1
|
Cho JY, Ryu DH, Hamayun M, Lee SH, Jung JH, Kim HY. Scent Knows Better: Utilizing Volatile Organic Compounds as a Robust Tool for Identifying Higher Cannabidiol- and Tetrahydrocannabinol-Containing Cannabis Cultivars in Field Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24711-24723. [PMID: 39468951 DOI: 10.1021/acs.jafc.4c06652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The primary cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC), found in cannabis, are known to originate from genetic diversity, resulting in distinct characteristics. This study aimed to identify VOC markers to distinguish between higher CBD and THC cannabis cultivars under field conditions. Among the 58 VOCs, β-caryophyllene and α-humulene were primary VOCs across all cannabis cultivars. Intriguingly, certain terpene VOCs exhibited contrasting trends between higher CBD and higher THC cannabis cultivars. Eudesma-3,7(11)-diene and α-guaiol consistently appeared as highlighted compounds, suggesting their potential to distinguish between higher CBD and THC cannabis cultivars. ROC curve analysis revealed approximately 94% predictive accuracy for these putative markers. Given the current focus on VOCs as sensor markers for plant health, growth, and quality, the identified VOC markers─applicable across varieties and growth stages─could enable nondestructive, rapid, and accurate identification of CBD- and THC-rich cannabis species in field conditions.
Collapse
Affiliation(s)
- Jwa Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Muhammad Hamayun
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Nowshera Mardan Rd, Mardan 23200, Pakistan
| | - Su Hyeon Lee
- Department of southern area crop science, National institute of crop science, Rural development administration, Miryang, Gyeongnam 50424, Republic of Korea
| | - Je Hyeong Jung
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
- Natural Product Applied Science, KIST school, University of Science and Technology (UST), Gangneung, Gangwon 25451, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Fu X, Zheng M, Liu Q, Gan H, Song Z, Yang M, Liu K, Xie Z, Fan H. Potential analgesic effect of a novel cannabidiol nanocrystals powder for the treatment of neuropathic pain. Eur J Pain 2024; 28:1674-1684. [PMID: 38982797 DOI: 10.1002/ejp.2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/03/2023] [Accepted: 05/07/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND The current analgesics often prevent patients from getting effective treatment due to their adverse effects. Cannabidiol (CBD) is well tolerated, has few side effects and has been extensively investigated in analgesia. However, its oral bioavailability is extremely low. In order to solve this problem, we developed the cannabidiol nanocrystals (CBD-NC) in the earlier stage. METHODS In this study, we evaluated the nociceptive behaviours associated with neuropathic pain (NP) induced by the spared nerve injury (SNI) model. Assessment of pain threshold was evaluated by paw withdraw threshold (PWT) and paw withdrawal latency (PWL). The improving effect on the motor dysfunction was determined by rota-rod testing. To assess the neuroprotective effect, nerve demyelination and expression of peripheral myelin protein PMP22 were measured with myelin sheath staining and western blotting. Protein expressions in microglia of spinal cord were tested by western blot to explore the underlying mechanism. RESULTS Compared with the CBD oil solution, CBD-NC significantly reduced mechanical allodynia and thermal hyperalgesia in rats. CBD-NC could improve motor dysfunction induced by SNI in rats, significantly reverse the demyelination and increase the expression of the marker protein of peripheral myelin. Underlying spinal analgesic mechanism of microglia and related factors were preliminarily confirmed. CONCLUSIONS CBD-NC administration is an effective treatment for NP associated with SNI, and the analgesic effect of CBD-NC was significantly better than that of CBD oil sol. By contrast, CBD-NC has a fast-acting and long-term effect in the treatment of NP. Our study further supports the potential therapeutic effect of CBD-NC on NP. SIGNIFICANCE The absolute bioavailability of the CBD-NC intramuscular injection formulation can reach 203.31%, which can solve the problem of low oral bioavailability. This research evaluated the therapeutic effect of CBD-NC on NP associated with the SNI model for the first time. All available date showed that whatever the analgesic or neuroprotective effect of CBD-NC, it was significantly better than that of CBD oil sol., which was consistent with the results of the pharmacokinetic. This research supports the initiation of more trials testing the efficacy of CBD-NC for treating NP.
Collapse
Affiliation(s)
- Yu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xinzhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Meihua Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Qian Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hailin Gan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zeyu Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mingyan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Ke Liu
- Shandong Boyuan Biomedical Co., Ltd, Yantai, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
3
|
Gurgul A, Żurowski J, Szmatoła T, Kucharski M, Sawicki S, Semik-Gurgul E, Ocłoń E. Cannabidiol (CBD) modulates the transcriptional profile of ethanol-exposed human dermal fibroblast cells. J Appl Genet 2024:10.1007/s13353-024-00915-7. [PMID: 39466591 DOI: 10.1007/s13353-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.
Collapse
Affiliation(s)
- Artur Gurgul
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Agriculture in Kraków, Redzina 1C, 30-248, Krakow, Poland.
| | - Jakub Żurowski
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Agriculture in Kraków, Redzina 1C, 30-248, Krakow, Poland
| | - Tomasz Szmatoła
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Agriculture in Kraków, Redzina 1C, 30-248, Krakow, Poland
| | - Mirosław Kucharski
- Faculty of Animal Science, Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Mickiewicza 24/28, 30‑059, Krakow, Poland
| | - Sebastian Sawicki
- Faculty of Animal Science, Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
| | - Ewa Ocłoń
- Faculty of Veterinary Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Kraków, Rędzina 1C, 30-248, Kraków, Poland
| |
Collapse
|
4
|
Braga FC, da Silva FLN, de O Ramos T, Rosa JGH, de A Araujo É, Junior NFC, Wendler EP, Beatriz A, de Souza ROMA, Brocksom TJ, de Oliveira KT. Batch and Continuous Flow Total Synthesis of Cannabidiol. Chem Asian J 2024; 19:e202400689. [PMID: 39039021 DOI: 10.1002/asia.202400689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Herein, we present a comprehensive total synthesis of cannabidiol integrating both batch and continuous flow conditions. Our approach is planned to streamline the synthesis of olivetolic acid derivatives and utilize an enantiomerically pure monoterpene moiety obtained from naturally occurring (R)-(+)-limonene by photocatalysis. Key reactions, including the synthesis of olivetolic ester and a Friedel-Crafts alkylation, are successfully adapted to continuous flow, resulting in improved yields and selectivities. This study not only offers a scalable and efficient route for cannabidiol synthesis but also contributes to the synthetic approaches to access cannabinoids (diversity synthesis), with potential applications in medicinal and industrial contexts.
Collapse
Affiliation(s)
- Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Felipe L N da Silva
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Tiago de O Ramos
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - João G H Rosa
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Érica de A Araujo
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Nelson F C Junior
- API Manufacturing Process Development Laboratory, Prati, Donaduzzi & Cia. LTDA, Toledo, Paraná, Brazil
| | - Edison P Wendler
- API Manufacturing Process Development Laboratory, Prati, Donaduzzi & Cia. LTDA, Toledo, Paraná, Brazil
| | - Adilson Beatriz
- Research and Innovation Center for Bioprospecting and Synthesis of Products for Human and Animal Health (CIBSINT) - Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| |
Collapse
|
5
|
Basavarajappa BS, Subbanna S. Unveiling the Potential of Phytocannabinoids: Exploring Marijuana's Lesser-Known Constituents for Neurological Disorders. Biomolecules 2024; 14:1296. [PMID: 39456229 PMCID: PMC11506053 DOI: 10.3390/biom14101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa is known for producing over 120 distinct phytocannabinoids, with Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) being the most prominent, primarily in their acidic forms. Beyond Δ9-THC and CBD, a wide array of lesser-known phytocannabinoids, along with terpenes, flavonoids, and alkaloids, demonstrate diverse pharmacological activities, interacting with the endocannabinoid system (eCB) and other biological pathways. These compounds, characterized by phenolic structures and hydroxyl groups, possess lipophilic properties, allowing them to cross the blood-brain barrier (BBB) effectively. Notably, their antioxidant, anti-inflammatory, and neuro-modulatory effects position them as promising agents in treating neurodegenerative disorders. While research has extensively examined the neuropsychiatric and neuroprotective effects of Δ9-THC, other minor phytocannabinoids remain underexplored. Due to the well-established neuroprotective potential of CBD, there is growing interest in the therapeutic benefits of non-psychotropic minor phytocannabinoids (NMPs) in brain disorders. This review highlights the emerging research on these lesser-known compounds and their neuroprotective potential. It offers insights into their therapeutic applications across various major neurological conditions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| |
Collapse
|
6
|
Sánchez-Fernández N, Gómez-Acero L, Sarasola LI, Argerich J, Chevigné A, Jacobson KA, Ciruela F, Fernández-Dueñas V, Aso E. Cannabidiol negatively modulates adenosine A 2A receptor functioning in living cells. Acta Neuropsychiatr 2024; 36:320-324. [PMID: 37605951 PMCID: PMC10894643 DOI: 10.1017/neu.2023.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
OBJECTIVES Cannabidiol (CBD) is a phytocannabinoid with great potential in clinical applications. The mechanism(s) of action of CBD require further investigation. Previous studies suggested that adenosine A2A receptors (A2ARs) could play a role in CBD-induced effects. Here, we evaluated the ability of CBD to modify the function of A2AR. METHODS We used HEK-293T cells transfected with the cDNA encoding the human A2AR and Gαs protein, both modified to perform bioluminescence-based assays. We first assessed the effect of CBD on A2AR ligand binding using an A2AR NanoLuciferase sensor. Next, we evaluated whether CBD modified A2AR coupling to mini-Gαs proteins using the NanoBiT™ assay. Finally, we further assessed CBD effects on A2AR intrinsic activity by recording agonist-induced cAMP accumulation. RESULTS CBD did not bind orthosterically to A2AR but reduced the coupling of A2AR to Gαs protein and the subsequent generation of cAMP. CONCLUSION CBD negatively modulates A2AR functioning.
