1
|
Haq IU, Rahim K, Yahya G, Ijaz B, Maryam S, Paker NP. Eco-smart biocontrol strategies utilizing potent microbes for sustainable management of phytopathogenic diseases. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00859. [PMID: 39308938 PMCID: PMC11415593 DOI: 10.1016/j.btre.2024.e00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Plants have an impact on the economy because they are used in the food and medical industries. Plants are a source of macro- and micronutrients for the health of humans and animals; however, the rise in microbial diseases has put plant health and yield at risk. Because there are insufficient controls, microbial infections annually impact approximately 25 % of the world's plant crops. Alternative strategies, such as biocontrol, are required to fight these illnesses. This review discusses the potential uses of recently discovered microorganisms because they are safe, effective, and unlikely to cause drug resistance. They have no negative effects on soil microbiology or the environment because they are environmentally benign. Biological control enhances indigenous microbiomes by reducing bacterial wilt, brown blotch, fire blight, and crown gall. More research is required to make these biocontrol agents more stable, effective, and less toxic before they can be used in commercial settings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais Belo Horizonte, Brazil
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663, Kaiserslautern, Germany
| | - Bushra Ijaz
- Department of Functional and Evolutionary Ecology, University of Vienna, Austria
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Najeeba Parre Paker
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
2
|
Baldin C, Segreto R, Bazafkan H, Schenk M, Millinger J, Schreiner U, Flatschacher D, Speckbacher V, Pierson S, Alilou M, Atanasova L, Zeilinger S. Are1-mediated nitrogen metabolism is associated with iron regulation in the mycoparasite Trichoderma atroviride. Microbiol Res 2024; 289:127907. [PMID: 39348793 DOI: 10.1016/j.micres.2024.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Trichoderma atroviride is a mycoparasitic fungus with antagonistic activity against fungal pathogens and is used as a pathogen control agent alternative to synthetic fungicides. Sensing nutrient availability in the environment and adjusting metabolism for optimal growth, development and reproduction is essential for adaptability and is relevant to its mycoparasitic activity. During mycoparasitism, secondary metabolites are produced to weaken the fungal prey and support the attack. Are1-like proteins act as major GATA-type transcription factors in the activation of genes subject to nitrogen catabolite repression. Since the quality and quantity of nitrogen has been proven particularly relevant in remodeling the biosynthesis of secondary metabolites in fungi, we decided to functionally characterize Are1, the ortholog of Aspergillus nidulans AreA, in T. atroviride. We show that the growth of the T. atroviride ∆are1 mutant is impaired in comparison to the wild type on several nitrogen sources. Deletion of are1 enhanced sensitivity to oxidative and cell-wall stressors and altered the mycoparasitic activity. We were able to identify for the first time a link between Are1 and iron homeostasis via a regulatory mechanism that does not appear to be strictly linked to the nitrogen source, but rather to an independent role of the transcription factor.
Collapse
Affiliation(s)
- Clara Baldin
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Rossana Segreto
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Hoda Bazafkan
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Martina Schenk
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Julia Millinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Siebe Pierson
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Mostafa Alilou
- Department of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lea Atanasova
- Department of Food Science and Technology, University of Natural Resources and Life Science (BOKU), Vienna, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Eichfeld R, Mahdi LK, De Quattro C, Armbruster L, Endeshaw AB, Miyauchi S, Hellmann MJ, Cord-Landwehr S, Peterson D, Singan V, Lail K, Savage E, Ng V, Grigoriev IV, Langen G, Moerschbacher BM, Zuccaro A. Transcriptomics reveal a mechanism of niche defense: two beneficial root endophytes deploy an antimicrobial GH18-CBM5 chitinase to protect their hosts. THE NEW PHYTOLOGIST 2024; 244:980-996. [PMID: 39224928 DOI: 10.1111/nph.20080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Effector secretion is crucial for root endophytes to establish and protect their ecological niche. We used time-resolved transcriptomics to monitor effector gene expression dynamics in two closely related Sebacinales, Serendipita indica and Serendipita vermifera, during symbiosis with three plant species, competition with the phytopathogenic fungus Bipolaris sorokiniana, and cooperation with root-associated bacteria. We observed increased effector gene expression in response to biotic interactions, particularly with plants, indicating their importance in host colonization. Some effectors responded to both plants and microbes, suggesting dual roles in intermicrobial competition and plant-microbe interactions. A subset of putative antimicrobial effectors, including a GH18-CBM5 chitinase, was induced exclusively by microbes. Functional analyses of this chitinase revealed its antimicrobial and plant-protective properties. We conclude that dynamic effector gene expression underpins the ability of Sebacinales to thrive in diverse ecological niches with a single fungal chitinase contributing substantially to niche defense.
Collapse
Affiliation(s)
- Ruben Eichfeld
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Lisa K Mahdi
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Concetta De Quattro
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Laura Armbruster
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Asmamaw B Endeshaw
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Shingo Miyauchi
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Daniel Peterson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kathleen Lail
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Gregor Langen
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| |
Collapse
|
4
|
Valiyambath VK, Thomas TA, George P, Neettiyath Kalathil L, Kaprakkaden A, Subraya KK, Raghavan D, Ravindran P. Characterization and quantification of peptaibol produced by novel Trichoderma spp: Harnessing their potential to mitigate moisture stress through enhanced biochemical and physiological responses in black pepper (Piper nigrum L.). World J Microbiol Biotechnol 2024; 40:330. [PMID: 39358481 DOI: 10.1007/s11274-024-04131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Trichoderma spp. is primarily applied to manage biotic stresses in plants. Still, they also can mitigate abiotic stresses by the stimulation of antioxidative protective mechanisms and enhanced synthesis of secondary metabolites. The study optimized the conditions to enhance peptaibol production by novel Trichoderma spp, characterized and quantified peptaibol- alamethicin using HPLC and LC MS-MS. The present study investigated these isolates efficacy in enhancing growth and the associated physio-biochemical changes in black pepper plants under moisture stress. Under in vitro conditions, out of 51 isolates studied, six isolates viz., T. asperellum (IISR NAIMCC 0049), T. erinaceum (IISR APT1), T. harzianum (IISR APT2), T. harzianum (IISR KL3), T. lixii (IISR KA15) and T. asperellum (IISR TN3) showed tolerance to low moisture levels (5, 10 and 20%) and higher temperatures (35 and 40 °C). In vivo evaluation on black pepper plants maintained under four different moisture levels (Field capacity [FC]; 75%, 50%, and 25%) showed that the plants inoculated with Trichoderma accumulated greater quantities of secondary metabolites viz., proline, phenols, MDA and soluble proteins at low moisture levels (50% and 25% FC). In the present study, plants inoculated with T. asperellum and T. harzianum showed significantly increased growth compared to uninoculated plants. The shortlisted Trichoderma isolates exhibited differences in peptaibol production and indicated that the peptide might be the key factor for their efficiency as biocontrol agents. The present study also demonstrated that Trichoderma isolates T. harzianum and T. asperellum (IISR APT2 & NAIMCC 0049) enhanced the drought-tolerant capabilities of black pepper by improving plant growth and secondary metabolite production.
Collapse
Affiliation(s)
- Vijayasanthi Kodakkal Valiyambath
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
- Department of Botany, University of Calicut, Malappuram, 673635, Kerala, India
| | - Titty Anna Thomas
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
| | - Priya George
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
| | | | - Anees Kaprakkaden
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
| | | | - Dinesh Raghavan
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India
| | - Praveena Ravindran
- ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India.
| |
Collapse
|
5
|
Silva LG, Camargo RC, Mascarin GM, Favaro CP, Nunes PSO, Farinas CS, Ribeiro C, Bettiol W. Innovative sustainable bioreactor-in-a-granule formulation of Trichoderma asperelloides. Appl Microbiol Biotechnol 2024; 108:458. [PMID: 39230670 PMCID: PMC11374816 DOI: 10.1007/s00253-024-13261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/05/2024]
Abstract
The advancement of fungal biocontrol agents depends on replacing cereal grains with low-cost agro-industrial byproducts for their economical mass production and development of stable formulations. We propose an innovative approach to develop a rice flour-based formulation of the beneficial biocontrol agent Trichoderma asperelloides CMAA1584 designed to simulate a micro-bioreactor within the concept of full biorefinery process, affording in situ conidiation, extended shelf-life, and effective control of Sclerotinia sclerotiorum, a devastating pathogen of several dicot agricultural crops worldwide. Rice flour is an inexpensive and underexplored byproduct derived from broken rice after milling, capable of sustaining high yields of conidial production through our optimized fermentation-formulation route. Conidial yield was mainly influenced by nitrogen content (0.1% w/w) added to the rice meal coupled with the fermentor type. Hydrolyzed yeast was the best nitrogen source yielding 2.6 × 109 colony-forming units (CFU)/g within 14 days. Subsequently, GControl, GLecithin, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru formulations were obtained by extrusion followed by air-drying and further assessed for their potential to induce secondary sporulation in situ, storage stability, and efficacy against Sclerotinia. GControl, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru stood out with the highest number of CFU after sporulation upon re-hydration on water-agar medium. Shelf-life of formulations GControl and GBentonite remained consistent for > 3 months at ambient temperature, while in GBentonite and GOrganic compost+Break-Thru formulations remained viable for 24 months during refrigerated storage. Formulations exhibited similar efficacy in suppressing the myceliogenic germination of Sclerotinia irrespective of their concentration tested (5 × 104 to 5 × 106 CFU/g of soil), resulting in 79.2 to 93.7% relative inhibition. Noteworthily, all 24-month-old formulations kept under cold storage successfully suppressed sclerotia. This work provides an environmentally friendly bioprocess method using rice flour as the main feedstock to develop waste-free granular formulations of Trichoderma conidia that are effective in suppressing Sclerotinia while also improving biopesticide shelf-life. KEY POINTS: • Innovative "bioreactor-in-a-granule" system for T. asperelloides is devised. • Dry granules of aerial conidia remain highly viable for 24 months at 4 °C. • Effective control of white-mold sclerotia via soil application of Trichoderma-based granules.
Collapse
Affiliation(s)
- Lucas Guedes Silva
- Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, 18610-307, Brazil
| | - Renato Cintra Camargo
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", (USP/ESALQ), Piracicaba, SP, 13418-900, Brazil
| | | | | | | | - Cristiane Sanchez Farinas
- Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
- Embrapa Instrumentação, Rua XV de Novembro, nº 1.452, São Carlos, SP, 13560-970, Brazil
| | - Caue Ribeiro
- Embrapa Instrumentação, Rua XV de Novembro, nº 1.452, São Carlos, SP, 13560-970, Brazil
| | - Wagner Bettiol
- Faculdade de Ciências Agronômicas, Departamento de Proteção Vegetal, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, 18610-307, Brazil.
- Embrapa Meio Ambiente, Rod. SP 340 Km 127,5, Jaguariúna, SP, 13918-110, Brazil.
| |
Collapse
|
6
|
Wen Y, Ma Y, Wu Z, Yang Y, Yuan X, Chen K, Luo Y, He Z, Huang X, Deng P, Li C, Yang Z, Chen Z, Ma J, Sun Y. Enhancing rice ecological production: synergistic effects of wheat-straw decomposition and microbial agents on soil health and yield. FRONTIERS IN PLANT SCIENCE 2024; 15:1368184. [PMID: 39175490 PMCID: PMC11338901 DOI: 10.3389/fpls.2024.1368184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Aims This study evaluated the impact of wheat straw return and microbial agent application on rice field environments. Methods Using Rice variety Chuankangyou 2115 and a microbial mix of Bacillus subtilis and Trichoderma harzianum. Five treatments were tested: T1 (no straw return), T2 (straw return), T3, T4, and T5 (straw return with varying ratios of Bacillus subtilis and Trichoderma harzianum). Results Results indicated significant improvements in rice root length, surface area, dry weight, soil nutrients, and enzyme activity across T2-T5 compared to T1, enhancing yield by 3.81-26.63%. T3 (50:50 microbial ratio) was optimal, further increasing root dry weight, soil enzyme activity, effective panicle and spikelet numbers, and yield. Dominant bacteria in T3 included MBNT15, Defluviicoccus, Rokubacteriales, and Latescibacterota. Higher Trichoderma harzianum proportions (75% in T5) increased straw decomposition but slightly inhibited root growth. Correlation analysis revealed a significant positive relationship between yield and soil microorganisms like Gemmatimonadota and Firmicutes at the heading stage. Factors like dry root weight, straw decomposition rate post-jointing stage, and elevated soil enzyme activity and nutrient content from tiller to jointing stage contributed to increased panicle and spikelet numbers, boosting yield. Conclusion The optimal Bacillus subtilis and Trichoderma harzianum ratio for straw return was 50:50, effectively improving soil health and synergizing high rice yield with efficient straw utilization.
