1
|
Jia L, Song Y, You F, Wang S, Rabiya UE, Liu X, Huang L, Wang L, Khan WUD. Ameliorating the detrimental effects of chromium in wheat by silicon nanoparticles and its enriched biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175270. [PMID: 39111436 DOI: 10.1016/j.scitotenv.2024.175270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Increased anthropogenic activities over the last decades have led to a gradual increase in chromium (Cr) content in the soil, which, due to its high mobility in soil, makes Cr accumulation in plants a serious threat to the health of animals and humans. The present study investigated the ameliorative effect of foliar-applied Si nanoparticles (SiF) and soil-applied SiNPs enriched biochar (SiBc) on the growth of wheat in Cr-polluted soil (CPS). Two levels of CPS were prepared, including 12.5 % and 25 % by adding Cr-polluted wastewater in the soil as soil 1 (S1) and soil 2 (S2), respectively for the pot experiment with a duration of 40 days. Cr stress significantly reduced wheat growth, however, combined application of SiF and SiBc improved root and shoot biomass production under Cr stress by (i) reducing Cr accumulation, (ii) increasing activities of antioxidant enzymes (ascorbate peroxidase and catalase), and (iii) increasing protein and total phenolic contents in both root and shoot respectively. Nonetheless, separate applications of SiF and SiBc effectively reduced Cr toxicity in shoot and root respectively, indicating a tissue-specific regulation of wheat growth under Cr. Later, the Langmuir and Freundlich adsorption isotherm analysis showed a maximum soil Cr adsorption capacity ∼ Q(max) of 40.6 mg g-1 and 59 mg g-1 at S1 and S2 respectively, while the life cycle impact assessment showed scores of -1 mg kg-1 and -211 mg kg-1 for Cr in agricultural soil and - 0.184 and - 38.7 for human health at S1 and S2 respectively in response to combined SiF + SiBC application, thus indicating the environment implication of Si nanoparticles and its biochar in ameliorating Cr toxicity in different environmental perspectives.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, China
| | - Yue Song
- College of Food and Drug, Luoyang Normal University, China
| | - Fangfang You
- College of Food and Drug, Luoyang Normal University, China
| | - Sujun Wang
- Luoyang Customs, National Republic of China, Luoyang, Henan 471000, China
| | - Umm E Rabiya
- Department of Agriculture, Government College University Lahore, Pakistan
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, China
| | - Waqas Ud Din Khan
- Department of Agriculture, Government College University Lahore, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
2
|
Jan S, Bhardwaj S, Singh B, Kapoor D. Silicon efficacy for the remediation of metal contaminated soil. 3 Biotech 2024; 14:212. [PMID: 39193011 PMCID: PMC11345352 DOI: 10.1007/s13205-024-04049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
In the course of past two decade anthropogenic activities have reinforced, begetting soil and water defilement. A plethora of heavy metals alters and limits plant growth and yield, with opposing effect on agricultural productivity. Silicon often perceived as plant alimentary 'nonentity'. A suite of determinants associated with silicon have been lately discerned, concerning plant physiology, chemistry, gene regulation/expression and interaction with different organisms. Exogenous supplementation of silicon renders resistance against heavy-metal stress. Predominantly, plants having significant amount of silicon in root and shoot thus are barely prone to pest onset and manifest greater endurance against abiotic stresses including heavy-metal toxicity. Silicon-mediated stress management involves abatement of metal ions within soil, co-precipitation of metal ions, gene modulation associated with metal transport, chelation, activation of antioxidants (enzymatic and non-enzymatic), metal ion compartmentation and structural metamorphosis in plants. Silicon supplementation also stimulates expression of stress-resistant genes under heavy-metal toxicity to provide plant tolerance under stress conditions. Ergo, to boost metal tolerance within crops, immanent genetic potential for silicon assimilation should be enhanced. Current study, addresses the potential role and mechanistic interpretation of silicon induced mitigation of heavy-metal stress in plants.
Collapse
Affiliation(s)
- Sadaf Jan
- Technology Enabling Centre, Panjab University, Chandigarh, 160014 India
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, Punjab 144411 India
| | - Savita Bhardwaj
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001 India
| | - Bhupender Singh
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, Punjab 144411 India
| | - Dhriti Kapoor
- Department of Botany, Shoolini University, Solan Oachghat Kumarhatti Highway, Bajhol, Himachal Pradesh 173229 India
| |
Collapse
|
3
|
Yang W, Hu Y, Liu J, Rao X, Huang X, Guo X, Zhang J, Rensing C, Xing S, Zhang L. Physiology and transcriptomic analysis revealed the mechanism of silicon promoting cadmium accumulation in Sedum alfredii Hance. CHEMOSPHERE 2024; 360:142417. [PMID: 38797210 DOI: 10.1016/j.chemosphere.2024.142417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Silicon (Si) effectively promote the yield of many crops, mainly due to its ability to enhance plants resistance to stress. However, how Si helps hyperaccumulators to extract Cadmium (Cd) from soil has remained unclear. In this study, Sedum alfredii Hance (S. alfredii) was used as material to study how exogenous Si affected biomass, Cd accumulation, antioxidation, cell ultrastructure, subcellular distribution and changes in gene expression after Cd exposure. The study has shown that as Si concentration increases (1, 2 mM), the shoot biomass of plants increased by 33.1%-63.6%, the Cd accumulation increased by 31.9%-96.6%, and the chlorophyll, carotenoid content, photosynthetic gas exchange parameters significantly increased. Si reduced Pro and MDA, promoted the concentrations of SOD, CAT and POD to reduce antioxidant stress damage. In addition, Si promoted GSH and PC to chelate Cd in vacuoles, repaired damaged cell ultrastructure, improved the fixation of Cd and cell wall (especially in pectin), and reduced the toxic effects of Cd. Transcriptome analysis found that genes encoding Cd detoxification, Cd absorption and transport were up-regulated by Si supplying, including photosynthetic pathways (PSB, LHCB, PSA), antioxidant defense systems (CAT, APX, CSD, RBOH), cell wall biosynthesis such as pectinesterase (PME), chelation (GST, MT, NAS, GR), Cd absorption (Nramp3, Nramp5, ZNT) and Cd transport (HMA, PCR). Our result revealed the tentative mechanism of Si promotes Cd accumulation and enhances Cd tolerance in S. alfredii, and thereby provides a solid theoretical support for the practical use of Si fertilizer in phytoextraction.
Collapse
Affiliation(s)
- Wenhao Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Hu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhao Rao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyu Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingjie Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - JinLin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihe Xing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liming Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Pang Z, Luo Z, Guan DX, Zhang T, Qiu L, Zhao E, Ma Q, Li T, Peng H, Liang Y. The adsorption-diffusion model and biomimetic simulation reveal the switchable roles of silicon in regulating toxic metal uptake in rice roots. CHEMOSPHERE 2024; 353:141669. [PMID: 38460848 DOI: 10.1016/j.chemosphere.2024.141669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Soil contamination by heavy metals has become a serious threat to global food security. The application of silicon (Si)-based materials is a simple and economical method for producing safe crops in contaminated soil. However, the impact of silicon on the heavy-metal concentration in plant roots, which are the first line in the chain of heavy-metal entering plants and causing stress and the main site of heavy-metal deposition in plants, remains puzzling. We proposed a process-based model (adsorption-diffusion model) to explain the results of a collection of 28 experiments on alleviating toxic metal stress in plants by Si. Then we evaluated the applicability of the model in Si-mitigated trivalent chromium (Cr[III]) stress in rice, taking into account variations in experimental conditions such as Cr(III) concentration, stress duration, and Si concentration. It was found that the adsorption-diffusion model fitted the experimental data well (R2 > 0.9). We also verified the binding interaction between Si and Cr in the cell wall using SEM-EDS and XPS. In addition, we designed a simplified biomimetic device that simulated the Si in cell wall to analyze the dual-action switch of Si from increasing Cr(III) adsorption to blocking Cr(III) diffusion. We found that the adsorption of Cr(III) by Si decreased from 58% to 7% as the total amount of Cr(III) increased, and finally the diffusion blocking effect of Si dominated. This study deepens our understanding of the role of Si in mitigating toxic metal stress in plants and is instructive for the research and use of Si-based materials to improve food security.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongkui Luo
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Lixue Qiu
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Enqiang Zhao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingxu Ma
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Huang F, Li Z, Yang X, Liu H, Chen L, Chang N, He H, Zeng Y, Qiu T, Fang L. Silicon reduces toxicity and accumulation of arsenic and cadmium in cereal crops: A meta-analysis, mechanism, and perspective study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170663. [PMID: 38311087 DOI: 10.1016/j.scitotenv.2024.170663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Arsenic (As) and cadmium (Cd) are two toxic metal(loid)s that pose significant risks to food security and human health. Silicon (Si) has attracted substantial attention because of its positive effects on alleviating the toxicity and accumulation of As and Cd in crops. However, our current knowledge of the comprehensive effects and detailed mechanisms of Si amendment is limited. In this study, a global meta-analysis of 248 original articles with over 7000 paired observations was conducted to evaluate Si-mediated effects on growth and As and Cd accumulation in rice (Oryza sativa L.), wheat (Triticum aestivum L.), and maize (Zea mays L.). Si application increases the biomass of these crops under As and/or Cd contamination. Si amendment also decreased shoot As and Cd accumulation by 24.1 % (20.6 to 27.5 %) and 31.9 % (29.0 to 31.9 %), respectively. Furthermore, the Si amendment reduced the human health risks posed by As (2.6 %) and Cd (12.9 %) in crop grains. Si-induced inhibition of Cd accumulation is associated with decreased Cd bioavailability and the downregulation of gene expression. The regulation of gene expression by Si addition was the driving factor limiting shoot As accumulation. Overall, our analysis demonstrated that Si amendment has great potential to reduce the toxicity and accumulation of As and/or Cd in crops, providing a scientific basis for promoting food safety globally.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Zhang L, Liu Z, Song Y, Sui J, Hua X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:313. [PMID: 38276769 PMCID: PMC10820295 DOI: 10.3390/plants13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation.
