects could be blocked by GalR3 but not GalR2 antagonism. In agreement with the central actions of SPX, similar inhibition on feeding and hypothalamic expression of NPY, AgRP, NPY5R, and GHSR could also be noted with ICV injection of SPX. In the same study, in contrast to the drop in NPY5R and GHSR, SPX treatment could induce parallel rises of transcript expression of leptin receptor (LepR) and melanocortin 4 receptor (MC4R) in the hypothalamus. These findings, as a whole, suggest that the role of SPX as a satiety factor is well conserved in the mouse. Apparently, food intake can induce SPX production in glandular stomach and contribute to the postprandial rise of SPX in circulation. Through GalR3 activation, this SPX signal can act within the hypothalamus to trigger feedback inhibition on feeding by differential modulation of feeding regulators (NPY and AgRP) and their receptors (NPY5R, GHSR, LepR, and MC4R) involved in the feeding circuitry within the CNS.
Collapse
Affiliation(s)
- Matthew K. H. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuan Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chengyuan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Anderson O. L. Wong,
| |
Collapse
|
31
|
Wong MKH, He M, Sze KH, Huang T, Ko WKW, Bian ZX, Wong AOL. Mouse Spexin: (I) NMR Solution Structure, Docking Models for Receptor Binding, and Histological Expression at Tissue Level. Front Endocrinol (Lausanne) 2021; 12:681646. [PMID: 34276561 PMCID: PMC8285161 DOI: 10.3389/fendo.2021.681646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
Spexin (SPX), a highly conserved neuropeptide, is known to have diverse functions and has been implicated/associated with pathological conditions, including obesity, diabetes, anorexia nervosa, and anxiety/mood disorders. Although most of the studies on SPX involved the mouse model, the solution structure of mouse SPX, structural aspects for SPX binding with its receptors GalR2/3, and its cellular expression/distribution in mouse tissues are largely unknown. Using CD and NMR spectroscopies, the solution structure of mouse SPX was shown to be in the form of a helical peptide with a random coil from Asn1 to Pro4 in the N-terminal followed by an α-helix from Gln5 to Gln14 in the C-terminus. The molecular surface of mouse SPX is largely hydrophobic with Lys11 as the only charged residue in the α-helix. Based on the NMR structure obtained, docking models of SPX binding with mouse GalR2 and GalR3 were constructed by homology modeling and MD simulation. The models deduced reveal that the amino acids in SPX, especially Asn1, Leu8, and Leu10, could interact with specific residues in ECL1&2 and TMD2&7 of GalR2 and GalR3 by H-bonding/hydrophobic interactions, which provides the structural evidence to support the idea that the two receptors can act as the cognate receptors for SPX. For tissue distribution of SPX, RT-PCR based on 28 tissues/organs harvested from the mouse demonstrated that SPX was ubiquitously expressed at the tissue level with notable signals detected in the brain, GI tract, liver, gonad, and adrenal gland. Using immunohistochemical staining, protein signals of SPX could be located in the liver, pancreas, white adipose tissue, muscle, stomach, kidney, spleen, gonad, adrenal, and hypothalamo-pituitary axis in a cell type-specific manner. Our results, as a whole, not only can provide the structural information for ligand/receptor interaction for SPX but also establish the anatomical basis for our on-going studies to examine the physiological functions of SPX in the mouse model.