Collapse
Affiliation(s)
- Yanfang Wen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yangming Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ziniu Wu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ziting He
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xinhai Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Pengxin Deng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Congmei Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Fu SF, Balasubramanian VK, Chen CL, Tran TT, Muthuramalingam JB, Chou JY. The phosphate-solubilising fungi in sustainable agriculture: unleashing the potential of fungal biofertilisers for plant growth. Folia Microbiol (Praha) 2024; 69:697-712. [PMID: 38937405 DOI: 10.1007/s12223-024-01181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Phosphate-solubilising fungi (PSF) are beneficial microorganisms that play a pivotal role in plant growth by increasing the availability of phosphorus (P) in soil. Although phosphorus is an essential nutrient for plants, it often becomes inaccessible as it binds into insoluble forms. PSF effectively facilitate the release of this bound phosphorus through diverse mechanisms. Numerous fungal species demonstrate the ability to solubilise various types of phosphate compounds. Among the commonly researched PSF are Penicillium, Aspergillus, Rhizopus, Fusarium, Trichoderma, and Sclerotium. Moreover, yeasts such as Saccharomyces cerevisiae can potentially be leveraged as PSF. PSF secrete organic acids that chelate phosphate ions, thereby increasing their solubility in the soil. Moreover, PSF contribute to the decomposition of organic phosphorus compounds in soil by employing enzymes such as phosphatases, phytases, and phosphonatases. Furthermore, PSF can interact with other soil microorganisms, including nitrogen-fixing bacteria and arbuscular mycorrhizal fungi (AM-fungi), fostering synergistic effects that further enhance plant growth and nutrient absorption. The utilisation of PSF as biofertilisers offers numerous advantages over chemical fertilisers, including environmental friendliness, cost-effectiveness, and enhanced fertiliser utilisation efficiency. Furthermore, PSF can prove beneficial in challenging environments characterised by high phosphate sorption. Hence, this review serves as an updated study aimed at broadening the understanding of PSF and its potential applications in P solubilisation. This review also focuses on the diversity of PSF, the mechanisms underlying solubilisation, ecological roles of PSF in soil microbiome, and the benefits of sustainable agriculture. By delving into the ecological roles of PSF and their potential as biofertilisers, this study contributes to a deeper understanding of sustainable agriculture practices and addresses challenges in phosphate-scarce environments.
Collapse
Affiliation(s)
- Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua City, 500, Taiwan
| | | | - Chih-Ling Chen
- Department of Biology, National Changhua University of Education, Changhua City, 500, Taiwan
| | - Thuy Trang Tran
- Department of Biology, National Changhua University of Education, Changhua City, 500, Taiwan
- Department of Food Science, Penn State University, University Park, PA, 16802, USA
| | | | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua City, 500, Taiwan.
| |
Collapse
|
8
|
Muhorakeye MC, Namikoye ES, Khamis FM, Wanjohi W, Akutse KS. Biostimulant and antagonistic potential of endophytic fungi against fusarium wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici. Sci Rep 2024; 14:15365. [PMID: 38965302 PMCID: PMC11224277 DOI: 10.1038/s41598-024-66101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Endophytic fungal-based biopesticides are sustainable and ecologically-friendly biocontrol agents of several pests and diseases. However, their potential in managing tomato fusarium wilt disease (FWD) remains unexploited. This study therefore evaluated effectiveness of nine fungal isolates against tomato fusarium wilt pathogen, Fusarium oxysporum f. sp. lycopersici (FOL) in vitro using dual culture and co-culture assays. The efficacy of three potent endophytes that inhibited the pathogen in vitro was assessed against FWD incidence, severity, and ability to enhance growth and yield of tomatoes in planta. The ability of endophytically-colonized tomato (Solanum lycopersicum L.) plants to systemically defend themselves upon exposure to FOL were also assessed through defence genes expression using qPCR. In vitro assays showed that endophytes inhibited and suppressed FOL mycelial growth better than entomopathogenic fungi (EPF). Endophytes Trichoderma asperellum M2RT4, Hypocrea lixii F3ST1, Trichoderma harzianum KF2R41, and Trichoderma atroviride ICIPE 710 had the highest (68.84-99.61%) suppression and FOL radial growth inhibition rates compared to EPF which exhibited lowest (27.05-40.63%) inhibition rates. Endophytes T. asperellum M2RT4, H. lixii F3ST1 and T. harzianum KF2R41 colonized all tomato plant parts. During the in planta experiment, endophytically-colonized and FOL-infected tomato plants showed significant reduction of FWD incidence and severity compared to non-inoculated plants. In addition, these endophytes contributed to improved growth promotion parameters and yield. Moreover, there was significantly higher expression of tomato defence genes in T. asperellum M2RT4 colonized than in un-inoculated tomato plants. These findings demonstrated that H. lixii F3ST1 and T. asperellum M2RT4 are effective biocontrol agents against FWD and could sustainably mitigate tomato yield losses associated with fusarium wilt.
Collapse
Affiliation(s)
- Marie Cecile Muhorakeye
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Agricultural Science and Technology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
- Rwanda Polytechnic, Integrated Polytechnic Regional College (IPRC) Musanze, P.O. Box 226, Musanze, Rwanda
| | - Everlyne Samita Namikoye
- Department of Agricultural Science and Technology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Waceke Wanjohi
- Department of Agricultural Science and Technology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Komivi S Akutse
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Unit of Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
9
|
Yan S, Xu S, Lei S, Gao Y, Chen K, Shi X, Guo Y, Bilyera N, Yuan M, Yao H. Hyperaccumulator extracts promoting the phytoremediation of rare earth elements (REEs) by Phytolacca americana: Role of active microbial community in rhizosphere hotspots. ENVIRONMENTAL RESEARCH 2024; 252:118939. [PMID: 38621629 DOI: 10.1016/j.envres.2024.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The increased usage of rare earth elements (REEs) leads to the extensive exploitation of rare earth mines, and the REEs pollution in soil caused by the legacy mine tailings has brought great harm to environment and human health. Although Phytolacca americana can remove REEs from contaminated soil to some extent, there is still an urgent problem to improve its efficiency. Hyperaccumulator extract is a new organic material with potential in metal phytoextraction, but its role in REEs phytoremediation and the related underlying processes remain unclear. In this study, hyperaccumulator extracts from P. americana root (PR), stem (PS), leaf (PL) and EDTA were used to improve the phytoremediation efficiency of REEs with P. americana. Soil zymography was applied to assess the enzyme hotspots' spatial distribution in the rhizosphere, and the hotspots' microbial communities were also identified. The results indicated that the application of hyperaccumulator extracts improved the biomass and REEs uptake of P. americana, and the highest REEs content in plant was observed in the treatment of PS, which increased 299% compared to that of the control. Hotspots area of β-glucosidase, leucine aminopeptidase and acid phosphatase were concentrated in the pant rhizosphere along the roots and increased 2.2, 5.3 and 2.2 times after PS application compared to unamended soils. The PS application increased the relative abundance of Proteobacteria, Cyanobacteria, Bacteroidota and Firmicutes phyla in rhizosphere. Soil fungi have a higher contribution on promoting REEs activation than that of bacteria. Available P and extractable REEs were leading predictors for the plant biomass and REEs concentrations. The co-occurrence network showed that the application of PS creates a more efficient and stable microbial network compared to other treatments. In conclusion, stem-derived hyperaccumulator extract is excellent in stimulating REEs phytoremediation with P. americana by improving hotspots microbial activities and form a healthy rhizosphere microenvironment.
Collapse
Affiliation(s)
- Shengpeng Yan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shihan Lei
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuan Gao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Keyi Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaoyu Shi
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yingying Guo
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Nataliya Bilyera
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, 72076, Tuebingen, Germany
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
10
|
Shi YC, Zheng YJ, Lin YC, Huang CH, Shen TL, Hsu YC, Lee BH. Investigation of the Microbial Diversity in the Oryza sativa Cultivation Environment and Artificial Transplantation of Microorganisms to Improve Sustainable Mycobiota. J Fungi (Basel) 2024; 10:412. [PMID: 38921398 PMCID: PMC11205129 DOI: 10.3390/jof10060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Rice straw is not easy to decompose, it takes a long time to compost, and the anaerobic bacteria involved in the decomposition process produce a large amount of carbon dioxide (CO2), indicating that applications for rice straw need to be developed. Recycling rice straw in agricultural crops is an opportunity to increase the sustainability of grain production. Several studies have shown that the probiotic population gradually decreases in the soil, leading to an increased risk of plant diseases and decreased biomass yield. Because the microorganisms in the soil are related to the growth of plants, when the soil microbial community is imbalanced it seriously affects plant growth. We investigated the feasibility of using composted rice stalks to artificially cultivate microorganisms obtained from the Oryza sativa-planted environment for analyzing the mycobiota and evaluating applications for sustainable agriculture. Microbes obtained from the water-submerged part (group-A) and soil part (group-B) of O. sativa were cultured in an artificial medium, and the microbial diversity was analyzed with internal transcribed spacer sequencing. Paddy field soil was mixed with fermented paddy straw compost, and the microbes obtained from the soil used for O. sativa planting were designated as group-C. The paddy fields transplanted with artificially cultured microbes from group-A were designated as group-D and those from group-B were designated as group-E. We found that fungi and yeasts can be cultured in groups-A and -B. These microbes altered the soil mycobiota in the paddy fields after transplantation in groups-D and -E compared to groups-A and -B. Development in O. sativa post treatment with microbial transplantation was observed in the groups-D and -E compared to group-C. These results showed that artificially cultured microorganisms could be efficiently transplanted into the soil and improve the mycobiota. Phytohormones were involved in improving O. sativa growth and rice yield via the submerged part-derived microbial medium (group-D) or the soil part-derived microbial medium (group-E) treatments. Collectively, these fungi and yeasts may be applied in microbial transplantation via rice straw fermentation to repair soil mycobiota imbalances, facilitating plant growth and sustainable agriculture. These fungi and yeasts may be applied in microbial transplantation to repair soil mycobiota imbalances and sustainable agriculture.
Collapse
Affiliation(s)
- Yeu-Ching Shi
- Department of Food Sciences, National Chiayi University, Chiayi 60004, Taiwan;
| | - Yu-Juan Zheng
- Department of Horticultural Sciences, National Chiayi University, Chiayi 60004, Taiwan; (Y.-J.Z.); (Y.-C.L.)
| | - Yi-Ching Lin
- Department of Horticultural Sciences, National Chiayi University, Chiayi 60004, Taiwan; (Y.-J.Z.); (Y.-C.L.)
| | - Cheng-Hao Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Chia Hsu
- Department of Agronomy, National Chiayi University, Chiayi 60004, Taiwan;
| | - Bao-Hong Lee
- Department of Horticultural Sciences, National Chiayi University, Chiayi 60004, Taiwan; (Y.-J.Z.); (Y.-C.L.)
| |
Collapse
|
11
|
Akbari SI, Prismantoro D, Permadi N, Rossiana N, Miranti M, Mispan MS, Mohamed Z, Doni F. Bioprospecting the roles of Trichoderma in alleviating plants' drought tolerance: Principles, mechanisms of action, and prospects. Microbiol Res 2024; 283:127665. [PMID: 38452552 DOI: 10.1016/j.micres.2024.127665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.