Collapse
Affiliation(s)
- Nuria Sánchez-Fernández
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Laura Gómez-Acero
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Laura I. Sarasola
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Josep Argerich
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
7
|
Abbasi H, Abbasi MM, Pasand M, Mohtadi M, Bakhshimoghaddam F, Eslamian G. Exploring the efficacy and safety of cannabidiol in individuals with epilepsy: an umbrella review of meta-analyses and systematic reviews. Inflammopharmacology 2024; 32:2987-3005. [PMID: 39167312 DOI: 10.1007/s10787-024-01523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Epilepsy ranks among the most prevalent neurological conditions worldwide. Cannabidiol (CBD) has received authorization for epilepsy treatment, yet utilizing CBD is linked to a variety of adverse events (AEs). This umbrella review aims to explore risk and frequency of AEs in epilepsy patients undergoing treatment with CBD. METHODS International electronic databases comprising Scopus, PubMed, and Web of Science were extensively searched from the most ancient data accessible until May 2024. In line with fundamental principle of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA), this umbrella review was executed. RStudio software version 2023.03.1 along with R software 4.3.2 was used for our statistical analyses. RESULTS Thirteen meta-analyses and systematic reviews were included. CBD use in epileptic patients compared to controls can be meaningfully linked with 10.87% becoming seizure-free (RD: 10.87%, 95%CI: 2.39%, 19.34%; I2 = 80%). Compared to controls, a meaningful 73% increase in 50% or greater reduction in seizure frequency was observed (RR: 1.73, 95%CI: 1.47, 2.03; I2 = 0%). In epileptic individuals who using CBD with the dosage of 20 mg/kg/d, a higher incidence of treatment withdrawal was detected (RR: 4.39, 95%CI: 2.46, 7.83; I2 = 0%). CONCLUSION In this umbrella review of meta-analyses and systematic reviews, CBD use in epileptic patients was linked to an increased risk of ample AEs. Further research, specifically targeting various epilepsy categories, is essential to fully understand the effectiveness and potential side effects of CBD across different epilepsy forms.
Collapse
Affiliation(s)
- Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mehdi Abbasi
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Pasand
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshad Mohtadi
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnush Bakhshimoghaddam
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No 7, Hafezi St., Farahzadi Blvd., P.O. Box: 19395-4741, Tehran, Iran.
| |
Collapse
|
8
|
Bidwell LC, Martin-Willett R, Melendez SN, Rosa L, Giordano G, Hutchison KE, Bryan AD. LOTUS: Protocol for a double-blind placebo controlled randomized trial of hemp-derived cannabidiol for the treatment of cannabis use disorder. PLoS One 2024; 19:e0308262. [PMID: 39348366 PMCID: PMC11441658 DOI: 10.1371/journal.pone.0308262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND As cannabis legalization continues to spread across the United States, average Δ9-tetrahydrocannabinol concentrations in recreational products have significantly increased, and no prior study has evaluated effective treatments to reduce cannabis use among high potency cannabis users. Some research has found that the non-intoxicating cannabinoid cannabidiol reduces cannabis use and cannabis use disorder-related symptoms, such as affective disturbance and withdrawal. Results of these studies are promising but limited to synthetic or isolated forms of cannabidiol. OBJECTIVE Conduct a placebo-controlled randomized control trial comparing the effects of hemp-derived cannabidiol on reducing Δ9-tetrahydrocannabinol use in concentrate users with cannabis use disorder. METHODS Design. Double-blind, three-arm randomized placebo-controlled trial. Setting. University in the Denver-Boulder, CO, USA area. Study population. Community members who are heavy, stable cannabis concentrate users that meet criteria for at least moderate cannabis use disorder and are seeking to decrease or stop cannabis use. Data. Self-report demographics, substance use, and mental health characteristics, blood and urine based biomarkers and anthropometrics. Outcomes. Affective, physiological, and physical withdrawal symptoms, Δ9-tetrahydrocannabinol use. Analysis. Three-group ANOVAs and χ2 tests will be used to compare baseline variables between groups. Characteristics that differ between groups will be evaluated as potential covariates in subsequent analyses. A multilevel modeling framework will be used for primary outcome analysis to account for the repeated observations nested within participants over time. Pairwise post-hoc simple effects tests will be conducted to confirm patterns of differences. TRIAL REGISTRATION ClinicalTrials.gov NCT06107062.
Collapse
Affiliation(s)
- L. Cinnamon Bidwell
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO, United States of America
- Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States of America
| | - Renee Martin-Willett
- Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States of America
| | - Samantha N. Melendez
- Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States of America
| | - Luiza Rosa
- Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States of America
| | - Gregory Giordano
- Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States of America
| | - Kent E. Hutchison
- Department of Psychiatry, University of Colorado Denver, Denver, CO, United States of America
| | - Angela D. Bryan
- Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
9
|
Denis Völker JS, Micluția IV, Vinași RC. Investigating Cannabidiol's potential as a supplementary treatment for schizophrenia: A narrative review. Eur J Pharmacol 2024; 979:176821. [PMID: 39068976 DOI: 10.1016/j.ejphar.2024.176821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Schizophrenia presents a complex mental health challenge, often inadequately addressed by existing antipsychotic treatments, leading to persistent symptoms and adverse effects. Hence, developing alternative therapeutic approaches is crucial. Cannabidiol (CBD), a nonpsychoactive compound in Cannabis sativa, has been extensively explored for its therapeutic potential in treating psychiatric disorders, including schizophrenia. CBD exhibits antipsychotic, anxiolytic, and neuroprotective effects. However, distinguishing the individual effects of CBD and THC remains challenging. Therefore, this review aims to critically analyze the potential role of CBD as an adjunctive therapy in schizophrenia treatment. The therapeutic action of CBD may involve activating the 5-hydroxytryptamine 1A receptors and suppressing the G-protein-coupled receptor 55, thereby affecting various neurotransmitter systems. Additionally, the anti-inflammatory and antioxidative effects of CBD may contribute to alleviating neuroinflammation linked to schizophrenia. Compared to typical antipsychotics, CBD demonstrates a lower incidence of side effects and it exhibited favorable tolerability in clinical trials. A 2012 clinical trial demonstrated the efficacy of CBD in reducing both positive and negative symptoms of schizophrenia, presenting a safer profile than that of traditional antipsychotics. However, further research is needed to fully establish the safety and efficacy of CBD as an adjunctive treatment. Future research directions encompass exploring detailed antipsychotic mechanisms, long-term safety profiles, interactions with current antipsychotics, optimal dosing, and patient-specific factors such as genetic predispositions. Despite these research needs, the potential of CBD to enhance the quality of life and symptom management positions it as a promising candidate for innovative schizophrenia treatment approaches.
Collapse
Affiliation(s)
- Jes Sebastian Denis Völker
- Department of Clinical Psychiatry Spitalul Clinic Judeţean de Urgenţă Cluj (Cluj County Emergency Clinical Hospital), Cluj-Napoca, Romania.
| | - Ioana Valentina Micluția
- Department of Clinical Psychiatry Spitalul Clinic Judeţean de Urgenţă Cluj (Cluj County Emergency Clinical Hospital), Cluj-Napoca, Romania.
| | - Ramona-Cristina Vinași
- Department of Clinical Neurosciences (DCN) Spitalul Clinic Judeţean de Urgenţă Cluj (Cluj County Emergency Clinical Hospital), Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Jakubiec M, Abram M, Zagaja M, Socała K, Panic V, Latacz G, Mogilski S, Szafarz M, Szala-Rycaj J, Saunders J, West PJ, Nieoczym D, Przejczowska-Pomierny K, Szulczyk B, Krupa A, Wyska E, Wlaź P, Metcalf CS, Wilcox K, Andres-Mach M, Kamiński RM, Kamiński K. Discovery and Profiling of New Multimodal Phenylglycinamide Derivatives as Potent Antiseizure and Antinociceptive Drug Candidates. ACS Chem Neurosci 2024; 15:3228-3256. [PMID: 39166702 PMCID: PMC11378297 DOI: 10.1021/acschemneuro.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
We developed a focused series of original phenyl-glycinamide derivatives which showed potent activity across in vivo mouse seizure models, namely, maximal electroshock (MES) and 6 Hz (using both 32 and 44 mA current intensities) seizure models. Following intraperitoneal (i.p.) administration, compound (R)-32, which was identified as a lead molecule, demonstrated potent protection against all seizure models with ED50 values of 73.9 mg/kg (MES test), 18.8 mg/kg (6 Hz, 32 mA test), and 26.5 mg/kg (6 Hz, 44 mA test). Furthermore, (R)-32 demonstrated efficacy in both the PTZ-induced kindling paradigm and the ivPTZ seizure threshold test. The expression of neurotrophic factors, such as mature brain-derived neurotrophic factor (mBDNF) and nerve growth factor (NGF), in the hippocampus and/or cortex of mice, and the levels of glutamate and GABA were normalized after PTZ-induced kindling by (R)-32. Importantly, besides antiseizure activity, (R)-32 demonstrated potent antinociceptive efficacy in formalin-induced pain, capsaicin-induced pain, as well as oxaliplatin- and streptozotocin-induced peripheral neuropathy in mice (i.p.). No influence on muscular strength and body temperature in mice was observed. Pharmacokinetic studies and in vitro ADME-Tox data (i.e., high metabolic stability in human liver microsomes, a weak influence on CYPs, no hepatotoxicity, satisfactory passive transport, etc.) proved favorable drug-like properties of (R)-32. Thermal stability of (R)-32 shown in thermogravimetry and differential scanning calorimetry gives the opportunity to develop innovative oral solid dosage forms loaded with this compound. The in vitro binding and functional assays indicated its multimodal mechanism of action. (R)-32, beyond TRPV1 antagonism, inhibited calcium and sodium currents at a concentration of 10 μM. Therefore, the data obtained in the current studies justify a more detailed preclinical development of (R)-32 for epilepsy and pain indications.
Collapse
Affiliation(s)
- Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Vanja Panic
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Szczepan Mogilski
- Department Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Joanna Szala-Rycaj
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Jerry Saunders
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Peter J West
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Katarzyna Przejczowska-Pomierny
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Bartłomiej Szulczyk
- Chair and Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, Warsaw 02-097, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Karen Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| |
Collapse
|
11
|
Fordjour E, Manful CF, Khalsamehta TSK, Armah A, Cheema M, Thomas R. Cannabis-infused foods: Phytonutrients, health, and safe product innovations. Compr Rev Food Sci Food Saf 2024; 23:e70021. [PMID: 39267188 DOI: 10.1111/1541-4337.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Cannabis-infused foods are currently on the rise in markets all around the world. Meanwhile, there are concerns over the health implications for consumers. Studies have explored the therapeutic potential and nutritional and economic benefits of cannabis usage. Yet, the phytonutrients, processing methods, and health implications of cannabis-infused foods have not been well explored. This review evaluates existing evidence on the nutritional, processing, safety, and phytonutrient composition of cannabis-infused food products and their medicinal and functional prospects. Cannabis seeds contain the highest amount of dietary nutrients, while flowers contain the highest amount of bioactive constituents. Oils, butter, seeds, flowers, and leaf extracts are the plant forms currently incorporated into food products such as beverages, baked products, cooking ingredients, functional foods, nutraceuticals, and nootropics. Cannabis-infused foods have been found to offer therapeutic benefits for pain management, brain function, gut health, and certain cancers. Findings also show significant constraints associated with cannabis-infused foods regarding dosage guidelines, limited research, efficacy, and long-term health effects on consumers. This is further worsened by the lack of policies that regulate the industry. To realize the full potential of cannabis use in the food and health industries and in research, regulatory guidelines are needed to control dosages and improve its efficient use in these industries. This will go a long way to ensure the safety of cannabis users and enhance responsible production, marketing, and distribution.
