1
|
Lee NJ, Matsuoka RL. Generation of brain vascular heterogeneity: recent advances from the perspective of angiogenesis. Neural Regen Res 2025; 20:2013-2014. [PMID: 39254563 DOI: 10.4103/nrr.nrr-d-24-00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Nathanael J Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA (Lee NJ, Matsuoka RL)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA (Lee NJ, Matsuoka RL)
| | - Ryota L Matsuoka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA (Lee NJ, Matsuoka RL)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA (Lee NJ, Matsuoka RL)
| |
Collapse
|
2
|
Shen Y, Timsina J, Heo G, Beric A, Ali M, Wang C, Yang C, Wang Y, Western D, Liu M, Gorijala P, Budde J, Do A, Liu H, Gordon B, Llibre-Guerra JJ, Joseph-Mathurin N, Perrin RJ, Maschi D, Wyss-Coray T, Pastor P, Renton AE, Surace EI, Johnson ECB, Levey AI, Alvarez I, Levin J, Ringman JM, Allegri RF, Seyfried N, Day GS, Wu Q, Fernández MV, Tarawneh R, McDade E, Morris JC, Bateman RJ, Goate A, Ibanez L, Sung YJ, Cruchaga C. CSF proteomics identifies early changes in autosomal dominant Alzheimer's disease. Cell 2024; 187:6309-6326.e15. [PMID: 39332414 PMCID: PMC11531390 DOI: 10.1016/j.cell.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Gyujin Heo
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Yueyao Wang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Anh Do
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Gordon
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University St Louis, St Louis, MO 63110, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Dario Maschi
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ezequiel I Surace
- Laboratory of Neurodegenerative Diseases, Institute of Neurosciences (INEU-Fleni-CONICET), Buenos Aires, Argentina
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30307, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ignacio Alvarez
- Department of Neurology, University Hospital Mútua de Terrassa and Fundació Docència i Recerca Mútua de Terrassa, Terrassa 08221, Barcelona, Spain
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich 80336, Germany; German Center for Neurodegenerative Diseases, site Munich, Munich 80336, Germany
| | - John M Ringman
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA 90033, USA
| | - Ricardo Francisco Allegri
- Department of Cognitive Neurology, Neuropsychology and Neuropsychiatry, FLENI, Buenos Aires, Argentina
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Gregg S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL 32224, USA
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Rawan Tarawneh
- The University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Huang X, Wei P, Fang C, Yu M, Yang S, Qiu L, Wang Y, Xu A, Hoo RLC, Chang J. Compromised endothelial Wnt/β-catenin signaling mediates the blood-brain barrier disruption and leads to neuroinflammation in endotoxemia. J Neuroinflammation 2024; 21:265. [PMID: 39427196 PMCID: PMC11491032 DOI: 10.1186/s12974-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
The blood-brain barrier (BBB) is a critical interface that maintains the central nervous system homeostasis by controlling the exchange of substances between the blood and the brain. Disruption of the BBB plays a vital role in the development of neuroinflammation and neurological dysfunction in sepsis, but the mechanisms by which the BBB becomes disrupted during sepsis are not well understood. Here, we induced endotoxemia, a major type of sepsis, in mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS acutely increased BBB permeability, activated microglia, and heightened inflammatory responses in brain endothelium and parenchyma. Concurrently, LPS or proinflammatory cytokines activated the NF-κB pathway, inhibiting Wnt/β-catenin signaling in brain endothelial cells in vitro and in vivo. Cell culture study revealed that NF-κB p65 directly interacted with β-catenin to suppress Wnt/β-catenin signaling. Pharmacological NF-κB pathway inhibition restored brain endothelial Wnt/β-catenin signaling activity and mitigated BBB disruption and neuroinflammation in septic mice. Furthermore, genetic or pharmacological activation of brain endothelial Wnt/β-catenin signaling substantially alleviated LPS-induced BBB leakage and neuroinflammation, while endothelial conditional ablation of the Wnt7a/7b co-receptor Gpr124 exacerbated the BBB leakage caused by LPS. Mechanistically, Wnt/β-catenin signaling activation rectified the reduced expression levels of tight junction protein ZO-1 and transcytosis suppressor Mfsd2a in brain endothelial cells of mice with endotoxemia, inhibiting both paracellular and transcellular permeability of the BBB. Our findings demonstrate that endotoxemia-associated systemic inflammation decreases endothelial Wnt/β-catenin signaling through activating NF-κB pathway, resulting in acute BBB disruption and neuroinflammation. Targeting the endothelial Wnt/β-catenin signaling may offer a promising therapeutic strategy for preserving BBB integrity and treating neurological dysfunction in sepsis.
Collapse
Affiliation(s)
- Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pengju Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Linhui Qiu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408032. [PMID: 39420757 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
5
|
Chauhan P, Wadhwa K, Singh G, Gupta S, Iqbal D, Abomughaid MM, Almutary AG, Mishra PC, Nelson VK, Jha NK. Exploring complexities of Alzheimer's disease: New insights into molecular and cellular mechanisms of neurodegeneration and targeted therapeutic interventions. Ageing Res Rev 2024:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD), the common form of dementia globally, is a complex condition including neurodegeneration; shares incompletely known pathogenesis. Signal transduction and biological activities, including cell metabolism, growth, and death are regulated by different signaling pathways including AKT/MAPK, Wnt, Leptin, mTOR, ubiquitin, Sirt1, and insulin. Absolute evidence linking specific molecular pathways with the genesis and/or progression of AD is still lacking. Changes in gut microbiota and blood-brain barrier also cause amyloid β aggregation in AD. The current review reports significant characteristics of various signaling pathways, their relationship with each other, and how they interact in disease genesis and/or progression. Nevertheless, due to the enormous complexity of the brain and numerous chemical linkages between these pathways, the use of signaling pathways as possible targets for drug development against AD is minimal. Currently, there is no permanent cure for AD, and there is no way to stop brain cell loss. This review also aimed to draw attention to the role of a novel group of signaling pathways, which can be collectively dubbed "anti-AD pathways", in multi-target therapy for AD, where cellular metabolic functions are severely impaired. Thus, different hypotheses have been formulated and elaborated to explain the genesis of AD, which can be further explored for drug development too.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Saurabh Gupta
- Deparment of Biotechnology, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India.
| |
Collapse
|
6
|
Huang Y, Yang D, Liao S, Guan X, Zhou F, Liu Y, Wang Y, Zhang Y. Ginsenoside Rg1 protects the blood-brain barrier and myelin sheath to prevent postoperative cognitive dysfunction in aged mice. Neuroreport 2024; 35:925-935. [PMID: 39166417 DOI: 10.1097/wnr.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
In this study, the postoperative cognitive dysfunction (POCD) mouse model was established to observe the changes in inflammation, blood-brain barrier permeability, and myelin sheath, and we explore the effect of ginsenoside Rg1 pretreatment on improving POCD syndrome. The POCD model of 15- to 18-month-old mice was carried out with internal fixation of tibial fractures under isoflurane anesthesia. Pretreatment was performed by continuous intraperitoneal injection of ginsenoside Rg1(40 mg/kg/day) for 14 days before surgery. The cognitive function was detected by the Morris water maze. The contents of interleukin-1β and tumor necrosis factor-α in the hippocampus, cortex, and serum were detected by ELISA. The permeability of blood-brain barrier was observed by Evans blue. The mRNA levels and protein expression levels of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin basic protein (MBP), beta-catenin, and cyclin D1 in the hippocampus were analyzed by quantitative PCR and western blotting. The protein expression levels of ZO-1 and Wnt1 in the hippocampus were analyzed by western blotting. Finally, the localizations of CNPase and MBP in the hippocampus were detected by immunofluorescence. Ginsenoside Rg1 can prevent POCD, peripheral and central inflammation, and blood-brain barrier leakage, and reverse the downregulation of ZO-1, CNPase, MBP, and Wnt pathway-related molecules in aged mice. Preclinical studies suggest that ginsenoside Rg1 improves postoperative cognitive function in aged mice by protecting the blood-brain barrier and myelin sheath, and its specific mechanism may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yao Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Dianping Yang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Sijing Liao
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Xilin Guan
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Feiran Zhou
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Yan Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Yong Wang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
- Department of Anesthesiology, Heiiang Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
7
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
8
|
Luo Y, Zhang Y, Feng Y, Zeng X, Zhu D, Yang Y, Hu H, Wang Q, Guo L, Zou L, Zhong X. Prenatal exposure to low doses of benzophenone-3 elicits disruption of cortical vasculature in fetuses through perturbations in Wnt/β-catenin signaling correlating with depression-like behavior in offspring mice. Toxicology 2024; 509:153960. [PMID: 39343157 DOI: 10.1016/j.tox.2024.153960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Benzophenone-3 (BP-3), commonly used in personal care products, is routinely detected in environmental and human matrices. Evidence delineates a correlation between gestational BP-3 exposure and emotional and social disorders in children and adolescents. However, sensitive target cells and the mode of action underlying the early responses to environmentally relevant level of BP-3 exposure remain unclear. In this study, 0.3 and 3 mg/kg of BP-3 were administered to pregnant mice. Compared with the control group, the cortical blood vessel development process manifested the highest susceptibility to BP-3 exposure using transcriptomic sequencing at embryonic day 14 (E14). Notably, the diminution in vascular density and tight junction proteins presence was observed in the fetal cortex at E14, concomitant with the suppressed transcriptional activity of genes essential to angiogenesis and barrier formation. Strikingly, the investigation revealed that BP-3 exposure impeded vascular sprouting in aortic ring explants and neuroendothelial migration, implicating the Wnt/β-catenin signaling pathway. Moreover, BP-3 exposure compromised perivascular neural stem cell differentiation. Cortical vascular injury correlated with the exhibition of depression-like behavior in four-week postnatal progeny. These insights underscore the cerebrovasculature as an early sensitive target for low doses of BP-3 exposure, fostering the development of biomarkers and the establishment of the adverse outcome pathway framework for BP-3 hazard evaluation.