Collapse
Affiliation(s)
- Sulistya Ika Akbari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Dedat Prismantoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, West Java 40132, Indonesia
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
| |
Collapse
|
12
|
Cruz JN, Muzammil S, Ashraf A, Ijaz MU, Siddique MH, Abbas R, Sadia M, Saba, Hayat S, Lima RR. A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents. Heliyon 2024; 10:e29500. [PMID: 38660254 PMCID: PMC11040063 DOI: 10.1016/j.heliyon.2024.e29500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The emergence of antimicrobial resistance among biofilm forming pathogens aimed to search for the efficient and novel alternative strategies. Metallic nanoparticles have drawn a considerable attention because of their significant applications in various fields. Numerous methods are developed for the generation of these nanoparticles however, mycogenic (fungal-mediated) synthesis is attractive due to high yields, easier handling, eco-friendly and being energy efficient when compared with conventional physico-chemical methods. Moreover, mycogenic synthesis provides fungal derived biomolecules that coat the nanoparticles thus improving their stability. The process of mycogenic synthesis can be extracellular or intracellular depending on the fungal genera used and various factors such as temperature, pH, biomass concentration and cultivation time may influence the synthesis process. This review focuses on the synthesis of metallic nanoparticles by using fungal mycelium, mechanism of synthesis, factors affecting the mycosynthesis and also describes their potential applications as antioxidants and antibiofilm agents. Moreover, the utilization of mycogenic nanoparticles as quorum quenching agent in hampering the bacterial cell-cell communication (quorum sensing) has also been discussed.
Collapse
Affiliation(s)
- Jorddy N. Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, PA, Brazil Brazil
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | | - Rasti Abbas
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Maimona Sadia
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saba
- Department of Microbiology and Molecular Genetics, The Women University Multan, Mattital Campus, Multan, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, PA, Brazil Brazil
| |
Collapse
|
13
|
Kabir AH, Bennetzen JL. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Microbiol Res 2024; 281:127630. [PMID: 38295681 DOI: 10.1016/j.micres.2024.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Iron (Fe) deficiency is a common mineral stress in plants, including sorghum. Although the soil fungus Trichoderma harzianum has been shown to mitigate Fe deficiency in some circumstances, neither the range nor mechanism(s) of this process are well understood. In this study, high pH-induced Fe deficiency in sorghum cultivated in pots with natural field soil exhibited a significant decrease in biomass, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and Fe-uptake in both the root and shoot. However, the establishment of T. harzianum colonization in roots of Fe-deprived sorghum showed significant improvements in morpho-physiological traits, Fe levels, and redox status. Molecular detection of the fungal ThAOX1 (L-aminoacid oxidase) gene showed the highest colonization of T. harzianum in the root tips of Fe-deficient sorghum, a location thus targeted for further analysis. Expression studies by RNA-seq and qPCR in sorghum root tips revealed a significant upregulation of several genes associated with Fe uptake (SbTOM2), auxin synthesis (SbSAURX15), nicotianamine synthase 3 (SbNAS3), and a phytosiderophore transporter (SbYS1). Also induced was the siderophore synthesis gene (ThSIT1) in T. harzianum, a result supported by biochemical evidence for elevated siderophore and IAA (indole acetic acid) levels in roots. Given the high affinity of fungal siderophore to chelate insoluble Fe3+ ions, it is likely that elevated siderophore released by T. harzianum led to Fe(III)-siderophore complexes in the rhizosphere that were then transported into roots by the induced SbYS1 (yellow-stripe 1) transporter. In addition, the observed induction of several plant peroxidase genes and ABA (abscisic acid) under Fe deficiency after inoculation with T. harzianum may have helped induce tolerance to Fe-deficiency-induced oxidative stress and adaptive responses. This is the first mechanistic explanation for T. harzianum's role in helping alleviate Fe deficiency in sorghum and suggests that biofertilizers using T. harzianum will improve Fe availability to crops in high pH environments.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, LA 71209, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
14
|
Trotta V, Russo D, Rivelli AR, Battaglia D, Bufo SA, Caccavo V, Forlano P, Lelario F, Milella L, Montinaro L, Scrano L, Brienza M. Wastewater irrigation and Trichoderma colonization in tomato plants: effects on plant traits, antioxidant activity, and performance of the insect pest Macrosiphum euphorbiae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18887-18899. [PMID: 38353820 PMCID: PMC10923738 DOI: 10.1007/s11356-024-32407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
The scarcity of freshwater for agriculture in many regions has led to the application of sewage and saline water for irrigation. Irrigation with non-conventional water sources could become a non-harmful process for plant cultivation, and the effects of their use on crops should be monitored in order to develop optimal management strategies. One possibility to overcome potential barriers is to use biostimulants such as Trichoderma spp. fungi. Tomato is a crop of great economic importance in the world. This study investigated the joint effects of Trichoderma afroharzianum T-22 on tomato plants irrigated with simulated unconventional waters. The experiment consisted of a control and three water treatments. In the control, the plants were watered with distilled water. The three water treatments were obtained by using an irrigation water added with nitrogen, a wastewater effluent, and a mixed groundwater-wastewater effluents. Potted tomato plants (variety Bobcat) were grown in a controlled growth chamber. Antioxidant activity, susceptibility to the aphids Macrosiphum euphorbiae, and tomato plant growth parameters were estimated. Trichoderma afroharzianum T-22 had a positive effect on plant growth and antioxidant defenses when plants were irrigated with distilled water. Instead, no significant morphological effects induced by T. afroharzianum T-22 on plants were observed when unconventional water was used for irrigation. However, inoculation with T. afroharzianum T-22 activated a stress response that made the colonized plants more susceptible to aphid development and increased their fecundity and longevity. Thanks to this study, it may be possible for the first time to open a new discussion on the practical possibility of using reclaimed wastewater for crop irrigation with the addition of a growth-promoting fungal symbiont.
Collapse
Affiliation(s)
- Vincenzo Trotta
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Daniela Russo
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Anna Rita Rivelli
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Battaglia
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Sabino Aurelio Bufo
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Vittoria Caccavo
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Pierluigi Forlano
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Filomena Lelario
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Luigi Milella
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Lorenzo Montinaro
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Laura Scrano
- Dipartimento delle Culture Europee e del Mediterraneo, Università della Basilicata, via Lanera 20, 75100, Matera, Italy
| | - Monica Brienza
- Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
15
|
Bandara AY, Kang S. Trichoderma application methods differentially affect the tomato growth, rhizomicrobiome, and rhizosphere soil suppressiveness against Fusarium oxysporum. Front Microbiol 2024; 15:1366690. [PMID: 38476947 PMCID: PMC10929717 DOI: 10.3389/fmicb.2024.1366690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Trichoderma spp. are widely used to enhance crop growth and suppress diverse diseases. However, inconsistent field efficacy remains a major barrier to their use as a reliable alternative to synthetic pesticides. Various strategies have been investigated to enhance the robustness of their application. Here, we evaluated how T. virens application methods (pre-, at-, and post-transplant) affect the growth of two tomato varieties and their rhizosphere fungal and bacterial communities. Although the greatest rhizosphere abundance of T. virens was observed in the post-transplant application, the at-transplant application promoted tomato growth the most, indicating that greater rhizosphere abundance does not necessarily result in better tomato growth. None of the application methods significantly altered the global rhizosphere fungal and bacterial communities of the tested varieties. Changes in specific microbial genera and guilds may underpin the enhanced tomato growth. We also investigated whether the resulting microbiome changes affect the mycelial growth and conidial germination of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici, soilborne fungal pathogens of tomato, upon exposure to volatile compounds emitted by culturable rhizosphere microbes and metabolites extracted from the rhizosphere soils after Trichoderma treatments. Volatile compounds produced by cultured rhizosphere microbes after the at-transplant application suppressed the mycelial growth of both pathogens better than those after the other treatments. Similarly, water-soluble metabolites extracted from the rhizosphere soil samples after the at-transplant application most effectively suppressed the germination rate of F. oxysporum spores. Overall, our results suggest that the at-transplant application is most advantageous for promoting the growth of the tested tomato varieties and building soil suppressiveness against the tested fusaria. However, further studies are needed before applying this method to support tomato production. We discuss critical future questions.
Collapse
|
16
|
Altaf M, Ilyas T, Shahid M, Shafi Z, Tyagi A, Ali S. Trichoderma Inoculation Alleviates Cd and Pb-Induced Toxicity and Improves Growth and Physiology of Vigna radiata (L.). ACS OMEGA 2024; 9:8557-8573. [PMID: 38405473 PMCID: PMC10882690 DOI: 10.1021/acsomega.3c10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Heavy metals (HMs) pose a serious threat to agricultural productivity. Therefore, there is a need to find sustainable approaches to combat HM stressors in agriculture. In this study, we isolated Trichoderma sp. TF-13 from metal-polluted rhizospheric soil, which has the ability to resist 1600 and 1200 μg mL-1 cadmium (Cd) and lead (Pb), respectively. Owing to its remarkable metal tolerance, this fungal strain was applied for bioremediation of HMs in Vigna radiata (L.). Strain TF-13 produced siderophore, salicylic acid (SA; 43.4 μg mL-1) and 2,3-DHBA (21.0 μg mL-1), indole-3-acetic acid, ammonia, and ACC deaminase under HM stressed conditions. Increasing concentrations of tested HM ions caused severe reduction in overall growth of plants; however, Trichoderma sp. TF-13 inoculation significantly (p ≤ 0.05) increased the growth and physiological traits of HM-treated V. radiata. Interestingly, Trichoderma sp. TF-13 improved germination rate (10%), root length (26%), root biomass (32%), and vigor index (12%) of V. radiata grown under 25 μg Cd kg-1 soil. Additionally, Trichoderma inoculation showed a significant (p ≤ 0.05) increase in total chlorophyll, chl a, chl b, carotenoid content, root nitrogen (N), and root phosphorus (P) of 100 μg Cd kg-1 soil-treated plants over uninoculated treatment. Furthermore, enzymatic and nonenzymatic antioxidant activities of Trichoderma inoculated in metal-treated plants were improved. For instance, strain TF-13 increased proline (37%), lipid peroxidation (56%), catalase (35%), peroxidase (42%), superoxide dismutase (27%), and glutathione reductase (39%) activities in 100 μg Pb kg-1 soil-treated plants. The uptake of Pb and Cd in root/shoot tissues was decreased by 34/39 and 47/38% in fungal-inoculated and 25 μg kg-1 soil-treated plants. Thus, this study demonstrates that stabilizing metal mobility in the rhizosphere through Trichoderma inoculation significantly reduced the detrimental effects of Cd and Pb toxicity in V. radiata and also enhanced development under HM stress conditions.