Collapse
Affiliation(s)
- Eric Fordjour
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Charles F Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada
| | - Tarsaim S K Khalsamehta
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Abraham Armah
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Medeiros AC, Medeiros P, Pigatto GR, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the dorsal hippocampus attenuates emotional and cognitive impairments related to neuropathic pain: The role of prelimbic neocortex-hippocampal connections. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111039. [PMID: 38797491 DOI: 10.1016/j.pnpbp.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain (NP) is commonly associated with cognitive and emotional impairments. Cannabidiol (CBD) presents a broad spectrum of action with a potential analgesic effect. This work investigates the CBD effect on comorbidity between chronic NP, depression, and memory impairment. EXPERIMENTAL APPROACH The connection between the neocortex and the hippocampus was investigated with biotinylated dextran amine (BDA) deposits in the prelimbic cortex (PrL). Wistar rats were submitted to chronic constriction injury (CCI) of the sciatic nerve and CA1 treatment with CBD (15, 30, 60 nmol). KEY RESULTS BDA-labeled perikarya and terminal buttons were found in CA1 and dentate gyrus. CCI-induced mechanical and cold allodynia increased c-Fos protein expression in the PrL and CA1. The number of astrocytes in PrL and CA1 increased, and the number of neuroblasts decreased in CA1. Animals submitted to CCI procedure showed increasing depressive-like behaviors, such as memory impairment. CBD (60 nmol) treatment decreased mechanical and cold allodynia, attenuated depressive-associated behaviors, and improved memory performance. Cobalt chloride (CoCl2: 1 nM), WAY-100635 (0.37 nmol), and AM251 (100 nmol) intra-PrL reversed the effect of CA1 treatment with CBD (60 nmol) on nociceptive, cognitive, and depressive behaviors. CONCLUSION CBD represents a promising therapeutic perspective in the pharmacological treatment of chronic NP and associated comorbidities such as depression and memory impairments. The CBD effects possibly recruit the CA1-PrL pathway, inducing neuroplasticity. CBD acute treatment into the CA1 produces functional and molecular morphological improvements.
Collapse
Affiliation(s)
- Ana Carolina Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Department of General and Specialized Nursing, Ribeirão Preto Nursing School of the University of São Paulo (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Glauce Regina Pigatto
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
13
|
Kodali M, Madhu LN, Kolla VSV, Attaluri S, Huard C, Somayaji Y, Shuai B, Jordan C, Rao X, Shetty S, Shetty AK. FDA-approved cannabidiol [Epidiolex ®] alleviates Gulf War Illness-linked cognitive and mood dysfunction, hyperalgesia, neuroinflammatory signaling, and declined neurogenesis. Mil Med Res 2024; 11:61. [PMID: 39169440 PMCID: PMC11340098 DOI: 10.1186/s40779-024-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Chronic Gulf War Illness (GWI) is characterized by cognitive and mood impairments, as well as persistent neuroinflammation and oxidative stress. This study aimed to investigate the efficacy of Epidiolex®, a Food and Drug Administration (FDA)-approved cannabidiol (CBD), in improving brain function in a rat model of chronic GWI. METHODS Six months after exposure to low doses of GWI-related chemicals [pyridostigmine bromide, N,N-diethyl-meta-toluamide (DEET), and permethrin (PER)] along with moderate stress, rats with chronic GWI were administered either vehicle (VEH) or CBD (20 mg/kg, oral) for 16 weeks. Neurobehavioral tests were conducted on 11 weeks after treatment initiation to evaluate the performance of rats in tasks related to associative recognition memory, object location memory, pattern separation, and sucrose preference. The effect of CBD on hyperalgesia was also examined. The brain tissues were processed for immunohistochemical and molecular studies following behavioral tests. RESULTS GWI rats treated with VEH exhibited impairments in all cognitive tasks and anhedonia, whereas CBD-treated GWI rats showed improvements in all cognitive tasks and no anhedonia. Additionally, CBD treatment alleviated hyperalgesia in GWI rats. Analysis of hippocampal tissues from VEH-treated rats revealed astrocyte hypertrophy and increased percentages of activated microglia presenting NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) complexes as well as elevated levels of proteins involved in NLRP3 inflammasome activation and Janus kinase/signal transducers and activators of the transcription (JAK/STAT) signaling. Furthermore, there were increased concentrations of proinflammatory and oxidative stress markers along with decreased neurogenesis. In contrast, the hippocampus from CBD-treated GWI rats displayed reduced levels of proteins mediating the activation of NLRP3 inflammasomes and JAK/STAT signaling, normalized concentrations of proinflammatory cytokines and oxidative stress markers, and improved neurogenesis. Notably, CBD treatment did not alter the concentration of endogenous cannabinoid anandamide in the hippocampus. CONCLUSIONS The use of an FDA-approved CBD (Epidiolex®) has been shown to effectively alleviate cognitive and mood impairments as well as hyperalgesia associated with chronic GWI. Importantly, the improvements observed in rats with chronic GWI in this study were attributed to the ability of CBD to significantly suppress signaling pathways that perpetuate chronic neuroinflammation.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Venkata Sai Vashishta Kolla
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Charles Huard
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Chase Jordan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Sanath Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Wei Y, Chen X, Li Y, Guo Y, Zhang S, Jin J, Li J, Wu D. Toxicological mechanism of cannabidiol (CBD) exposure on zebrafish embryonic development. Food Chem Toxicol 2024; 193:114929. [PMID: 39134136 DOI: 10.1016/j.fct.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024]
Abstract
Cannabidiol (CBD) is the main component of plant Cannabis (Cannabis sativa), which exhibits strong antioxidant and anti-inflammatory activities. With the legalization of CBD in the United States, it is an inevitable tendency for its global legalization in the future. Therefore, it has become an urgent task to conduct the toxicological evaluation of CBD before clinical application. In this study, the developmental toxicities of CBD on zebrafish embryos were systematically evaluated, and the mechanisms were revealed. The results showed that the phenotype of liver degeneration was observed in 96 hpf zebrafish embryos after 0.1-5 μmol/L CBD exposure, further RT-qPCR experiments indicated that the above result may attributed by the alterations of FABP10A, GCLC, and GSR. Besides, 1 and 5 μmol/L CBD contributed to the developmental toxicities of heart and eye in zebrafish embryos, characterizing by the decrease in heart rate, the phenotype of pericardial edema, and the reduce of eye area. Compared to other organs, the liver of zebrafish displayed the most sensitive characteristic to CBD exposure, as 0.1 μmol/L CBD already led to the phenotype of liver degeneration. In summary, this paper provided theoretical supports for CBD toxicology research, and laid the foundation for its future clinical application.
Collapse
Affiliation(s)
- Ying Wei
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, PR China
| | - Xiqi Chen
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Yue Li
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, PR China
| | - Yingxue Guo
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Sida Zhang
- Science and Technology Innovation Center for College Students, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jiazheng Jin
- Science and Technology Innovation Center for College Students, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China.
| |
Collapse
|
15
|
Dong S, Zhao H, Nie M, Sha Z, Feng J, Liu M, Lv C, Chen Y, Jiang W, Yuan J, Qian Y, Wan H, Gao C, Jiang R. Cannabidiol Alleviates Neurological Deficits After Traumatic Brain Injury by Improving Intracranial Lymphatic Drainage. J Neurotrauma 2024; 41:e2009-e2025. [PMID: 38553903 DOI: 10.1089/neu.2023.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Traumatic brain injury (TBI) persists as a substantial clinical dilemma, largely because of the absence of effective treatments. This challenge is exacerbated by the hindered clearance of intracranial metabolic byproducts and the continual accrual of deleterious proteins. The glymphatic system (GS) and meningeal lymphatic vessels (MLVs), key elements of the intracranial lymphatic network, play critical roles in the clearance of harmful substances. Cannabidiol (CBD) has shown promise in reducing metabolite overload and bolstering cognitive performance in various neurodegenerative diseases. The precise mechanisms attributing to its beneficial effects in TBI scenarios, however, are yet to be distinctly understood. Utilizing a fluid percussion injury paradigm, our research adopted a multifaceted approach, encompassing behavioral testing, immunofluorescence and immunohistochemical analyses, laser speckle imaging, western blot techniques, and bilateral cervical efferent lymphatic ligation. This methodology aimed to discern the influence of CBD on both neurological outcomes and intracranial lymphatic clearance in a murine TBI model. We observed that CBD administration notably ameliorated motor, memory, and cognitive functions, concurrently with a significant reduction in the concentration of phosphorylated tau protein and amyloid-β. In addition, CBD expedited the turnover and elimination of intracranial tracers, increased cerebral blood flow, and enhanced the efficacy of fluorescent tracer migration from MLVs to deep cervical lymph nodes (dCLNs). Remarkably, CBD treatment also induced a reversion in aquaporin-4 (AQP-4) polarization and curtailed neuroinflammatory indices. A pivotal discovery was that the surgical interruption of efferent lymphatic conduits in the neck nullified CBD's positive contributions to intracranial waste disposal and cognitive improvement, yet the anti-neuroinflammatory actions remained unaffected. These insights suggest that CBD may enhance intracranial metabolite clearance, potentially via the regulation of the intracranial lymphatic system, thereby offering neurofunctional prognostic improvement in TBI models. Our findings underscore the potential therapeutic applicability of CBD in TBI interventions, necessitating further comprehensive investigations and clinical validations to substantiate these initial conclusions.