Collapse
Affiliation(s)
- Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Feng
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhu
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China; Geriatric Immunization Research Center of Hunan Provincial Geriatric Institute, Changsha, Hunan, China.
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Xie Y, Yang F, He L, Huang H, Chao M, Cao H, Hu Y, Fan Z, Zhai Y, Zhao W, Liu X, Zhao R, Xiao B, Shi X, Luo Y, Yin J, Feng D, Hugnot JP, Muhl L, Dimberg A, Betsholtz C, Zhang Y, Wang L, Zhang L. Single-cell dissection of the human blood-brain barrier and glioma blood-tumor barrier. Neuron 2024; 112:3089-3105.e7. [PMID: 39191260 DOI: 10.1016/j.neuron.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The blood-brain barrier (BBB) serves as a crucial vascular specialization, shielding and nourishing brain neurons and glia while impeding drug delivery. Here, we conducted single-cell mRNA sequencing of human cerebrovascular cells from 13 surgically resected glioma samples and adjacent normal brain tissue. The transcriptomes of 103,230 cells were mapped, including 57,324 endothelial cells (ECs) and 27,703 mural cells (MCs). Both EC and MC transcriptomes originating from lower-grade glioma were indistinguishable from those of normal brain tissue, whereas transcriptomes from glioblastoma (GBM) displayed a range of abnormalities. Among these, we identified LOXL2-dependent collagen modification as a common GBM-dependent trait and demonstrated that inhibiting LOXL2 enhanced chemotherapy efficacy in both murine and human patient-derived xenograft (PDX) GBM models. Our comprehensive single-cell RNA sequencing-based molecular atlas of the human BBB, coupled with insights into its perturbations in GBM, holds promise for guiding future investigations into brain health, pathology, and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan Xie
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Fan Yang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Haiyan Cao
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Yaqin Hu
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Zhicheng Fan
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Yaohong Zhai
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wenjian Zhao
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Xian Liu
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ruozhu Zhao
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Xiao
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xinxin Shi
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuancheng Luo
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Jinlong Yin
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, China
| | - Jean-Philippe Hugnot
- Jinfeng Laboratory, Chongqing 401329, China; Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Lars Muhl
- Department of Medicine Huddinge, Karolinska Institute, 14157 Huddinge, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institute, 14157 Huddinge, Sweden.
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, China.
| | - Lei Zhang
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
10
|
Bassi I, Grunspan M, Hen G, Ravichandran KA, Moshe N, Gutierrez-Miranda L, Safriel SR, Kostina D, Shen A, Ruiz de Almodovar C, Yaniv K. Endolysosomal dysfunction in radial glia progenitor cells leads to defective cerebral angiogenesis and compromised blood-brain barrier integrity. Nat Commun 2024; 15:8158. [PMID: 39289367 PMCID: PMC11408700 DOI: 10.1038/s41467-024-52365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The neurovascular unit (NVU) is a complex multicellular structure that helps maintain cerebral homeostasis and blood-brain barrier (BBB) integrity. While extensive evidence links NVU alterations to cerebrovascular diseases and neurodegeneration, the underlying molecular mechanisms remain unclear. Here, we use zebrafish embryos carrying a mutation in Scavenger Receptor B2, a highly conserved endolysosomal protein expressed predominantly in Radial Glia Cells (RGCs), to investigate the interplay among different NVU components. Through live imaging and genetic manipulations, we demonstrate that compromised acidification of the endolysosomal compartment in mutant RGCs leads to impaired Notch3 signaling, thereby inducing excessive neurogenesis and reduced glial differentiation. We further demonstrate that alterations to the neuron/glia balance result in impaired VEGF and Wnt signaling, leading to severe vascular defects, hemorrhages, and a leaky BBB. Altogether, our findings provide insights into NVU formation and function and offer avenues for investigating diseases involving white matter defects and vascular abnormalities.
Collapse
Affiliation(s)
- Ivan Bassi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Grunspan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gideon Hen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kishore A Ravichandran
- Institute for Neurovascular Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Noga Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Laura Gutierrez-Miranda
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav R Safriel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Kostina
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amitay Shen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Carmen Ruiz de Almodovar
- Institute for Neurovascular Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
- Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Bonn, Germany
| | - Karina Yaniv
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Matsuo K, Nagamatsu J, Nagata K, Umeda R, Shiota T, Morimoto S, Suzuki N, Aoki M, Okano H, Nakamori M, Nishihara H. Establishment of a novel amyotrophic lateral sclerosis patient ( TARDBP N345K/+)-derived brain microvascular endothelial cell model reveals defective Wnt/β-catenin signaling: investigating diffusion barrier dysfunction and immune cell interaction. Front Cell Dev Biol 2024; 12:1357204. [PMID: 39211392 PMCID: PMC11357944 DOI: 10.3389/fcell.2024.1357204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a major neurodegenerative disease for which there is currently no curative treatment. The blood-brain barrier (BBB), multiple physiological functions formed by mainly specialized brain microvascular endothelial cells (BMECs), serves as a gatekeeper to protect the central nervous system (CNS) from harmful molecules in the blood and aberrant immune cell infiltration. The accumulation of evidence indicating that alterations in the peripheral milieu can contribute to neurodegeneration within the CNS suggests that the BBB may be a previously overlooked factor in the pathogenesis of ALS. Animal models suggest BBB breakdown may precede neurodegeneration and link BBB alteration to the disease progression or even onset. However, the lack of a useful patient-derived model hampers understanding the pathomechanisms of BBB dysfunction and the development of BBB-targeted therapies. In this study, we differentiated BMEC-like cells from human induced pluripotent stem cells (hiPSCs) derived from ALS patients to investigate BMEC functions in ALS patients. TARDBP N345K/+ carrying patient-derived BMEC-like cells exhibited increased permeability to small molecules due to loss of tight junction in the absence of neurodegeneration or neuroinflammation, highlighting that BMEC abnormalities in ALS are not merely secondary consequences of disease progression. Furthermore, they exhibited increased expression of cell surface adhesion molecules like ICAM-1 and VCAM-1, leading to enhanced immune cell adhesion. BMEC-like cells derived from hiPSCs with other types of TARDBP gene mutations (TARDBP K263E/K263E and TARDBP G295S/G295S) introduced by genome editing technology did not show such BMEC dysfunction compared to the isogenic control. Interestingly, transactive response DNA-binding protein 43 (TDP-43) was mislocalized to cytoplasm in TARDBP N345K/+ carrying model. Wnt/β-catenin signaling was downregulated in the ALS patient (TARDBP N345K/+)-derived BMEC-like cells and its activation rescued the leaky barrier phenotype and settled down VCAM-1 expressions. These results indicate that TARDBP N345K/+ carrying model recapitulated BMEC abnormalities reported in brain samples of ALS patients. This novel patient-derived BMEC-like cell is useful for the further analysis of the involvement of vascular barrier dysfunctions in the pathogenesis of ALS and for promoting therapeutic drug discovery targeting BMEC.
Collapse
Affiliation(s)
- Kinya Matsuo
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Jun Nagamatsu
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kazuhiro Nagata
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Ryusei Umeda
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takaya Shiota
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Satoru Morimoto
- Keio University, Regenerative Medicine Research Center, Kawasaki, Kanagawa, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideyuki Okano
- Keio University, Regenerative Medicine Research Center, Kawasaki, Kanagawa, Japan
| | - Masayuki Nakamori
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hideaki Nishihara
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
12
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
13
|
Cui A, Patel R, Bosco P, Akcan U, Richters E, Delgado PB, Agalliu D, Sproul AA. Generation of hiPSC-derived brain microvascular endothelial cells using a combination of directed differentiation and transcriptional reprogramming strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588012. [PMID: 38903080 PMCID: PMC11188081 DOI: 10.1101/2024.04.03.588012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The blood-brain barrier (BBB), formed by specialized brain microvascular endothelial cells (BMECs), regulates brain function in health and disease. In vitro modeling of the human BBB is limited by the lack of robust hiPSC protocols to generate BMECs. Here, we report generation, transcriptomic and functional characterization of reprogrammed BMECs (rBMECs) by combining hiPSC differentiation into BBB-primed endothelial cells and reprogramming with two BBB transcription factors FOXF2 and ZIC3. rBMECs express a subset of the BBB gene repertoire including tight junctions and transporters, exhibit stronger paracellular barrier properties, lower caveolar-mediated transcytosis, and similar p-Glycoprotein activity compared to primary HBMECs. They can acquire an inflammatory phenotype when treated with oligomeric Aβ42. rBMECs integrate with hiPSC-derived pericytes and astrocytes to form a 3D neurovascular system using the MIMETAS microfluidics platform. This novel 3D system resembles the in vivo BBB at structural and functional levels to enable investigation of pathogenic mechanisms of neurological diseases.