Collapse
Affiliation(s)
- Matthew K. H. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kong Hung Sze
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Wendy K. W. Ko
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Anderson O. L. Wong,
| |
Collapse
|
32
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
33
|
Yu M, Fang P, Wang H, Shen G, Zhang Z, Tang Z. Beneficial effects of galanin system on diabetic peripheral neuropathic pain and its complications. Peptides 2020; 134:170404. [PMID: 32898581 DOI: 10.1016/j.peptides.2020.170404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Diabetic peripheral neuropathic pain (DPNP) is a distal spontaneous pain, caused by lesion of sensory neurons and accompanied by depression and anxiety frequently, which reduce life quality of patients and increase society expenditure. To date, antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants are addressed as first-line therapy to DPNP, alone or jointly. It is urgently necessary to develop novel agents to treat DPNP and its complications. Evidences indicate that neuropeptide galanin can regulate multiple physiologic and pathophysiological processes. Pain, depression and anxiety may upregulate galanin expression. In return, galanin can modulate depression, anxiety, pain threshold and pain behaviors. This article provides a new insight into regulative effects of galanin and its subtype receptors on antidepressant, antianxiety and against DPNP. Through activating GALR1, galanin reinforces depression-like and anxiogenic-like behaviors, but exerts antinociceptive roles. While via activating GALR2, galanin is referred to as anti-depressive and anti-anxiotropic compounds, and at low and high concentration facilitates and inhibits nociceptor activity, respectively. The mechanism of the galanin roles is relative to increase in K+ currents and decrease in Ca2+ currents, as well as neurotrophic and neuroprotective roles. These data are helpful to develop novel drugs to treat DPNP and its complications.
Collapse
Affiliation(s)
- Mei Yu
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Penghua Fang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Wang
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Guiqin Shen
- Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zongxiang Tang
- Department of Physiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
34
|
Lomet D, Robert V, Poissenot K, Beltramo M, Dardente H. No evidence that Spexin impacts LH release and seasonal breeding in the ewe. Theriogenology 2020; 158:1-7. [PMID: 32916519 DOI: 10.1016/j.theriogenology.2020.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/11/2023]
Abstract
Spexin (SPX) is a recently identified peptide hormone of 14 amino acids. Interestingly, Spx and Kiss1 genes share a common ancestor gene. Considering that KISS1 peptides are key controllers of breeding in mammals and circumstantial evidence that SPX regulates gonadotropins in some fish species, we hypothesized that SPX may play a KISS1-related role in sheep. Here, we cloned the ovine Spx cDNA, performed in vivo injection and infusion of SPX (i.c.v. route, with or without concomittant KISS1 presence) and assessed a potential regulation of Spx expression by season, thyroid hormone and estradiol in the medio-basal hypothalamus of the ewe. Our data do not provide support for a role of SPX in the control of the gonadotropic axis in the ewe.
Collapse
Affiliation(s)
- Didier Lomet
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Vincent Robert
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Kevin Poissenot
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Hugues Dardente
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| |
Collapse
|
35
|
Brunes LC, Baldi F, Lopes FB, Lôbo RB, Espigolan R, Costa MFO, Stafuzza NB, Magnabosco CU. Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle. J Anim Breed Genet 2020; 138:23-44. [PMID: 32654373 DOI: 10.1111/jbg.12496] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
The aim was to conduct a weighted single-step genome-wide association study to detect genomic regions and putative candidate genes related to residual feed intake, dry matter intake, feed efficiency (FE), feed conversion ratio, residual body weight gain, residual intake and weight gain in Nellore cattle. Several protein-coding genes were identified within the genomic regions that explain more than 0.5% of the additive genetic variance for these traits. These genes were associated with insulin, leptin, glucose, protein and lipid metabolisms; energy balance; heat and oxidative stress; bile secretion; satiety; feed behaviour; salivation; digestion; and nutrient absorption. Enrichment analysis revealed functional pathways (p-value < .05) such as neuropeptide signalling (GO:0007218), negative regulation of canonical Wingless/Int-1 (Wnt) signalling (GO:0090090), bitter taste receptor activity (GO:0033038), neuropeptide hormone activity (GO:0005184), bile secretion (bta04976), taste transduction (bta0742) and glucagon signalling pathway (bta04922). The identification of these genes, pathways and their respective functions should contribute to a better understanding of the genetic and physiological mechanisms regulating Nellore FE-related traits.