Collapse
Affiliation(s)
- Lingxiao Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Zhengyan Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Junkang Sui
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Xuewen Hua
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| |
Collapse
|
8
|
Yan G, Jin H, Yin C, Hua Y, Huang Q, Zhou G, Xu Y, He Y, Liang Y, Zhu Z. Comparative effects of silicon and silicon nanoparticles on the antioxidant system and cadmium uptake in tomato under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166819. [PMID: 37673236 DOI: 10.1016/j.scitotenv.2023.166819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Cadmium (Cd) pollution is an important threat to agricultural production globally. Silicon (Si) and silicon nanoparticles (Si NPs) can mitigate Cd stress in plants. However, the mechanisms underlying the impacts of Si and Si NPs on Cd resistance, particularly in low-Si accumulators, remain inadequately understood. Accordingly, we conducted a comparative investigation into the roles of Si and Si NPs in regulating the antioxidant system (enzymes and antioxidants) and Cd uptake (influx rate, symplastic and apoplastic pathways) in tomato (a typical low-Si accumulator). The results revealed that Si and Si NPs improved tomato growth under Cd stress, and principal component analysis (PCA) demonstrated that Si NPs were more effective than Si. For oxidative damage, redundancy analysis (RDA) results showed that Si NPs ameliorated oxidative damage in both shoots and roots, whereas Si predominantly alleviated oxidative damage in roots. Simultaneously, Si and Si NPs regulated antioxidant enzymes and nonenzymatic antioxidants with distinct targets and strengths. Furthermore, Si and Si NPs decreased Cd concentration in tomato shoot, root, and xylem sap, while Si NPs induced a more significant decline in shoot and xylem sap Cd. Noninvasive microtest and quantitative estimation of trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic (PTS, an apoplastic tracer) showed that Si and Si NPs reduced the Cd influx rate and apoplastic Cd uptake, while Si NPs induced a more significant reduction. Moreover, Si regulated the expression of genes responsible for Cd uptake (NRAMP2 and LCT1) and compartmentalization (HMA3), while Si NPs reduced the expression of NRAMP2. In conjunction with RDA, the results showed that Si and Si NPs decreased Cd uptake mainly by regulating the symplastic and apoplastic pathways, respectively. Overall, our results indicate that Si NPs is more effective in promoting tomato growth and alleviating oxidative damage than Si in tomato under Cd stress by modulating the antioxidant system and reducing apoplastic Cd uptake.
Collapse
Affiliation(s)
- Guochao Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Han Jin
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Chang Yin
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuchen Hua
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Qingying Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Guanfeng Zhou
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yunmin Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yong He
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
9
|
Yang H, Yu H, Wang S, Bayouli IT, Huang H, Ye D, Zhang X, Liu T, Wang Y, Zheng Z, Meers E, Li T. Root radial apoplastic transport contributes to shoot cadmium accumulation in a high cadmium-accumulating rice line. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132276. [PMID: 37625294 DOI: 10.1016/j.jhazmat.2023.132276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Radial transport of cadmium (Cd) in roots governs the amount of Cd loaded into xylem vessels, where Cd ions are translocated upward into shoots, while the mechanism of differential Cd radial transport between the high Cd-accumulating rice line Lu527-8 and the normal rice line Lu527-4 remains ambiguous. A higher Cd distribution in cross sections and root apoplast and higher bypass flow of Cd were found in Lu527-8, explaining a greater Cd translocation through the apoplastic pathway. The lower relative area of the epidermis and the constant relative area of the cortex in Lu527-8 opened-up root radial transport for Cd. Deposition of apoplastic barriers (Casparian strips and suberin lamellae) was stimulated by Cd, which effectively prevented Cd from entering the stele through the apoplastic pathway. In Lu527-8, apoplastic barriers were further from the root apex with lower expression of genes responsible for biosynthesis of Casparian strips and suberin lamellae, enhancing radial transport of Cd. Our data revealed that the higher radial apoplastic transport of Cd played an integral role in Cd translocation, contributed to a better understanding of the mechanism involved in high Cd accumulation in Lu527-8 and helped achieve the practical application of phytoextraction.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengwang Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ines Terwayet Bayouli
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Erik Meers
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
10
|
Jiang Y, Wei C, Jiao Q, Li G, Alyemeni MN, Ahmad P, Shah T, Fahad S, Zhang J, Zhao Y, Liu F, Liu S, Liu H. Interactive effect of silicon and zinc on cadmium toxicity alleviation in wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131933. [PMID: 37421854 DOI: 10.1016/j.jhazmat.2023.131933] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Silicon (Si) and Zinc (Zn) have been frequently used to alleviate cadmium (Cd) toxicity, which are feasible strategies for crop safety production. However, the mechanisms underlying the interaction of Si and Zn on alleviating Cd toxicity are not well understood. A hydroponic system was adopted to evaluate morphological, physiological-biochemical responses, and related gene expression of wheat seedlings to Si (1 mM) and Zn (50 µM) addition under Cd stress (10 µM). Cd induced obvious inhibition of wheat growth by disturbing photosynthesis and chlorophyll synthesis, provoking generation of reactive oxygen species (ROS) and interfering ion homeostasis. Cd concentration was decreased by 68.3%, 43.1% and 73.3% in shoot, and 78.9%, 44.1% and 85.8% in root by Si, Zn, and combination of Si with Zn, relative to Cd only, respectively. Si and Zn effectively ameliorated Cd toxicity and enhanced wheat growth; but single Si or combination of Si with Zn had more efficient ability on alleviating Cd stress than only Zn, indicating Si and Zn have synergistic effect on Cd toxicity; Interaction of them alleviated oxidative stress by reducing ROS content, improving AsA-GSH cycle and antioxidant enzymes activities, and regulating Cd into vacuole through PC-Cd complexes transported by HMA3 transporter. Our results suggest that fertilizers including Si and Zn should be made to reduce Cd content, which will beneficial for food production and safety.
Collapse
Affiliation(s)
- Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301 Jammu and Kashmir, India
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
11
|
Šípošová K, Labancová E, Hačkuličová D, Kollárová K, Vivodová Z. The changes in the maize root cell walls after exogenous application of auxin in the presence of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87102-87117. [PMID: 37418187 PMCID: PMC10406670 DOI: 10.1007/s11356-023-28029-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/28/2023] [Indexed: 07/08/2023]
Abstract
Cadmium (Cd) is a transition metal and hazardous pollutant that has many toxic effects on plants. This heavy metal poses a health risk for both humans and animals. The cell wall is the first structure of a plant cell that is in contact with Cd; therefore, it can change its composition and/or ratio of wall components accordingly. This paper investigates the changes in the anatomy and cell wall architecture of maize (Zea mays L.) roots grown for 10 days in the presence of auxin indole-3-butyric acid (IBA) and Cd. The application of IBA in the concentration 10-9 M delayed the development of apoplastic barriers, decreased the content of lignin in the cell wall, increased the content of Ca2+ and phenols, and influenced the composition of monosaccharides in polysaccharide fractions when compared to the Cd treatment. Application of IBA improved the Cd2+ fixation to the cell wall and increased the endogenous concentration of auxin depleted by Cd treatment. The proposed scheme from obtained results may explain the possible mechanisms of the exogenously applied IBA and its effects on the changes in the binding of Cd2+ within the cell wall, and on the stimulation of growth that resulted in the amelioration of Cd stress.
Collapse
Affiliation(s)
- Kristína Šípošová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| |
Collapse
|
12
|
Naidu S, Pandey J, Mishra LC, Chakraborty A, Roy A, Singh IK, Singh A. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114783. [PMID: 36963184 DOI: 10.1016/j.ecoenv.2023.114783] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In the current scenario of global warming and climate change, plants face many biotic stresses, which restrain growth, development and productivity. Nanotechnology is gaining precedence over other means to deal with biotic and abiotic constraints for sustainable agriculture. One of nature's most beneficial metalloids, silicon (Si) shows ameliorative effect against environmental challenges. Silicon/Silica nanoparticles (Si/SiO2NPs) have gained special attention due to their significant chemical and optoelectronic capabilities. Its mesoporous nature, easy availability and least biological toxicity has made it very attractive to researchers. Si/SiO2NPs can be synthesised by chemical, physical and biological methods and supplied to plants by foliar, soil, or seed priming. Upon uptake and translocation, Si/SiO2NPs reach their destined cells and cause optimum growth, development and tolerance against environmental stresses as well as pest attack and pathogen infection. Using Si/SiO2NPs as a supplement can be an eco-friendly and cost-effective option for sustainable agriculture as they facilitate the delivery of nutrients, assist plants to mitigate biotic stress and enhances plant resistance. This review aims to present an overview of the methods of formulation of Si/SiO2NPs, their application, uptake, translocation and emphasize the role of Si/SiO2NPs in boosting growth and development of plants as well as their conventional advantage as fertilizers with special consideration on their mitigating effects towards biotic stress.
Collapse
Affiliation(s)
- Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Lokesh C Mishra
- Department of Zoology, Hansraj College, University of Delhi, Delhi 110007, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic.
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India.
| |
Collapse
|
13
|
Hou L, Ji S, Zhang Y, Wu X, Zhang L, Liu P. The mechanism of silicon on alleviating cadmium toxicity in plants: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1141138. [PMID: 37035070 PMCID: PMC10076724 DOI: 10.3389/fpls.2023.1141138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Cadmium is one of the most toxic heavy metal elements that seriously threaten food safety and agricultural production worldwide. Because of its high solubility, cadmium can easily enter plants, inhibiting plant growth and reducing crop yield. Therefore, finding a way to alleviate the inhibitory effects of cadmium on plant growth is critical. Silicon, the second most abundant element in the Earth's crust, has been widely reported to promote plant growth and alleviate cadmium toxicity. This review summarizes the recent progress made to elucidate how silicon mitigates cadmium toxicity in plants. We describe the role of silicon in reducing cadmium uptake and transport, improving plant mineral nutrient supply, regulating antioxidant systems and optimizing plant architecture. We also summarize in detail the regulation of plant water balance by silicon, and the role of this phenomenon in enhancing plant resistance to cadmium toxicity. An in-depth analysis of literature has been conducted to identify the current problems related to cadmium toxicity and to propose future research directions.