Collapse
Affiliation(s)
- Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Hongwei Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiancheng Feng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin University, Changchun, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Yu Qian
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Honggang Wan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
16
|
Salgado KDCB, Nascimento RGDF, Coelho PJFN, Oliveira LAM, Nogueira KOPC. Cannabidiol protects mouse hippocampal neurons from neurotoxicity induced by amyloid β-peptide 25-35. Toxicol In Vitro 2024; 99:105880. [PMID: 38901785 DOI: 10.1016/j.tiv.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia worldwide, is a significant health concern, according to the World Health Organization (WHO). The neuropathological diagnostic criteria for AD are based on the deposition of amyloid-β peptide (Aβ) and the formation of intracellular tau protein tangles. These proteins are associated with several overlapping neurodegenerative mechanisms, including oxidative stress, mitochondrial dysfunction, lipid peroxidation, reduced neuronal viability, and cell death. In this context, our study focuses on the potential therapeutic use of cannabidiol (CBD), a non-psychotropic cannabinoid with antioxidant and anti-inflammatory effects. We aim to evaluate CBD's neuroprotective role, particularly in protecting hippocampal neurons from Aβ25-35-induced toxicity. Our findings indicate that CBD significantly improves cell viability and decreases levels of lipid peroxidation and oxidative stress. The results demonstrate that CBD possesses a robust potential to rescue cells from induced neurotoxicity through its antioxidant properties. Additionally, the neuroprotective effect of CBD may be associated with the modulation of the endocannabinoid system. These findings suggest that CBD could be a promising compound for adjuvant treatments in neurodegenerative processes triggered by amyloid-β peptide.
Collapse
Affiliation(s)
| | | | | | - Laser Antonio Machado Oliveira
- Laboratory of Neurobiology and Biomaterials, Federal University of Ouro Preto, MG, Brazil; Department of Biological Science, Federal University of Ouro Preto, MG, Brazil
| | - Katiane Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials, Federal University of Ouro Preto, MG, Brazil; Department of Biological Science, Federal University of Ouro Preto, MG, Brazil.
| |
Collapse
|
17
|
Glatt S, Shohat S, Yam M, Goldstein L, Maidan I, Fahoum F. Cannabidiol-enriched oil for adult patients with drug-resistant epilepsy: Prospective clinical and electrophysiological study. Epilepsia 2024; 65:2270-2279. [PMID: 38808601 DOI: 10.1111/epi.18025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE Cannabidiol-enriched oil (CBDO) is being used increasingly to improve seizure control in adult patients with drug-resistant epilepsy (DRE), despite the lack of large-scale studies supporting its efficacy in this patient population. We aimed to assess the effects of add-on CBDO on seizure frequency as well as on gait, cognitive, affective, and sleep-quality metrics, and to explore the electrophysiological changes in responder and non-responder DRE patients treated with add-on CBDO. METHODS We prospectively recruited adult DRE patients who were treated with add-on CBDO. Patients were evaluated prior to treatment and following 4 weeks of a maintenance daily dose of ≈260 mg CBD and ≈12 mg Δ9-tetrahydrocannabinol (THC). The outcome measures included seizure response to CBDO (defined as ≥50% decrease in seizures compared to pre-CBDO baseline), gait testing, Montreal Cognitive Assessment (MoCA), Hospital Anxiety and Depression Scale (HADS), and sleep-quality questionnaire assessments. Patients underwent electroencephalography (EEG) recording during rest as well as event-related potentials (ERPs) during visual Go/NoGo task while sitting and while walking. RESULTS Nineteen patients were recruited, of which 16 finished pre- and post-CBDO assessments. Seven patients (43.75%) were responders demonstrating an average reduction of 82.4% in seizures, and nine patients (56.25%) were non-responders with an average seizure increase of 30.1%. No differences in demographics and clinical parameters were found between responders and non-responders at baseline. However, responders demonstrated better performance in the dual-task walking post-treatment (p = .015), and correlation between increase in MoCA and seizure reduction (r = .810, p = .027). Post-CBDO P300 amplitude was lower during No/Go-sitting in non-responders (p = .028) and during No/Go-walking in responders (p = .068). SIGNIFICANCE CBDO treatment can reduce seizures in a subset of patients with DRE, but could aggravate seizure control in a minority of patients; yet we found no specific baseline clinical or electrophysiological characteristics that are associated with response to CBDO. However, changes in ERPs in response to treatment could be a promising direction to better identify patients who could benefit from CBDO treatment.
Collapse
Affiliation(s)
- Sigal Glatt
- Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shohat
- Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mor Yam
- Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Goldstein
- Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Maidan
- Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:1910. [PMID: 39065436 PMCID: PMC11279941 DOI: 10.3390/plants13141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Advancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures. Using genotyping-by-sequencing, we identified 9405 polymorphic variants across 70 clones. The analysis revealed a correlation between the number of subcultures and the frequency of these mutations, revealing that genetic changes accumulate over successive subcultures despite clones sharing the same chronological age. Furthermore, we evaluated the functional impacts of accumulated mutations, with particular attention to implications on gene function and overall plant health. While rare, 14 high-impact variants were identified in genes that are important for plant development. Notably, six variants were also found in genes related to cannabinoid and terpene synthesis pathways, potentially affecting the plant's biochemical composition. These findings highlight the need for genetic assessments in micropropagation protocols, impacting plant breeding and conservation. Understanding genetic variations in clonally propagated plants optimizes practices for stability. Crucial for cannabis and horticultural plants, it emphasizes techniques to prevent genetic decay and ensure viability.
Collapse
Affiliation(s)
- Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.A.); (A.M.P.J.)
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
19
|
Bini A, Salerno S, Protti S, Pollastro F, Profumo A, Morini L, Merli D. Photodegradation of cannabidiol (CBD) and Δ 9-THC in cannabis plant material. Photochem Photobiol Sci 2024; 23:1239-1249. [PMID: 38739326 DOI: 10.1007/s43630-024-00589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Δ9-THC, the psychotropic cannabinoid in Cannabis sativa L., for many years has been the focus of all the pharmacological attention as the main promising principle of the plant. Recently, however, cannabidiol (CBD) has brought a sudden change in the scenario, exponentially increasing the interest in pharmacology as the main non-psychotropic cannabinoid with potential therapeutic, cosmetical and clinical applications. Although the reactivity of CBD and Δ9-THC has been considered, little attention has been paid to the possible photodegradation of these cannabinoids in the vegetal matrix and the data available in the literature are, in some cases, contradictory. The aim of the present work is to provide a characterization of the photochemical behaviour of CBD and Δ9-THC in three cannabis chemotypes, namely I (Δ9-THC 2.50%w/w), II (CBD:Δ9-THC 5.82%w/w:3.19%w/w) and III (CBD 3.02%w/w).
Collapse
Affiliation(s)
- Arianna Bini
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100, Pavia, Italy
| | - Sofia Salerno
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100, Pavia, Italy
| | - Stefano Protti
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100, Pavia, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Antonella Profumo
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100, Pavia, Italy
| | - Luca Morini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia, Italy
| | - Daniele Merli
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100, Pavia, Italy.
- INFN Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan, Italy.
| |
Collapse
|
20
|
Fatahi N, Jafari-Sabet M, Vahabzadeh G, Komaki A. Role of hippocampal and prefrontal cortical cholinergic transmission in combination therapy valproate and cannabidiol in memory consolidation in rats: involvement of CREB- BDNF signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5029-5047. [PMID: 38189934 DOI: 10.1007/s00210-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Cognitive disorders are associated with valproate and drugs used to treat neuropsychological diseases. Cannabidiol (CBD) has beneficial effects on cognitive function. This study examined the effects of co-administration of CBD and valproate on memory consolidation, cholinergic transmission, and cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway in the prefrontal cortex (PFC) and hippocampus (HPC). METHODS One-trial, step-through inhibitory test was used to evaluate memory consolidation in rats. The intra-CA1 injection of physostigmine and atropine was performed to assess the role of cholinergic transmission in this co-administration. Phosphorylated CREB (p-CREB)/CREB ratio and BDNF levels in the PFC and HPC were evaluated. RESULTS Post-training intraperitoneal (i.p.) valproate injection reduced memory consolidation; however, post-training co-administration of CBD with valproate ameliorated memory impairment induced by valproate. Post-training intra-CA1 injection of physostigmine at the ineffective doses in memory consolidation (0.5 and 1 µg/rat), plus injection of 10 mg/kg of CBD as an ineffective dose, improved memory loss induced by valproate, which was associated with BDNF and p-CREB level enhancement in the PFC and HPC. Conversely, post-training intra-CA1 injection of ineffective doses of atropine (1 and 2 µg/rat) reduced the positive effects of injection of CBD at a dose of 20 mg/kg on valproate-induced memory loss associated with BDNF and p-CREB level reduction in the PFC and HPC. CONCLUSION The results indicated a beneficial interplay between valproate and CBD in the process of memory consolidation, which probably creates this interaction through the BDNF-CREB signaling pathways in the cholinergic transmission of the PFC and HPC regions.
Collapse
Affiliation(s)
- Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Wang X, Zhu H, Liu T, Guo Z, Zhao C, He Z, Zheng W. Comparison of various doses of oral cannabidiol for treating refractory epilepsy indications: a network meta-analysis. Front Neurol 2024; 15:1243597. [PMID: 38994494 PMCID: PMC11238246 DOI: 10.3389/fneur.2024.1243597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Aim To evaluate the comparative efficacy and safety of various doses of oral cannabidiol (CBD) in treating refractory epilepsy indications, thus providing more informative evidence for clinical decision-making. Methods A literature search of PubMed, Embase, the Cochrane library, and Web of Science (WoS) was performed to retrieve relevant randomized controlled trials (RCTs) that compared different doses of oral CBD with placebo or each other in refractory epilepsy indications. The search was limited from the inception of each database to January 3, 2023. Relative risk [RR] with a 95% confidence interval [CI] was used to express results. STATA/SE 14 was employed for network meta-analysis. Results Six RCTs involving 972 patients were included in the final data analysis. Network meta-analysis showed that, CBD10 (10 mg/kg/day) (RR: 1.77, 95%CI: 1.28 to 2.44), CBD20 (20 mg/kg/day) (RR: 1.91, 95%CI: 1.49 to 2.46), CBD25 (25 mg/kg/day) (RR: 1.61, 95%CI: 0.96 to 2.70), and CBD50 (50 mg/kg/day) (RR: 1.78, 95%CI: 1.07 to 2.94) were associated with higher antiseizure efficacy although the pooled result for CBD25 was only close to significant. In addition, in terms of the risk of treatment-emergent adverse events (TEAEs), the difference between different doses is not significant. However, CBD20 ranked first in terms of antiseizure efficacy, followed by CBD50, CBD10, and CBD25. For TEAEs, CBD25 ranked first, followed by CBD10, CBD50, CBD5, and CBD20. Conclusion For refractory indications, CBD20 may be optimal option for antiseizure efficacy; however, CBD25 may be best for TEAEs. Therefore, an appropriate dose of oral CBD should be selected based on the actual situation. Due to the limitations of eligible studies and the limited sample size, more studies are needed in the future to validate our findings.