Collapse
Affiliation(s)
- Mohammad Altaf
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, 11451 Riyadh, Saudi
Arabia
| | - Talat Ilyas
- Department
of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Zaryab Shafi
- Department
of Biosciences, Faculty of Science, Integral
University, Lucknow, Uttar Pradesh 226026, India
| | - Anshika Tyagi
- Department
of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Sajad Ali
- Department
of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
17
|
Swiontek Brzezinska M, Shinde AH, Kaczmarek-Szczepańska B, Jankiewicz U, Urbaniak J, Boczkowski S, Zasada L, Ciesielska M, Dembińska K, Pałubicka K, Michalska-Sionkowska M. Biodegradability Study of Modified Chitosan Films with Cinnamic Acid and Ellagic Acid in Soil. Polymers (Basel) 2024; 16:574. [PMID: 38475259 DOI: 10.3390/polym16050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, natural polymer materials with bactericidal properties are extremely popular. Unfortunately, although the biopolymer material itself is biodegradable, its enrichment with bactericidal compounds may affect the efficiency of biodegradation by natural soil microflora. Therefore, the primary objective of this study was to evaluate the utility of fungi belonging to the genus Trichoderma in facilitating the degradation of chitosan film modified with cinnamic acid and ellagic acid in the soil environment. Only two strains (T.07 and T.14) used chitosan films as a source of carbon and nitrogen. However, their respiratory activity decreased with the addition of tested phenolic acids, especially cinnamic acid. Addition of Trichoderma isolates to the soil increased oxygen consumption during the biodegradation process compared with native microorganisms, especially after application of the T.07 and T.14 consortium. Isolates T.07 and T.14 showed high lipolytic (55.78 U/h and 62.21 U/h) and chitinase (43.03 U/h and 41.27 U/h) activities. Chitinase activity after incorporation of the materials into the soil was higher for samples enriched with T.07, T.14 and the consortium. The isolates were classified as Trichoderma sp. and Trichoderma koningii. Considering the outcomes derived from our findings, it is our contention that the application of Trichoderma isolates holds promise for expediting the degradation process of chitosan materials containing bactericidal compounds.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Ambika H Shinde
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Urbaniak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Sławomir Boczkowski
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Magdalena Ciesielska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Krystyna Pałubicka
- Department of Conservation and Restoration of Paper and Leather, Nicolaus Copernicus University, ul. Sienkiewicza 30/32, 87-100 Toruń, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
18
|
Lotfalinezhad E, Taheri A, Razavi SE, Sanei SJ. Preparation and assessment of alginate-microencapsulated Trichoderma harzianum for controlling Sclerotinia sclerotiorum and Rhizoctonia solani on tomato. Int J Biol Macromol 2024; 259:129278. [PMID: 38211905 DOI: 10.1016/j.ijbiomac.2024.129278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
This study aimed to develop microencapsulation technology using alginate to improve the viability and performance of Trichoderma harzianum. The method of ionic gelation was used to prepare the microparticles, and the efficiency of encapsulation was estimated to be 99%. The average size of the prepared microspheres was 2600 μm (wet) and 1000 μm (dry). Scanning electron microscopy revealed that the microspheres were approximately spherical. Fourier transform infrared spectrophotometer analysis indicated an interaction between T. harzianum and the microspheres. The results of temperature resistance and light stability against ultraviolet radiation emphasized the positive impact of microencapsulation in improving the viability and resistance of T. harzianum compared to the non-microencapsulated state. The disease percentage of Rhizoctonia solani and Sclerotinia sclerotiorum in plants treated with microencapsulated T. harzianum microcapsules was 8.88 % and 20 % respectively, but in the control group was 73.33 % (p ≤ 0.05).
Collapse
Affiliation(s)
- Elahe Lotfalinezhad
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seyed Esmaeil Razavi
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seyed Javad Sanei
- Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
19
|
Vega-Arroy JD, Herrera-Estrella A, Ovando-Vázquez C, Casas-Flores S. Inferring co-expression networks of Arabidopsis thaliana genes during their interaction with Trichoderma spp. Sci Rep 2024; 14:2466. [PMID: 38291044 PMCID: PMC10827721 DOI: 10.1038/s41598-023-48332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/25/2023] [Indexed: 02/01/2024] Open
Abstract
Fungi of the Trichoderma genus are called "biostimulants" because they promote plant growth and development and induce disease resistance. We used conventional transcriptome and gene co-expression analyses to understand the molecular response of the plant Arabidopsis thaliana to inoculation with Trichoderma atroviride or Trichoderma virens. The transcriptional landscape of the plant during the interaction with these fungi showed a reduction in functions such as reactive oxygen species production, defense mechanisms against pathogens, and hormone signaling. T. virens, as opposed to T. atroviride, was more effective at downregulating genes related to terpenoid metabolism, root development, and chemical homeostasis. Through gene co-expression analysis, we found functional gene modules that closely link plant defense with hypoxia. Notably, we found a transcription factor (locus AT2G47520) with two functional domains of interest: a DNA-binding domain and an N-terminal cysteine needed for protein stability under hypoxia. We hypothesize that the transcription factor can bind to the promoter sequence of the GCC-box that is connected to pathogenesis by positioned weight matrix analysis.
Collapse
Affiliation(s)
- Javier-David Vega-Arroy
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055. Col. Lomas 4 Sección, 78216, San Luis Potosí, SLP, Mexico
- IPICYT, CONAHCYT, Centro Nacional de Supercomputo, Laboratorio de Inteligencia Artificial y Bioinformática, Camino a la Presa San José 2055. Col. Lomas 4 sección, 78216, San Luis Potosí, SLP, Mexico
| | - Alfredo Herrera-Estrella
- Centro de Investigación y de Estudios Avanzados del IPN, unidad de Genómica Avanzada-Langebio, Libramiento Norte carretera Irapuato-León km 9.6, 36824, Irapuato, GTO, Mexico
| | - Cesaré Ovando-Vázquez
- IPICYT, CONAHCYT, Centro Nacional de Supercomputo, Laboratorio de Inteligencia Artificial y Bioinformática, Camino a la Presa San José 2055. Col. Lomas 4 sección, 78216, San Luis Potosí, SLP, Mexico.
| | - Sergio Casas-Flores
- IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055. Col. Lomas 4 Sección, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
20
|
Olmo R, Quijada NM, Morán-Diez ME, Hermosa R, Monte E. Identification of Tomato microRNAs in Late Response to Trichoderma atroviride. Int J Mol Sci 2024; 25:1617. [PMID: 38338899 PMCID: PMC10855890 DOI: 10.3390/ijms25031617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The tomato (Solanum lycopersicum) is an important crop worldwide and is considered a model plant to study stress responses. Small RNAs (sRNAs), 21-24 nucleotides in length, are recognized as a conserved mechanism for regulating gene expression in eukaryotes. Plant endogenous sRNAs, such as microRNA (miRNA), have been involved in disease resistance. High-throughput RNA sequencing was used to analyze the miRNA profile of the aerial part of 30-day-old tomato plants after the application of the fungus Trichoderma atroviride to the seeds at the transcriptional memory state. Compared to control plants, ten differentially expressed (DE) miRNAs were identified in those inoculated with Trichoderma, five upregulated and five downregulated, of which seven were known (miR166a, miR398-3p, miR408, miR5300, miR6024, miR6027-5p, and miR9471b-3p), and three were putatively novel (novel miR257, novel miR275, and novel miR1767). miRNA expression levels were assessed using real-time quantitative PCR analysis. A plant sRNA target analysis of the DE miRNAs predicted 945 potential target genes, most of them being downregulated (84%). The analysis of KEGG metabolic pathways showed that most of the targets harbored functions associated with plant-pathogen interaction, membrane trafficking, and protein kinases. Expression changes of tomato miRNAs caused by Trichoderma are linked to plant defense responses and appear to have long-lasting effects.
Collapse
Affiliation(s)
| | | | | | | | - Enrique Monte
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37185 Villamayor, Salamanca, Spain; (R.O.); (N.M.Q.); (M.E.M.-D.); (R.H.)
| |
Collapse
|
21
|
Kumar S, Shukla V, Tripathi YN, Aamir M, Divyanshu K, Yadav M, Upadhyay RS. Biochemical changes, antioxidative profile, and efficacy of the bio-stimulant in plant defense response against Sclerotinia sclerotiorum in common bean ( Phasaeolus vulgaris L.). Heliyon 2024; 10:e23030. [PMID: 38169743 PMCID: PMC10758741 DOI: 10.1016/j.heliyon.2023.e23030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Sclerotinia sclerotiorum, is a highly destructive pathogen with widespread impact on common bean (Phasaeolus vulgaris L.) worldwide. In this work, we investigated the efficacy of microbial consortia in bolstering host defense against sclerotinia rot. Specifically, we evaluated the performance of a microbial consortia comprising of Trichoderma erinaceum (T51) and Trichoderma viride (T52) (referred to as the T4 treatment) in terms of biochemical parameters, alleviation of the ROS induced cellular toxicity, membrane integrity (measured as MDA content), nutrient profiling, and the host defense-related antioxidative enzyme activities. Our findings demonstrate a notable enhancement in thiamine content, exhibiting 1.887 and 1.513-fold higher in the T4 compared to the un-inoculated control and the T1 treatment (only S. sclerotiorum treated). Similarly, the total proline content exhibited 3.46 and 1.24-fold higher and the total phenol content was 4.083 and 2.625-fold higher in the T4 compared to the un-inoculated control and the T1 treatment, respectively. Likewise, a general trend was found for other antioxidative and non-oxidative enzyme activities. However, results found were approximately similar in T2 treatment (bioprimed with T51) or T3 treatments (bioprimed with T52). Further, host defense attribute (survival rate) under the pathogen challenged condition was maximum in the T4 (15.55 % disease incidence) compared to others. Therefore, bio priming with consortia could be useful in reducing the economic losses incited by S. sclerotiorum in common beans.
Collapse
Affiliation(s)
- Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
- Central Ayurveda Research Institute, Bhubaneswar, 751029, Odisha, India
| | - Vaishali Shukla
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Yashoda Nandan Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mohd Aamir
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mukesh Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
22
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
23
|
Aris A, Mohd Zainudin NAI, Ibrahim MH. Growth and photosynthetic performance of Fusarium solani infected Cucumis sativus L. treated with Trichoderma asperellum. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2161292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Asma Aris
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nur Ain Izzati Mohd Zainudin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Hafiz Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
24
|
Lang B, Chen J. Trichoderma harzianum Cellulase Gene thph2 Affects Trichoderma Root Colonization and Induces Resistance to Southern Leaf Blight in Maize. J Fungi (Basel) 2023; 9:1168. [PMID: 38132769 PMCID: PMC10744625 DOI: 10.3390/jof9121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Trichoderma, widely distributed all over the world, is commonly found in soil and root ecosystems. It is a group comprising beneficial fungi that improve plant disease resistance and promote plant growth. Studies have shown that Trichoderma cellulases can also improve plant disease resistance. Based on previous studies, we reported that a C6 zinc finger protein (Thc6) regulates two cellulase genes, thph1 and thph2, to induce ISR responses in plants. Therefore, in this study, we focused on the role of thph2 in the colonization of maize roots by T. harzianum and the induction of systemic resistance against southern leaf blight. The results showed that thph2 had a positive regulatory effect on the Trichoderma colonization of maize roots. After the root was treated with Trichoderma, the leaf defense genes AOS, LOX5, HPL, and OPR1 were expressed to resist the attack of Cochliobolus heterostrophus. The pure Thph2 protein also resulted in a similar induction activity of the AOS, LOX5, HPL, and OPR1 expression in maize roots, further demonstrating that thph2 can induce plant defense responses and that signal transduction occurs mainly through the JA signaling pathway.