Collapse
|
14
|
Nikolić D, Bosnić D, Samardžić J. Silicon in action: Between iron scarcity and excess copper. FRONTIERS IN PLANT SCIENCE 2023; 14:1039053. [PMID: 36818840 PMCID: PMC9935840 DOI: 10.3389/fpls.2023.1039053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Essential micronutrients belonging to the transition metals, such as Fe and Cu, are indispensable for plant growth and stress tolerance; however, when present in excess, they can become potentially dangerous producers of reactive oxygen species. Therefore, their homeostases must be strictly regulated. Both microelement deficiencies and elevated concentrations of heavy metals in the soil are global problems that reduce the nutritional value of crops and seriously affect human health. Silicon, a beneficial element known for its protective properties, has been reported to alleviate the symptoms of Cu toxicity and Fe deficiency stress in plants; however, we are still far from a comprehensive understanding of the underlying molecular mechanisms. Although Si-mediated mitigation of these stresses has been clearly demonstrated for some species, the effects of Si vary depending on plant species, growing conditions and experimental design. In this review, the proposed mechanistic models explaining the effect of Si are summarized and discussed. Iron and copper compete for the common metal transporters and share the same transport routes, hence, inadequate concentration of one element leads to disturbances of another. Silicon is reported to beneficially influence not only the distribution of the element supplied below or above the optimal concentration, but also the distribution of other microelements, as well as their molar ratios. The influence of Si on Cu immobilization and retention in the root, as well as Si-induced Fe remobilization from the source to the sink organs are of vital importance. The changes in cellular Cu and Fe localization are considered to play a crucial role in restoring homeostasis of these microelements. Silicon has been shown to stimulate the accumulation of metal chelators involved in both the mobilization of deficient elements and scavenging excess heavy metals. Research into the mechanisms of the ameliorative effects of Si is valuable for reducing mineral stress in plants and improving the nutritional value of crops. This review aims to provide a thorough and critical overview of the current state of knowledge in this field and to discuss discrepancies in the observed effects of Si and different views on its mode of action.
Collapse
|
15
|
Zehra A, Wani KI, Choudhary S, Naeem M, Khan MMA, Aftab T. Involvement of abscisic acid in silicon-mediated enhancement of copper stress tolerance in Artemisia annua. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:37-46. [PMID: 36599274 DOI: 10.1016/j.plaphy.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal (HM) toxicity is a well-known hazard which causes deleterious impact on the growth and development of plants. The impact of abscisic acid (ABA) in presence of silicon (Si) on plant development and quality traits has largely gone unexplored. The effects of ABA and Si on the growth, yield, and quality characteristics of Artemisia annua L. plants growing under copper (Cu) stress (20 and 40 mg kg-1) were investigated in a pot experiment. During this investigation, Cu stress caused severe damage to the plants but exogenous administration of Si and ABA ameliorated the harmful effects of Cu toxicity, and the plants displayed higher biomass and improved physio-biochemical attributes. Copper accumulated in the roots and shoots and its toxicity caused oxidative stress as demonstrated by the increased 2-thiobarbituric acid reactive substance (TBARS) content. It also resulted in the increased activity of antioxidant enzymes, however, the exogenous Si and ABA supplementation decreased the buildup of reactive oxygen species (ROS) and lipid peroxidation, alleviating the oxidative damage produced by HM stress. Copper toxicity had a considerable negative impact on glandular trichome density, ultrastructure as well as artemisinin production. However, combined Si and ABA enhanced the size and density of glandular trichomes, resulting in higher artemisinin production. Taken together, our results demonstrated that exogenous ABA and Si supplementation protect A. annua plants against Cu toxicity by improving photosynthetic characteristics, enhancing antioxidant enzyme activity, protecting leaf structure and integrity, avoiding excess Cu deposition in shoot and root tissues, and helping in enhanced artemisinin biosynthesis. Our results indicate that the combined application of Si and ABA improved the overall growth of plants and may thus be used as an effective approach for the improvement of growth and yield of A. annua in Cu-contaminated soils.
Collapse
Affiliation(s)
- Andleeb Zehra
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Sadaf Choudhary
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Masroor A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
16
|
Zhao J, Yu B, Wang X, Chen L, Akhtar K, Tang S, Lu H, He J, Wen R, He B. Differences in the response mechanism of cadmium uptake, transfer, and accumulation of different rice varieties after foliar silicon spraying under cadmium-stressed soil. FRONTIERS IN PLANT SCIENCE 2023; 13:1064359. [PMID: 36704163 PMCID: PMC9872021 DOI: 10.3389/fpls.2022.1064359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Most studies have shown that foliar silicon (Si) spraying can reduce the risk of rice quality safety caused by cadmium (Cd) contamination. However, it has recently been found that different rice varieties have different responses to Si. Therefore, we selected six rice varieties (YHSM, YXY1179, YXYLS, JLK1377, MXZ2, and YLY900) to compare the differences in the effects of leaf spray on Cd accumulation among different varieties. According to the change in Cd content in brown rice after Si application, the six rice varieties were divided into two types: Si-inhibited varieties (JLY1377, MXZ2, LY900, and YXYLS) and Si-stimulated varieties (WY1179 and YHSM). For Si-inhibited varieties, the Cd content of rice was reduced by 13.5%-65.7% after Si application. At the same time, the Cd content of the root, stem, leaf, panicle, and glume decreased to different degrees, the Cd content of the cell wall component increased by 2.2%-37.6%, the extraction state of Cd with strong mobile activity (ethanol-extracted and deionized water-extracted) was changed to the extraction state of Cd with weak mobile activity (acetic acid-extracted and hydrochloric acid-extracted), and the upward transport coefficient of different parts was reduced. For Si-stimulated varieties, Si application increased the Cd content of rice by 15.7%-24.1%. At the same time, the cell soluble component Cd content significantly increased by 68.4%-252.4% and changed the weakly mobile extraction state Cd to the strong mobile extraction state, increasing the upward transport coefficient of different sites. In conclusion, different rice varieties have different responses to Si. Foliar Si spraying inhibits the upward migration of Cd of Si-inhibited varieties, thereby reducing the Cd content of rice, but it has the opposite effect on Si-stimulated varieties. This result reminds us that we need to consider the difference in the effect of varieties in the implementation of foliar Si spraying in remediation of Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Junyang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xueli Wang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lihong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shide Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Huaming Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jinhua He
- Soil and Fertilizer Workstation, Department of Agriculture and Rural Affairs of Nanning, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Singh S, Prasad SM, Sharma S, Dubey NK, Ramawat N, Prasad R, Singh VP, Tripathi DK, Chauhan DK. Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. PHYSIOLOGIA PLANTARUM 2022; 174:e13065. [PMID: 31916585 DOI: 10.1111/ppl.13065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 05/12/2023]
Abstract
The individual impact of silicon (Si) and nitric oxide (NO, as sodium nitroprusside) on metal toxicity in various plant species has been well documented; however, their combined action in the regulation of metal stress has never been tested yet. Therefore, this study investigates the effects of the combined application of Si and NO in the mitigation of Cd toxicity in wheat seedlings. Seedlings grown on Cd has a significantly declined growth due to an increased accumulation of Cd and oxidative stress markers (due to downregulation of antioxidant defense system particularly ascorbate-glutathione cycle) and a decreased accumulation of NO and Si. Additionally, the altered leaf and root structures resulted into a declined photosynthetic efficiency. However, the addition of Si and NO alone as well as combined significantly alleviated Cd toxicity in wheat seedlings by lowering the accumulation of Cd and oxidative stress markers and improving leaf and root structures, which are collectively responsible for a better photosynthetic rate under Cd toxicity, and hence an improved growth was noticed. Particularly, the application of Si and NO in combination lowered the oxidative stress markers via upregulating the antioxidant defense system (particularly AsA-GSH cycle) suggesting the increased efficacy of Si + NO against the Cd toxicity in wheat seedlings as compared to their alone treatments.
Collapse
Affiliation(s)
- Swati Singh
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Prayagraj, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Rajendra Prasad
- Department of Horticulture, Kulbhasker Ashram Post Graduate College, Prayagraj, Uttar Pradesh, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree Collage, A Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | | | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj, India
| |
Collapse
|
18
|
Altaf MM, Diao XP, Altaf MA, Ur Rehman A, Shakoor A, Khan LU, Jan BL, Ahmad P. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129145. [PMID: 35739696 DOI: 10.1016/j.jhazmat.2022.129145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although beneficial metalloid silicon (Si) has been proven to reduce the toxicity of several heavy metals, there is a lack of understanding regarding Si potential function in mitigating phytotoxicity induced by vanadium (V). In this study, effect of Si (1.5 mM) on growth, biomass production, V uptake, reactive oxygen species (ROS), methylglyoxal (MG) formation, selected antioxidants enzymes activities, glyoxalase enzymes under V stress (35 mg L-1) was investigated in hydroponic experiment. The results showed that V stress reduced rice growth, caused V accumulation in rice. Addition of Si to the nutritional medium increased plant growth, biomass yield, root length, root diameter, chlorophyll parameters, photosynthetic assimilation, ion leakage, antioxidant enzymes activities under V stress. Notably, Si sustained V-homeostasis and alleviated V caused oxidative stress by boosting ascorbate (AsA) levels and the activity of antioxidant enzymes in V stressed rice plants. Furthermore, Si protected rice seedlings against the harmful effects of methylglyoxal by increasing the activity of glyoxalase enzymes. Additionally, Si increased the expression of numerous genes involved in the detoxification of reactive oxygen species (e.g., OsCuZnSOD1, OsCaTB, OsGPX1, OsAPX1, OsGR2, and OsGSTU37) and methylglyoxal (e.g., OsGLYI-1 and OsGLYII-2). The findings supported that Si can be applied to plants to minimize the V availability to plant, and also induced V stress tolerance.