Collapse
|
14
|
Wang P, Luo L, Chen J. Her4.3 + radial glial cells maintain the brain vascular network through activation of Wnt signaling. J Biol Chem 2024; 300:107570. [PMID: 39019216 PMCID: PMC11342778 DOI: 10.1016/j.jbc.2024.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024] Open
Abstract
During vascular development, radial glial cells (RGCs) regulate vascular patterning in the trunk and contribute to the early differentiation of the blood-brain barrier. Ablation of RGCs results in excessive sprouting vessels or the absence of bilateral vertebral arteries. However, interactions of RGCs with later brain vascular networks after pattern formation remain unknown. Here, we generated a her4.3 transgenic line to label RGCs and applied the metronidazole/nitroreductase system to ablate her4.3+ RGCs. The ablation of her4.3+ RGCs led to the collapse of the cerebral vascular network, disruption of the blood-brain barrier, and downregulation of Wnt signaling. The inhibition of Wnt signaling resulted in the collapse of cerebral vasculature, similar to that caused by her4.3+ RGC ablation. The defects in the maintenance of brain vasculature resulting from the absence of her4.3+ RGCs were partially rescued by the activation of Wnt signaling or overexpression of Wnt7aa or Wnt7bb. Together, our study suggests that her4.3+ RGCs maintain the cerebral vascular network through Wnt signaling.
Collapse
Affiliation(s)
- Pengcheng Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China; Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingying Chen
- Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Cunha S, Bicker J, Sereno J, Falcão A, Fortuna A. Blood brain barrier dysfunction in healthy aging and dementia: Why, how, what for? Ageing Res Rev 2024; 99:102395. [PMID: 38950867 DOI: 10.1016/j.arr.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
The blood brain barrier (BBB) is an indispensable structure that maintains the central nervous system (CNS) microenvironment for a correct neuronal function. It is composed by highly specialized microvessels, surrounded by astrocytes, pericytes, neurons and microglia cells, which tightly control the influx and efflux of substances to the brain parenchyma. During aging, the BBB becomes impaired, and it may contribute to the development of neurodegenerative and neurological disorders including Alzheimer's disease and other dementias. Restoring the BBB can be a strategy to prevent disease onset and development, reducing the symptoms of these conditions. This work critically reviews the major mechanisms underlying BBB breakdown in healthy and unhealthy aging, as well as biomarkers and methodologies that accurately assess its impairment. Complementarily, potential therapeutic targets are discussed as new strategies to restore the normal function of the BBB in aging.
Collapse
Affiliation(s)
- Susana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - José Sereno
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
16
|
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, Dinesh A, Yu K, Chen ELY, Bisschop J, Farnhammer F, Mansur A, Kalucka J, Tirosh I, Regli L, Schaller K, Frei K, Ketela T, Bernstein M, Kongkham P, Carmeliet P, Valiante T, Dirks PB, Suva ML, Zadeh G, Tabar V, Schlapbach R, Jackson HW, De Bock K, Fish JE, Monnier PP, Bader GD, Radovanovic I. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 2024; 632:603-613. [PMID: 38987604 PMCID: PMC11324530 DOI: 10.1038/s41586-024-07493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/30/2024] [Indexed: 07/12/2024]
Abstract
A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Moheb Ghobrial
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Marc Schwab
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Shigeki Takada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hang Zhong
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Samuel Suntharalingham
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Vetiska
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Ruilin Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Anuroopa Dinesh
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Kai Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward L Y Chen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ann Mansur
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Regli
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Frei
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Troy Ketela
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Hartland W Jackson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Liu Y, Li X, Cao C, Ding H, Shi X, Zhang J, Li H. Critical role of Slc22a8 in maintaining blood-brain barrier integrity after experimental cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2024:271678X241264401. [PMID: 39068534 DOI: 10.1177/0271678x241264401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Blood-brain barrier (BBB) damage significantly affects the prognosis of ischemic stroke patients. This project employed multi-omics analysis to identify key factors regulating BBB disruption during cerebral ischemia-reperfusion. An integrated analysis of three transcriptome sequencing datasets from mouse middle cerebral artery occlusion/reperfusion (MCAO/R) models identified eight downregulated genes in endothelial cells. Additionally, transcriptome analysis of BBB (cortex) and non-BBB (lung) endothelium of E13.5 mice revealed 2,102 upregulated genes potentially associated with BBB integrity. The eight downregulated genes were intersected with the 2,102 BBB-related genes and mapped using single-cell RNA sequencing data, revealing that solute carrier family 22 member 8 (Slc22a8) is specifically expressed in endothelial cells and pericytes and significantly decreases after MCAO/R. This finding was validated in the mouse MCAO/R model at both protein and mRNA levels in this study. External overexpression of Slc22a8 using a lentivirus carrying Tie2 improved Slc22a8 and tight junction protein levels and reduced BBB leakage after MCAO/R, accompanied by Wnt/β-catenin signaling activation. In conclusion, this study suggested that MCAO/R-induced downregulation of Slc22a8 expression may be a crucial mechanism underlying BBB disruption. Interventions that promote Slc22a8 expression or enhance its function hold promise for improving the prognosis of patients with cerebral ischemia.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xuan Shi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
18
|
Zhang Z, Wu Y, Zhao X, Ji W, Li L, Zhai X, Liang P, Cheng Y, Zhou J. Pediatric WNT medulloblastoma predisposition in intraoperative blood loss: a retrospective observational cohort study. Front Neurol 2024; 15:1386121. [PMID: 39015321 PMCID: PMC11249760 DOI: 10.3389/fneur.2024.1386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Molecular subgroups influence the vascular architecture within medulloblastomas, particularly the wingless (WNT) subgroup, which contributes to its propensity for primary tumor hemorrhage. Whether this mechanism affects intraoperative blood loss remains unknown. This study aimed to assess the association between WNT medulloblastoma and the predisposition for blood loss. Methods This was a retrospective observational study using data from a neuro-oncology center comprising molecular data on patients treated between December 31, 2014, and April 30, 2023. Differences between WNT and other subgroups in the risk of primary outcome-intraoperative blood loss were assessed using multivariable-adjusted linear regression. Results Of the 148 patients included in the analysis, 18 patients (12.2%) had WNT, 42 (28.4%) had sonic hedgehog (SHH) TP53-wildtype, 7 (4.7%) had SHH TP53-mutant, and 81 (54.7%) were non-WNT/ non-SHH. The WNT subgroup more frequently underwent primary intratumoral hemorrhage (22% vs. 3.8%; p = 0.011). The median intraoperative blood loss was 400.00 (interquartile range [IQR] 250, 500) mL for WNT and 300.00 [200, 400] mL for the other subgroups (p = 0.136), with an adjusted β of 135.264 (95% confidence intervals [CI], 11.701-258.827; p = 0.032). Similar results were observed in both midline and noninfiltrative margin medulloblastoma. Discussion WNT medulloblastoma is typically associated with primary intratumoral hemorrhage and intraoperative blood loss. The validity of determining the surgical approach based on predicted molecular subtypes from imaging data is questionable. However, attempting to engage in risk communication with patients in a molecular-specific way is worthwhile to validate.
Collapse
Affiliation(s)
- Zaiyu Zhang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Yuxin Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Xueling Zhao
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Wenyuan Ji
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Lusheng Li
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianjun Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| |
Collapse
|
19
|
Manukjan N, Chau S, Caiment F, van Herwijnen M, Smeets HJ, Fulton D, Ahmed Z, Blankesteijn WM, Foulquier S. Wnt7a Decreases Brain Endothelial Barrier Function Via β-Catenin Activation. Mol Neurobiol 2024; 61:4854-4867. [PMID: 38147228 PMCID: PMC11236883 DOI: 10.1007/s12035-023-03872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
The blood-brain barrier consists of tightly connected endothelial cells protecting the brain's microenvironment from the periphery. These endothelial cells are characterized by specific tight junction proteins such as Claudin-5 and Occludin, forming the endothelial barrier. Disrupting these cells might lead to blood-brain barrier dysfunction. The Wnt/β-catenin signaling pathway can regulate the expression of these tight junction proteins and subsequent barrier permeability. The aim of this study was to investigate the in vitro effects of Wnt7a mediated β-catenin signaling on endothelial barrier integrity. Mouse brain endothelial cells, bEnd.3, were treated with recombinant Wnt7a protein or XAV939, a selective inhibitor of Wnt/β-catenin mediated transcription to modulate the Wnt signaling pathway. The involvement of Wnt/HIF1α signaling was investigated by inhibiting Hif1α signaling with Hif1α siRNA. Wnt7a stimulation led to activation and nuclear translocation of β-catenin, which was inhibited by XAV939. Wnt7a stimulation decreased Claudin-5 expression mediated by β-catenin and decreased endothelial barrier formation. Wnt7a increased Hif1α and Vegfa expression mediated by β-catenin. However, Hif1α signaling pathway did not regulate tight junction proteins Claudin-5 and Occludin. Our data suggest that Wnt7a stimulation leads to a decrease in tight junction proteins mediated by the nuclear translocation of β-catenin, which hampers proper endothelial barrier formation. This process might be crucial in initiating endothelial cell proliferation and angiogenesis. Although HIF1α did not modulate the expression of tight junction proteins, it might play a role in brain angiogenesis and underlie pathogenic mechanisms in Wnt/HIF1α signaling in diseases such as cerebral small vessel disease.