Collapse
Affiliation(s)
- Bo Lang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Bandeira JB, Rodrigues JN, de Oliveira RS, Pinto IO, Chagas-Júnior AF, Nascimento VL, Sarmento MI, de Moraes CB, Sarmento RA. Endophytic colonization of five Trichoderma species and their effects on growth of a Eucalyptus hybrid. Braz J Microbiol 2023; 54:3113-3125. [PMID: 37661212 PMCID: PMC10689710 DOI: 10.1007/s42770-023-01112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
The study aimed to evaluate the effectiveness of endophytic colonization via leaf and root inoculation of five Trichoderma species in a Eucalyptus hybrid, as well as the effects of inoculation on plant growth. The experimental design was completely randomized in a 6 × 2 factorial scheme. Plant growth was evaluated during the experimental period at three different times: 20 days after inoculation (d.a.i), 40 d.a.i., and 60 d.a.i. A statistical difference was observed between the inoculation methods during each period and between the Trichoderma species. Plants inoculated with T. asperellum showed the greatest growth among the treatments. Root-inoculated plants produced the greatest growth response. This showed that the presence of Trichoderma in the roots assisted in nutrient assimilation, promoted greater plant growth, when compared with leaf-inoculated plants. Evaluation of the effectiveness of endophytic colonization was performed at each sampling period by collecting leaf samples, and at 60 d.a.i., by collecting leaf, stem, and root samples. T. longibrachiatum and T. harzianum were isolated from leaves at 20 d.a.i., with an increase in the number of colonized plants throughout the evaluation of leaf-inoculated plants. In root-inoculated plants, treatment with T. longibrachiatum, T. harzianum, and T. asperellum presented the highest endophytic colonization in the stem and root samples (at 60 d.a.i.).
Collapse
Affiliation(s)
- Jéssica Bezerra Bandeira
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Jovielly Neves Rodrigues
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Rodrigo Silva de Oliveira
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Ismael Oliveira Pinto
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
- Setor de Agricultura, Instituto Federal do Tocantins (IFTO)-Campus Avançado Formoso do Araguaia, Formoso do Araguaia, TO, 77470-000, Brazil
| | - Aloísio Freitas Chagas-Júnior
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Vitor L Nascimento
- Setor de Fisiologia Vegetal-Departamento de Biologia, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Maíra Ignacio Sarmento
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Cristiano Bueno de Moraes
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil.
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil.
| |
Collapse
|
26
|
Sefer Ö, Özsoy E, Yörük E, Özkale E. Determining the biocontrol capacities of Trichoderma spp. originating from Turkey on Fusarium culmorum by transcriptional and antagonistic analyses. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1278525. [PMID: 38025898 PMCID: PMC10679392 DOI: 10.3389/ffunb.2023.1278525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
In this study aiming to investigate potential fungal biocontrol agents for Fusarium culmorum, several isolates of Trichoderma spp. were evaluated for their antagonistic effects by means of transcriptional analyses. At first, 21 monosporic Trichoderma spp. isolates were obtained from natural wood debris and wood area soils in Manisa, Turkey. Trichoderma spp. Isolates were identified as belonging to four different species (T. atroviride, T. harzianum, T. koningii, and T. brevicompactum) by tef1-α sequencing. Then, the linear growth rate (LGR) of each species was calculated and determined to be in a range between 13.22 ± 0.71 mm/day (T. atroviride TR2) and 25.06 ± 1.45 mm/day (T. harzianum K30). Inter-simple sequence repeat (ISSR) genotyping validated the tef1-α sequencing results by presenting two sub-clusters in the dendrogram. We determined the genetically most similar (TR1 & TR2; 97.77%) and dissimilar (K9 & K17; 40.40%) individuals belonging to the same and different species, respectively. Dual sandwich culture tests (which are useful for antagonism studies) revealed that T. harzianum K21 (the least suppressive) and T. brevicompactum K26 (the most suppressive) isolates suppressed F. culmorum with growth rates of 3% and 46%, respectively. Expressions of genes previously associated with mycoparasitism-plant protection-secondary metabolism (nag1, tgf-1, and tmk-1) were tested by quantitative real-time polymerase chain reaction (qRT-PCR) in both those isolates. While there were no significant differences (p>0.05) in expression that were present in the K21 isolate, those three genes were upregulated with fold change values of 2.69 ± 0.26 (p<0.001), 2.23 ± 0.16 (p<0.001), and 5.38 ± 2.01 (p<0.05) in K26, meaning that the presence of significant alteration in the physiological processes of the fungus. Also, its mycoparasitism potential was tested on Triticum aestivum L. cv Basribey in planta, which was infected with the F. culmorum FcUK99 strain. Results of the trials, including specific plant growth parameters (weight or length of plantlets), confirmed the mycoparasitic potential of the isolate. It can be concluded that (i) nag1, tgf-1, and tmk-1 genes could be approved as reliable markers for evaluation of BCA capacities of Trichoderma spp. and (ii) the T. brevicompactum K26 strain can be suggested as a promising candidate for combating in F. culmorum diseases following the necessary procedures to ensure it is non-hazardous and safe.
Collapse
Affiliation(s)
- Özlem Sefer
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
- Graduate School of Science and Engineering, Programme of Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Türkiye
| | - Esma Özsoy
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
- Institute of Graduate Studies in Sciences, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Türkiye
| | - Emre Yörük
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
| | - Evrim Özkale
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Türkiye
| |
Collapse
|
27
|
Kumar S, Chandra R, Behera L, Sudhir I, Meena M, Singh S, Keswani C. Microbial consortium mediated acceleration of the defense response in potato against Alternaria solani through prodigious inflation in phenylpropanoid derivatives and redox homeostasis. Heliyon 2023; 9:e22148. [PMID: 38045140 PMCID: PMC10692827 DOI: 10.1016/j.heliyon.2023.e22148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
The present study was carried out in a pot experiment to examine the bioefficacy of three biocontrol agents, viz., Trichoderma viride, Bacillus subtilis, and Pseudomonas fluorescens, either alone or in consortium, on plant growth promotion and activation of defense responses in potato against the early blight pathogen Alternaria solani. The results demonstrate significant enhancement in growth parameters in plants bioprimed with the triple-microbe consortium compared to other treatments. In potato, the disease incidence percentage was significantly reduced in plants treated with the triple-microbe consortium compared to untreated control plants challenged with A. solani. Potato tubers treated with the consortium and challenged with pathogen showed significant activation of defense-related enzymes such as peroxidase (PO) at 96 h after pathogen inoculation (hapi) while, both polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) at 72 hapi, compared to the individual and dual microbial consortia-treated plants. The expression of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) and the accumulation of pathogenesis-related proteins such as chitinase and β-1,3-glucanase were observed to be highest at 72 hapi in the triple microbe consortium as compared to other treatments. HPLC analysis revealed significant induction in polyphenolic compounds in triple-consortium bioprimed plants compared to the control at 72 hapi. Histochemical analysis of hydrogen peroxide (H2O2) clearly showed maximum accumulation of H2O2 in pathogen-inoculated control plants, while the lowest was observed in triple-microbe consortium at 72 hapi. The findings of this study suggest that biopriming with a microbial consortium improved plant growth and triggered defense responses against A. solani through the induction of systemic resistance via modulation of the phenylpropanoid pathway and antioxidative network.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, 474002, India
| | - Ram Chandra
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Lopamudra Behera
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ichini Sudhir
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, University Collage of Science, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Shailendra Singh
- Department of Biotechnology, Invertis University, Bareilly, 243123, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
28
|
Khan RAA, Najeeb S, Chen J, Wang R, Zhang J, Hou J, Liu T. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e14133. [PMID: 38148197 DOI: 10.1111/ppl.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Trichoderma species have received significant interest as beneficial fungi for boosting plant growth and immunity against phytopathogens. By establishing a mutualistic relationship with plants, Trichoderma causes a series of intricate signaling events that eventually promote plant growth and improve disease resistance. The mechanisms contain the indirect or direct involvement of Trichoderma in enhancing plant growth by modulating phytohormones signaling pathways, improving uptake and accumulation of nutrients, and increasing soil bioavailability of nutrients. They contribute to plant resistance by stimulating systemic acquired resistance through salicylic acid, jasmonic acid, and ethylene signaling. A cascade of signal transduction processes initiated by the interaction of Trichoderma and plants regulate the expression of defense-related genes, resulting in the synthesis of defense hormones and pathogenesis-related proteins (PRPs), which collectively improve plant resistance. Additionally, advancements in omics technologies has led to the identification of key pathways, their regulating genes, and molecular interactions in the plant defense and growth promotion responses induced by Trichoderma. Deciphering the molecular mechanism behind Trichoderma's induction of plant defense and immunity is essential for harnessing the full plant beneficial potential of Trichoderma. This review article sheds light on the molecular mechanisms that underlie the positive effects of Trichoderma-induced plant immunity and growth and opens new opportunities for developing environmentally friendly and innovative approaches to improve plant immunity and growth.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Saba Najeeb
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR, China
| | - Rui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jing Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jumei Hou
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Tong Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
29
|
Tian Y, Liu Y, Uwaremwe C, Zhao X, Yue L, Zhou Q, Wang Y, Tran LSP, Li W, Chen G, Sha Y, Wang R. Characterization of three new plant growth-promoting microbes and effects of the interkingdom interactions on plant growth and disease prevention. PLANT CELL REPORTS 2023; 42:1757-1776. [PMID: 37674059 DOI: 10.1007/s00299-023-03060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023]
Abstract
KEY MESSAGE The novel interkingdom PGPM consortia enhanced the ability of plant growth promotion and disease resistance, which would be beneficial to improve plant growth in sustainable agriculture through engineering microbiome. Plant growth-promoting microbes (PGPMs) play important roles in promoting plant growth and bio-controlling of pathogens. Much information reveals that the plant growth-promoting ability of individual PGPM affects plant growth. However, the effects of the PGPM consortia properties on plant growth remain largely unexplored. Here, we characterized three new PGPM strains including Rhodotorula graminis JJ10.1 (termed as J), Pseudomonas psychrotolerans YY7 (termed as Y) and P. chlororaphis T8 (termed as T), and assessed their effects in combination with Bacillus amyloliquefaciens FZB42 (termed as F) on plant growth promotion and disease prevention in Arabidopsis thaliana and tomato (Solanum lycopersicum) plants by investigating morphological changes, whole-genome sequencing and plant growth promoting (PGP) characterization. Results revealed that the three new strains R. graminis JJ10.1, P. psychrotolerans YY7 and P. chlororaphis T8 had the potential for being combined with B. amyloliquefaciens FZB42 to form interkingdom PGPM consortia. The combinations of R. graminis JJ10.1, B. amyloliquefaciens FZB42, and P. psychrotolerans YY7, i. e. JF and JYF, exhibited the strongest ability of synergetic biofilm production. Furthermore, the growth-promotion abilities of the consortia were significantly enhanced compared with those of individual strains under both inoculation and volatile organic compounds (VOCs) treatment. Importantly, the consortia showed stronger abilities of in planta disease prevention than individual strains. Findings of our study may provide future guidance for engineering the minimal microbiome communities to improve plant growth and/or disease resistance in sustainable agriculture.