Collapse
Affiliation(s)
- Ludmilla C Brunes
- Department of Animal Science, Federal University of Goiás (UFG), Goiânia, Brazil.,Embrapa Rice and Beans, Santo Antônio de Goiás, Brazil
| | - Fernando Baldi
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Raysildo B Lôbo
- National Association of Breeders and Researchers (ANCP), Ribeirão Preto, Brazil
| | - Rafael Espigolan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | | | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
| | | |
Collapse
|
36
|
Lee YN, Reyes-Alcaraz A, Yun S, Lee CS, Hwang JI, Seong JY. Exploring the molecular structures that confer ligand selectivity for galanin type II and III receptors. PLoS One 2020; 15:e0230872. [PMID: 32231393 PMCID: PMC7108740 DOI: 10.1371/journal.pone.0230872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
Galanin receptors (GALRs) belong to the superfamily of G-protein coupled receptors. The three GALR subtypes (GALR1, GALR2, and GALR3) are activated by their endogenous ligands: spexin (SPX) and galanin (GAL). The synthetic SPX-based GALR2-specific agonist, SG2A, plays a dual role in the regulation of appetite and depression-like behaviors. Little is known, however, about the molecular interaction between GALR2 and SG2A. Using site-directed mutagenesis and domain swapping between GALR2 and GALR3, we identified residues in GALR2 that promote interaction with SG2A and residues in GALR3 that inhibit interaction with SG2A. In particular, Phe103, Phe106, and His110 in the transmembrane helix 3 (TM3) domain; Val193, Phe194, and Ser195 in the TM5 domain; and Leu273 in the extracellular loop 3 (ECL3) domain of GALR2 provide favorable interactions with the Asn5, Ala7, Phe11, and Pro13 residues of SG2A. Our results explain how SG2A achieves selective interaction with GALR2 and inhibits interaction with GALR3. The results described here can be used broadly for in silico virtual screening of small molecules for the development of GALR subtype-specific agonists and/or antagonists.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- HEK293 Cells
- Humans
- Ligands
- Mice
- Mutation
- Protein Domains
- Receptor, Galanin, Type 2/chemistry
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/chemistry
- Receptor, Galanin, Type 3/genetics
- Receptor, Galanin, Type 3/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Yoo-Na Lee
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Arfaxad Reyes-Alcaraz
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
- College of Pharmacy, University of Houston, Houston, Texas, United States of America
| | - Seongsik Yun
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Cheol Soon Lee
- Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong-Ik Hwang
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Young Seong
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Gambaro SE, Zubiría MG, Giordano AP, Portales AE, Alzamendi A, Rumbo M, Giovambattista A. "Spexin improves adipose tissue inflammation and macrophage recruitment in obese mice". Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158700. [PMID: 32201217 DOI: 10.1016/j.bbalip.2020.158700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/23/2020] [Accepted: 03/17/2020] [Indexed: 12/23/2022]
Abstract
Spexin (SPX) is a novel adipokine related to many metabolic effects, such as gastrointestinal movements, insulin and glucose homeostasis, lipid metabolism and energy balance. This study evaluates the role of SPX in the improvement of the metabolic and inflammatory profile in fructose-rich-diet obese mice. Adult Swiss mice were supplemented or not with fructose (20% in tap water, FRD and CTR, respectively) for 10 weeks. The last ten days, mice were treated or not with SPX (ip. 29 μg/Kg/day, FRD-SPX and CTR-SPX, respectively). A positive correlation was observed between body weight prior to treatment and weight loss after SPX challenge. Moreover, plasma and liver triglycerides and adipose tissue (AT) features (mass, adipocyte hypertrophy, mRNA of leptin) were improved. SPX also induced a reduction in epididymal AT (EAT) expression of TNFα, IL1β and IL6 and an improvement in IL10 and CD206. M1 macrophages in EAT, principally the Ly6C- populations (M1a and M1b), were decreased. Adipocytes from FRD-SPX mice induced less macrophage activation (IL6, mRNA and secretion) than FRD after overnight co-culture with the monocyte cell line (RAW264.7) in stimulated conditions (M1 activation, LPS 100 ng/mL). Finally, in vitro, monocytes pre-incubated with SPX and stimulated with LPS showed decreased inflammatory mRNA markers compared to monocytes with LPS alone. In conclusion, SPX decreased body weight and improved the metabolic profile and adipocyte hypertrophy. Inflammatory Ly6C- macrophages decreased, together with inflammatory marker expression. In vitro studies demonstrate that SPX induced a decrease in M1 macrophage polarization directly or through mature adipocytes.