Collapse
Affiliation(s)
- Muhammad Mohsin Altaf
- College of Ecology and Environment, Hainan University, Haikou 570228, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; School of Biology, Hainan Normal University, Haikou 571158, PR China.
| | | | - Atique Ur Rehman
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Latif Ullah Khan
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir 192301, India
| |
Collapse
|
19
|
Zhao K, Yang Y, Zhang L, Zhang J, Zhou Y, Huang H, Luo S, Luo L. Silicon-based additive on heavy metal remediation in soils: Toxicological effects, remediation techniques, and perspectives. ENVIRONMENTAL RESEARCH 2022; 205:112244. [PMID: 34688645 DOI: 10.1016/j.envres.2021.112244] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Chemical fertilizer is gaining increasing attention and has been the center of much research which indicating complex beneficial and harmful effects. Chemical fertilizer might cause some environmental hazards to the biosphere, especially in the agricultural ecosystem. The application of silicon (Si) fertilizer in agriculture has been proved to be able to create good economic and environmental benefits. Si is the second most abundant earth crust element. Si fertilizer improves soil quality and alleviates biotic and abiotic crop stress. It is of great significance to understand the function of Si fertilizer in agricultural utilization and environmental remediation. This paper reviews the Si-based fertilizer in farmland use and summarizes prior research relevant with characterization, soil quality improvement, and pollution remediation effects. Its use in agriculture enhances plant silicon uptake, mediates plant salt and drought stress and remediates heavy metals such as Al, As, Cd, Cu, Zn and Cr. This article also summarizes the detoxification mechanism of silicon and its effects on plant physiological activity such as photosynthesis and transpiration. Fertilizer materials and crop fertilizer management were also considered. Foliar spraying is an effective method to improve crop growth and yield and reduce biotic or abiotic stress. Silicon nanoparticle material provides potential with great potential and prospects. More investigation and research are prospected to better understand how silicon impacts the environment and whether it is a beneficial additive.
Collapse
Affiliation(s)
- Keqi Zhao
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Lihua Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Shuang Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| |
Collapse
|
20
|
Shivaraj SM, Mandlik R, Bhat JA, Raturi G, Elbaum R, Alexander L, Tripathi DK, Deshmukh R, Sonah H. Outstanding Questions on the Beneficial Role of Silicon in Crop Plants. PLANT & CELL PHYSIOLOGY 2022; 63:4-18. [PMID: 34558628 DOI: 10.1093/pcp/pcab145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Silicon (Si) is widely accepted as a beneficial element for plants. Despite the substantial progress made in understanding Si transport mechanisms and modes of action in plants, several questions remain unanswered. In this review, we discuss such outstanding questions and issues commonly encountered by biologists studying the role of Si in plants in relation to Si bioavailability. In recent years, advances in our understanding of the role of Si-solubilizing bacteria and the efficacy of Si nanoparticles have been made. However, there are many unknown aspects associated with structural and functional features of Si transporters, Si loading into the xylem, and the role of specialized cells like silica cells and compounds preventing Si polymerization in plant tissues. In addition, despite several 1,000 reports showing the positive effects of Si in high as well as low Si-accumulating plant species, the exact roles of Si at the molecular level are yet to be understood. Some evidence suggests that Si regulates hormonal pathways and nutrient uptake, thereby explaining various observed benefits of Si uptake. However, how Si modulates hormonal pathways or improves nutrient uptake remains to be explained. Finally, we summarize the knowledge gaps that will provide a roadmap for further research on plant silicon biology, leading to an exploration of the benefits of Si uptake to enhance crop production.
Collapse
Affiliation(s)
- S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
- Department of Biotechnology, Panjab University, Chandigarh, Punjab 160014, India
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
- Department of Biotechnology, Panjab University, Chandigarh, Punjab 160014, India
| | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Lux Alexander
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University, Noida, Uttar Pradesh 201313, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| |
Collapse
|
21
|
Farooqi ZUR, Murtaza G, Bibi S, Sabir M, Owens G, Ahmad I, Zeeshan N. Immobilization of cadmium in soil-plant system through soil and foliar applied silicon. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1193-1204. [PMID: 34995161 DOI: 10.1080/15226514.2021.2024133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We conducted a pot experiment to evaluate the potential for soil- and foliar-applied silicon (Si), alone and in combination, to a Cd-contaminated soil in order to evaluate the effects on such amendments on the Cd translocation from soil to wheat root, shoot and grains. Five treatments were used, T1) control with no external factor added, T2 received only Cd, while T3-T5 treatments received Cd in combination with soil, foliar and soil plus foliar applied Si. Except control (T1), soil was contaminated with Cd at 10 mg kg-1 in all the treatments and 1% solution of Si as an amendment was used for soil and/or foliar application or their combination. Overall, while Si application improved both plant growth and yield in Cd-contaminated soil. Control and combined soil- and foliar-applied Si in Cd contaminated treatments showed equally positive (2.5%) increase in plant height over Cd contaminated treatment. Grain yield was also highest in the treatment receiving Cd plus soil-applied Si (29%) followed by control (26%). It was concluded that Si can alleviate Cd toxicity in wheat irrespective of whether the Si was soil-applied or applied via a foliar method, but soil applied Si proved the best in this regard.Novelty statement Immobilization of metals i.e., cadmium (Cd) with soil-applied amendments like biomaterials and organic manure to decrease Cd concentration in plants have already been widely investigated. Silicon (Si) is a cheap in-organic and readily available element in the nature and also used for the same purpose. It can be applied both in soil as well as by foliar and soil + foliar application to decrease the metals concentration in soil and plants. However, comparative effectiveness of these three methods have not been checked simultaneously. In this study, we have studied the comparative effectiveness of Si application to soil, foliar and their combination (soil + foliar) to decrease Cd concentration during wheat crop.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, Australia
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University, Vehari, Pakistan
| | - Nukshab Zeeshan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
22
|
Verma KK, Song XP, Lin B, Guo DJ, Singh M, Rajput VD, Singh RK, Singh P, Sharma A, Malviya MK, Chen GL, Li YR. Silicon Induced Drought Tolerance in Crop Plants: Physiological Adaptation Strategies. SILICON 2022; 14. [PMCID: PMC7982764 DOI: 10.1007/s12633-021-01071-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Bo Lin
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
- College of Agriculture, Guangxi University, Nanning, 530004 Guangxi China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, 226 007 India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006 Russia
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Gan-Lin Chen
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530 007 Guangxi China
| |
Collapse
|
23
|
Guo J, Ye D, Zhang X, Huang H, Wang Y, Zheng Z, Li T, Yu H. Characterization of cadmium accumulation in the cell walls of leaves in a low-cadmium rice line and strengthening by foliar silicon application. CHEMOSPHERE 2022; 287:132374. [PMID: 34592211 DOI: 10.1016/j.chemosphere.2021.132374] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) remobilization in leaves is affected by whether Cd is stored in nonlabile subcellular compartments, which might be regulated by silicon (Si) application. However, the underlying mechanism is still far from being completely understood. In this research, the Cd distribution pattern in leaves and a Cd-binding characterization in the cell wall of the low-Cd rice line YaHui2816 were investigated through one hydroponic experiment with 10 μM Cd in solutions. Foliar Si application was further adopted to explore its influence on the Cd accumulation in the cell walls of leaves in YaHui2816. Most of the Cd (69.4%) was distributed in the cell walls of YaHui2816 leaves, whereas the isolated cell walls of leaves from YaHui2816 exhibited a lower capacity for Cd chemisorption than the contrasting line C268A, which was resulted from its fewer relative peak areas of functional groups in the cell wall, such as carboxyl CO and OH stretching. Foliar Si application significantly increased the Cd concentration in leaves and various cell wall fractions (pectin, hemicellulose 1 and residue) by 191% and 137-160%, respectively. RNA-seq analysis revealed that foliar Si application depressed the expression of the metal transporters OsZIP7 and OsZIP8, up-regulated the expression of genes participating in the glutathione metabolism and the cellulose synthesis. Overall, the influence of foliar Si application on Cd-accumulation in the cell wall of leaves in a low-Cd rice line was demonstrated in this research, which inspires further avenues to ensure the food safety of rice grains.
Collapse
Affiliation(s)
- Jingyi Guo
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
24
|
Grünhofer P, Guo Y, Li R, Lin J, Schreiber L. Hydroponic cultivation conditions allowing the reproducible investigation of poplar root suberization and water transport. PLANT METHODS 2021; 17:129. [PMID: 34911563 PMCID: PMC8672600 DOI: 10.1186/s13007-021-00831-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND With increasing joint research cooperation on national and international levels, there is a high need for harmonized and reproducible cultivation conditions and experimental protocols in order to ensure the best comparability and reliability of acquired data. As a result, not only comparisons of findings of different laboratories working with the same species but also of entirely different species would be facilitated. As Populus is becoming an increasingly important genus in modern science and agroforestry, the integration of findings with previously gained knowledge of other crop species is of high significance. RESULTS To ease and ensure the comparability of investigations of root suberization and water transport, on a high degree of methodological reproducibility, we set up a hydroponics-based experimental pipeline. This includes plant cultivation, root histochemistry, analytical investigation, and root water transport measurement. A 5-week-long hydroponic cultivation period including an optional final week of stress application resulted in a highly consistent poplar root development. The poplar roots were of conical geometry and exhibited a typical Casparian band development with subsequent continuously increasing suberization of the endodermis. Poplar root suberin was composed of the most frequently described suberin substance classes, but also high amounts of benzoic acid derivatives could be identified. Root transport physiology experiments revealed that poplar roots in this developmental stage have a two- to tenfold higher hydrostatic than osmotic hydraulic conductivity. Lastly, the hydroponic cultivation allowed the application of gradually defined osmotic stress conditions illustrating the precise adjustability of hydroponic experiments as well as the previously reported sensitivity of poplar plants to water deficits. CONCLUSIONS By maintaining a high degree of harmonization, we were able to compare our results to previously published data on root suberization and water transport of barley and other crop species. Regarding hydroponic poplar cultivation, we enabled high reliability, reproducibility, and comparability for future experiments. In contrast to abiotic stress conditions applied during axenic tissue culture cultivation, this experimental pipeline offers great advantages including the growth of roots in the dark, easy access to root systems before, during, and after stress conditions, and the more accurate definition of the developmental stages of the roots.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
25
|
Yadav V, Arif N, Singh VP, Guerriero G, Berni R, Shinde S, Raturi G, Deshmukh R, Sandalio LM, Chauhan DK, Tripathi DK. Histochemical Techniques in Plant Science: More Than Meets the Eye. PLANT & CELL PHYSIOLOGY 2021; 62:1509-1527. [PMID: 33594421 DOI: 10.1093/pcp/pcab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/31/2021] [Indexed: 05/12/2023]
Abstract
Histochemistry is an essential analytical tool interfacing extensively with plant science. The literature is indeed constellated with examples showing its use to decipher specific physiological and developmental processes, as well as to study plant cell structures. Plant cell structures are translucent unless they are stained. Histochemistry allows the identification and localization, at the cellular level, of biomolecules and organelles in different types of cells and tissues, based on the use of specific staining reactions and imaging. Histochemical techniques are also widely used for the in vivo localization of promoters in specific tissues, as well as to identify specific cell wall components such as lignin and polysaccharides. Histochemistry also enables the study of plant reactions to environmental constraints, e.g. the production of reactive oxygen species (ROS) can be traced by applying histochemical staining techniques. The possibility of detecting ROS and localizing them at the cellular level is vital in establishing the mechanisms involved in the sensitivity and tolerance to different stress conditions in plants. This review comprehensively highlights the additional value of histochemistry as a complementary technique to high-throughput approaches for the study of the plant response to environmental constraints. Moreover, here we have provided an extensive survey of the available plant histochemical staining methods used for the localization of metals, minerals, secondary metabolites, cell wall components, and the detection of ROS production in plant cells. The use of recent technological advances like CRISPR/Cas9-based genome-editing for histological application is also addressed. This review also surveys the available literature data on histochemical techniques used to study the response of plants to abiotic stresses and to identify the effects at the tissue and cell levels.