Collapse
Affiliation(s)
- Xin Wang
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiyan Zhu
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhi Guo
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenyang Zhao
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyi He
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenxu Zheng
- Geriatric Department of Dalian Friendship Hospital, Dalian, China
| |
Collapse
|
22
|
Chen S, Li Y, Li X, Wu Q, Puig M, Moulin F, Gingrich J, Guo L. Metabolism and liver toxicity of cannabidiol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:238-254. [PMID: 38904421 PMCID: PMC11404724 DOI: 10.1080/26896583.2024.2366741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Increasing public interest has resulted in the widespread use of non-pharmaceutical cannabidiol (CBD) products. The sales of CBD products continue to rise, accompanied by concerns regarding unsubstantiated benefits, lack of product quality control, and potential health risks. Both animal and human studies have revealed a spectrum of toxicological effects linked to the use of CBD. Adverse effects related to exposure of humans to CBD include changes in appetite, gastrointestinal discomfort, fatigue, and elevated liver aminotransferase enzymes. Animal studies reported changes in organ weight, reproduction, liver function, and the immune system. This review centers on human-derived data, including clinical studies and in vitro investigations. Animal studies are also included when human data is not available. The objective is to offer an overview of CBD-related hepatotoxicity, metabolism, and potential CBD-drug interactions, thereby providing insights into the current understanding of CBD's impact on human health. It's important to note that this review does not serve as a risk assessment but seeks to summarize available information to contribute to the broader understanding of potential toxicological effects of CBD on the liver.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Jeremy Gingrich
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, Maryland, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| |
Collapse
|
23
|
Kruk-Slomka M, Slomka T, Biala G. The Influence of an Acute Administration of Cannabidiol or Rivastigmine, Alone and in Combination, on Scopolamine-Provoked Memory Impairment in the Passive Avoidance Test in Mice. Pharmaceuticals (Basel) 2024; 17:809. [PMID: 38931476 PMCID: PMC11206614 DOI: 10.3390/ph17060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Memory is one of the most important abilities of our brain. The process of memory and learning is necessary for the proper existence of humans in the surrounding environment. However, sometimes there are unfavourable changes in the functioning of the brain and memory deficits occur, which may be associated with various diseases. Disturbances in the cholinergic system lead to abnormalities in memory functioning and are an essential part of clinical symptoms of many neurodegenerative diseases. However, their treatment is difficult and still unsatisfactory; thus, it is necessary to search for new drugs and their targets, being an alternative method of mono- or polypharmacotherapy. One of the possible strategies for the modulation of memory-related cognitive disorders is connected with the endocannabinoid system (ECS). The aim of the present study was to determine for the first time the effect of administration of natural cannabinoid compound (cannabidiol, CBD) and rivastigmine alone and in combination on the memory disorders connected with cholinergic dysfunctions in mice, provoked by using an antagonist of muscarinic cholinergic receptor-scopolamine. To assess and understand the memory-related effects in animals, we used the passive avoidance (PA) test, commonly used to examine the different stages of memory. An acute administration of CBD (1 mg/kg) or rivastigmine (0.5 mg/kg) significantly affected changes in scopolamine-induced disturbances in three different memory stages (acquisition, consolidation, and retrieval). Interestingly, co-administration of CBD (1 mg/kg) and rivastigmine (0.5 mg/kg) also attenuated memory impairment provoked by scopolamine (1 mg/kg) injection in the PA test in mice, but at a much greater extent than administered alone. The combination therapy of these two compounds, CBD and rivastigmine, appears to be more beneficial than substances administered alone in reducing scopolamine-induced cognitive impairment. This polytherapy seems to be favourable in the pharmacotherapy of various cognitive disorders, especially those in which cholinergic pathways are implicated.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Tomasz Slomka
- Department of Information Technology and Medical Statistics with e-Health Laboratory, Medical University of Lublin, Jaczewskiego 4 Street, 20-954 Lublin, Poland;
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| |
Collapse
|
24
|
Brown C, Kariuki W, Zhong HA, Kippes A, Sui Y. Cannabidiol promotes intestinal cholesterol uptake mediated by Pregnane X receptor. Front Endocrinol (Lausanne) 2024; 15:1398462. [PMID: 38957441 PMCID: PMC11217338 DOI: 10.3389/fendo.2024.1398462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Background Cannabidiol (CBD), a non-psychoactive phytocannabinoid of cannabis, is therapeutically used as an analgesic, anti-convulsant, anti-inflammatory, and anti-psychotic drug. There is a growing concern about the adverse side effects posed by CBD usage. Pregnane X receptor (PXR) is a nuclear receptor activated by a variety of dietary steroids, pharmaceutical agents, and environmental chemicals. In addition to the role in xenobiotic metabolism, the atherogenic and dyslipidemic effects of PXR have been revealed in animal models. CBD has a low affinity for cannabinoid receptors, thus it is important to elucidate the molecular mechanisms by which CBD activates cellular signaling and to assess the possible adverse impacts of CBD on pro-atherosclerotic events in cardiovascular system, such as dyslipidemia. Objective Our study aims to explore the cellular and molecular mechanisms by which exposure to CBD activates human PXR and increases the risk of dyslipidemia. Methods Both human hepatic and intestinal cells were used to test if CBD was a PXR agonist via cell-based transfection assay. The key residues within PXR's ligand-binding pocket that CBD interacted with were investigated using computational docking study together with site-directed mutagenesis assay. The C57BL/6 wildtype mice were orally fed CBD in the presence of PXR antagonist resveratrol (RES) to determine how CBD exposure could change the plasma lipid profiles in a PXR-dependent manner. Human intestinal cells were treated with CBD and/or RES to estimate the functions of CBD in cholesterol uptake. Results CBD was a selective agonist of PXR with higher activities on human PXR than rodents PXRs and promoted the dissociation of human PXR from nuclear co-repressors. The key amino acid residues Met246, Ser247, Phe251, Phe288, Trp299, and Tyr306 within PXR's ligand binding pocket were identified to be necessary for the agonistic effects of CBD. Exposure to CBD increased the circulating total cholesterol levels in mice which was partially caused by the induced expression levels of the key intestinal PXR-regulated lipogenic genes. Mechanistically, CBD induced the gene expression of key intestinal cholesterol transporters, which led to the increased cholesterol uptake by intestinal cells. Conclusion CBD was identified as a selective PXR agonist. Exposure to CBD activated PXR signaling and increased the atherogenic cholesterol levels in plasma, which partially resulted from the ascended cholesterol uptake by intestinal cells. Our study provides potential evidence for the future risk assessment of CBD on cardiovascular disease, such as dyslipidemia.
Collapse
Affiliation(s)
- Conner Brown
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Wangeci Kariuki
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Haizhen A. Zhong
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE, United States
| | - Audra Kippes
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Yipeng Sui
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| |
Collapse
|
25
|
Masoumi M, Manavi MA, Mohammad Jafari R, Mirzaei A, Hedayatyanfard K, Beigmohammadi MT, Dehpour AR. Cannabidiol Anticonvulsant Effects Against Lithium-Pilocarpine-Induced Status Epilepticus in Male Rats Are Mediated by Neuroinflammation Modulation and Cannabinoids 1 (CB1), But Not CB2 and GABA A Receptors. Cannabis Cannabinoid Res 2024; 9:797-808. [PMID: 37976207 DOI: 10.1089/can.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Background: Status epilepticus (SE) is a series of seizures that can lead to serious neurological damages. Cannabidiol (CBD) is extracted from the cannabis plant, which has been approved as an antiseizure medication. This study aimed to determine the efficacy of various doses of CBD on lithium-pilocarpine-induced SE in rats and possible involvement of multiple pharmacological pathways. We hypothesized that cannabinoid receptors type 1 (CB1) and CB2, as well as GABAA receptors, might have important roles in the anticonvulsant effects of CBD against SE by its anti-inflammatory effects. Methods: SE was induced by intraperitoneal (i.p.) injection of lithium (127 mg/kg, i.p.) and pilocarpine (60 mg/kg, i.p., 20 h after lithium). Forty-two male rats were divided into seven groups (including control and sham groups), and the treated groups received different doses of CBD (1, 3, 5, 10, and 25 mg/kg, i.p.). SE score was recorded over the next 2 h following pilocarpine injection. Then, we measured the levels of pro-inflammatory cytokines, including interleukin (IL)-lβ and tumor necrosis factor (TNF)-α, using ELISA kits. Also we analyzed the expression of CB1, CB2, and GABAA receptors using the Western blot technique. Results: CBD at 5 mg/kg significantly reduced Racine's scale and duration of seizures, and increased the onset time of seizure. Moreover, CBD 5 mg/kg caused significant reductions in the elevated levels of IL-lβ and TNF-α, as well as a significant increase in the decreased level of CB1 receptor expression compared to the control group. In other word, CBD reverted the effects of SE in terms of neuroinflammation and CB1 receptor. Based on the obtained results, CBD was not able to restore the declined levels of CB2 or GABAA receptors. Conclusion: Our study found anticonvulsant effects of CBD on the SE rat model induced by lithium-pilocarpine with probable involvement of CB1 receptors and anti-inflammatory effects by reducing IL-1β and TNF-α markers independent of CB2 and GABAA receptors.