Collapse
Affiliation(s)
- Sabrina Eliana Gambaro
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina
| | - María Guillermina Zubiría
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina
| | - Alejandra Paula Giordano
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Andrea Estefanía Portales
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Ana Alzamendi
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos, CONICET-UNLP, La Plata, 1900, Argentina
| | - Andrés Giovambattista
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-CONICET-UNLP), Calle 526, 10 y 11, La Plata 1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, Argentina.
| |
Collapse
|
38
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
39
|
Fang P, Yu M, Shi M, Bo P, Zhang Z. Galanin peptide family regulation of glucose metabolism. Front Neuroendocrinol 2020; 56:100801. [PMID: 31705911 DOI: 10.1016/j.yfrne.2019.100801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Recent preclinical and clinical studies have indicated that the galanin peptide family may regulate glucose metabolism and alleviate insulin resistance, which diminishes the probability of type 2 diabetes mellitus. The galanin was discovered in 1983 as a gut-derived peptide hormone. Subsequently, galanin peptide family was found to exert a series of metabolic effects, including the regulation of gut motility, body weight and glucose metabolism. The galanin peptide family in modulating glucose metabolism received recently increasing recognition because pharmacological activiation of galanin signaling might be of therapeutic value to improve insuin resistance and type 2 diabetes mellitus. To date, however, few papers have summarized the role of the galanin peptide family in modulating glucose metabolism and insulin resistance. In this review we summarize the metabolic effect of galanin peptide family and highlight its glucoregulatory action and discuss the pharmacological value of galanin pathway activiation for the treatment of glucose intolerance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
40
|
Jeong I, Kim E, Seong JY, Park HC. Overexpression of Spexin 1 in the Dorsal Habenula Reduces Anxiety in Zebrafish. Front Neural Circuits 2019; 13:53. [PMID: 31474838 PMCID: PMC6702259 DOI: 10.3389/fncir.2019.00053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Spexin (SPX) is an evolutionarily conserved neuropeptide that is expressed in the mammalian brain and peripheral tissue. Two orthologs are present in the teleost, SPX1 and SPX2. SPX1 is involved in reproduction and food intake. Recently, SPX1 neurons have been found to be located in the specific nuclei of dorsal habenula (dHb) and to project into the interpeduncular nucleus (IPN), in which galanin receptor 2a/2b (GALR2a/2b) expression was also observed. This indicates that habenula SPX1 neurons may interact with GALR2a/2b in the IPN; however, the function of SPX1 in the dHb-IPN neuronal circuit remains unknown. To determine the role of SPX1 in the dHb-IPN neural circuit, we generated transgenic zebrafish overexpressing SPX1 specifically in the dHb. We found that transgenic zebrafish overexpressing SPX1 in the dHb had anxiolytic behaviors compared with their wildtype siblings. Furthermore, quantitative PCR revealed that mRNA expression of galr2a and galr2b in the IPN and serotonin-related genes in the raphe was upregulated in the brains of transgenic zebrafish. Taken together, our data suggest that SPX1 function in the dHb-IPN neural circuits is implicated in the regulation of anxiety behaviors via modulation of the serotoninergic system in zebrafish.