Collapse
Affiliation(s)
- Vaishali Yadav
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Namira Arif
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Hautcharage, Luxembourg
| | - Roberto Berni
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Suhas Shinde
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rupesh Deshmukh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada 18008, Spain
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida 201313, India
| |
Collapse
|
26
|
Rastogi A, Yadav S, Hussain S, Kataria S, Hajihashemi S, Kumari P, Yang X, Brestic M. Does silicon really matter for the photosynthetic machinery in plants…? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:40-48. [PMID: 34749270 DOI: 10.1016/j.plaphy.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) is known to alleviate the adverse impact of different abiotic and biotic stresses by different mechanisms including morphological, physiological, and genetic changes. Photosynthesis, one of the most important physiological processes in the plant is sensitive to different stress factors. Several studies have shown that Si ameliorates the stress effects on photosynthesis by protecting photosynthetic machinery and its function. In stressed plants, several photosynthesis-related processes including PSII maximum photochemical quantum yield (Fv/Fm), the yield of photosystem II (φPSII), electron transport rates (ETR), and photochemical quenching (qP) were observed to be regulated when supplemented with Si, which indicates that Si effectively protects the photosynthetic machinery. In addition, studies also suggested that Si is capable enough to maintain the uneven swelling, disintegrated, and missing thylakoid membranes caused during stress. Furthermore, several photosynthesis-related genes were also regulated by Si supplementation. Taking into account the key impact of Si on the evolutionarily conserved process of photosynthesis in plants, this review article is focused on the aspects of silicon and photosynthesis interrelationships during stress and signaling pathways. The assemblages of this discussion shall fulfill the lack of constructive literature related to the influence of Si on one of the most dynamic and important processes of plant life i.e. photosynthesis.
Collapse
Affiliation(s)
- Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland; Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500, AE Enschede, the Netherlands.
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sunita Kataria
- School of Biochemistry, D.A.V.V., Khandwa Road, Indore, MP, India
| | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan, 333515, India; Scientist Hostel-S-02, Chauras Campus, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976, Nitra, Slovak Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| |
Collapse
|
27
|
Azam SK, Karimi N, Souri Z, Vaculík M. Multiple effects of silicon on alleviation of arsenic and cadmium toxicity in hyperaccumulator Isatis cappadocica Desv. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:177-187. [PMID: 34634643 DOI: 10.1016/j.plaphy.2021.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) and cadmium (Cd) belong to the group of major pollutants extremely toxic to plants. Metal hyperaccumulating plants play an important role in phytoextraction of heavy metals. Silicon (Si) plays an important role in the amelioration of heavy metal stress through physio-biochemical mechanisms, which remain poorly understood in hyperaccumulators. The main purpose of this study was to determine the impact of Si on growth and performance of As hyperaccumulator Isatis cappadocica Desv., exposed to As and Cd. Results showed that Si (especially at 1 mM level) alleviated the harmful impact of As/Cd and significantly increased the root and shoot biomass, root and shoot length and chlorophyll contents of I. cappadocica by enhancing the plant defense mechanisms. Between the two investigated harmful elements, As was accumulated in plant parts significantly more than Cd, however with considerably lower toxic growth effects. The As/Cd concentration, bioaccumulation and translocation factor and total As content both in roots and shoots of Si-supplied plant were significantly reduced as a protective mechanism, especially in Cd exposed plant. In comparison with single As/Cd treatment, Si supply reduced H2O2 content, increased total soluble protein content and enhanced glutathione S-transferase activity in shoots. The results of this study clearly showed that Si minimized As/Cd uptake and root to shoot translocation, and therefore Si cannot enhance the phytoextraction potential of this plant species. Additionally, Si-improved growth and reduced oxidative damages caused by excess of As and Cd suggested that the similar mechanisms of metal(loid) alleviation are adopted in hyperaccumulators as well as non-hyperaccumulating plants.
Collapse
Affiliation(s)
- Salimeh Khademi Azam
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| |
Collapse
|
28
|
Wang D, Hou L, Zhang L, Liu P. The mechanisms of silicon on maintaining water balance under water deficit stress. PHYSIOLOGIA PLANTARUM 2021; 173:1253-1262. [PMID: 34389991 DOI: 10.1111/ppl.13520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Water deficit stress severely threatens crop yield and numerous reports have shown silicon could enhance plants resistance to water deficit. One of the most important mechanisms is that silicon maintains the water balance. In this review, we summarized advanced research to elucidate the effect of silicon on plant water transport processes, including leaf water loss, vessel water transport, and root water uptake. In leaves, the deposition of silica phytolith on cuticle and stomata decreases transpirational water loss under water deficit stress. However, accumulating evidence suggest that silicon maintaining leaf water content is not through reducing water loss, but through osmotic adjustments, enhancing water transport and uptake. Enhancement of stem water transport efficiency by silicon is due to silica phytolith depositing in the cell wall of vessel tubes and pits, which support it avoiding to collapse and embolism, respectively. The improvement of root water uptake capacity by silicon acts as a key role in maintaining water balance. The underlying mechanisms include (i) enlargement of the root water uptake area, (ii) improvement of the water driving force, (iii) the prevention of water loss from root to soil, and (iv) the up-regulation of aquaporin activity. This review provides three simple models to understand the mechanism of silicon on water balance and highlights the future research area.
Collapse
Affiliation(s)
- Dan Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
29
|
Chen H, Liang X, Gong X, Reinfelder JR, Chen H, Sun C, Liu X, Zhang S, Li F, Liu C, Zhao J, Yi J. Comparative physiological and transcriptomic analyses illuminate common mechanisms by which silicon alleviates cadmium and arsenic toxicity in rice seedlings. J Environ Sci (China) 2021; 109:88-101. [PMID: 34607677 DOI: 10.1016/j.jes.2021.02.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 06/13/2023]
Abstract
The inessential heavy metal/loids cadmium (Cd) and arsenic (As), which often co-occur in polluted paddy soils, are toxic to rice. Silicon (Si) treatment is known to reduce Cd and As toxicity in rice plants. To better understand the shared mechanisms by which Si alleviates Cd and As stress, rice seedlings were hydroponically exposed to Cd or As, then treated with Si. The addition of Si significantly ameliorated the inhibitory effects of Cd and As on rice seedling growth. Si supplementation decreased Cd and As translocation from roots to shoots, and significantly reduced Cd- and As-induced reactive oxygen species generation in rice seedlings. Transcriptomics analyses were conducted to elucidate molecular mechanisms underlying the Si-mediated response to Cd or As stress in rice. The expression patterns of the differentially expressed genes in Cd- or As-stressed rice roots with and without Si application were compared. The transcriptomes of the Cd- and As-stressed rice roots were similarly and profoundly reshaped by Si application, suggesting that Si may play a fundamental, active role in plant defense against heavy metal/loid stresses by modulating whole genome expression. We also identified two novel genes, Os01g0524500 and Os06g0514800, encoding a myeloblastosis (MYB) transcription factor and a thionin, respectively, which may be candidate targets for Si to alleviate Cd and As stress in rice, as well as for the generation of Cd- and/or As-resistant plants. This study provides valuable resources for further clarification of the shared molecular mechanisms underlying the Si-mediated alleviation of Cd and As toxicity in rice.
Collapse
Affiliation(s)
- Huiqiong Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaomei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Huamei Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chongjun Sun
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiulian Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuchang Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fangbai Li
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Chuanping Liu
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Junliang Zhao
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Mišúthová A, Slováková Ľ, Kollárová K, Vaculík M. Effect of silicon on root growth, ionomics and antioxidant performance of maize roots exposed to As toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:155-166. [PMID: 34628176 DOI: 10.1016/j.plaphy.2021.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/28/2023]
Abstract
Nowadays, one of the biggest challenges of plant physiology is to find out the ways how to mitigate negative impacts of abiotic stress on plants. It is the pollution of groundwater or soil by various metals and metalloids that significantly affects the quality of life. Both arsenic (As) and silicon (Si) are metalloids - while the first one is toxic in general, the latter one is considered as beneficial for plants suffering from various kinds of stresses. The aim of our work was to elucidate the growth and development of young maize (Zea mays L.) plants exposed to both of these metalloids simultaneously. Experiments were focused on the comparison of root growth and biomass allocation, changes in uptake of macro- and micronutrients, visualisation of free radicals along with monitoring of the dynamics of main antioxidant enzymes activity in roots. The results showed that increasing concentration of As (75 and 150 μM As) severely inhibited root length and the amount of biomass, and addition of Si (2.5 mM) to the medium containing As did not have a significant effect on root growth. Similarly, the application of Si did not influence the uptake of macro- and microelements into the roots (mainly Ca, P, K, Mo, Cu, Zn and Ni) which was mostly decreased due to As. On the other hand, Si significantly decreased the presence of both superoxide and hydrogen peroxide in roots that suffered from As toxicity. Although the overall growth of maize plants was not improved by Si amendment, we assume that Si might affect the functionality of key antioxidant enzymes in time, and in this way at least partially help to overcome negative effects of As on maize roots.