Collapse
Affiliation(s)
- Narek Manukjan
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Steven Chau
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hubert J Smeets
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- MHeNs-School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- MHeNs-School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, Maastricht, 6202 AZ, The Netherlands.
| |
Collapse
|
20
|
Chen X, Yao N, Mao Y, Xiao D, Huang Y, Zhang X, Wang Y. Activation of the Wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions. Neural Regen Res 2024; 19:1541-1547. [PMID: 38051897 PMCID: PMC10883507 DOI: 10.4103/1673-5374.386398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00033/figure1/v/2023-11-20T171125Z/r/image-tiff
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier. However, the potential links between them following ischemic stroke remain largely unknown. The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway. Meanwhile, Wnt/β-catenin pathway activation by the pharmacological inhibitor, TWS119, relieved oxidative stress, increased the levels of cytochrome P450 1B1 (CYP1B1) and tight junction-associated proteins (zonula occludens-1 [ZO-1], occludin and claudin-5), as well as brain microvascular density in cerebral ischemia rats. Moreover, rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress, suppression of the Wnt/β-catenin pathway, aggravated cell apoptosis, downregulated CYP1B1 and tight junction protein levels, and inhibited cell proliferation and migration. Overexpression of β-catenin or knockdown of β-catenin and CYP1B1 genes in rat brain microvascular endothelial cells at least partly ameliorated or exacerbated these effects, respectively. In addition, small interfering RNA-mediated β-catenin silencing decreased CYP1B1 expression, whereas CYP1B1 knockdown did not change the levels of glycogen synthase kinase 3β, Wnt-3a, and β-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivation/reoxygenation. Thus, the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling, and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress, increased tight junction levels, and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
Collapse
Affiliation(s)
- Xingyong Chen
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nannan Yao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yanguang Mao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dongyun Xiao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yiyi Huang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yinzhou Wang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Academy of Medical Science, Fuzhou, Fujian Province, China
- Key Testing Laboratory of Fujian Province, Fuzhou, Fujian Province, China
| |
Collapse
|
21
|
Gruchot J, Reiche L, Werner L, Herrero F, Schira-Heinen J, Meyer U, Küry P. Molecular dissection of HERV-W dependent microglial- and astroglial cell polarization. Microbes Infect 2024:105382. [PMID: 38944109 DOI: 10.1016/j.micinf.2024.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
The endogenous retrovirus type W (HERV-W) is a human-specific entity, which was initially discovered in multiple sclerosis (MS) patient derived cells. We initially found that the HERV-W envelope (ENV) protein negatively affects oligodendrogenesis and controls microglial cell polarization towards a myelinated axon associated and damaging phenotype. Such first functional assessments were conducted ex vivo, given the human-specific origin of HERV-W. Recent experimental evidence gathered on a novel transgenic mouse model, mimicking activation and expression of the HERV-W ENV protein, revealed that all glial cell types are impacted and that cellular fates, differentiation, and functions were changed. In order to identify HERV-W-specific signatures in glial cells, the current study analyzed the transcriptome of ENV protein stimulated microglial- and astroglial cells and compared the transcriptomic signatures to lipopolysaccharide (LPS) stimulated cells, owing to the fact that both ligands can activate toll-like receptor-4 (TLR-4). Additionally, a comparison between published disease associated glial signatures and the transcriptome of HERV-W ENV stimulated glial cells was conducted. We, therefore, provide here for the first time a detailed molecular description of specific HERV-W ENV evoked effects on those glial cell populations that are involved in smoldering neuroinflammatory processes relevant for progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joel Gruchot
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Laura Reiche
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Luisa Werner
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Vetsuisse, Zürich, Switzerland
| | - Jessica Schira-Heinen
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Vetsuisse, Zürich, Switzerland; Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Patrick Küry
- Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Department of Neurology, D-40225 Düsseldorf, Germany; Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Qu X, Yang R, Tan C, Chen H, Wang X. Astrocytes-Secreted WNT5B Disrupts the Blood-Brain Barrier Via ROR1/JNK/c-JUN Cascade During Meningitic Escherichia Coli Infection. Mol Neurobiol 2024:10.1007/s12035-024-04303-4. [PMID: 38896157 DOI: 10.1007/s12035-024-04303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The blood-brain barrier (BBB) is a complex structure that separates the central nervous system (CNS) from the peripheral blood circulation. Effective communication between different cell types within the BBB is crucial for its proper functioning and maintenance of homeostasis. In this study, we demonstrate that meningitic Escherichia coli (E. coli)-induced WNT5B plays a role in facilitating intercellular communication between astrocytes and brain microvascular endothelial cells (BMECs). We discovered that astrocytes-derived WNT5B activates the non-canonical WNT signaling pathway JNK/c-JUN in BMECs through its receptor ROR1, leading to inhibition of ZO-1 expression and impairment of the tight junction integrity in BMECs. Notably, our findings reveal that c-JUN, a transcription factor, directly regulates ZO-1 expression. By employing a dual luciferase reporting system and chromatin immunoprecipitation techniques, we identified specific binding sites of c-JUN on the ZO-1 promoter region. Overall, our study highlights the involvement of WNT5B in mediating intercellular communication between astrocytes and BMECs, provides insights into the role of WNT5B in meningitic E. coli-induced disruption of BBB integrity, and suggests potential therapeutic targeting of WNT5B as a strategy to address BBB dysfunction.
Collapse
Affiliation(s)
- Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
23
|
Kakogiannos N, Scalise AA, Martini E, Maderna C, Benvenuto AF, D’Antonio M, Carmignani L, Magni S, Gullotta GS, Lampugnani MG, Iannelli F, Beznoussenko GV, Mironov AA, Cerutti C, Bentley K, Philippides A, Zanardi F, Bacigaluppi M, Sigismund S, Bassani C, Farina C, Martino G, De Giovanni M, Dejana E, Iannacone M, Inverso D, Giannotta M. GPR126 is a specifier of blood-brain barrier formation in the mouse central nervous system. J Clin Invest 2024; 134:e165368. [PMID: 39087467 PMCID: PMC11290973 DOI: 10.1172/jci165368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
The blood-brain barrier (BBB) acquires unique properties to regulate neuronal function during development. The formation of the BBB, which occurs in tandem with angiogenesis, is directed by the Wnt/β-catenin signaling pathway. Yet the exact molecular interplay remains elusive. Our study reveals the G protein-coupled receptor GPR126 as a critical target of canonical Wnt signaling, essential for the development of the BBB's distinctive vascular characteristics and its functional integrity. Endothelial cell-specific deletion of the Gpr126 gene in mice induced aberrant vascular morphogenesis, resulting in disrupted BBB organization. Simultaneously, heightened transcytosis in vitro compromised barrier integrity, resulting in enhanced vascular permeability. Mechanistically, GPR126 enhanced endothelial cell migration, pivotal for angiogenesis, acting through an interaction between LRP1 and β1 integrin, thereby balancing the levels of β1 integrin activation and recycling. Overall, we identified GPR126 as a specifier of an organotypic vascular structure, which sustained angiogenesis and guaranteed the acquisition of the BBB properties during development.
Collapse
Affiliation(s)
| | | | - Emanuele Martini
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Claudio Maderna
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Michele D’Antonio
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Carmignani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Serena Magni
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgia Serena Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS, San Raffaele Hospital, Milan, Italy
| | | | - Fabio Iannelli
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | - Camilla Cerutti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Katie Bentley
- The Francis Crick Institute, London, United Kingdom
- Department of Informatics, King’s College London, London, United Kingdom
| | - Andrew Philippides
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Federica Zanardi
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS, San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Sigismund
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Claudia Bassani
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cinthia Farina
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS, San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Donato Inverso
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Giannotta
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Yuki K, Vallon M, Ding J, Rada CC, Tang AT, Vilches-Moure JG, McCormick AK, Henao Echeverri MF, Alwahabi S, Braunger BM, Ergün S, Kahn ML, Kuo CJ. GPR124 regulates murine brain embryonic angiogenesis and BBB formation by an intracellular domain-independent mechanism. Development 2024; 151:dev202794. [PMID: 38682276 PMCID: PMC11213517 DOI: 10.1242/dev.202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical β-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.
Collapse
Affiliation(s)
- Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mario Vallon
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cara C. Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan T. Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - José G. Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron K. McCormick
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria F. Henao Echeverri
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, 97070 Wuerzburg, Germany
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Porkoláb G, Mészáros M, Szecskó A, Vigh JP, Walter FR, Figueiredo R, Kálomista I, Hoyk Z, Vizsnyiczai G, Gróf I, Jan JS, Gosselet F, Pirity MK, Vastag M, Hudson N, Campbell M, Veszelka S, Deli MA. Synergistic induction of blood-brain barrier properties. Proc Natl Acad Sci U S A 2024; 121:e2316006121. [PMID: 38748577 PMCID: PMC11126970 DOI: 10.1073/pnas.2316006121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/27/2024] Open
Abstract
Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.
Collapse
Affiliation(s)
- Gergő Porkoláb
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
- Doctoral School of Biology, University of Szeged, SzegedH-6720, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Anikó Szecskó
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
- Doctoral School of Biology, University of Szeged, SzegedH-6720, Hungary
| | - Judit P. Vigh
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
- Doctoral School of Biology, University of Szeged, SzegedH-6720, Hungary
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | | | - Ildikó Kálomista
- In Vitro Metabolism Laboratory, Gedeon Richter, BudapestH-1103, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan70101, Taiwan
| | - Fabien Gosselet
- Laboratoire de la Barriére Hémato-Encéphalique, Université d’Artois, Lens62307, France
| | - Melinda K. Pirity
- Institute of Genetics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Monika Vastag
- In Vitro Metabolism Laboratory, Gedeon Richter, BudapestH-1103, Hungary
| | - Natalie Hudson
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, SzegedH-6726, Hungary
| |
Collapse
|
26
|
Fetsko AR, Sebo DJ, Budzynski LB, Scharbarth A, Taylor MR. IL-1β disrupts the initiation of blood-brain barrier development by inhibiting endothelial Wnt/β-catenin signaling. iScience 2024; 27:109651. [PMID: 38638574 PMCID: PMC11025013 DOI: 10.1016/j.isci.2024.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
During neuroinflammation, the proinflammatory cytokine interleukin-1β (IL-1β) impacts blood-brain barrier (BBB) function by disrupting brain endothelial tight junctions, promoting vascular permeability, and increasing transmigration of immune cells. Here, we examined the effects of Il-1β on the in vivo initiation of BBB development. We generated doxycycline-inducible transgenic zebrafish to secrete Il-1β in the CNS. To validate the utility of our model, we showed Il-1β dose-dependent mortality, recruitment of neutrophils, and expansion of microglia. Using live imaging, we discovered that Il-1β causes a significant reduction in CNS angiogenesis and barriergenesis. To demonstrate specificity, we rescued the Il-1β induced phenotypes by targeting the zebrafish il1r1 gene using CRISPR-Cas9. Mechanistically, we determined that Il-1β disrupts the initiation of BBB development by decreasing Wnt/β-catenin transcriptional activation in brain endothelial cells. Given that several neurodevelopmental disorders are associated with inflammation, our findings support further investigation into the connections between proinflammatory cytokines, neuroinflammation, and neurovascular development.