Collapse
Affiliation(s)
- Mahla Masoumi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keshvad Hedayatyanfard
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Beigmohammadi
- Department of Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Manca A, Valz C, Chiara F, Mula J, Palermiti A, Billi M, Antonucci M, Nicolò AD, Luxardo N, Imperiale D, Vischia F, De Cori D, Cusato J, D'Avolio A. Cannabinoid levels description in a cohort of patients with chronic and neuropathic pain treated with Cannabis decoction: A possible role of TDM. Biomed Pharmacother 2024; 175:116686. [PMID: 38713939 DOI: 10.1016/j.biopha.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The phytocomplex of Cannabis is made up of approximately 500 substances: terpeno-phenols metabolites, including Δ-9-tetrahydrocannabinol and cannabidiol, exhibit pharmacological activity. Medical Cannabis has several pharmacological potential applications, in particular in the management of chronic and neuropathic pain. In the literature, a few data are available concerning cannabis pharmacokinetics, efficacy and safety. Thus, aim of the present study was the evaluation of cannabinoid pharmacokinetics in a cohort of patients, with chronic and neuropathic pain, treated with inhaled medical cannabis and decoction, as a galenic preparation. In this study, 67 patients were enrolled. Dried flower tops with different THC and CBD concentrations were used: Bedrocan® medical cannabis with THC level standardized at 19% and with a CBD level below 1%, Bediol® medical cannabis with THC and CBD level standardized at similar concentration of 6.5% and 8%, respectively. Cannabis was administered as a decoction in 47 patients and inhaled in 11 patients. The blood withdrawn was obtained before the new dose administration at the steady state and metabolites plasma concentrations were measured with an UHPLC-MS/MS method. Statistically significant differences were found in cannabinoids plasma exposure between inhaled and oral administration of medical cannabis, between male and female and cigarette smokers. For the first time, differences in cannabinoid metabolites exposures between different galenic formulations were suggested in patients. Therapeutic drug monitoring could be useful to allow for dose adjustment, but further studies in larger cohorts of patients are required in order to confirm these data.
Collapse
Affiliation(s)
- Alessandra Manca
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Cristina Valz
- SC Terapia del dolore - ASL Città di Torino, Turin 10144, Italy
| | - Francesco Chiara
- University of Turin, Department of Clinical and Biological Sciences, Laboratory of Clinical Pharmacology San Luigi A.O.U., RegioneGonzole 10, Orbassano, Turin 10043, Italy
| | - Jacopo Mula
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Alice Palermiti
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Martina Billi
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Miriam Antonucci
- SCDU Infectious Diseases, Amedeo di Savoia Hospital, ASL Città di Torino, Turin 10149, Italy
| | - Amedeo De Nicolò
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Nicola Luxardo
- SC Terapia del dolore - ASL Città di Torino, Turin 10144, Italy
| | - Daniele Imperiale
- Neurology Unit, Maria Vittoria Hospital, ASL Città di Torino, Turin 10144, Italy
| | - Flavio Vischia
- Department of Mental Health - Psychiatric Unit West, Turin 10149, Italy
| | - David De Cori
- Department of Mental Health - Psychiatric Unit West, Turin 10149, Italy
| | - Jessica Cusato
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy.
| | - Antonio D'Avolio
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| |
Collapse
|
27
|
Hassan Kalantar Neyestanaki M, Gholizadeh O, Hosseini Tabatabaie F, Akbarzadeh S, Yasamineh S, Afkhami H, Sedighi S. Immunomodulatory effects of cannabinoids against viral infections: a review of its potential use in SARS-CoV2 infection. Virusdisease 2024; 35:342-356. [PMID: 39071880 PMCID: PMC11269557 DOI: 10.1007/s13337-024-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 07/30/2024] Open
Abstract
The COVID-19 pandemic is a global health crisis affecting millions of people worldwide. Along with vaccine development, there is also a priority to discover new drugs and treatments. One approach involves modulating the immune system to manage inflammation and cytokine storms. Patients with a high severity of complications exhibit a high level of inflammatory cytokines, particularly IL-6, in the airways and other infected tissues. Several studies have reported the function of the endocannabinoid system in regulating inflammation and different immune responses. Cannabinoids are a class of natural chemicals found in the Cannabis plant. Recently, the anti-inflammatory properties of cannabinoids and their mediatory immunosuppression mechanisms through the endocannabinoid system have engrossed scientists in the health field for infectious conditions. Research suggests that the immune system can regulate cytokine activation through cannabinoid receptors, particularly with Cannabidiol (CBD), the second most prevalent compound in cannabis. While CBD has been deemed safe by the World Health Organization and shows no signs of abuse potential, excessive CBD use may lead to respiratory depression. CBD shows promise in reducing immune cell recruitment and cytokine storms in organs affected by SARS-CoV2. However, before clinical use, it's crucial to evaluate cannabinoid-based medications' active ingredient concentrations and potential interactions with other drugs, along with associated side effects. Indication-based dosing, consistent formulations, and ensuring purity and potency are essential. This review highlights cannabinoids' effects on COVID-19 management and prognosis, drawing from preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Fatemeh Hosseini Tabatabaie
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Somayeh Sedighi
- Department of Immunology, Faculty of Medicine, Medical Science of Mashhad, Mashhad, Iran
| |
Collapse
|
28
|
Stasiłowicz-Krzemień A, Nogalska W, Maszewska Z, Maleszka M, Dobroń M, Szary A, Kępa A, Żarowski M, Hojan K, Lukowicz M, Cielecka-Piontek J. The Use of Compounds Derived from Cannabis sativa in the Treatment of Epilepsy, Painful Conditions, and Neuropsychiatric and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:5749. [PMID: 38891938 PMCID: PMC11171823 DOI: 10.3390/ijms25115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties. Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery. This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies. Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Wiktoria Nogalska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Zofia Maszewska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Mateusz Maleszka
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Maria Dobroń
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Agnieszka Szary
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Aleksandra Kępa
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Swięcickiego 6, 61-847 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Malgorzata Lukowicz
- Department of Rehabilitation, Centre of Postgraduate Medical Education, Konarskiego 13, 05-400 Otwock, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
29
|
Narayan AJ, Downey LA, Rose S, Di Natale L, Hayley AC. Cannabidiol for moderate-severe insomnia: a randomized controlled pilot trial of 150 mg of nightly dosing. J Clin Sleep Med 2024; 20:753-763. [PMID: 38174873 PMCID: PMC11063694 DOI: 10.5664/jcsm.10998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
STUDY OBJECTIVES Low-dose cannabidiol (CBD) has become readily available in numerous countries; however, little consensus exists on its efficacy as a sleep aid. This trial explored the efficacy of 150 mg of CBD (n = 15) compared with placebo (n = 15) as a sleep aid in primary insomnia. CBD supplementation was hypothesized to decrease insomnia symptoms and improve aspects of psychological health, relative to placebo. METHODS Using a randomized, placebo-controlled, parallel design featuring a single-blind placebo run-in week followed by a 2-week double-blind randomized dosing phase, participants consumed the assigned treatment sublingually 60 minutes before bed nightly. Wrist-actigraphy and sleep diaries measured daily sleep. Sleep quality, sleep effort, and well-being were measured weekly over 4 in-laboratory visits. Insomnia severity and trait anxiety were measured at screening and study conclusion. RESULTS Insomnia severity, self-reported sleep-onset latency, sleep efficiency, and wake after sleep onset did not differ between treatments throughout the trial (all P > .05). Compared with placebo, the CBD group reported greater well-being scores throughout the trial (trial end mean difference = 2.60; standard error: 1.20), transient elevated behavior following wakefulness scores after 1 week of treatment (mean difference = 3.93; standard error: 1.53), and had superior objective sleep efficiency after 2 weeks of treatment (mean difference = 6.85; standard error: 2.95) (all P < .05). No other significant treatment effects were observed. CONCLUSIONS Nightly supplementation of 150 mg CBD was similar to placebo regarding most sleep outcomes while sustaining greater well-being, suggesting more prominent psychological effects. Additional controlled trials examining varying treatment periods and doses are crucial. CLINICAL TRIAL REGISTRATION Registry: Australian New Zealand Clinical Trials Registry; Name: Cannabidiol (CBD) treatment for insomnia; URL: https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12620000070932; Identifier: ACTRN12620000070932. CITATION Narayan AJ, Downey LA, Rose S, Di Natale L, Hayley AC. Cannabidiol for moderate-severe insomnia: a randomized controlled pilot trial of 150 mg of nightly dosing. J Clin Sleep Med. 2024;20(5):753-763.
Collapse
Affiliation(s)
- Andrea J. Narayan
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Luke A. Downey
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, Australia
- Institute for Breathing and Sleep, Austin Hospital, Melbourne, Australia
| | - Sarah Rose
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Lauren Di Natale
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Amie C. Hayley
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, Australia
- Institute for Breathing and Sleep, Austin Hospital, Melbourne, Australia
| |
Collapse
|
30
|
Liu YM, Li JC, Gu YF, Qiu RH, Huang JY, Xue R, Li S, Zhang Y, Zhang K, Zhang YZ. Cannabidiol Exerts Sedative and Hypnotic Effects in Normal and Insomnia Model Mice Through Activation of 5-HT 1A Receptor. Neurochem Res 2024; 49:1150-1165. [PMID: 38296858 DOI: 10.1007/s11064-024-04102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Cannabis sativa has been used for improving sleep for long history. Cannabidiol (CBD) has drown much attention as a non-addictive psychoactive component in Cannabis sativa extract. However, the effects of CBD on sleep architecture and it's acting mechanism remains unclear. In the present study, we evaluated the sedative-hypnotic effect of cannabidiol (CBD), assessed the effects of CBD on sleep using a wireless physiological telemetry system. We further explored the therapeutic effects of CBD using 4-chloro-dl-phenylalanine (PCPA) induced insomnia model and changes in sleep latency, sleep duration and intestinal flora were evaluated. CBD shortened sleep latency and increases sleep duration in both normal and insomnia mice, and those effects were blocked by 5-HT1A receptor antagonist WAY100635. We determined that CBD increases 5-HT1A receptors expression and 5-HT content in the hypothalamus of PCPA-pretreated mice and affects tryptophan metabolism in the intestinal flora. These results showed that activation of 5-HT1A receptors is one of the potential mechanisms underlying the sedative-hypnotic effect of CBD. This study validated the effects of CBD on sleep and evaluated its potential therapeutic effects on insomnia.