Collapse
Affiliation(s)
- Adriana Mišúthová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Ľudmila Slováková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Karin Kollárová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina B2, Ilkovicova 6, 842 15, Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska Cesta 9, 845 23, Bratislava, Slovakia.
| |
Collapse
|
31
|
Shetty R, Vidya CSN, Weidinger M, Vaculík M. Silicon alleviates antimony phytotoxicity in giant reed (Arundo donax L.). PLANTA 2021; 254:100. [PMID: 34665350 DOI: 10.1007/s00425-021-03756-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Silicon enhances photosynthetic efficiency, biomass, and lignification of root structures possibly limiting antimony translocation and mitigating phytotoxicity in giant reed plants. Antimony (Sb) is a non-essential metalloid causing toxic effects in plants. Silicon has been reported to impart tolerance against biotic and abiotic stress in plants. Fast-growing plant, giant reed (Arundo donax L.) is a promising energy crop, can be a suitable plant for phytoremediation. However, information regarding the tolerance capacity with respect to Sb toxicity and potential of Si to mitigate the Sb phytotoxicity in giant reed are very scarce. Rhizomes of giant reed were grown for ten weeks in hydroponics exposed to Sb, Si, and their combination wherein treatment without Sb/Si served as control. Effect of these treatments on rate of net photosynthesis and photosynthetic pigments, phytoextraction ability of Sb, Si and Sb uptake, plant biomass, and lignification and suberization of roots along with localization of Sb and Si were analysed. We found that Si considerably improved the growth and biomass of giant reed under Sb toxicity. Antimony reduced the photosynthesis and decreased the content of photosynthetic pigments, which was completely alleviated by Si. Silicon amendment to Sb treated plants enhanced root lignification. Silicon enhanced lignification of root structures probably restricted the Sb translocation. However, co-localization of Sb with Si has not been observed neither at the shoot nor at the root levels. Similarly, Sb was also not detected in leaf phytoliths. These findings suggest that Si treatment promotes overall plant growth by improving photosynthetic parameters and decreasing Sb translocation from root to shoot in giant reed by improving root lignification.
Collapse
Affiliation(s)
- Rajpal Shetty
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, 842 15, Bratislava, Slovakia.
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia.
| | | | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, 842 15, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
| |
Collapse
|
32
|
Khan I, Awan SA, Rizwan M, Ali S, Hassan MJ, Brestic M, Zhang X, Huang L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112510. [PMID: 34273846 DOI: 10.1016/j.ecoenv.2021.112510] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) is the second richest element in the soil and surface of earth crust with a variety of positive roles in soils and plants. Different soil factors influence the Si bioavailability in soil-plant system. The Si involves in the mitigation of various biotic (insect pests and pathogenic diseases) and abiotic stresses (salt, drought, heat, and heavy metals etc.) in plants by improving plant tolerance mechanism at various levels. However, Si-mediated restrictions in heavy metals uptake and translocation from soil to plants and within plants require deep understandings. Recently, Si-based improvements in plant defense system, cell damage repair, cell homeostasis, and regulation of metabolism under heavy metal stress are getting more attention. However, limited knowledge is available on the molecular mechanisms by which Si can reduce the toxicity of heavy metals, their uptake and transfer from soil to plant roots. Thus, this review is focused the following facets in greater detail to provide better understandings about the role of Si at molecular level; (i) how Si improves tolerance in plants to variable environmental conditions, (ii) how biological factors affect Si pools in the soil (iii) how soil properties impact the release and capability of Si to decrease the bioavailability of heavy metals in soil and their accumulation in plant roots; (iv) how Si influences the plant root system with respect to heavy metals uptake or sequestration, root Fe/Mn plaque, root cell wall and compartment; (v) how Si makes complexes with heavy metals and restricts their translocation/transfer in root cell and influences the plant hormonal regulation; (vi) the competition of uptake between Si and heavy metals such as arsenic, aluminum, and cadmium due to similar membrane transporters, and (vii) how Si-mediated regulation of gene expression involves in the uptake, transportation and accumulation of heavy metals by plants and their possible detoxification mechanisms. Furthermore, future research work with respect to mitigation of heavy metal toxicity in plants is also discussed.
Collapse
Affiliation(s)
- Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Samrah Afzal Awan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
33
|
Wei T, Li X, Yashir N, Li H, Sun Y, Hua L, Ren X, Guo J. Effect of exogenous silicon and methyl jasmonate on the alleviation of cadmium-induced phytotoxicity in tomato plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51854-51864. [PMID: 33990924 DOI: 10.1007/s11356-021-14252-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a hydroponic experiment was performed to evaluate the effect of exogenous silicon (Si) and methyl jasmonate (MeJA) on the mitigation of Cd toxicity in tomato seedlings. The results revealed that Cd-stressed plants exhibited growth inhibition, increased lipid peroxidation, and impaired photosynthetic pigment accumulation. However, Si and MeJA applied alone or in combination significantly ameliorated the above-mentioned adverse effects induced by Cd. Among all treatments, Cd+Si+MeJA treatment elevated the dry mass of roots, stems, and leaves by 317.39%, 110.85%, and 119.71%, respectively. The chlorophyll a, chlorophyll b, and carotenoid contents in Cd+Si+MeJA-treated group were dramatically elevated (p < 0.05). Meanwhile, the malondialdehyde content in roots and shoots were reduced by 32.24% and 69.94%, respectively. The Si and MeJA applied separately or in combination also resulted in a prominent decrease of Cd influxes in tomato roots; therefore, a reduction of Cd content in tomato tissues were detected, and the Cd concentration in tomato roots were decreased by 27.19%, 25.18%, and 17.51% in Cd+Si, Cd+MeJA and Cd+Si+MeJA-treated plants, respectively. Moreover, in Cd+Si+MeJA-treated group, the percentage of Cd in cell wall fraction was enhanced while that in organelle fraction was decreased as compared with Cd-stressed plants. Collectively, our findings indicated that Si and MeJA application provide a beneficial role in enhancing Cd tolerance and reducing Cd uptake in tomato plants.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xian Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Noman Yashir
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Yanni Sun
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Li Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
34
|
Lv Y, Li Y, Liu X, Xu K. Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117321. [PMID: 33975211 DOI: 10.1016/j.envpol.2021.117321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L-1), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L-1, H202, O2-, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L-1 SMZ, the SMZ accumulation in fruits was 110.54 μg kg-1, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
35
|
Lukacova Z, Svubova R, Selvekova P, Hensel K. The Effect of Plasma Activated Water on Maize ( Zea mays L.) under Arsenic Stress. PLANTS 2021; 10:plants10091899. [PMID: 34579430 PMCID: PMC8473050 DOI: 10.3390/plants10091899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Plasma activated water (PAW) is a source of various chemical species useful for plant growth, development, and stress response. In the present study, PAW was generated by a transient spark discharge (TS) operated in ambient air and used on maize corns and seedlings in the 3 day paper rolls cultivation followed by 10 day hydroponics cultivation. For 3 day cultivation, two pre-treatments were established, “priming PAW” and “rolls PAW”, with corns imbibed for 6 h in the PAW and then watered daily by fresh water and PAW, respectively. The roots and the shoot were then analyzed for guaiacol peroxidase (G-POX, POX) activity, root tissues for their lignification, and root cell walls for in situ POX activity. To evaluate the potential of PAW in the alleviation abiotic stress, ten randomly selected seedlings were hydroponically cultivated for the following 10 days in 0.5 Hoagland nutrient solutions with and without 150 μM As. The seedlings were then analyzed for POX and catalase (CAT) activities after As treatment, their leaves for photosynthetic pigments concentration, and leaves and roots for As concentration. The PAW improved the growth of the 3 day-old seedlings in terms of the root and the shoot length, while roots revealed accelerated endodermal development. After the following 10 day cultivation, roots from PAW pre-treatment were shorter and thinner but more branched than the control roots. The PAW also enhanced the POX activity immediately after the imbibition and in the 3 day old roots. After 10 day hydroponic cultivation, antioxidant response depended on the PAW pre-treatment. CAT activity was higher in As treatments compared to the corresponding PAW treatments, while POX activity was not obvious, and its elevated activity was found only in the priming PAW treatment. The PAW pre-treatment protected chlorophylls in the following treatments combined with As, while carotenoids increased in treatments despite PAW pre-treatment. Finally, the accumulation of As in the roots was not affected by PAW pre-treatment but increased in the leaves.
Collapse
Affiliation(s)
- Zuzana Lukacova
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia;
- Correspondence:
| | - Renata Svubova
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Patricia Selvekova
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia; (P.S.); (K.H.)
| | - Karol Hensel
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia; (P.S.); (K.H.)
| |
Collapse
|
36
|
Janeeshma E, Puthur JT, Ahmad P. Silicon distribution in leaves and roots of rice and maize in response to cadmium and zinc toxicity and the associated histological variations. PHYSIOLOGIA PLANTARUM 2021; 173:460-471. [PMID: 33305357 DOI: 10.1111/ppl.13310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
At present, the levels of cadmium (Cd) and zinc (Zn) in arable land are high and affect the growth and development of important food crops, including rice and maize. However, the application of silicon (Si) in contaminated areas increases the metal tolerance potential of these plants. This work aimed to study the variations in the distribution pattern of endogenous Si in various tissue regions in roots and leaves of rice and maize exposed to cadmium (Cd) and zinc (Zn) stresses. For these experiments, 45 day-old rice (var. Varsha) and maize (var. CoHM6) seedlings were treated with 1.95 g Zn and 0.45 g Cd kg-1 soil. Under Cd stress, the distribution of Si was high in the cortical region of the root, but under Zn stress, the highest Si deposition was found in the endodermis. In leaves, Si deposition was high in both the mesodermis and stelar regions of Cd-treated plants but more Si was deposited in the mesodermis tissue of Zn-treated plants. Heavy metal (Cd and Zn) accumulation and Si deposition showed a strong negative correlation in the roots of rice and maize plants. Complexation with metal ions and redistribution of Si were considered the major mechanisms in Si-mediated mitigation of Cd and Zn stress. Cd- and Zn-induced anatomical changes, such as endodermal thickening, deposits in the xylary elements and aerenchyma formation in the roots of rice and maize, were also associated with the Si distribution.