Collapse
Affiliation(s)
- Inyoung Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, South Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, South Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, Korea University, Seoul, South Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, South Korea
| |
Collapse
|
41
|
Al-Daghri NM, Wani K, Yakout SM, Al-Hazmi H, Amer OE, Hussain SD, Sabico S, Ansari MGA, Al-Musharaf S, Alenad AM, Alokail MS, Clerici M. Favorable Changes in Fasting Glucose in a 6-month Self-Monitored Lifestyle Modification Programme Inversely Affects Spexin Levels in Females with Prediabetes. Sci Rep 2019; 9:9454. [PMID: 31263247 PMCID: PMC6602932 DOI: 10.1038/s41598-019-46006-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Spexin (SPX) is a novel peptide thought to have a role in various metabolic regulations. Given its presumed body-weight regulatory functions, we aimed to determine whether lifestyle intervention programs on weight loss and fasting glucose (FG) improvement among people with impaired glucose regulation also alter levels of circulating SPX. A total of 160 Saudi adult males and females with prediabetes were randomly selected from a larger cohort (N = 294) who underwent a 6-month lifestyle modification program to improve their glycemic status. Participants were split into two groups based on differences in glucose levels post-intervention, with the first 50% (improved group) having the most significant reduction in FG. SPX was measured at baseline and after 6 months. Changes in SPX was significant only in the improved group [baseline: median (Q1-Q3) of 164 pg/ml (136-227) vs follow-up: 176 pg/ml (146-285); p < 0.01]. When stratified by sex, the significant increase was observed only in females [159 pg/ml (127-252) vs 182.5 (152,369.1); p < 0.01]. Furthermore, SPX levels showed a significant inverse association with FG (β = -0.22, p = 0.003) even after adjustment with age and BMI, again only in females. Circulating SPX levels increase over time in people with prediabetes, particularly women who responded favorably in a 6-month lifestyle intervention program. Whether an unknown mechanism regulating the sexual disparity seen in SPX levels post-intervention exists should be further investigated using a larger sample size.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sobhy M Yakout
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hazim Al-Hazmi
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Osama E Amer
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Syed Danish Hussain
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Ghouse Ahmed Ansari
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sara Al-Musharaf
- College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Amal M Alenad
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majed S Alokail
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mario Clerici
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physiopathology and Transplantation, University of Milan, via F.lli Cervi 93, Segrate, 20090, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, 20148, Italy
| |
Collapse
|
42
|
Galanin is a potent modulator of cytokine and chemokine expression in human macrophages. Sci Rep 2019; 9:7237. [PMID: 31076613 PMCID: PMC6510899 DOI: 10.1038/s41598-019-43704-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
The regulatory peptide galanin is broadly distributed in the central- and peripheral nervous systems as well as in non-neuronal tissues, where it exerts its diverse physiological functions via three G-protein-coupled receptors (GAL1-3-R). Regulatory peptides are important mediators of the cross-communication between the nervous- and immune systems and have emerged as a focus of new therapeutics for a variety of inflammatory diseases. Studies on inflammatory animal models and immune cells revealed both pro- and anti-inflammatory functions of galanin. Here, we probed specific immune-related functions of the galanin system and found galanin and GAL1-R and GAL2-R mRNA to be expressed in a range of human immune cells. In particular, macrophages displayed differentiation- and polarization-dependent expression of galanin and its receptors. Exposure to exogenous galanin affected the cytokine/chemokine expression profile of macrophages differently, depending on their differentiation and polarization, and mainly modulated the expression of chemokines (CCL2, CCL3, CCL5 and CXCL8) and anti-inflammatory cytokines (TGF-β, IL-10 and IL-1Ra), especially in type-1 macrophages. Cytokine/chemokine expression levels in interferon-gamma- and lipopolysaccharide-polarized macrophages were upregulated whereas in unpolarized macrophages they were downregulated upon galanin treatment for 20 hours. This study illuminates the regulation of important cytokines/chemokines in macrophages by galanin, depending on specific cell activation.
Collapse
|
43
|
Lv SY, Zhou YC, Zhang XM, Chen WD, Wang YD. Emerging Roles of NPQ/Spexin in Physiology and Pathology. Front Pharmacol 2019; 10:457. [PMID: 31133851 PMCID: PMC6514225 DOI: 10.3389/fphar.2019.00457] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/11/2019] [Indexed: 01/25/2023] Open
Abstract
Spexin (SPX), also called neuropeptide Q (NPQ), is a novel endogenous neuropeptide. Spexin gene and protein are widely expressed in central nervous system and peripheral tissues in humans, rodents, goldfish, etc. A few of physiological and pathological roles of spexin are gradually emerged recently. This article summarized the roles of spexin in feeding behavior, gastrointestinal motility, obesity, diabetes, energy metabolism, endocrine, mental diseases, and cardiovascular function. Given the broad roles of spexin, this neuropeptide has attracted much interest from investigators and will be as a promising future target for novel therapeutic research and drug design.