Collapse
Affiliation(s)
- Yuan Tian
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Liu
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Constantine Uwaremwe
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xia Zhao
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Yue
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qin Zhou
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Weiqiang Li
- Jilin Da'an Agro-Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, 130102, People's Republic of China
| | - Gaofeng Chen
- Gansu Shangnong Biotechnology Co. Ltd, Baiyin, 730900, People's Republic of China
| | - Yuexia Sha
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, People's Republic of China
| | - Ruoyu Wang
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
30
|
Hasan M, Hossain M, Jiang D. New endophytic strains of Trichoderma promote growth and reduce clubroot severity of rapeseed (Brassica napus). PLoS One 2023; 18:e0287899. [PMID: 37906546 PMCID: PMC10617699 DOI: 10.1371/journal.pone.0287899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/15/2023] [Indexed: 11/02/2023] Open
Abstract
Rapeseed (Brassica napus L.) is the world's third most important edible oilseed crop after soybean and palm. The clubroot disease caused by Plasmodiophora brassicae poses a significant risk and causes substantial yield losses in rapeseed. In this study, 13 endophytic fungal strains were isolated from the healthy roots of rapeseed (B. napus) grown in a clubroot-infested field and molecularly identified. Based on germination inhibition of resting spores of P. brassicae, two endophytic fungal antagonists, Trichoderma spp. ReTk1 and ReTv2 were selected to evaluate their potential for plant growth promotion and biocontrol of P. brassicae. The Trichoderma isolates were applied as a soil drench (1×107 spore/g soil) to a planting mix and field soil, in which plants were grown under non-infested and P. brassicae-infested (2×106 spore/g soil) conditions. The endophytic fungi were able to promote plant growth, significantly increasing shoot and root length, leaf diameter, and biomass production (shoots and root weight) both in the absence or presence of P. brassicae. The single and dual treatments with the endophytes were equally effective in significantly decreasing the root-hair infection, root index, and clubroot severity index. Both ReTk1 and ReTv2 inhibited the germination of resting spores of P. brassicae in root exudates. Moreover, the endophytic fungi colonized the roots of rapeseed extensively and possibly induced host resistance by up-regulated expression of defense-related genes involved in jasmonate (BnOPR2), ethylene (BnACO and BnSAM3), phenylpropanoid (BnOPCL and BnCCR), auxin (BnAAO1) and salicylic acid (BnPR2) pathways. Based on these findings, it is evident that the rapeseed root endophytes Trichoderma spp. ReTk1 and ReTv2 could suppress the gall formation on rapeseed roots via antibiosis, induced systemic resistance (ISR), and/or systemic acquired resistance (SAR). According to our knowledge, this is the first report of the endophytic Trichoderma spp. isolated from root tissues of healthy rapeseed plants (B. napus.), promoting plant growth and reducing clubroot severity.
Collapse
Affiliation(s)
- Mahmodol Hasan
- Plant Pathology Laboratory, Department of Agronomy and Agricultural Extension, University of Rajshahi, Rajshahi, Bangladesh
| | - Motaher Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Daohong Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
31
|
Lodi RS, Peng C, Dong X, Deng P, Peng L. Trichoderma hamatum and Its Benefits. J Fungi (Basel) 2023; 9:994. [PMID: 37888250 PMCID: PMC10607699 DOI: 10.3390/jof9100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Trichoderma hamatum (Bonord.) Bainier (T. hamatum) belongs to Hypocreaceae family, Trichoderma genus. Trichoderma spp. are prominently known for their biocontrol activities and plant growth promotion. Hence, T. hamatum also possess several beneficial activities, such as antimicrobial activity, antioxidant activity, insecticidal activity, herbicidal activity, and plant growth promotion; in addition, it holds several other beneficial properties, such as resistance to dichlorodiphenyltrichloroethane (DDT) and degradation of DDT by certain enzymes and production of certain polysaccharide-degrading enzymes. Hence, the current review discusses the beneficial properties of T. hamatum and describes the gaps that need to be further considered in future studies, such as T. hamatum's potentiality against human pathogens and, in contrast, its role as an opportunistic human pathogen. Moreover, there is a need for substantial study on its antiviral and antioxidant activities.
Collapse
Affiliation(s)
| | | | | | | | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (R.S.L.); (C.P.); (X.D.); (P.D.)
| |
Collapse
|
32
|
Visagie CM, Magistà D, Ferrara M, Balocchi F, Duong TA, Eichmeier A, Gramaje D, Aylward J, Baker SE, Barnes I, Calhoun S, De Angelis M, Frisvad JC, Hakalova E, Hayes RD, Houbraken J, Grigoriev IV, LaButti K, Leal C, Lipzen A, Ng V, Pangilinan J, Pecenka J, Perrone G, Piso A, Savage E, Spetik M, Wingfield MJ, Zhang Y, Wingfield BD. IMA genome-F18 : The re-identification of Penicillium genomes available in NCBI and draft genomes for Penicillium species from dry cured meat, Penicillium biforme, P. brevicompactum, P. solitum, and P. cvjetkovicii, Pewenomyces kutranfy, Pew. lalenivora, Pew. tapulicola, Pew. kalosus, Teratosphaeria carnegiei, and Trichoderma atroviride SC1. IMA Fungus 2023; 14:21. [PMID: 37803441 PMCID: PMC10559472 DOI: 10.1186/s43008-023-00121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/08/2023] Open
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Donato Magistà
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Felipe Balocchi
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ales Eichmeier
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Scott E Baker
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- DOE Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/a, 70126, Bari, Italy
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Eliska Hakalova
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Richard D Hayes
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, 110 Koshland Hall, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catarina Leal
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jakub Pecenka
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Milan Spetik
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Yu Zhang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
33
|
Andrade-Hoyos P, Rivera-Jiménez MN, Landero-Valenzuela N, Silva-Rojas HV, Martínez-Salgado SJ, Romero-Arenas O. [Ecological and biological benefits of the cosmopolitan fungus Trichoderma spp. in agriculture: A perspective in the Mexican countryside]. Rev Argent Microbiol 2023; 55:366-377. [PMID: 37704515 DOI: 10.1016/j.ram.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 09/15/2023] Open
Abstract
There is currently an extensive record of scientific studies on the general characteristics of filamentous fungus Trichoderma spp., which demonstrates its wide range of interrelation in ecosystems and its fungal activity that benefits the agricultural sector and agroindustry, as well as its importance in the preservation and restoration of the soil microbiota. The success of the biological and ecological benefits of Trichoderma is due to its reproductive capacity, as well as its efficiency in the use of soil nutrients; the efficacy of the genus has been reported against a variety of phytopathogenic fungi, as well as the potential to synthesize and release enzymes (cellulases, xylanases, and chitinases) that have been implemented in agroindustrial bioprocesses. It has also been reported that various species of Trichoderma spp. can produce auxins and gibberellin-type growth regulators, reported as growth promoters of some agricultural crops; however, their most relevant fact is their ability to prevail at certain doses of 'agrotoxic' active ingredients and contribute studies regarding processes for obtaining biofuel and bioremediation of the agricultural soil. In this overview, a general description of the current and relevant studies of the different subspecies of Trichoderma and their contribution in agriculture is made, presenting results obtained in vitro, in greenhouses and in the field. This analysis will serve as a starting point for future research in Mexico, specifically on the genus Trichoderma and its benefits for the Mexican countryside.
Collapse
Affiliation(s)
- Petra Andrade-Hoyos
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Campo Experimental Zacatepec, Morelos, México
| | - Mally N Rivera-Jiménez
- Dirección de Investigación Agrícola. Agrosistemas mg S. A. de C.V., Villahermosa, Tabasco, México
| | | | - Hilda V Silva-Rojas
- Producción de Semillas, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Saira J Martínez-Salgado
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Campo Experimental Zacatepec, Morelos, México
| | - Omar Romero-Arenas
- Manejo Sostenible de Agroecosistemas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Pedro Zacachimalpa, Puebla, México.
| |
Collapse
|
34
|
Zhang J, Wang L, Ren A, Sheng Y, Chang X, Li X, Guan M, Shang N, Zhao P, Sun S. Prediction of Effector Proteins from Trichoderma longibrachiatum Through Transcriptome Sequencing. Curr Microbiol 2023; 80:259. [PMID: 37358649 DOI: 10.1007/s00284-023-03296-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/02/2023] [Indexed: 06/27/2023]
Abstract
Trichoderma longibrachiatum SMF2 is an important biocontrol strain isolated by our group that can promote plant growth and induce plant disease resistance. To further study its biocontrol mechanism, the effector proteins secreted by T. longibrachiatum SMF2 were analyzed through bioinformatics and transcriptome sequencing. Overall, 478 secretory proteins produced by T. longibrachiatum were identified, of which 272 were upregulated after treatment with plants. Functional annotation showed that 36 secretory proteins were homologous with different groups of effectors from pathogenic microorganisms. Moreover, the quantitative PCR results of six putative effector proteins were consistent with those of transcriptome sequencing. Taken together, these findings indicate that the secretory proteins secreted by T. longibrachiatum SMF2 may act as effectors to facilitate its own growth and colonization or to induce plant immunity response.
Collapse
Affiliation(s)
| | - Lijun Wang
- Liaocheng University, Liaocheng, 252000, China
| | - Aizhi Ren
- Liaocheng University, Liaocheng, 252000, China
| | | | - Xue Chang
- Liaocheng University, Liaocheng, 252000, China
- Liaocheng Land and Resources Bureau, Liaocheng, 252000, China
| | - Xiaolong Li
- Liaocheng University, Liaocheng, 252000, China
| | | | - Na Shang
- Liaocheng University, Liaocheng, 252000, China
- Liaocheng Academy of Agricultural Sciences, Liaocheng, 252000, China
| | - Peibao Zhao
- Liaocheng University, Liaocheng, 252000, China.
| | - Shulei Sun
- Liaocheng University, Liaocheng, 252000, China.
- University of California San Diego, San Diego, CA, 92121, USA.
| |
Collapse
|
35
|
Rojas Moreno MM, González-Pérez E, Rodríguez-Hernandez AA, Ortega-Amaro MA, Becerra-Flora A, Serrano M, Jiménez-Bremont JF. Expression of EPL1 from Trichoderma atroviride in Arabidopsis Confers Resistance to Bacterial and Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:2443. [PMID: 37447005 DOI: 10.3390/plants12132443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
During plant interaction with beneficial microorganisms, fungi secrete a battery of elicitors that trigger plant defenses against pathogenic microorganisms. Among the elicitor molecules secreted by Trichoderma are cerato-platanin proteins, such as EPL1, from Trichoderma atroviride. In this study, Arabidopsis thaliana plants that express the TaEPL1 gene were challenged with phytopathogens to evaluate whether expression of EPL1 confers increased resistance to the bacterial pathogen Pseudomonas syringae and the necrotrophic fungus Botrytis cinerea. Infection assays showed that Arabidopsis EPL1-2, EPL1-3, EPL1-4 expressing lines were more resistant to both pathogens in comparison to WT plants. After Pseudomonas syringae infection, there were reduced disease symptoms (e.g., small chlorotic spots) and low bacterial titers in the three 35S::TaEPL1 expression lines. Similarly; 35S::TaEPL1 expression lines were more resistant to Botrytis cinerea infection, showing smaller lesion size in comparison to WT. Interestingly, an increase in ROS levels was detected in 35S::TaEPL1 expression lines when compared to WT. A higher expression of SA- and JA-response genes occurred in the 35S::TaEPL1 lines, which could explain the resistance of these EPL1 expression lines to both pathogens. We propose that EPL1 is an excellent elicitor, which can be used to generate crops with improved resistance to broad-spectrum diseases.
Collapse
Affiliation(s)
- Mónica Montserrat Rojas Moreno
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Aida Araceli Rodríguez-Hernandez
- CONAHCyT-Instituto Politécnico Nacional, CEPROBI, Km. 6.5 Carr. Yautepec-Jojutla Col. San Isidro, Calle CEPROBI No. 8, Yautepec 62739, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo 78290, Mexico
| | - Alicia Becerra-Flora
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| |
Collapse
|
36
|
Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, Upamanya GK, Boruah S, Dey U, Mishra AK, Vanlaltani L, VijayReddy D, Heisnam P, Pandey AK. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1145715. [PMID: 37255560 PMCID: PMC10225716 DOI: 10.3389/fpls.2023.1145715] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Trichoderma spp. (Hypocreales) are used worldwide as a lucrative biocontrol agent. The interactions of Trichoderma spp. with host plants and pathogens at a molecular level are important in understanding the various mechanisms adopted by the fungus to attain a close relationship with their plant host through superior antifungal/antimicrobial activity. When working in synchrony, mycoparasitism, antibiosis, competition, and the induction of a systemic acquired resistance (SAR)-like response are considered key factors in deciding the biocontrol potential of Trichoderma. Sucrose-rich root exudates of the host plant attract Trichoderma. The soluble secretome of Trichoderma plays a significant role in attachment to and penetration and colonization of plant roots, as well as modulating the mycoparasitic and antibiosis activity of Trichoderma. This review aims to gather information on how Trichoderma interacts with host plants and its role as a biocontrol agent of soil-borne phytopathogens, and to give a comprehensive account of the diverse molecular aspects of this interaction.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | | | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Gunadhya K. Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University (Jorhat), Dhubri, Assam, India
| | - Sarodee Boruah
- Krishi Vigyan Kendra (KVK)-Tinsukia, Assam Agricultural University (Jorhat), Tinsukia, Assam, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Tripura, Sepahijala, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr Rajendra Prasad Central Agricultural University, Bihar, Samastipur, India
| | - Lydia Vanlaltani
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Dumpapenchala VijayReddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Punabati Heisnam
- Department of Agronomy, Central Agricultural University (Imphal), Pasighat, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional, R & D Center, Jalpaiguri, West Bengal, India
| |
Collapse
|
37
|
Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 2023; 21:312-326. [PMID: 36414835 DOI: 10.1038/s41579-022-00819-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant-microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.