Collapse
Affiliation(s)
- Edappayil Janeeshma
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kozhikode, Kerala, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kozhikode, Kerala, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Silicon and cadmium interaction of maize (Zea mays L.) plants cultivated in vitro. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Bokor B, Santos CS, Kostoláni D, Machado J, da Silva MN, Carvalho SMP, Vaculík M, Vasconcelos MW. Mitigation of climate change and environmental hazards in plants: Potential role of the beneficial metalloid silicon. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126193. [PMID: 34492957 DOI: 10.1016/j.jhazmat.2021.126193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/06/2020] [Accepted: 05/20/2021] [Indexed: 05/25/2023]
Abstract
In the last decades, the concentration of atmospheric CO2 and the average temperature have been increasing, and this trend is expected to become more severe in the near future. Additionally, environmental stresses including drought, salinity, UV-radiation, heavy metals, and toxic elements exposure represent a threat for ecosystems and agriculture. Climate and environmental changes negatively affect plant growth, biomass and yield production, and also enhance plant susceptibility to pests and diseases. Silicon (Si), as a beneficial element for plants, is involved in plant tolerance and/or resistance to various abiotic and biotic stresses. The beneficial role of Si has been shown in various plant species and its accumulation relies on the root's uptake capacity. However, Si uptake in plants depends on many biogeochemical factors that may be substantially altered in the future, affecting its functional role in plant protection. At present, it is not clear whether Si accumulation in plants will be positively or negatively affected by changing climate and environmental conditions. In this review, we focused on Si interaction with the most important factors of global change and environmental hazards in plants, discussing the potential role of its application as an alleviation strategy for climate and environmental hazards based on current knowledge.
Collapse
Affiliation(s)
- Boris Bokor
- Comenius University Science Park, 841 04 Bratislava, Slovakia; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia.
| | - Carla S Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Dominik Kostoláni
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Joana Machado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Susana M P Carvalho
- GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23 Bratislava, Slovakia
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
39
|
Vaculík M, Kováč J, Fialová I, Fiala R, Jašková K, Luxová M. Multiple effects of silicon on alleviation of nickel toxicity in young maize roots. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125570. [PMID: 33765562 DOI: 10.1016/j.jhazmat.2021.125570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/12/2020] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Although beneficial metalloid silicon (Si) has been shown to alleviate the toxicity of various heavy metals, there is a lack of knowledge about the role of Si in possible alleviation of phytotoxicity caused by excess of essential nickel (Ni). In the present study we investigated the growth and biomass production, reactive oxygen species (ROS) formation and activities of selected antioxidants, as well as combined effect of Ni and Si on the integrity of cell membranes and electrolyte leakage in young maize roots treated for 24, 48 and 72 h with excess of Ni and/or Si. By histochemical methods we also visualized Ni distribution in root tissues and compared the uptake of Ni and Si with the development of root apoplasmic barriers. Ni enhanced the root lignification and suberization and shifted the development of apoplasmic barriers towards the root tip. Similarly, localization of Ni correlated with lignin and suberin deposition in root endodermis, further supporting the barrier role of this tissue in Ni uptake. Si reversed the negative impact of Ni on root anatomy. Additionally, improved cell membrane integrity, and enhanced ascorbate-based antioxidant system might be the mechanisms how Si partially mitigates the deleterious effects of Ni excess in maize plants.
Collapse
Affiliation(s)
- Marek Vaculík
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 23 Bratislava, Slovakia; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia.
| | - Ján Kováč
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 23 Bratislava, Slovakia; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Ivana Fialová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 23 Bratislava, Slovakia
| | - Roderik Fiala
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 23 Bratislava, Slovakia
| | - Katarína Jašková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 23 Bratislava, Slovakia
| | - Miroslava Luxová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 23 Bratislava, Slovakia
| |
Collapse
|
40
|
Tripathi P, Subedi S, Khan AL, Chung YS, Kim Y. Silicon Effects on the Root System of Diverse Crop Species Using Root Phenotyping Technology. PLANTS (BASEL, SWITZERLAND) 2021; 10:885. [PMID: 33924781 PMCID: PMC8145683 DOI: 10.3390/plants10050885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
Roots play an essential function in the plant life cycle, as they utilize water and essential nutrients to promote growth and plant productivity. In particular, root morphology characteristics (such as length, diameter, hairs, and lateral growth) and the architecture of the root system (spatial configuration in soil, shape, and structure) are the key elements that ensure growth and a fine-tuned response to stressful conditions. Silicon (Si) is a ubiquitous element in soil, and it can affect a wide range of physiological processes occurring in the rhizosphere of various crop species. Studies have shown that Si significantly and positively enhances root morphological traits, including root length in rice, soybean, barley, sorghum, mustard, alfalfa, ginseng, and wheat. The analysis of these morphological traits using conventional methods is particularly challenging. Currently, image analysis methods based on advanced machine learning technologies allowed researchers to screen numerous samples at the same time considering multiple features, and to investigate root functions after the application of Si. These methods include root scanning, endoscopy, two-dimensional, and three-dimensional imaging, which can measure Si uptake, translocation and root morphological traits. Small variations in root morphology and architecture can reveal different positive impacts of Si on the root system of crops, with or without exposure to stressful environmental conditions. This review comprehensively illustrates the influences of Si on root morphology and root architecture in various crop species. Furthermore, it includes recommendations in regard to advanced methods and strategies to be employed to maintain sustainable plant growth rates and crop production in the currently predicted global climate change scenarios.
Collapse
Affiliation(s)
- Pooja Tripathi
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (P.T.); (S.S.)
| | - Sangita Subedi
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (P.T.); (S.S.)
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Yong-Suk Chung
- Faculty of Bioscience and Industry, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Korea;
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (P.T.); (S.S.)
| |
Collapse
|
41
|
Ma C, Ci K, Zhu J, Sun Z, Liu Z, Li X, Zhu Y, Tang C, Wang P, Liu Z. Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143501. [PMID: 33229080 DOI: 10.1016/j.scitotenv.2020.143501] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Exogenous silicon has been shown to enhance plant growth and alleviate heavy metals toxicity, but the regulation mechanism of silicon on cadmium migration and transformation in the soil-rice system is still unclear, which is worth further study. In this study, a pot experiment was carried out to explore the influence of different doses (0, 1 and 5%) of mineral silicon on soil properties, nutrient availability, rice growth, soil enzyme activities, Cd bioavailability, and uptake and accumulation of Cd in high-accumulating (H) and low-accumulating (L) rice cultivars grown in contaminated soils. Results showed that mineral-Si treatment could increase the total biomass and grain yield, with an increased rate of 17.7-27.3% and 14.7-19.1% for H; while 26.2-33.4% and 21.3-30.3% for L. Compared with non-mineral-Si treatment, the soil EX-Cd decreased by 3.9-13.3% (H) and 2.3-10.7% (L). Additionally, the Cd content in rice grain was significantly declined by 29.5-31.3% (H) and 34.9-35.2% (L). Mineral-Si enhanced urease, sucrase, and neutral phosphatase activities in both cultivars, but suppressed catalase activity in H. A selective change in bacterial community structure was observed under mineral-Si treatment, however, the bacterial community remained stable, suggesting that the mineral-Si had no adverse effect on the microbial community. The positive response of soil enzymes activities, rice growth and the overall stabilization of microbial environment for mineral-Si addition to the Cd contaminated soils indicated that mineral-Si could mitigate the risk of Cd and well maintain the soil health, proving it to be eco-friendly and low-cost amendment for soils remediation.
Collapse
Affiliation(s)
- Chunya Ma
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kaidong Ci
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ziling Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinyi Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yelin Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Cheng Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
42
|
Yadav V, Arif N, Kováč J, Singh VP, Tripathi DK, Chauhan DK, Vaculík M. Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:100-112. [PMID: 33359959 DOI: 10.1016/j.plaphy.2020.11.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
At the dawn of the industrial revolution, the exorbitant use of heavy metals and toxic elements by mankind unfurls a powerful and complex web of hazard all around the world that significantly contributed to unprecedented trends in environmental degradation. Plants as sessile organisms, that cannot escape from the stress directly, have adapted to this environment via concurrent configurations of several traits. Among them the anatomy has been identified as much more advanced field of research that brought the explosion of interest among the expertise and its prodigious importance in stress physiology is unavoidable. In conjunction with various other disciplines, like physiology, biochemistry, genomics and metabolomics, the plant anatomy provides a large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense and productivity under heavy metal and toxic element stress. Present paper advances our recent knowledge about structural alterations of plant tissues induced by metals and metalloids, like antimony (Sb), arsenic (As), aluminium (Al), copper (Cu), cadmium (Cd), chromium (Cr), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni) and zinc (Zn) and points on essential role of plant anatomy and its understanding for plant growth and development in changing environment. Understanding of anatomical adaptations of various plant organs and tissues to heavy metals and metalloids could greatly contribute to integral and modern approach for investigation of plants in changing environmental conditions. These findings are necessary for understanding of the whole spectra of physiological and biochemical reactions in plants and to maintain the crop productivity worldwide. Moreover, our holistic perception regarding the processes underlying the plant responses to metal(loids) at anatomical level are needed for improving crop management and breeding techniques.
Collapse
Affiliation(s)
- Vaishali Yadav
- D. D. Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Allahabad, 211 002, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Allahabad, 211 002, India
| | - Ján Kováč
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, SK-842 15, Bratislava, Slovakia; Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 01, Zvolen, Slovakia
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent PG College of University of Allahabad, Allahabad, 211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida, 201313, India.
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Allahabad, 211 002, India.
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, SK-842 15, Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23, Bratislava, Slovakia.
| |
Collapse
|
43
|
Bathoova M, Švubová R, Bokor B, Neděla V, Tihlaříková E, Martinka M. Silicon triggers sorghum root enzyme activities and inhibits the root cell colonization by Alternaria alternata. PLANTA 2021; 253:29. [PMID: 33423117 DOI: 10.1007/s00425-020-03560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.