Collapse
Affiliation(s)
- Audrey R. Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dylan J. Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lilyana B. Budzynski
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alli Scharbarth
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael R. Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
27
|
Buth JE, Dyevich CE, Rubin A, Wang C, Gao L, Marks T, Harrison MR, Kong JH, Ross ME, Novitch BG, Pearson CA. Foxp1 suppresses cortical angiogenesis and attenuates HIF-1alpha signaling to promote neural progenitor cell maintenance. EMBO Rep 2024; 25:2202-2219. [PMID: 38600346 PMCID: PMC11094073 DOI: 10.1038/s44319-024-00131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Neural progenitor cells within the cerebral cortex undergo a characteristic switch between symmetric self-renewing cell divisions early in development and asymmetric neurogenic divisions later. Yet, the mechanisms controlling this transition remain unclear. Previous work has shown that early but not late neural progenitor cells (NPCs) endogenously express the autism-linked transcription factor Foxp1, and both loss and gain of Foxp1 function can alter NPC activity and fate choices. Here, we show that premature loss of Foxp1 upregulates transcriptional programs regulating angiogenesis, glycolysis, and cellular responses to hypoxia. These changes coincide with a premature destabilization of HIF-1α, an elevation in HIF-1α target genes, including Vegfa in NPCs, and precocious vascular network development. In vitro experiments demonstrate that stabilization of HIF-1α in Foxp1-deficient NPCs rescues the premature differentiation phenotype and restores NPC maintenance. Our data indicate that the endogenous decline in Foxp1 expression activates the HIF-1α transcriptional program leading to changes in the tissue environment adjacent to NPCs, which, in turn, might alter their self-renewal and neurogenic capacities.
Collapse
Affiliation(s)
- Jessie E Buth
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Catherine E Dyevich
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Alexandra Rubin
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chengbing Wang
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lei Gao
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Tessa Marks
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael Rm Harrison
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jennifer H Kong
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Bennett G Novitch
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Caroline Alayne Pearson
- Feil Family Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
28
|
Zhang Z, Lu T, Li S, Zhao R, Li H, Zhang X, Li Y, Xia Y, Ni G. Acupuncture Extended the Thrombolysis Window by Suppressing Blood-Brain Barrier Disruption and Regulating Autophagy-Apoptosis Balance after Ischemic Stroke. Brain Sci 2024; 14:399. [PMID: 38672048 PMCID: PMC11048240 DOI: 10.3390/brainsci14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. The narrow therapeutic window (within 4.5 h) and severe hemorrhagic potential limits therapeutic efficacy of recombinant tissue type plasminogen activator (rt-PA) intravenous thrombolysis for patients. Xingnao Kaiqiao (XNKQ) acupuncture is an integral part of traditional Chinese medicine, specifically designed to address acute ischemic stroke by targeting key acupoints such as Shuigou (GV26) and Neiguan (PC6). In this study, we explored the therapeutic potential of XNKQ acupuncture in extending the time window for thrombolysis and interrogated the molecular mechanisms responsible for this effect. METHODS The effect of extending the thrombolysis window by acupuncture was evaluated via TTC staining, neuronal score evaluation, hemorrhagic transformation assay, and H&E staining. RNA sequencing (RNA-seq) technology was performed to identify the therapeutic targets and intervention mechanisms of acupuncture. Evans blue staining and transmission electron microscopy were used to assess blood-brain barrier (BBB) integrity. Immunofluorescence staining and co-immunoprecipitation were performed to evaluate the level of autophagy and apoptosis and validate their interactions with BBB endothelial cells. RESULTS Acupuncture alleviated infarction and neurological deficits and extended the thrombolysis window to 6 h. The RNA-seq revealed 16 potential therapeutic predictors for acupuncture intervention, which related to suppressing inflammation and restoring the function of BBB and blood vessels. Furthermore, acupuncture suppressed BBB leakage and preserved tight junction protein expression. The protective effect was associated with regulation of the autophagy-apoptosis balance in BBB endothelial cells. Acupuncture intervention dissociated the Beclin1/Bcl-2 complex, thereby promoting autophagy and reducing apoptosis. CONCLUSION XNKQ acupuncture could serve as an adjunctive therapy for rt-PA thrombolysis, aiming to extend the therapeutic time window and mitigate ischemia-reperfusion injury. Acupuncture suppressed BBB disruption by regulating the autophagy-apoptosis balance, which in turn extended the therapeutic window of rt-PA in IS. These findings provide a rationale for further exploration of acupuncture as a complementary candidate co-administered with rt-PA.
Collapse
Affiliation(s)
- Zhihui Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tianliang Lu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shanshan Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Ruyu Zhao
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Honglei Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Xinchang Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yiyang Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yawen Xia
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Guangxia Ni
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
29
|
Gu X, Dong M, Xia S, Li H, Bao X, Cao X, Xu Y. γ-Glutamylcysteine ameliorates blood-brain barrier permeability and neutrophil extracellular traps formation after ischemic stroke by modulating Wnt/β-catenin signalling in mice. Eur J Pharmacol 2024; 969:176409. [PMID: 38365105 DOI: 10.1016/j.ejphar.2024.176409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
During the inflammatory response after stroke, the blood-brain barrier (BBB) is significantly disrupted, compromising its integrity. This disruption allows many peripheral neutrophils to infiltrate the injury site in the brain and release neutrophil extracellular traps (NETs), which further increase BBB permeability. In this study, we aimed to investigate the protective effects of γ-Glutamylcysteine (γ-GC), an immediate precursor of GSH, against BBB breakdown and NET formation after ischemic stroke. Our data indicated that γ-GC treatment effectively attenuated BBB damage, decreased neutrophil infiltration, and suppressed the release of NETs, ultimately leading to the amelioration of ischemic injury. Transcriptomic data and subsequent validation studies revealed that mechanistically, γ-GC exerts its effect by activating the Wnt/β-catenin pathway after ischemic stroke. This research suggests that γ-GC may hold promise as a therapeutic agent for alleviating brain injury following an ischemic stroke.
Collapse
Affiliation(s)
- Xinya Gu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Mengqi Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Huiqin Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China.
| |
Collapse
|
30
|
Katdare KA, Kjar A, O’Brown NM, Neal EH, Sorets AG, Shostak A, Romero-Fernandez W, Kwiatkowski AJ, Mlouk K, Kim H, Cowell RP, Schwensen KR, Horner KB, Wilson JT, Schrag MS, Megason SG, Lippmann ES. IQGAP2 regulates blood-brain barrier immune dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.07.527394. [PMID: 38645082 PMCID: PMC11030232 DOI: 10.1101/2023.02.07.527394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype remain mostly unclear. Here, we explored how infiltration of immune cells across the BBB is influenced by the scaffold protein IQ motif containing GTPase activating protein 2 (IQGAP2). In mice and zebrafish, we demonstrate that loss of Iqgap2 increases infiltration of peripheral leukocytes into the CNS under homeostatic and inflammatory conditions. Using single-cell RNA sequencing and immunohistology, we further show that BECs from mice lacking Iqgap2 exhibit a profound inflammatory signature, including extensive upregulation of adhesion receptors and antigen-processing machinery. Human tissue analyses also reveal that Alzheimer's disease is associated with reduced hippocampal IQGAP2. Overall, our results implicate IQGAP2 as an essential regulator of BBB immune privilege and immune cell entry into the CNS.