Collapse
Affiliation(s)
- Sheridan L Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
38
|
Rimkus A, Namina A, Dzierkale MT, Grigs O, Senkovs M, Larsson S. Impact of Growth Conditions on the Viability of Trichoderma asperellum during Storage. Microorganisms 2023; 11:microorganisms11041084. [PMID: 37110507 PMCID: PMC10143629 DOI: 10.3390/microorganisms11041084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
As excellent biocontrol agents and plant growth promoters, Trichoderma species are agriculturally important. Trichoderma spp. cultures can be produced using solid-state or submerged cultivation, the latter being much less labor intensive and easier to control and automate. The aim of the study was to investigate the ability to increase the shelf-life of T. asperellum cells by optimizing cultivation media and upscaling the submerged cultivation process. Four different cultivation media were used with or without the addition of Tween 80 and stored with or without incorporation into peat, and viability, expressed as CFU/g, was assessed during one year of storage in an industrial warehouse. The addition of Tween 80 had a positive effect on the biomass yield. The culture medium played a major role in the ability of the mycelium to produce spores, which in turn influenced the amount of CFU. This effect was less pronounced when the biomass was mixed with peat prior to storage. A procedure that increases the number of CFU in a peat-based product formulation is recommended, namely, incubation of the mixture at 30 °C for 10 days prior to storage at 15 °C over an extended period of time.
Collapse
Affiliation(s)
- Alina Rimkus
- Bioefekts Ltd., 30 Livzemes Street, LV-2169 Salaspils, Latvia
| | - Agne Namina
- Bioefekts Ltd., 30 Livzemes Street, LV-2169 Salaspils, Latvia
| | | | - Oskars Grigs
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Maris Senkovs
- Bioefekts Ltd., 30 Livzemes Street, LV-2169 Salaspils, Latvia
- Microbial Strain Collection of Latvia, Faculty of Biology, University of Latvia, 1 Jelgavas Street, LV-1004 Riga, Latvia
| | - Simona Larsson
- Bioefekts Ltd., 30 Livzemes Street, LV-2169 Salaspils, Latvia
| |
Collapse
|
39
|
Giordano DF, Pastor NA, Rouws LFM, de Freitas KM, Erazo JG, Del Canto A, da Silva Coelho I, Oddino CM, Torres AM. Trichoderma harzianum ITEM 3636 colonizes peanut roots as an endophyte and protects the plants against late leaf spot. Symbiosis 2023. [DOI: 10.1007/s13199-023-00913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
40
|
Anuar MSK, Hashim AM, Ho CL, Wong MY, Sundram S, Saidi NB, Yusof MT. Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop. World J Microbiol Biotechnol 2023; 39:123. [PMID: 36934342 DOI: 10.1007/s11274-023-03579-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 03/20/2023]
Abstract
In today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand. The use of chemical agents is no longer recommended due to adverse effects towards the environment and health. Biocontrol agents (BCAs) and biostimulants, are feasible options for dealing with yield losses induced by plant stresses, which are becoming more intense due to climate change. BCAs and biostimulants have been recommended due to their dual action in reducing both stresses simultaneously. Although protection against biotic stresses falls outside the generally accepted definition of biostimulant, some microbial and non-microbial biostimulants possess the biocontrol function, which helps reduce biotic pressure on crops. The application of synergisms using BCAs and biostimulants to control crop stresses is rarely explored. Currently, a combined application using both agents offer a great alternative to increase the yield and growth of crops while managing stresses. This article provides an overview of crop stresses and plant stress responses, a general knowledge on synergism, mathematical modelling used for synergy evaluation and type of in vitro and in vivo synergy testing, as well as the application of synergism using BCAs and biostimulants in reducing crop stresses. This review will facilitate an understanding of the combined effect of both agents on improving crop yield and growth and reducing stress while also providing an eco-friendly alternative to agroecosystems.
Collapse
Affiliation(s)
- Muhammad Salahudin Kheirel Anuar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Shamala Sundram
- Biology Research Division, Malaysian Palm Oil Board, Kajang, Selangor, 43000, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia.
| |
Collapse
|
41
|
Sehim AE, Hewedy OA, Altammar KA, Alhumaidi MS, Abd Elghaffar RY. Trichoderma asperellum empowers tomato plants and suppresses Fusarium oxysporum through priming responses. Front Microbiol 2023; 14:1140378. [PMID: 36998401 PMCID: PMC10043483 DOI: 10.3389/fmicb.2023.1140378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
Plant-associated microbes play crucial roles in plant health and promote growth under stress. Tomato (Solanum lycopersicum) is one of the strategic crops grown throughout Egypt and is a widely grown vegetable worldwide. However, plant disease severely affects tomato production. The post-harvest disease (Fusarium wilt disease) affects food security globally, especially in the tomato fields. Thus, an alternative effective and economical biological treatment to the disease was recently established using Trichoderma asperellum. However, the role of rhizosphere microbiota in the resistance of tomato plants against soil-borne Fusarium wilt disease (FWD) remains unclear. In the current study, a dual culture assay of T. asperellum against various phytopathogens (e.g., Fusarium oxysporum, F. solani, Alternaria alternata, Rhizoctonia solani, and F. graminerarum) was performed in vitro. Interestingly, T. asperellum exhibited the highest mycelial inhibition rate (53.24%) against F. oxysporum. In addition, 30% free cell filtrate of T. asperellum inhibited F. oxysporum by 59.39%. Various underlying mechanisms were studied to explore the antifungal activity against F. oxysporum, such as chitinase activity, analysis of bioactive compounds by gas chromatography–mass spectrometry (GC–MS), and assessment of fungal secondary metabolites against F. oxysporum mycotoxins in tomato fruits. Additionally, the plant growth-promoting traits of T. asperellum were studied (e.g., IAA production, Phosphate solubilization), and the impact on tomato seeds germination. Scanning electron microscopy, plant root sections, and confocal microscopy were used to show the mobility of the fungal endophyte activity to promote tomato root growth compared with untreated tomato root. T. asperellum enhanced the growth of tomato seeds and controlled the wilt disease caused by the phytopathogen F. oxysporum by enhancing the number of leaves as well as shoot and root length (cm) and fresh and dry weights (g). Furthermore, Trichoderma extract protects tomato fruits from post-harvest infection by F. oxysporum. Taking together, T. asperellum represents a safe and effective controlling agent against Fusarium infection of tomato plants.
Collapse
Affiliation(s)
- Amira E. Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- Department of Genetics, Faculty of Agriculture, Menoufia University, Shebeen El-Kom, Egypt
- *Correspondence: Omar A. Hewedy,
| | - Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | | |
Collapse
|
42
|
Kumar S, Chandra R, Keswani C, Minkina T, Mandzhieva S, Voloshina M, Meena M. Trichoderma viride—Mediated Modulation of Oxidative Stress Network in Potato Challenged with Alternaria solani. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:1919-1936. [DOI: https:/doi.org/10.1007/s00344-022-10669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/22/2022] [Indexed: 06/18/2023]
|
43
|
Wang S, Wang X, Chen J. Identification of miRNAs Involved in Maize-Induced Systemic Resistance Primed by Trichoderma harzianum T28 against Cochliobolus heterostrophus. J Fungi (Basel) 2023; 9:278. [PMID: 36836392 PMCID: PMC9964586 DOI: 10.3390/jof9020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
microRNAs (miRNAs) are known to play important roles in the immune response to pathogen infection in different plants. Further, Trichoderma strains are able to activate plant defense responses against pathogen attacks. However, little is known about the involvement of miRNAs in the defense response primed by Trichoderma strains. To explore the miRNAs sensitive to priming by Trichoderma, we studied the small RNAs and transcriptome changes in maize leaves that were systemically induced by seed treatment with Trichoderma harzianum (strain T28) against Cochliobolus heterostrophus (C. heterostrophus) infection in leaves. Through analysis of the sequencing data, 38 differentially expressed miRNAs (DEMs) and 824 differentially expressed genes (DEGs) were identified. GO and KEGG analyses of DEGs demonstrated that genes involved in the plant hormone signal transduction pathway and oxidation-reduction process were significantly enriched. In addition, 15 miRNA-mRNA interaction pairs were identified through the combined analysis of DEMs and DEGs. These pairs were supposed to play roles in the maize resistance primed by T. harzianum T28 to C. heterostrophus, in which miR390, miR169j, miR408b, miR395a/p, and novel miRNA (miRn5231) were more involved in the induction of maize resistance. This study provided valuable information for understanding the regulatory role of miRNA in the T. harzianum primed defense response.
Collapse
Affiliation(s)
- Shaoqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
44
|
Siebatcheu EC, Wetadieu D, Youassi Youassi O, Bedine Boat MA, Bedane KG, Tchameni NS, Sameza ML. Secondary metabolites from an endophytic fungus Trichoderma erinaceum with antimicrobial activity towards Pythium ultimum. Nat Prod Res 2023; 37:657-662. [PMID: 35583291 DOI: 10.1080/14786419.2022.2075360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemical investigation of the endophytic fungus, Trichoderma erinaceum, isolated from healthy and asymptomatic common bean field crop, resulted in the isolation of a new alkene, (Z)-5-amino-5-(1,1,2-trihydroxybuta-1,3-dienyloxy)pentane-6,7,8,9-tetraol (1), together with five known compounds (2-6). The structures of the compounds were elucidated by analysis of their spectroscopic data including 1 D, 2 D NMR, ESI-HRMS and literature data. The organic crude extract and the compound isolated from T. erinaceum significantly (p ≤ 0.05) inhibited the mycelial growth of Pythium ultimum.
Collapse
Affiliation(s)
| | - Duplex Wetadieu
- Department of Chemistry, University of Dschang, Dschang, Cameroon
| | | | | | | | | | | |
Collapse
|
45
|
Sikandar A, Jia L, Wu H, Yang S. Meloidogyne enterolobii risk to agriculture, its present status and future prospective for management. FRONTIERS IN PLANT SCIENCE 2023; 13:1093657. [PMID: 36762171 PMCID: PMC9902769 DOI: 10.3389/fpls.2022.1093657] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Meloidogyne enterolobii, commonly known as guava root-knot nematode, poses risk due to its widespread distribution and extensive host range. This species is recognized as the most virulent root-knot nematode (RKN) species because it can emerge and breed in plants that have resistance to other tropical RKNs. They cause chlorosis, stunting, and yield reductions in host plants by producing many root galls. It is extremely challenging for farmers to diagnose due to the symptoms' resemblance to nutritional inadequacies. This pathogen has recently been considered a significant worldwide threat to agricultural production. It is particularly challenging to diagnose a M. enterolobii due to the similarities between this species and other RKN species. Identified using traditional morphological and molecular techniques, which is a crucial first in integrated management. Chemical control, biological control, the adoption of resistant cultivars, and cultural control have all been developed and effectively utilized to combat root-knot nematodes in the past. The object of this study was to get about the geographical distribution, host plants, symptoms, identification, and control techniques of M. enterolobii and recommend future initiatives to progress its management.