Collapse
Affiliation(s)
- Yu-Meng Liu
- Shenyang Pharmaceutical University, Shenyang, 110016, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jin-Cao Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yong-Fang Gu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Ren-Hong Qiu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jia-Ying Huang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Kuo Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - You-Zhi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
31
|
de Almeida DL, Mendes Ferreira RC, Fonseca FC, Dias Machado DP, Aguiar DD, Guimaraes FS, Duarte IDG, Romero TRL. Cannabidiol induces systemic analgesia through activation of the PI3Kγ/nNOS/NO/KATP signaling pathway in neuropathic mice. A KATP channel S-nitrosylation-dependent mechanism. Nitric Oxide 2024; 146:1-9. [PMID: 38428514 DOI: 10.1016/j.niox.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Silveira Guimaraes
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | |
Collapse
|
32
|
de Fátima Dos Santos Sampaio M, de Paiva YB, Sampaio TB, Pereira MG, Coimbra NC. Therapeutic applicability of cannabidiol and other phytocannabinoids in epilepsy, multiple sclerosis and Parkinson's disease and in comorbidity with psychiatric disorders. Basic Clin Pharmacol Toxicol 2024; 134:574-601. [PMID: 38477419 DOI: 10.1111/bcpt.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| | - Yara Bezerra de Paiva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Tuane Bazanella Sampaio
- Pharmacology Post-Graduation Program, Health Sciences Centre, Santa Maria Federal University, Santa Maria, Brazil
| | - Messias Gonzaga Pereira
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
33
|
Osman M, Khalil J, El-Bahri M, Swalah Mcdahrou J, Fahda R, Mustafa R, Ooi A, Attayee M, Catanzariti R, Pont L, Williams K, Yeung S, Dua K, De Rubis G, Loebenberg R. Decoding epilepsy treatment: A comparative evaluation contrasting cannabidiol pharmacokinetics in adult and paediatric populations. Chem Biol Interact 2024; 394:110988. [PMID: 38574834 DOI: 10.1016/j.cbi.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is a neurological disorder characterized by overstimulation of neurotransmitters and uncontrolled seizures. Current medications for epilepsy result in adverse effects or insufficient seizure control, highlighting the necessity to develop alternative therapies. Cannabidiol (CBD), derived from cannabis plants, has been popularly explored as an alternative. CBD is shown to have anti-convulsivatng and muscle-relaxing properties, which have been used in patients with epilepsy with promising results. Current research explores varying dosages in either adult or paediatric patients, with little or no comparison between the two populations. In this review, we aim at consolidating this data and comparing the effect and pharmacokinetic properties of CBD across these two patient populations. When comparing the absorption, there was insufficient data to show differences between paediatric and adult patients. Similarly, limited information was available in comparing the distribution of CBD, but a higher volume of distribution was found in the paediatric population. From the metabolism perspective, the paediatric population had a greater success rate when treated with the drug compared to the adult population. In the elimination, there were no clear distinctions in the clearance rate between the two populations. The drug's half-life was highly variable in both populations, with paediatrics having a lower range than adults. In summary, the paediatric population had a more significant reduction in the severity of seizures compared to the adult population upon CBD treatment. The complexity in which CBD operates highlights the need for further studies of the compound to further understand why differences occur between these two populations.
Collapse
Affiliation(s)
- Mohamed Osman
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jamileh Khalil
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mostafa El-Bahri
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jamal Swalah Mcdahrou
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reem Fahda
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reymin Mustafa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Arthur Ooi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Marwa Attayee
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rachelle Catanzariti
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lisa Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kylie Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Raimar Loebenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
34
|
Matricardi S, Scorrano G, Prezioso G, Burchiani B, Di Cara G, Striano P, Chiarelli F, Verrotti A. The latest advances in the pharmacological management of focal epilepsies in children: a narrative review. Expert Rev Neurother 2024; 24:371-381. [PMID: 38433525 DOI: 10.1080/14737175.2024.2326606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Focal epilepsy constitutes the most common epilepsy in children, and medical treatment represents the first-line therapy in this condition. The main goal of medical treatment for children and adolescents with epilepsy is the achievement of seizure freedom or, in drug-resistant epilepsies, a significant seizure reduction, both minimizing antiseizure medications (ASM)-related adverse events, thus improving the patient's quality of life. However, up to 20-40% of pediatric epilepsies are refractory to drug treatments. New ASMs came to light in the pediatric landscape, improving the drug profile compared to that of the preexisting ones. Clinicians should consider several factors during the drug choice process, including patient and medication-specific characteristics. AREAS COVERED This narrative review aims to summarize the latest evidence on the effectiveness and tolerability of the newest ASMs administered as monotherapy or adjunctive therapy in pediatric epilepsies with focal onset seizures, providing a practical appraisal based on the existing evidence. EXPERT OPINION The latest ASMs have the potential to be effective in the pharmacological management of focal onset seizures in children, and treatment choice should consider several drug- and epilepsy-related factors. Future treatments should be increasingly personalized and targeted on patient-specific pathways. Future research should focus on discovering new chemical compounds and repurposing medications used for other indications.
Collapse
Affiliation(s)
- Sara Matricardi
- Department of Paediatrics, University of Chieti, Chieti, Italy
| | | | | | | | - Giuseppe Di Cara
- Department of Paediatrics, University of Perugia, Perugia, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Alberto Verrotti
- Department of Paediatrics, University of Perugia, Perugia, Italy
| |
Collapse
|
35
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
36
|
Aderinto N, Olatunji G, Kokori E, Ajayi YI, Akinmoju O, Ayedun AS, Ayoola OI, Aderinto NO. The efficacy and safety of cannabidiol (CBD) in pediatric patients with Dravet Syndrome: a narrative review of clinical trials. Eur J Med Res 2024; 29:182. [PMID: 38500226 PMCID: PMC10949818 DOI: 10.1186/s40001-024-01788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Dravet Syndrome (DS) is a rare and severe form of childhood epilepsy that is often refractory to conventional antiepileptic drugs. Emerging evidence suggests that Cannabidiol (CBD) offer therapeutic benefits for DS. This review aims to evaluate the efficacy and safety of CBD in pediatric patients with DS based on data from ten clinical trials. METHODS A review was conducted to identify clinical trials assessing the efficacy and safety of CBD in pediatric patients diagnosed with DS. PubMed, MEDLINE, Scopus, Web of Science, and relevant grey literature were systematically searched for relevant articles up to October 2023, and clinical trials within the last 10 years were included. The search strategy incorporated controlled vocabulary terms and keywords related to "Cannabidiol," "Dravet Syndrome," and "pediatric patients." RESULTS The analysis revealed promising efficacy outcomes. Notably, CBD demonstrated substantial reductions in seizure frequency, with some patients achieving seizure freedom. The findings emphasised the consistency of CBD's efficacy across different patient subgroups. The safety profile of CBD was generally acceptable, with adverse events often being manageable. CONCLUSION This review consolidates evidence from multiple clinical trials, affirming the potential of CBD as a promising treatment option for pediatric patients with DS. While further research is needed to address existing knowledge gaps, CBD's efficacy and acceptable safety profile make it a valuable addition to the therapeutic tools for DS.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria.
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, PMB 5000, Ogbomosho, Nigeria.
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Yusuf Ismaila Ajayi
- Department of Medicine and Surgery, Obafemi Awolowo University Teaching Hospital, Ife, Nigeria
| | - Olumide Akinmoju
- Department of Medicine and Surgery, University of Ibadan, Ibadan, Nigeria
| | | | | | | |
Collapse
|
37
|
Rafiq H, Hartung J, Schober T, Vogt MM, Carrera DÁ, Ruckle M, Graeff-Hönninger S. Non-Destructive Near-Infrared Technology for Efficient Cannabinoid Analysis in Cannabis Inflorescences. PLANTS (BASEL, SWITZERLAND) 2024; 13:833. [PMID: 38592891 PMCID: PMC10975745 DOI: 10.3390/plants13060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the evolving field of cannabis research, scholars are exploring innovative methods to quantify cannabinoids rapidly and non-destructively. This study evaluates the effectiveness of a hand-held near-infrared (NIR) device for quantifying total cannabidiol (total CBD), total delta-9-tetrahydrocannabinol (total THC), and total cannabigerol (total CBG) in whole cannabis inflorescences. Employing pre-processing techniques, including standard normal variate (SNV) and Savitzky-Golay (SG) smoothing, we aim to optimize the portable NIR technology for rapid and non-destructive cannabinoid analysis. A partial least-squares regression (PLSR) model was utilized to predict cannabinoid concentration based on NIR spectra. The results indicated that SNV pre-processing exhibited superior performance in predicting total CBD concentration, yielding the lowest root mean square error of prediction (RMSEP) of 2.228 and the highest coefficient of determination for prediction (R2P) of 0.792. The ratio of performance to deviation (RPD) for total CBD was highest (2.195) with SNV. In contrast, raw data exhibited the least accurate predictions for total THC, with an R2P of 0.812, an RPD of 2.306, and an RMSEP of 1.651. Notably, total CBG prediction showed unique characteristics, with raw data yielding the highest R2P of 0.806. SNV pre-processing emerges as a robust method for precise total CBD quantification, offering valuable insights into the optimization of a hand-held NIR device for the rapid and non-destructive analysis of cannabinoid in whole inflorescence samples. These findings contribute to ongoing efforts in developing portable and efficient technologies for cannabinoid analysis, addressing the increasing demand for quick and accurate assessment methods in cannabis cultivation, pharmaceuticals, and regulatory compliance.
Collapse
Affiliation(s)
- Hamza Rafiq
- Department of Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jens Hartung
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Torsten Schober
- Department of Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | - Simone Graeff-Hönninger
- Department of Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
38
|
Javadzadeh Y, Santos A, Aquilino MS, Mylvaganam S, Urban K, Carlen PL. Cannabidiol Exerts Anticonvulsant Effects Alone and in Combination with Δ 9-THC through the 5-HT1A Receptor in the Neocortex of Mice. Cells 2024; 13:466. [PMID: 38534310 DOI: 10.3390/cells13060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study investigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9 Tetrahydrocannabinol (Δ9-THC), as well as (iii) the serotonin (5-HT)1A receptor's role in CBD's mechanism of action. Seizure activity, induced by 4-aminopyridine, was measured by extracellular field recordings in cortex layer 2/3 of mouse brain slices. The anticonvulsant effect of 10, 30, and 100 µM CBD alone and combined with Δ9-THC was evaluated. To examine CBD's mechanism of action, slices were pre-treated with a 5-HT1A receptor antagonist before CBD's effect was evaluated. An amount of ≥30 µM CBD alone exerted significant anticonvulsant effects while 10 µM CBD did not. However, 10 µM CBD combined with low-dose Δ9-THC (20:3 ratio) displayed significantly greater anticonvulsant effects than either phytocannabinoid alone. Furthermore, blocking 5-HT1A receptors before CBD application significantly abolished CBD's effects. Thus, our results demonstrate the efficacy of low-dose CBD and Δ9-THC combined and that CBD exerts its effects, at least in part, through 5-HT1A receptors. These results could address drug-resistance while providing insight into CBD's mechanism of action, laying the groundwork for further testing of cannabinoids as anticonvulsants.