Collapse
Affiliation(s)
- Ketaki A. Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Emma H. Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexander G. Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Kate Mlouk
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rebecca P. Cowell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katrina R. Schwensen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kensley B. Horner
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew S. Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sean G. Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ethan S. Lippmann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
31
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569622. [PMID: 38077062 PMCID: PMC10705471 DOI: 10.1101/2023.12.01.569622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries, playing a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular diseases and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating differentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on the zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that the arterial expression of CoW endothelial cells (ECs) occurs after their migration from the cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors upon recruitment to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity wall shear stress. Furthermore, pulsatile blood flow is required for differentiation of human brain pdgfrb+ mural cells into VSMCs as well as VSMC differentiation on zebrafish CoW arteries. Consistently, the flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight the role of blood flow activation of endothelial klf2a as a mechanism regulating the initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Amber N. Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| |
Collapse
|
32
|
Lim S, Kwak M, Kang J, Cesaire M, Tang K, Robey RW, Frye WJE, Karim B, Butcher D, Lizak MJ, Dalmage M, Foster B, Nuechterlein N, Eberhart C, Cimino PJ, Gottesman MM, Jackson S. Ibrutinib disrupts blood-tumor barrier integrity and prolongs survival in rodent glioma model. Acta Neuropathol Commun 2024; 12:56. [PMID: 38589905 PMCID: PMC11003129 DOI: 10.1186/s40478-024-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/24/2024] [Indexed: 04/10/2024] Open
Abstract
In malignant glioma, cytotoxic drugs are often inhibited from accessing the tumor site due to the blood-tumor barrier (BTB). Ibrutinib, FDA-approved lymphoma agent, inhibits Bruton tyrosine kinase (BTK) and has previously been shown to independently impair aortic endothelial adhesion and increase rodent glioma model survival in combination with cytotoxic therapy. Yet additional research is required to understand ibrutinib's effect on BTB function. In this study, we detail baseline BTK expression in glioma cells and its surrounding vasculature, then measure endothelial junctional expression/function changes with varied ibrutinib doses in vitro. Rat glioma cells and rodent glioma models were treated with ibrutinib alone (1-10 µM and 25 mg/kg) and in combination with doxil (10-100 µM and 3 mg/kg) to assess additive effects on viability, drug concentrations, tumor volume, endothelial junctional expression and survival. We found that ibrutinib, in a dose-dependent manner, decreased brain endothelial cell-cell adhesion over 24 h, without affecting endothelial cell viability (p < 0.005). Expression of tight junction gene and protein expression was decreased maximally 4 h after administration, along with inhibition of efflux transporter, ABCB1, activity. We demonstrated an additive effect of ibrutinib with doxil on rat glioma cells, as seen by a significant reduction in cell viability (p < 0.001) and increased CNS doxil concentration in the brain (56 ng/mL doxil alone vs. 74.6 ng/mL combination, p < 0.05). Finally, Ibrutinib, combined with doxil, prolonged median survival in rodent glioma models (27 vs. 16 days, p < 0.0001) with brain imaging showing a - 53% versus - 75% volume change with doxil alone versus combination therapy (p < 0.05). These findings indicate ibrutinib's ability to increase brain endothelial permeability via junctional disruption and efflux inhibition, to increase BTB drug entry and prolong rodent glioma model survival. Our results motivate the need to identify other BTB modifiers, all with the intent of improving survival and reducing systemic toxicities.
Collapse
Affiliation(s)
- Sanghee Lim
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Minhye Kwak
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Jeonghan Kang
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Melissa Cesaire
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kayen Tang
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, 20892, USA
| | - William J E Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, 20892, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory, Leidos Biomedical Research, Frederick, MD, 21702, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory, Leidos Biomedical Research, Frederick, MD, 21702, USA
| | - Martin J Lizak
- NIH MRI Research Facility and Mouse Imaging Facility, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, MD, 20814, USA
| | - Mahalia Dalmage
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Brandon Foster
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Nicholas Nuechterlein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Eberhart
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, MD, 20892, USA
| | - Patrick J Cimino
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, 20892, USA
| | - Sadhana Jackson
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Schevenels G, Cabochette P, America M, Vandenborne A, De Grande L, Guenther S, He L, Dieu M, Christou B, Vermeersch M, Germano RFV, Perez-Morga D, Renard P, Martin M, Vanlandewijck M, Betsholtz C, Vanhollebeke B. A brain-specific angiogenic mechanism enabled by tip cell specialization. Nature 2024; 628:863-871. [PMID: 38570687 PMCID: PMC11041701 DOI: 10.1038/s41586-024-07283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-β-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.
Collapse
Affiliation(s)
- Giel Schevenels
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pauline Cabochette
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michelle America
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Arnaud Vandenborne
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Line De Grande
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stefan Guenther
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Marc Dieu
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Basile Christou
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Raoul F V Germano
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Perez-Morga
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Patricia Renard
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Maud Martin
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
34
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
35
|
Wu J, Li Y, Tian S, Na S, Wei H, Wu Y, Yang Y, Shen Z, Ding J, Bao S, Liu S, Li L, Feng R, Zhu Y, He C, Yue J. CYP1B1 affects the integrity of the blood-brain barrier and oxidative stress in the striatum: An investigation of manganese-induced neurotoxicity. CNS Neurosci Ther 2024; 30:e14633. [PMID: 38429921 PMCID: PMC10907825 DOI: 10.1111/cns.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
AIMS Excessive influx of manganese (Mn) into the brain across the blood-brain barrier induces neurodegeneration. CYP1B1 is involved in the metabolism of arachidonic acid (AA) that affects vascular homeostasis. We aimed to investigate the effect of brain CYP1B1 on Mn-induced neurotoxicity. METHOD Brain Mn concentrations and α-synuclein accumulation were measured in wild-type and CYP1B1 knockout mice treated with MnCl2 (30 mg/kg) and biotin (0.2 g/kg) for 21 continuous days. Tight junctions and oxidative stress were analyzed in hCMEC/D3 and SH-SY5Y cells after the treatment with MnCl2 (200 μM) and CYP1B1-derived AA metabolites (HETEs and EETs). RESULTS Mn exposure inhibited brain CYP1B1, and CYP1B1 deficiency increased brain Mn concentrations and accelerated α-synuclein deposition in the striatum. CYP1B1 deficiency disrupted the integrity of the blood-brain barrier (BBB) and increased the ratio of 3, 4-dihydroxyphenylacetic acid (DOPAC) to dopamine in the striatum. HETEs attenuated Mn-induced inhibition of tight junctions by activating PPARγ in endothelial cells. Additionally, EETs attenuated Mn-induced up-regulation of the KLF/MAO-B axis and down-regulation of NRF2 in neuronal cells. Biotin up-regulated brain CYP1B1 and reduced Mn-induced neurotoxicity in mice. CONCLUSIONS Brain CYP1B1 plays a critical role in both cerebrovascular and dopamine homeostasis, which might serve as a novel therapeutic target for the prevention of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Juan Wu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of PharmacyTaikang Tongji (Wuhan) HospitalWuhuChina
| | - Yueran Li
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of PharmacyThe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Shuwei Tian
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Shufang Na
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan UniversityTransplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on TransplantationWuhanHubeiChina
| | - Hongyan Wei
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yafei Wu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yafei Yang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Zixia Shen
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Jiayue Ding
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Shenglan Bao
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Siqi Liu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Lingyun Li
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Rongling Feng
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yong Zhu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Chunyan He
- Demonstration Center for Experimental Basic Medicine Education, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Jiang Yue
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Hubei Province Key Laboratory of Allergy and ImmunologyWuhanChina
| |
Collapse
|
36
|
Morimoto K, Tabata H, Takahashi R, Nakajima K. Interactions between neural cells and blood vessels in central nervous system development. Bioessays 2024; 46:e2300091. [PMID: 38135890 DOI: 10.1002/bies.202300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
The sophisticated function of the central nervous system (CNS) is largely supported by proper interactions between neural cells and blood vessels. Accumulating evidence has demonstrated that neurons and glial cells support the formation of blood vessels, which in turn, act as migratory scaffolds for these cell types. Neural progenitors are also involved in the regulation of blood vessel formation. This mutual interaction between neural cells and blood vessels is elegantly controlled by several chemokines, growth factors, extracellular matrix, and adhesion molecules such as integrins. Recent research has revealed that newly migrating cell types along blood vessels repel other preexisting migrating cell types, causing them to detach from the blood vessels. In this review, we discuss vascular formation and cell migration, particularly during development. Moreover, we discuss how the crosstalk between blood vessels and neurons and glial cells could be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keiko Morimoto
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tabata
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Rikuo Takahashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Sharifi KA, Farzad F, Soldozy S, DeWitt MR, Price RJ, Sheehan J, Kalani MYS, Tvrdik P. Exploring the dynamics of adult Axin2 cell lineage integration into dentate gyrus granule neurons. Front Neurosci 2024; 18:1353142. [PMID: 38449734 PMCID: PMC10915230 DOI: 10.3389/fnins.2024.1353142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
The Wnt pathway plays critical roles in neurogenesis. The expression of Axin2 is induced by Wnt/β-catenin signaling, making this gene a reliable indicator of canonical Wnt activity. We employed pulse-chase genetic lineage tracing with the Axin2-CreERT2 allele to follow the fate of Axin2+ lineage in the adult hippocampal formation. We found Axin2 expressed in astrocytes, neurons and endothelial cells, as well as in the choroid plexus epithelia. Simultaneously with the induction of Axin2 fate mapping by tamoxifen, we marked the dividing cells with 5-ethynyl-2'-deoxyuridine (EdU). Tamoxifen induction led to a significant increase in labeled dentate gyrus granule cells three months later. However, none of these neurons showed any EdU signal. Conversely, six months after the pulse-chase labeling with tamoxifen/EdU, we identified granule neurons that were positive for both EdU and tdTomato lineage tracer in each animal. Our data indicates that Axin2 is expressed at multiple stages of adult granule neuron differentiation. Furthermore, these findings suggest that the integration process of adult-born neurons from specific cell lineages may require more time than previously thought.