Collapse
|
46
|
Andrzejak R, Janowska B. Trichoderma spp. Improves Flowering, Quality, and Nutritional Status of Ornamental Plants. Int J Mol Sci 2022; 23:ijms232415662. [PMID: 36555304 PMCID: PMC9779132 DOI: 10.3390/ijms232415662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Scientists all over the world conduct research to determine the influence of Trichoderma spp. on various groups of plants, mostly crops. However, there is little information on the influence of these fungi on ornamental plants. Therefore, the authors of this study analyzed the influence of Trichoderma spp. on the growth, flowering, quality, and nutritional status of ornamental plants. The research showed that Trichoderma spp. in this group of plants stimulate the elongation and thickening of shoots and the formation of leaves. These fungi also stimulate or inhibit leaf elongation. They also accelerate the flowering of plants, stimulate the elongation of inflorescence shoots and inflorescences, and the development of flowers. Apart from that, Trichoderma spp. positively influence the content of chlorophyll and carotenoids in leaves, and they stimulate the uptake of micro- and macroelements.
Collapse
Affiliation(s)
- Roman Andrzejak
- Department of Phytopathology, Seed Science and Technology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
- Correspondence: (R.A.); (B.J.)
| | - Beata Janowska
- Department of Ornamental Plants, Dendrology and Pomology, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
- Correspondence: (R.A.); (B.J.)
| |
Collapse
|
47
|
Wang H, Wang Y, Kang C, Wang S, Zhang Y, Yang G, Zhou L, Xiang Z, Huang L, Liu D, Guo L. Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1032480. [PMID: 36531372 PMCID: PMC9756954 DOI: 10.3389/fpls.2022.1032480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Atractylodes lancea is an important medicinal plant in traditional Chinese medicine, its rhizome is rich of volatile secondary metabolites with medicinal values and is largely demanded in modern markets. Currently, supply of high-yield, high-quality A. lancea is mainly achieved via cultivation. Certain soil microbes can benefit plant growth, secondary metabolism and induce resistance to environmental stresses. Hence, studies on the effects of soil microbe communities and isolates microorganisms on A. lancea is extremely meaningful for future application of microbes on cultivation. Here we investigated the effects of the inoculation with an entire soil microbial community on the growth, resistance to drought, and accumulation of major medicinal compounds (hinesol, β-eudesmol, atractylon and atractylodin) of A. lancea. We analyzed the interaction between A. lancea and the soil microbes at the phylum and genus levels under drought stress of different severities (inflicted by 0%, 10% and 25% PEG6000 treatments). Our results showed that inoculation with soil microbes promoted the growth, root biomass yield, medicinal compound accumulation, and rendered drought-resistant traits of A. lancea, including relatively high root:shoot ratio and high root water content under drought. Moreover, our results suggested drought stress was more powerful than the selectivity of A. lancea in shaping the root-associated microbial communities; also, the fungal communities had a stronger role than the bacterial communities in protecting A. lancea from drought. Specific microbial clades that might have a role in protecting A. lancea from drought stress were identified: at the genus level, the rhizospheric bacteria Bacillus, Dylla and Actinomadura, and rhizospheric fungi Chaetomium, Acrophialophora, Trichoderma and Thielava, the root endophytic bacteria Burkholderia-Caballeronia-Paraburkholderia, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Dylla and Actinomadura, and the root endophytic fungus Fusarium were closely associated with A. lancea under drought stress. Additionally, we acquired several endophytic Paenibacillus, Paraburkholderia and Fusarium strains and verified they had differential promoting effects on the medicinal compound accumulation in A. lancea root. This study reports the interaction between A. lancea and soil microbe communities under drought stress, and provides insights for improving the outcomes in A. lancea farming via applying microbe inoculation.
Collapse
Affiliation(s)
- Hongyang Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuefeng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chuanzhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guang Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zengxu Xiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Luqi Huang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Dahui Liu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
48
|
Wang CY, Gan D, Li CZ, Zhang SQ, Li BX, Zhu L, Liu JQ, Liu H, Tuo GT, Zhang FM, Cai L. A New Highly Oxygenated Polyketide Derivative from Trichoderma sp. and Its Antifungal Activity. Chem Biodivers 2022; 19:e202200671. [PMID: 36373236 DOI: 10.1002/cbdv.202200671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
A new highly oxygenated polyketide derivative, trichodersine (1), together with fourteen known compounds (2-15) were isolated from Trichoderma sp. MWTGP-04. The structure of trichodersine (1) was established based on comprehensive spectroscopic data analysis, and biogenesis argument. The results of double culture experiments indicated that the strain exhibited potential antifungal activity. The antifungal activities of all isolated compounds were evaluated, among them compound 1 exhibited remarkable antifungal activities against Fusarium solani, Plectosphaerella cucumerina, Alternaria panax, and Aspergillus niger, with minimum inhibitory concentrations (MICs) of 4, 4, 16, and 32 μg/mL, respectively. In addition, the antifungal experiments of polyketide derivatives (1-3) disclosed that their degree of oxidation was a key factor affecting the antifungal activity.
Collapse
Affiliation(s)
- Cheng-Yao Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Dong Gan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Chen-Zhe Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Qi Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Bin-Xian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Li Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jia-Qi Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Han Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Gui-Tao Tuo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Feng-Mei Zhang
- R&D Center of China Tobacco Yunnan Industry Co., Ltd., Kunming, 650231, P. R., China
| | - Le Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
49
|
Poveda J, Abril-Urías P, Muñoz-Acero J, Nicolás C. A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana. PLANTA 2022; 257:6. [PMID: 36437384 PMCID: PMC9701658 DOI: 10.1007/s00425-022-04036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Recognition of the interaction of Trichoderma during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship. Marchantia polymorpha is a common liverwort considered in recent years as a model plant for evolutionary studies on plant-microorganism interactions. Despite the lack of research, remarkable results have been reported regarding the understanding of metabolic and evolutionary processes of beneficial and/or harmful interactions, owing to a better understanding of the origin and evolution of different plant defense pathways. In this study, we have carried out work on the direct and indirect interactions (exudates and volatiles) of M. polymorpha with different species of the fungal genus Trichoderma. These interactions showed different outcomes, including resistance or even growth promotion and disease. We have analyzed the level of tissue colonization and defense-related gene expression. Furthermore, we have used the pteridophyte Dryopteris affinis and the angiosperm Arabidopsis thaliana, as subsequent steps in plant evolution, together with the plant pathogen Rhizoctonia solani as a control of plant pathogenicity. Trichoderma virens, T. brevicompactum and T. hamatum are pathogens of M. polymorpha, while exudates of T. asperellum are harmful to the plant. The analysis of the expression of several defense genes in M. polymorpha and A. thaliana showed that there is a correlation of the transcriptional activation of SA-related genes with resistance or susceptibility of M. polymorpha to Trichoderma. Moreover, exogenous SA provides resistance to the virulent Trichoderma species. This beneficial fungus may have had an evolutionary period of interaction with plants in which it behaved as a plant pathogen until plants developed a defense system to limit its colonization through a defense response mediated by SA.
Collapse
Affiliation(s)
- Jorge Poveda
- Department of Plant Production and Forest Resources, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Palencia, Spain
| | - Patricia Abril-Urías
- Institute of Environmental Sciences, Plant Physiology Area, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Julia Muñoz-Acero
- Department of Botany and Plant Physiology, Institute for Agrobiotechnology Research (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Carlos Nicolás
- Department of Botany and Plant Physiology, Institute for Agrobiotechnology Research (CIALE), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
50
|
Rodríguez-González Á, Carro-Huerga G, Guerra M, Mayo-Prieto S, Porteous-Álvarez AJ, Lorenzana A, Campelo MP, Fernández-Marcos A, Casquero PA, Gutiérrez S. Spores of Trichoderma Strains over P. vulgaris Beans: Direct Effect on Insect Attacks and Indirect Effect on Agronomic Parameters. INSECTS 2022; 13:1086. [PMID: 36554996 PMCID: PMC9785720 DOI: 10.3390/insects13121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Acanthoscelides obtectus is an insect pest that attacks wild and cultivated common beans (Phaseolus vulgaris L). Four Trichoderma strains, the T. arundinaceum IBT 40837 wild-type strain (=Ta37), a producer of trichothecene harzianum A (HA), two transformants of T. arundinaceum strain, Ta37-17.139 (=Δtri17) and Ta37-23.74 (=Δtri23), and the T. brevicompactum IBT 40841 wild-type strain (=Tb41), which produces the trichothecene trichodermin, were assessed to establish their direct effect on insect attacks and their indirect effect on the plants grown from the beans treated with those fungal strains and exposed to insect attacks. Treatments of bean seeds with different Trichoderma strains led to different survival rates in the insects, and the Tb41 strain caused the lowest survival rate of all. An 86.10% of the insect cadavers (in contact with Δtri23) showed growth of this strain. This was the treatment that attracted the greatest number of insects. The daily emergence was reduced in beans treated with the Ta37, Tb41, and Δtri17 strains. The undamaged beans treated with Ta37 and Δtri23 showed a high capacity of germination (80.00% and 75.00%, respectively), whereas the Δtri17 and Tb41 treatments increased the capacity of germination in the damaged beans (66.67%). The undamaged beans treated with Δtri23 had the greatest dry weights for the aerial part (4.22 g) and root system in the plants (0.62 g). More studies on the mechanisms of insect control, plant growth promotion, and trichodermol and trichodermin production by Δtri23 and Tb41, respectively, should be explored in order to commercialize these fungal species on a large scale.
Collapse
Affiliation(s)
- Álvaro Rodríguez-González
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio, Ambiente Recursos Naturales y Biodiversidad (INMARENBIO), Escuela de Ingeniería Agraria y Forestal (EIAF), Universidad de León, 24071 León, Spain
| | - Guzmán Carro-Huerga
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio, Ambiente Recursos Naturales y Biodiversidad (INMARENBIO), Escuela de Ingeniería Agraria y Forestal (EIAF), Universidad de León, 24071 León, Spain
| | - Marcos Guerra
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Escuela de Ingeniería Agraria y Forestal (EIAF), Campus de Ponferrada, Universidad de León, 24401 Ponferrada, Spain
| | - Sara Mayo-Prieto
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio, Ambiente Recursos Naturales y Biodiversidad (INMARENBIO), Escuela de Ingeniería Agraria y Forestal (EIAF), Universidad de León, 24071 León, Spain
| | - Alejandra Juana Porteous-Álvarez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio, Ambiente Recursos Naturales y Biodiversidad (INMARENBIO), Escuela de Ingeniería Agraria y Forestal (EIAF), Universidad de León, 24071 León, Spain
| | - Alicia Lorenzana
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio, Ambiente Recursos Naturales y Biodiversidad (INMARENBIO), Escuela de Ingeniería Agraria y Forestal (EIAF), Universidad de León, 24071 León, Spain
| | - María Piedad Campelo
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio, Ambiente Recursos Naturales y Biodiversidad (INMARENBIO), Escuela de Ingeniería Agraria y Forestal (EIAF), Universidad de León, 24071 León, Spain
| | - Alexia Fernández-Marcos
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio, Ambiente Recursos Naturales y Biodiversidad (INMARENBIO), Escuela de Ingeniería Agraria y Forestal (EIAF), Universidad de León, 24071 León, Spain
| | - Pedro Antonio Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio, Ambiente Recursos Naturales y Biodiversidad (INMARENBIO), Escuela de Ingeniería Agraria y Forestal (EIAF), Universidad de León, 24071 León, Spain
| | - Santiago Gutiérrez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Escuela de Ingeniería Agraria y Forestal (EIAF), Campus de Ponferrada, Universidad de León, 24401 Ponferrada, Spain
| |
Collapse
|