Collapse
Affiliation(s)
- Monika Bathoova
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic.
| | - Renáta Švubová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
- Comenius University Science Park, Comenius University in Bratislava, Ilkovicova 8, 841 04, Bratislava, Slovak Republic
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 00, Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 00, Brno, Czech Republic
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava 4, Slovak Republic
| |
Collapse
|
44
|
Romdhane L, Ebinezer LB, Panozzo A, Barion G, Dal Cortivo C, Radhouane L, Vamerali T. Effects of Soil Amendment With Wood Ash on Transpiration, Growth, and Metal Uptake in Two Contrasting Maize ( Zea mays L.) Hybrids to Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2021. [PMID: 34093619 DOI: 10.3390/agronomy11010178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Wood ash as a soil amendment has gained wide spread acceptance in the recent years as a sustainable alternative to chemical fertilizers, although information regarding the effects of its application on maize growth and yield in the context of climate change and increasing drought severity is lacking till date. In the present study, field and pot trials were carried out at the experimental farm of the University of Padova at Legnaro (NE Italy) in a silty-loam soil in order to investigate the effects of soil amendment with wood ash (0.1% w/w, incorporated into the 0.2-m top soil) on the bioavailability of mineral elements and their uptake by maize. Characteristics analyzed included plant growth, leaf transpiration dynamics, and productivity in two contrasting hybrids, P1921 (drought sensitive) and D24 (drought tolerant). Wood ash contained relevant amounts of Ca, K, Mg, P, and S, and hazardous levels of Zn (732 mg kg-1), Pb (527 mg kg-1), and Cu (129 mg kg-1), although no significant changes in total soil element concentration, pH, and electrical conductivity were detected in open field. Ash application led to a general increasing trend of diethylene triamine penta-acetic acid (DTPA)-extractable of various elements, bringing to higher grain P in D24 hybrid, and Zn and Ni reductions in P1921 hybrid. Here, the results demonstrated that ash amendment enhanced shoot growth and the number of leaves, causing a reduction of harvest index, without affecting grain yield in both hybrids. The most relevant result was a retarded inhibition of leaf transpiration under artificial progressive water stress, particularly in the drought-tolerant D24 hybrid that could be sustained by root growth improvements in the field across the whole 0-1.5 m soil profile in D24, and in the amended top soil in P1921. It is concluded that woody ash can be profitably exploited in maize fertilization for enhancing shoot and root growth and drought tolerance, thanks to morphological and physiological improvements, although major benefits are expected to be achieved in drought tolerant hybrids. Attention should be payed when using ash derived by metal contaminated wood stocks to avoid any health risk in food uses.
Collapse
Affiliation(s)
- Leila Romdhane
- Laboratoire Sciences et Techniques Agronomiques (LR16INRAT05), National Institute of Agricultural Research (INRAT), University of Carthage, Ariana, Tunisia
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| | - Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| | - Giuseppe Barion
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| | - Cristian Dal Cortivo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| | - Leila Radhouane
- Laboratoire Sciences et Techniques Agronomiques (LR16INRAT05), National Institute of Agricultural Research (INRAT), University of Carthage, Ariana, Tunisia
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro, Italy
| |
Collapse
|
45
|
Waheed S, Ahmad R, Irshad M, Khan SA, Mahmood Q, Shahzad M. Ca 2SiO 4 chemigation reduces cadmium localization in the subcellular leaf fractions of spinach (Spinacia oleracea L.) under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111230. [PMID: 32898815 DOI: 10.1016/j.ecoenv.2020.111230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal like cadmium (Cd) is inessential and highly toxic and is posing serious environmental problems for agriculture worldwide. Presence of Cd gives rise to several physiological and structural disorders that leads to reduction in growth and performance of agricultural plants. Evidence related to subcellular distribution and accumulation of Cd is still enigmatic. Experiment was conducted using hydroponic culture to examine the subcellular accumulation of Cd in Spinacia oleracea L. leaves under Cd stress (50 μM and 100 μM); moreover, the Cd toxicity alleviation using 5 mM silicon (Si) was investigated. Our findings suggest that fresh and dry biomass, shoot and root length, leaf area and length of leaf declined when exposed to Cd stress (50 μM and 100 μM); however, an increase was noticed when Cd treated plants were supplied with Si (5 mM). The content of Ca2+, Mg2+ and Fe2+ in apoplastic washing fluid and symplasm were found to be lower in plants treated with alone Cd, when compared to control. Higher Cd2+:Ca2+, Cd2+:Fe2+ and Cd2+:Mg2+ ratios were detected under cadmium stress in both apoplast and symplast of leaves which were lowered by the addition of 5 mM Si. The novelty of the current study is the detection of increased apoplastic and symplastic Cd concentration in aerial part (i.e., spinach leaves) under alone Cd treatment which was considerably reduced when supplied with Si. Moreover, a noticeable increase in spinach growth and beneficial ionic concentrations suggest that Si can ameliorate the Cd stress in crop plants.
Collapse
Affiliation(s)
- Shumail Waheed
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Rafiq Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Sabaz Ali Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan.
| |
Collapse
|
46
|
Kreszies T, Kreszies V, Ly F, Thangamani PD, Shellakkutti N, Schreiber L. Suberized transport barriers in plant roots: the effect of silicon. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6799-6806. [PMID: 32333766 DOI: 10.1093/jxb/eraa203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/22/2020] [Indexed: 05/14/2023]
Abstract
Plant roots are the major organs that take up water and dissolved nutrients. It has been widely shown that apoplastic barriers such as Casparian bands and suberin lamellae in the endo- and exodermis of roots have an important effect on regulating radial water and nutrient transport. Furthermore, it has been described that silicon can promote plant growth and survival under different conditions. However, the potential effects of silicon on the formation and structure of apoplastic barriers are controversial. A delayed as well as an enhanced suberization of root apoplastic barriers with silicon has been described in the literature. Here we review the effects of silicon on the formation of suberized apoplastic barriers in roots, and present results of the effect of silicon treatment on the formation of endodermal suberized barriers on barley seminal roots under control conditions and when exposed to osmotic stress. Chemical analysis confirmed that osmotic stress enhanced barley root suberization. While a supplementation with silicon in both, control conditions and osmotic stress, did not enhanced barley root suberization. These results suggest that enhanced stress tolerance of plants after silicon treatment is due to other responses.
Collapse
Affiliation(s)
- Tino Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, Bonn, Germany
| | - Victoria Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, Bonn, Germany
| | - Falko Ly
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, Bonn, Germany
| | - Priya Dharshini Thangamani
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, Bonn, Germany
| | - Nandhini Shellakkutti
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, Bonn, Germany
| |
Collapse
|
47
|
Vaculík M, Lukačová Z, Bokor B, Martinka M, Tripathi DK, Lux A. Alleviation mechanisms of metal(loid) stress in plants by silicon: a review. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6744-6757. [PMID: 32569367 DOI: 10.1093/jxb/eraa288] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/15/2020] [Indexed: 05/06/2023]
Abstract
Silicon (Si), although not considered as an essential element for plants in general, can ameliorate the phytotoxicity induced by excess metal(loid)s whether non-essential (e.g. Cd, Pb, Cr, Al, As, and Sb) or essential (e.g. Cu, Ni, and Zn). The Si-enhanced resistance allowing plants to cope with this type of abiotic stress has been developed at multiple levels in plants. Restriction of root uptake and immobilization of metal(loid)s in the rhizosphere by Si is probably one of the first defence mechanism. Further, retention of elements in the root apoplasm might enhance the resistance and vigour of plants. At the cellular level, the formation of insoluble complexes between Si and metal(loid)s and their storage within cell walls help plants to decrease available element concentration and restrict symplasmic uptake. Moreover, Si influences the oxidative status of plants by modifying the activity of various antioxidants, improves membrane stability, and acts on gene expression, although its exact role in these processes is still not well understood. This review focuses on all currently known plant-based mechanisms related to Si supply and involved in amelioration of stress caused by excess metal(loid)s.
Collapse
Affiliation(s)
- Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Zuzana Lukačová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Comenius University Science Park, Ilkovicova 8, Bratislava, Slovakia
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sect 125, Noida, Uttar Pradesh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| |
Collapse
|
48
|
Emamverdian A, Ding Y, Mokhberdoran F, Ahmad Z, Xie Y. Determination of heavy metal tolerance threshold in a bamboo species (Arundinaria pygmaea) as treated with silicon dioxide nanoparticles. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
49
|
Sheng H, Chen S. Plant silicon-cell wall complexes: Identification, model of covalent bond formation and biofunction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:13-19. [PMID: 32736240 DOI: 10.1016/j.plaphy.2020.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Silicon (Si) is the second most abundant element on earth crust, consisting primarily of silicate minerals. Si is found in the tissues of almost all terrestrial plants and is mostly deposited in specialized cells or cell walls as amorphous silica. Numerous discoveries have shown that in addition to non-covalent interactions through amorphous silica, Si can form covalent bonds with plant cell wall components such as hemicelluloses, pectin and lignin. The covalent bonds may be formed via Si-O-C linkages between monosilicic acid (H4SiO4) and cis-diols of cell wall polysaccharides or lignin. The covalently bound organosilicon, independent of amorphous inorganic silica, may play a crucial role in plant cell wall structure and remodeling and thus plant growth and its resistance against biotic and abiotic stresses. This review discusses the existing research on the discovery of plant silicon-cell wall complexes and proposes a model of their covalent bond formation and biofunction.
Collapse
Affiliation(s)
- Huachun Sheng
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Shaolin Chen
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
50
|
Liu X, Yin L, Deng X, Gong D, Du S, Wang S, Zhang Z. Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122679. [PMID: 32330780 DOI: 10.1016/j.jhazmat.2020.122679] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) contamination is a serious threat to plants and humans. Application of silicon (Si) or nitric oxide (NO) could alleviate Cd accumulation and toxicity in plants, but whether they have joint effects on alleviating of Cd accumulation and toxicity are not known. Therefore, the combined effect of Si and NO application on maize growth, Cd uptake, Cd transports and Cd accumulation were investigated in a pot experiment. Here, we reported that Cd stress decreased growth, caused Cd accumulation in plants. The combined application of Si and NO triggered a significant response in maize, increasing plant growth and reducing Cd uptake, accumulation, translocation and bioaccumulation factors under Cd stress. The grain Cd concentration was decreased by 66 % in the Si and NO combined treatment than Cd treatment. Moreover, the combined application of Si and NO reduced Cd health risk index in maize more effectively than either treatment alone. This study provided new evidence that Si and NO have a strong joint effect on alleviating the adverse effects of Cd toxicity by decreasing Cd uptake and accumulation. We advocate for supplement of Cd-contaminated soil with Si fertilizers and treatment of crops with NO as a practical approach to alleviating Cd toxicity.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Di Gong
- Yan'an Forestry Investigation and Planning Institute, Yan'an, Shanxi, 716000, China.
| | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhiyong Zhang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat/Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|