Collapse
Affiliation(s)
- Khadijeh A Sharifi
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Faraz Farzad
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neurosurgery, Westchester Medical Center and New York Medical College, Valhalla, NY, United States
| | - Matthew R DeWitt
- Department of Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, United States
| | - Richard J Price
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
- School of Medicine, St. John's Neuroscience Institute, University of Oklahoma, Tulsa, OK, United States
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
38
|
Shaji M, Tamada A, Fujimoto K, Muguruma K, Karsten SL, Yokokawa R. Deciphering potential vascularization factors of on-chip co-cultured hiPSC-derived cerebral organoids. LAB ON A CHIP 2024; 24:680-696. [PMID: 38284292 DOI: 10.1039/d3lc00930k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The lack of functional vascular system in stem cell-derived cerebral organoids (COs) limits their utility in modeling developmental processes and disease pathologies. Unlike other organs, brain vascularization is poorly understood, which makes it particularly difficult to mimic in vitro. Although several attempts have been made to vascularize COs, complete vascularization leading to functional capillary network development has only been achieved via transplantation into a mouse brain. Understanding the cues governing neurovascular communication is therefore imperative for establishing an efficient in vitro system for vascularized cerebral organoids that can emulate human brain development. Here, we used a multidisciplinary approach combining microfluidics, organoids, and transcriptomics to identify molecular changes in angiogenic programs that impede the successful in vitro vascularization of human induced pluripotent stem cell (iPSC)-derived COs. First, we established a microfluidic cerebral organoid (CO)-vascular bed (VB) co-culture system and conducted transcriptome analysis on the outermost cell layer of COs cultured on the preformed VB. Results revealed coordinated regulation of multiple pro-angiogenic factors and their downstream targets. The VEGF-HIF1A-AKT network was identified as a central pathway involved in the angiogenic response of cerebral organoids to the preformed VB. Among the 324 regulated genes associated with angiogenesis, six transcripts represented significantly regulated growth factors with the capacity to influence angiogenic activity during co-culture. Subsequent on-chip experiments demonstrated the angiogenic and vasculogenic potential of cysteine-rich angiogenic inducer 61 (CYR61) and hepatoma-derived growth factor (HDGF) as potential enhancers of organoid vascularization. Our study provides the first global analysis of cerebral organoid response to three-dimensional microvasculature for in vitro vascularization.
Collapse
Affiliation(s)
- Maneesha Shaji
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Atsushi Tamada
- Department of iPS Cell Applied Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka - 573-1010, Japan.
| | - Kazuya Fujimoto
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka - 573-1010, Japan.
| | - Stanislav L Karsten
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| |
Collapse
|
39
|
Klip A, De Bock K, Bilan PJ, Richter EA. Transcellular Barriers to Glucose Delivery in the Body. Annu Rev Physiol 2024; 86:149-173. [PMID: 38345907 DOI: 10.1146/annurev-physiol-042022-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Fetsko AR, Sebo DJ, Budzynski LB, Scharbarth A, Taylor MR. IL-1β disrupts blood-brain barrier development by inhibiting endothelial Wnt/β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569943. [PMID: 38106202 PMCID: PMC10723338 DOI: 10.1101/2023.12.04.569943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
During neuroinflammation, the proinflammatory cytokine Interleukin-1β (IL-1β) impacts blood-brain barrier (BBB) function by disrupting brain endothelial tight junctions, promoting vascular permeability, and increasing transmigration of immune cells. Here, we examined the effects of Il-1β on the in vivo development of the BBB. We generated a doxycycline-inducible transgenic zebrafish model that drives secretion of Il-1β in the CNS. To validate the utility of our model, we showed Il-1β dose-dependent mortality, recruitment of neutrophils, and expansion of microglia. Using live imaging, we discovered that Il-1β causes a significant reduction in CNS angiogenesis and barriergenesis. To demonstrate specificity, we rescued the Il-1β induced phenotypes by targeting the zebrafish il1r1 gene using CRISPR/Cas9. Mechanistically, we determined that Il-1β disrupts BBB development by decreasing Wnt/β-catenin transcriptional activation in brain endothelial cells. Given that several neurodevelopmental disorders are associated with inflammation, our findings support further investigation into the connections between proinflammatory cytokines, neuroinflammation, and neurovascular development.
Collapse
Affiliation(s)
- Audrey R. Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Dylan J. Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lilyana B. Budzynski
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Alli Scharbarth
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R. Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, Pharmacology and Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
41
|
Shen Y, Ali M, Timsina J, Wang C, Do A, Western D, Liu M, Gorijala P, Budde J, Liu H, Gordon B, McDade E, Morris JC, Llibre-Guerra JJ, Bateman RJ, Joseph-Mathurin N, Perrin RJ, Maschi D, Wyss-Coray T, Pastor P, Goate A, Renton AE, Surace EI, Johnson ECB, Levey AI, Alvarez I, Levin J, Ringman JM, Allegri RF, Seyfried N, Day GS, Wu Q, Fernández MV, Ibanez L, Sung YJ, Cruchaga C. Systematic proteomics in Autosomal dominant Alzheimer's disease reveals decades-early changes of CSF proteins in neuronal death, and immune pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301242. [PMID: 38260583 PMCID: PMC10802763 DOI: 10.1101/2024.01.12.24301242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aβ42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding Proteomic data generation was supported by NIH: RF1AG044546.
Collapse
|
42
|
Collignon A, Dion-Albert L, Ménard C, Coelho-Santos V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 2024; 21:2. [PMID: 38178239 PMCID: PMC10768274 DOI: 10.1186/s12987-023-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proper cerebrovascular development and neurogliovascular unit assembly are essential for brain growth and function throughout life, ensuring the continuous supply of nutrients and oxygen. This involves crucial events during pre- and postnatal stages through key pathways, including vascular endothelial growth factor (VEGF) and Wnt signaling. These pathways are pivotal for brain vascular growth, expansion, and blood-brain barrier (BBB) maturation. Interestingly, during fetal and neonatal life, cerebrovascular formation coincides with the early peak activity of the hypothalamic-pituitary-gonadal axis, supporting the idea of sex hormonal influence on cerebrovascular development and barriergenesis.Sex hormonal dysregulation in early development has been implicated in neurodevelopmental disorders with highly sexually dimorphic features, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Both disorders show higher prevalence in men, with varying symptoms between sexes, with boys exhibiting more externalizing behaviors, such as aggressivity or hyperactivity, and girls displaying higher internalizing behaviors, including anxiety, depression, or attention disorders. Indeed, ASD and ADHD are linked to high prenatal testosterone exposure and reduced aromatase expression, potentially explaining sex differences in prevalence and symptomatology. In line with this, high estrogen levels seem to attenuate ADHD symptoms. At the cerebrovascular level, sex- and region-specific variations of cerebral blood flow perfusion have been reported in both conditions, indicating an impact of gonadal hormones on the brain vascular system, disrupting its ability to respond to neuronal demands.This review aims to provide an overview of the existing knowledge concerning the impact of sex hormones on cerebrovascular formation and maturation, as well as the onset of neurodevelopmental disorders. Here, we explore the concept of gonadal hormone interactions with brain vascular and BBB development to function, with a particular focus on the modulation of VEGF and Wnt signaling. We outline how these pathways may be involved in the underpinnings of ASD and ADHD. Outstanding questions and potential avenues for future research are highlighted, as uncovering sex-specific physiological and pathological aspects of brain vascular development might lead to innovative therapeutic approaches in the context of ASD, ADHD and beyond.
Collapse
Affiliation(s)
- Adeline Collignon
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Caroline Ménard
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Institute of Physiology, Coimbra, Portugal.
| |
Collapse
|
43
|
Andrews MG, Pearson CA. Toward an understanding of glucose metabolism in radial glial biology and brain development. Life Sci Alliance 2024; 7:e202302193. [PMID: 37798120 PMCID: PMC10556723 DOI: 10.26508/lsa.202302193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Decades of research have sought to determine the intrinsic and extrinsic mechanisms underpinning the regulation of neural progenitor maintenance and differentiation. A series of precise temporal transitions within progenitor cell populations generates all the appropriate neural cell types while maintaining a pool of self-renewing progenitors throughout embryogenesis. Recent technological advances have enabled us to gain new insights at the single-cell level, revealing an interplay between metabolic state and developmental progression that impacts the timing of proliferation and neurogenesis. This can have long-term consequences for the developing brain's neuronal specification, maturation state, and organization. Furthermore, these studies have highlighted the need to reassess the instructive role of glucose metabolism in determining progenitor cell division, differentiation, and fate. This review focuses on glucose metabolism (glycolysis) in cortical progenitor cells and the emerging focus on glycolysis during neurogenic transitions. Furthermore, we discuss how the field can learn from other biological systems to improve our understanding of the spatial and temporal changes in glycolysis in progenitors and evaluate functional neurological outcomes.
Collapse
Affiliation(s)
- Madeline G Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Caroline A Pearson
- https://ror.org/02r109517 Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
44
|
Qi L, Wang F, Sun X, Li H, Zhang K, Li J. Recent advances in tissue repair of the blood-brain barrier after stroke. J Tissue Eng 2024; 15:20417314241226551. [PMID: 38304736 PMCID: PMC10832427 DOI: 10.1177/20417314241226551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
The selective permeability of the blood-brain barrier (BBB) enables the necessary exchange of substances between the brain parenchyma and circulating blood and is important for the normal functioning of the central nervous system. Ischemic stroke inflicts damage upon the BBB, triggering adverse stroke outcomes such as cerebral edema, hemorrhagic transformation, and aggravated neuroinflammation. Therefore, effective repair of the damaged BBB after stroke and neovascularization that allows for the unique selective transfer of substances from the BBB after stroke is necessary and important for the recovery of brain function. This review focuses on four important therapies that have effects of BBB tissue repair after stroke in the last seven years. Most of these new therapies show increased expression of BBB tight-junction proteins, and some show beneficial results in terms of enhanced pericyte coverage at the injured vessels. This review also briefly outlines three effective classes of approaches and their mechanisms for promoting neoangiogenesis following a stroke.