Collapse
Affiliation(s)
- Shuang-Yu Lv
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yu-Chen Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Xiao-Mei Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
44
|
Yun S, Reyes-Alcaraz A, Lee YN, Yong HJ, Choi J, Ham BJ, Sohn JW, Kim DH, Son GH, Kim H, Kwon SG, Kim DS, Kim BC, Hwang JI, Seong JY. Spexin-Based Galanin Receptor Type 2 Agonist for Comorbid Mood Disorders and Abnormal Body Weight. Front Neurosci 2019; 13:391. [PMID: 31057364 PMCID: PMC6482256 DOI: 10.3389/fnins.2019.00391] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/04/2019] [Indexed: 01/18/2023] Open
Abstract
Despite the established comorbidity between mood disorders and abnormal eating behaviors, the underlying molecular mechanism and therapeutics remain to be resolved. Here, we show that a spexin-based galanin receptor type 2 agonist (SG2A) simultaneously normalized mood behaviors and body weight in corticosterone pellet-implanted (CORTI) mice, which are underweight and exhibit signs of anhedonia, increased anxiety, and depression. Administration of SG2A into the lateral ventricle produced antidepressive and anxiolytic effects in CORTI mice. Additionally, SG2A led to a recovery of body weight in CORTI mice while it induced significant weight loss in normal mice. In Pavlovian fear-conditioned mice, SG2A decreased contextual and auditory fear memory consolidation but accelerated the extinction of acquired fear memory without altering innate fear and recognition memory. The main action sites of SG2A in the brain may include serotonergic neurons in the dorsal raphe nucleus for mood control, and proopiomelanocortin/corticotropin-releasing hormone neurons in the hypothalamus for appetite and body weight control. Furthermore, intranasal administration of SG2A exerted the same anxiolytic and antidepressant-like effects and decreased food intake and body weight in a dose-dependent manner. Altogether, these results indicate that SG2A holds promise as a clinical treatment for patients with comorbid mood disorders and abnormal appetite/body weight.
Collapse
Affiliation(s)
- Seongsik Yun
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | | | - Yoo-Na Lee
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Hyo Jeong Yong
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Jeewon Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Joo Ham
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| | - Jong-Woo Sohn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Dong-Hoon Kim
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Gi Hoon Son
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | | | | | | | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
45
|
Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS. Sci Rep 2019; 9:5025. [PMID: 30903017 PMCID: PMC6430828 DOI: 10.1038/s41598-019-41431-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Spexin (SPX) is a highly conserved neuropeptide that is widely expressed in mammalian brain and peripheral tissue. In teleost, SPX1 is mainly expressed in the brain and ovary, and is involved in reproduction and food intake. A second form of SPX, SPX2, was recently identified in chick, Xenopus, and zebrafish. The expression pattern and roles of SPX2 are unknown. SPX (spx1) is highly expressed in the vertebrate brain, but its distribution, circuits, and interactions with its putative receptor are unknown. Here, we observed expression of spx1 in the midbrain and hindbrain, and spx2 in the hypothalamic preoptic area using in situ RNA hybridization in zebrafish. Analysis of transgenic reporter zebrafish revealed that hindbrain SPX1 neurons are PAX2+ inhibitory interneurons and project to the spinal cord, where they interact with galanin receptor 2b (GALR2b) neurons, suggesting that hindbrain SPX1 neurons are reticulospinal neurons. spx1 mRNA and SPX1 reporter expression were observed in dorsal habenula (dHb). SPX1 neurons in the dHb project to the interpeduncular nucleus (IPN), where GALR2a and GALR2b expression was also observed, suggesting that habenula SPX1 neurons may interact with GALR2a/2b in the IPN.
Collapse
|
46
|
Lim CH, Lee MYM, Soga T, Parhar I. Evolution of Structural and Functional Diversity of Spexin in Mammalian and Non-mammalian Vertebrate Species. Front Endocrinol (Lausanne) 2019; 10:379. [PMID: 31275244 PMCID: PMC6593056 DOI: 10.3389/fendo.2019.00379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/28/2019] [Indexed: 01/15/2023] Open
Abstract
Spexin (SPX) is a novel neuropeptide, which was first identified in the human genome using bioinformatics. Since then, orthologs of human SPX have been identified in mammalian and non-mammalian vertebrates. The mature sequence of SPX, NWTPQAMLYLKGAQ, is evolutionally conserved across vertebrate species, with some variations in teleost species where Ala at position 13 is substituted by Thr. In mammals, the gene structure of SPX comprises six exons and five introns, however, variation exists within non-mammalian species, goldfish and zebrafish having five exons while grouper has six exons. Phylogenetic and synteny analysis, reveal that SPX is grouped together with two neuropeptides, kisspeptin (KISS) and galanin (GAL) as a family of peptides with a common evolutionary ancestor. A paralog of SPX, termed SPX2 has been identified in non-mammalians but not in the mammalian genome. Ligand-receptor interaction study also shows that SPX acts as a ligand for GAL receptor 2 (2a and 2b in non-mammalian vertebrates) and 3. SPX acts as a neuromodulator with multiple central and peripheral physiological roles in the regulation of insulin release, fat metabolism, feeding behavior, and reproduction. Collectively, this review provides a comprehensive overview of the evolutionary diversity as well as molecular and physiological roles of SPX in mammalian and non-mammalian vertebrate species.
Collapse
|
47
|
Spexin: A novel regulator of adipogenesis and fat tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1228-1236. [DOI: 10.1016/j.bbalip.2018.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/31/2023]
|
48
|
Conformational signatures in β-arrestin2 reveal natural biased agonism at a G-protein-coupled receptor. Commun Biol 2018; 1:128. [PMID: 30272007 PMCID: PMC6123711 DOI: 10.1038/s42003-018-0134-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
Discovery of biased ligands and receptor mutants allows characterization of G-protein- and β-arrestin-mediated signaling mechanisms of G-protein-coupled receptors (GPCRs). However, the structural mechanisms underlying biased agonism remain unclear for many GPCRs. We show that while Galanin induces the activation of the galanin receptor 2 (Galr2) that leads to a robust stimulation toward Gαq-protein and β-arrestin1/2, an alternative ligand Spexin and its analog have biased agonism toward G-protein signaling relative to Galanin. We used intramolecular fluorescein arsenical hairpin bioluminescence resonance energy transfer-based biosensors of β-arrestin2 combined with NanoBit technology to measure β-arrestin2–Galr2 interactions in real-time living systems. We found that Spexin and Galanin induce specific active conformations of Galr2, which may lead to different internalization rates of the receptor as well as different signaling outputs. This work represents an additional pharmacological evidence of endogenous G-protein-biased agonism at a GPCR. Arfaxad Reyes-Alcaraz et al. report that galanin induces robust signaling mediated by β-arrestin1/2 and Gαq, whereas an alternative ligand spexin prefers the Gαq-protein signaling pathway. This study provides mechanistic insights into how endogenous ligands can generate biased signaling outputs.
Collapse
|
49
|
Ma A, Bai J, He M, Wong AOL. Spexin as a neuroendocrine signal with emerging functions. Gen Comp Endocrinol 2018; 265:90-96. [PMID: 29355530 DOI: 10.1016/j.ygcen.2018.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/13/2018] [Accepted: 01/13/2018] [Indexed: 12/19/2022]
Abstract
Spexin (SPX), a novel peptide coevolved with the galanin/kisspeptin family, was first identified by bioinformatics prior to its protein purification/functional studies. Its mature peptide is highly conserved among different vertebrate classes. Based on the studies in mammals and fish models, SPX was found to be widely distributed at tissue level, secreted into systemic circulation, identified at notable levels in central nervous system and peripheral tissues, and has been confirmed/implicated in multiple functions in different tissues/organs, suggesting that SPX may serve as a neuroendocrine signal with pleotropic functions. In this article, different isoforms of SPX and their binding with their cognate receptors GalR2 and GalR3, the biological functions of SPX reported in mammals including GI tract movement, energy balance and weight loss, fatty acid uptake, glucose homeostasis, nociception and cardiovascular/renal functions, as well as the recent findings in fish models regarding the role of SPX in reproduction and feeding control will be reviewed with interesting questions for future investigations.
Collapse
Affiliation(s)
- Ani Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jin Bai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Anderson O L Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Funck V, Fracalossi M, Vidigal A, Beijamini V. Dorsal hippocampal galanin modulates anxiety-like behaviours in rats. Brain Res 2018; 1687:74-81. [DOI: 10.1016/j.brainres.2018.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 01/22/2023]
|