Collapse
Affiliation(s)
- Liujie Qi
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Fei Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Xiaojing Sun
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Hang Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, PR China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
45
|
Wang W, Lu D, Shi Y, Wang Y. Exploring the Neuroprotective Effects of Lithium in Ischemic Stroke: A literature review. Int J Med Sci 2024; 21:284-298. [PMID: 38169754 PMCID: PMC10758146 DOI: 10.7150/ijms.88195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Ischemic stroke ranks among the foremost clinical causes of mortality and disability, instigating neuronal degeneration, fatalities, and various sequelae. While standard treatments, such as intravenous thrombolysis and endovascular thrombectomy, prove effective, they come with limitations. Hence, there is a compelling need to develop neuroprotective agents capable of improving the functional outcomes of the nervous system. Numerous preclinical studies have demonstrated that lithium can act in multiple molecular pathways, including glycogen synthase kinase 3(GSK-3), the Wnt signaling pathway, the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) signaling pathway, brain-derived neurotrophic factor (BDNF), mammalian target of rapamycin (mTOR), and glutamate receptors. Through these pathways, lithium has been shown to affect inflammation, autophagy, apoptosis, ferroptosis, excitotoxicity, and other pathological processes, thereby improving central nervous system (CNS) damage caused by ischemic stroke. Despite these promising preclinical findings, the number of clinical trials exploring lithium's efficacy remains limited. Additional trials are imperative to thoroughly ascertain the effectiveness and safety of lithium in clinical settings. This review delineates the mechanisms underpinning lithium's neuroprotective capabilities in the context of ischemic stroke. It elucidates the intricate interplay between these mechanisms and sheds light on the involvement of mitochondrial dysfunction and inflammatory markers in the pathophysiology of ischemic stroke. Furthermore, the review offers directions for future research, thereby advancing the understanding of the potential therapeutic utility of lithium and establishing a theoretical foundation for its clinical application.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Dunlin Lu
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Youkui Shi
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yanqiang Wang
- Department of Neurology Ⅱ, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
46
|
Kulkarni A, Jozefiaková J, Bhide K, Mochnaćová E, Bhide M. Differential transcriptome response of blood brain barrier spheroids to neuroinvasive Neisseria and Borrelia. Front Cell Infect Microbiol 2023; 13:1326578. [PMID: 38179419 PMCID: PMC10766361 DOI: 10.3389/fcimb.2023.1326578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Background The blood-brain barrier (BBB), a highly regulated interface between the blood and the brain, prevents blood-borne substances and pathogens from entering the CNS. Nevertheless, pathogens like Neisseria meningitidis and Borrelia bavariensis can breach the BBB and infect the brain parenchyma. The self-assembling BBB-spheroids can simulate the cross talk occurring between the cells of the barrier and neuroinvasive pathogens. Methods BBB spheroids were generated by co-culturing human brain microvascular endothelial cells (hBMECs), pericytes and astrocytes. The BBB attributes of spheroids were confirmed by mapping the localization of cells, observing permeability of angiopep2 and non-permeability of dextran. Fluorescent Neisseria, Borrelia or E. coli (non-neuroinvasive) were incubated with spheroids to observe the adherence, invasion and spheroid integrity. Transcriptome analysis with NGS was employed to investigate the response of BBB cells to infections. Results hBMECs were localized throughout the spheroids, whereas pericytes and astrocytes were concentrated around the core. Within 1 hr of exposure, Neisseria and Borrelia adhered to spheroids, and their microcolonization increased from 5 to 24 hrs. Integrity of spheroids was compromised by both Neisseria and Borrelia, but not by E. coli infection. Transcriptome analysis revealed a significant change in the expression of 781 genes (467 up and 314 down regulated) in spheroids infected with Neisseria, while Borrelia altered the expression of 621 genes (225 up and 396 down regulated). The differentially expressed genes could be clustered into various biological pathways like cell adhesion, extracellular matrix related, metallothionines, members of TGF beta, WNT signaling, and immune response. Among the differentially expressed genes, 455 (48%) genes were inversely expressed during Neisseria and Borrelia infection. Conclusion The self-assembling spheroids were used to perceive the BBB response to neuroinvasive pathogens - Neisseria and Borrelia. Compromised integrity of spheroids during Neisseria and Borrelia infection as opposed to its intactness and non-adherence of E. coli (non-neuroinvasive) denotes the pathogen dependent fate of BBB. Genes categorized into various biological functions indicated weakened barrier properties of BBB and heightened innate immune response. Inverse expression of 48% genes commonly identified during Neisseria and Borrelia infection exemplifies unique response of BBB to varying neuropathogens.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Jozefiaková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelína Mochnaćová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
47
|
Sharifi KA, Farzad F, Soldozy S, Price RJ, Kalani MYS, Tvrdik P. Dynamics of Adult Axin2 Cell Lineage Integration in Granule Neurons of the Dentate Gyrus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.09.570930. [PMID: 38106115 PMCID: PMC10723478 DOI: 10.1101/2023.12.09.570930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The Wnt pathway plays critical roles in neurogenesis. The expression of Axin2 is induced by Wnt/β-catenin signaling, making this gene a sensitive indicator of canonical Wnt activity. We employed pulse-chase genetic lineage tracing with the Axin2-CreERT2 allele to follow the fate of Axin2 -positive cells in the adult hippocampal formation. We found Axin2 expressed in astrocytes, neurons and endothelial cells, as well as in the choroid plexus epithelia. Simultaneously with tamoxifen induction of Axin2 fate mapping, the dividing cells were marked with 5-ethynyl-2'-deoxyuridine (EdU). Tamoxifen induction resulted in significant increase of dentate gyrus granule cells three months later; however, none of these neurons contained EdU signal. Conversely, six months after the tamoxifen/EdU pulse-chase labeling, EdU-positive granule neurons were identified in each animal. Our data imply that Axin2 is expressed at several different stages of adult granule neuron differentiation and suggest that the process of integration of the adult-born neurons from certain cell lineages may take longer than previously thought.
Collapse
|
48
|
Mankuzhy P, Dharmarajan A, Perumalsamy LR, Sharun K, Samji P, Dilley RJ. The role of Wnt signaling in mesenchymal stromal cell-driven angiogenesis. Tissue Cell 2023; 85:102240. [PMID: 37879288 DOI: 10.1016/j.tice.2023.102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Development, growth, and remodeling of blood vessels occur through an intricate process involving cell differentiation, proliferation, and rearrangement by cell migration under the direction of various signaling pathways. Recent reports highlight that resident and exogenous mesenchymal stromal cells (MSCs) have the potential to regulate the neovascularization process through paracrine secretion of proangiogenic factors. Recent research has established that the vasculogenic potential of MSCs is regulated by several signaling pathways, including the Wnt signaling pathway, and their interplay. These findings emphasize the complex nature of the vasculogenic process and underscore the importance of understanding the underlying molecular mechanisms for the development of effective cell-based therapies in regenerative medicine. This review provides an updated briefing on the canonical and non-canonical Wnt signaling pathways and summarizes the recent reports of both in vitro and in vivo studies with the involvement of MSCs of various sources in the vasculogenic process mediated by Wnt signaling pathways. Here we outline the current understanding of the plausible role of the Wnt signaling pathway, specifically in MSC-regulated angiogenesis.
Collapse
Affiliation(s)
- Pratheesh Mankuzhy
- Department of Surgery and Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, 6009 Perth, Australia; College of Veterinary and Animal Sciences - Mannuthy, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala 673576 India.
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India; School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Perth, Western Australia, Australia; School of Human Sciences, Faculty of Life Sciences, University of Western Australia, 6009 Perth, Australia
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Sri Ramachandra faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Priyanka Samji
- Department of Biomedical Sciences, Sri Ramachandra faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Rodney J Dilley
- Department of Surgery and Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, 6009 Perth, Australia
| |
Collapse
|
49
|
Yu M, Nie Y, Yang J, Yang S, Li R, Rao V, Hu X, Fang C, Li S, Song D, Guo F, Snyder MP, Chang HY, Kuo CJ, Xu J, Chang J. Integrative multi-omic profiling of adult mouse brain endothelial cells and potential implications in Alzheimer's disease. Cell Rep 2023; 42:113392. [PMID: 37925638 PMCID: PMC10843806 DOI: 10.1016/j.celrep.2023.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
The blood-brain barrier (BBB) is primarily manifested by a variety of physiological properties of brain endothelial cells (ECs), but the molecular foundation for these properties remains incompletely clear. Here, we generate a comprehensive molecular atlas of adult brain ECs using acutely purified mouse ECs and integrated multi-omics. Using RNA sequencing (RNA-seq) and proteomics, we identify the transcripts and proteins selectively enriched in brain ECs and demonstrate that they are partially correlated. Using single-cell RNA-seq, we dissect the molecular basis of functional heterogeneity of brain ECs. Using integrative epigenomics and transcriptomics, we determine that TCF/LEF, SOX, and ETS families are top-ranked transcription factors regulating the BBB. We then validate the identified brain-EC-enriched proteins and transcription factors in normal mouse and human brain tissue and assess their expression changes in mice with Alzheimer's disease. Overall, we present a valuable resource with broad implications for regulation of the BBB and treatment of neurological disorders.
Collapse
Affiliation(s)
- Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Varsha Rao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyan Hu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Simeng Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
50
|
Gao HM, Chen H, Cui GY, Hu JX. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke. Cell Biosci 2023; 13:196. [PMID: 37915036 PMCID: PMC10619327 DOI: 10.1186/s13578-023-01126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
The blood-brain barrier (BBB) serves as a defensive line protecting the central nervous system, while also maintaining micro-environment homeostasis and inhibiting harmful materials from the peripheral blood. However, the BBB's unique physiological functions and properties make drug delivery challenging for patients with central nervous system diseases. In this article, we briefly describe the cell structure basis and mechanism of action of the BBB, as well as related functional proteins involved. Additionally, we discuss the various mechanisms of BBB damage following the onset of an ischemic stroke, and lastly, we mention several therapeutic strategies accounting for impairment mechanisms. We hope to provide innovative ideas for drug delivery research via the BBB.
Collapse
Affiliation(s)
- Hui-Min Gao
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Gui-Yun Cui
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Jin-Xia Hu
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China.
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China.
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|