Collapse
Affiliation(s)
- Yasaman Javadzadeh
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Alexandra Santos
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
| | - Mark S Aquilino
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Shanthini Mylvaganam
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
| | | | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Medicine (Neurology), University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
39
|
Lowe DJE, Sorkhou M, George TP. Cannabis use in adolescents and anxiety symptoms and disorders: a systematic review and meta-analysis. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:150-161. [PMID: 38285048 DOI: 10.1080/00952990.2023.2299922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Background: The use of cannabis is highly prevalent during adolescence compared to the general adult population. In addition to the high comorbidity between cannabis use and anxiety disorders, early evidence suggests that cannabis may precede the development of anxiety. Moreover, adolescence represents a major developmental period for both neurobiological and psychological processes, placing these individuals at a heightened vulnerability to the influence of cannabis.Objectives: This systematic review and meta-analysis examined the prospective associations between adolescent cannabis use and subsequent anxiety outcomes (i.e. anxiety disorders and/or symptoms).Methods: Following PRISMA guidelines, a systematic review and meta-analysis were conducted encompassing data from articles published between database inception and September 2022.Results: Six longitudinal studies were identified for quantitative analysis, while twelve non-overlapping longitudinal studies were identified for qualitative review (total N = 18; 33380 subjects). Meta-analytical findings supported an association between adolescent cannabis use and the development of a subsequent anxiety disorder (Odds Ratio = 2.14, 95% CI: 1.37-3.36, p < .01). These findings were consistent with our qualitative synthesis where nine of the twelve longitudinal studies observed a significant relationship between adolescent cannabis use and exacerbation of anxiety symptoms later in life, irrespective of an anxiety disorder diagnosis.Discussion: In summary, the current evidence suggests a prospective association between adolescent cannabis use and later anxiety symptoms and disorders. These findings underscore the importance of refining research methodologies, considering sex-based differences and controlling for confounding factors, as well as implementing educational initiatives and developing clinical interventions to address the mental health risks associated with cannabis use among adolescents.
Collapse
Affiliation(s)
- Darby J E Lowe
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Maryam Sorkhou
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Tony P George
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Cashen NA, Kloc ML, Pressman D, Liebman SA, Holmes GL. CBD treatment following early life seizures alters orbitofrontal-striatal signaling during adulthood. Epilepsy Behav 2024; 152:109638. [PMID: 38325075 DOI: 10.1016/j.yebeh.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Obsessive compulsive disorder (OCD) is a comorbid condition of epilepsy and often adds to the burden of epilepsy. Both OCD and epilepsy are disorders of hyperexcitable circuits. Fronto-striatal circuit dysfunction is implicated in OCD. Prior work in our laboratory has shown that in rat pups following a series of flurothyl-induced early life seizures (ELS) exhibit frontal-lobe dysfunction along with alterations in electrographic temporal coordination between the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS), circuits implicated in OCD. Here, we studied the effects of ELS in male and female rat pups on OCD-like behaviors as adults using the marble burying test (MBT). Because cannabidiol (CBD) is an effective antiseizure medication and has shown efficacy in the treatment of individuals with OCD, we also randomized rats to CBD or vehicle treatment following ELS to determine if CBD had any effect on OCD-like behaviors. While the flurothyl model of ELS did not induce OCD-like behaviors, as measured in the MBT, ELS did alter neural signaling in structures implicated in OCD and CBD had sex-dependent effects of temporal coordination in a way which suggests it may have a beneficial effect on epilepsy-related OCD.
Collapse
Affiliation(s)
- Natalie A Cashen
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Michelle L Kloc
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Davi Pressman
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Samuel A Liebman
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
41
|
Dell'Isola GB, Verrotti A, Sciaccaluga M, Dini G, Ferrara P, Parnetti L, Costa C. Cannabidiol: metabolism and clinical efficacy in epileptic patients. Expert Opin Drug Metab Toxicol 2024; 20:119-131. [PMID: 38465404 DOI: 10.1080/17425255.2024.2329733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION The landscape of epilepsy treatment has undergone a significant transformation with the emergence of cannabidiol as a potential therapeutic agent. Epidiolex, a pharmaceutical formulation of highly purified CBD, garnered significant attention not just for its therapeutic potential but also for being the first cannabis-derived medication to obtain approval from regulatory bodies. AREA COVERED In this narrative review the authors explore the intricate landscape of CBD as an antiseizure medication, deepening into its pharmacological mechanisms and clinical trials involving various epileptic encephalopathies. This exploration serves as a comprehensive guide, shedding light on a compound that holds promise for individuals contending with the significant challenges of drug-resistant epilepsy. EXPERT OPINION Rigorous studies highlight cannabidiol's efficacy, safety profile, and potential cognitive benefits, warranting further exploration for its approval in various drug-resistant epilepsy forms. As a promising therapeutic option, cannabidiol not only demonstrates efficacy in seizure control but also holds the potential for broader enhancements in the quality of life, especially for patients with epileptic encephalopathies.
Collapse
Affiliation(s)
| | | | - Miriam Sciaccaluga
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- "Mauro Baschirotto" Institute for Rare Diseases - BIRD Foundation Onlus, Longare, Vicenza, Italy
| | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Costa
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
42
|
Lindsay CM, Bernard KK, Hammond AM, Beckford S, Abel WD, Brown PD, Young LE. Potency trends of cannabis in Jamaica during the period of 2014 to 2020. Drug Test Anal 2024; 16:174-186. [PMID: 37309060 DOI: 10.1002/dta.3527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
Reports suggest that cannabis potency has dramatically increased over the last decade in the USA and Europe. Cannabinoids are the terpeno-phenolic compounds found in the cannabis plant and are responsible for its pharmacological activity. The two most prominent cannabinoids are delta-9-tetrahydrocannabinol (Δ9 THC) and cannabidiol (CBD). Cannabis potency is measured not only by the Δ9 THC levels but also by the ratio of Δ9 THC to other non-psychoactive cannabinoids, namely, CBD. Cannabis use was decriminalized in Jamaica in 2015, which opened the gates for the creation of a regulated medical cannabis industry in the country. To date, there is no information available on the potency of cannabis in Jamaica. In this study, the cannabinoid content of Jamaican-grown cannabis was examined over the period 2014-2020. Two hundred ninety-nine herbal cannabis samples were received from 12 parishes across the island, and the levels of the major cannabinoids were determined using gas chromatography-mass spectrometry. There was a significant increase (p < 0.05) in the median total THC levels of cannabis samples tested between 2014 (1.1%) and 2020 (10.2%). The highest median THC was detected in the central parish of Manchester (21.1%). During the period, THC/CBD ratios increased from 2.1 (2014) to 194.1 (2020), and there was a corresponding increase in the percent freshness of samples (CBN/THC ratios <0.013). The data show that a significant increase in the potency of locally grown cannabis has occurred in Jamaica during the last decade.
Collapse
Affiliation(s)
- Carole M Lindsay
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Khalia K Bernard
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Amanda M Hammond
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Sheldon Beckford
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Wendel D Abel
- Department of Community Health and Psychiatry, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| | - Lauriann E Young
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies (UWI), Kingston, Jamaica
| |
Collapse
|
43
|
Müller AR, den Hollander B, van de Ven PM, Roes KCB, Geertjens L, Bruining H, van Karnebeek CDM, Jansen FE, de Wit MCY, Ten Hoopen LW, Rietman AB, Dierckx B, Wijburg FA, Boot E, Brands MMG, van Eeghen AM. Cannabidiol (Epidyolex®) for severe behavioral manifestations in patients with tuberous sclerosis complex, mucopolysaccharidosis type III and fragile X syndrome: protocol for a series of randomized, placebo-controlled N-of-1 trials. BMC Psychiatry 2024; 24:23. [PMID: 38177999 PMCID: PMC10768432 DOI: 10.1186/s12888-023-05422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Many rare genetic neurodevelopmental disorders (RGNDs) are characterized by intellectual disability (ID), severe cognitive and behavioral impairments, potentially diagnosed as a comorbid autism spectrum disorder or attention-deficit hyperactivity disorder. Quality of life is often impaired due to irritability, aggression and self-injurious behavior, generally refractory to standard therapies. There are indications from previous (case) studies and patient reporting that cannabidiol (CBD) may be an effective treatment for severe behavioral manifestations in RGNDs. However, clear evidence is lacking and interventional research is challenging due to the rarity as well as the heterogeneity within and between disease groups and interindividual differences in treatment response. Our objective is to examine the effectiveness of CBD on severe behavioral manifestations in three RGNDs, including Tuberous Sclerosis Complex (TSC), mucopolysaccharidosis type III (MPS III), and Fragile X syndrome (FXS), using an innovative trial design. METHODS We aim to conduct placebo-controlled, double-blind, block-randomized, multiple crossover N-of-1 studies with oral CBD (twice daily) in 30 patients (aged ≥ 6 years) with confirmed TSC, MPS III or FXS and severe behavioral manifestations. The treatment is oral CBD up to a maximum of 25 mg/kg/day, twice daily. The primary outcome measure is the subscale irritability of the Aberrant Behavior Checklist. Secondary outcome measures include (personalized) patient-reported outcome measures with regard to behavioral and psychiatric outcomes, disease-specific outcome measures, parental stress, seizure frequency, and adverse effects of CBD. Questionnaires will be completed and study medication will be taken at the participants' natural setting. Individual treatment effects will be determined based on summary statistics. A mixed model analysis will be applied for analyzing the effectiveness of the intervention per disorder and across disorders combining data from the individual N-of-1 trials. DISCUSSION These N-of-1 trials address an unmet medical need and will provide information on the effectiveness of CBD for severe behavioral manifestations in RGNDs, potentially generating generalizable knowledge at an individual-, disorder- and RGND population level. TRIAL REGISTRATION EudraCT: 2021-003250-23, registered 25 August 2022, https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-003250-23/NL .
Collapse
Affiliation(s)
- A R Müller
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- 's Heeren Loo Care Group, Amersfoort, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - B den Hollander
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - P M van de Ven
- Department of Data Science and Biostatistics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K C B Roes
- Department of Health Evidence, Biostatistics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Geertjens
- Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Reproduction and Development, N=You Neurodevelopmental Precision Center, Amsterdam, The Netherlands
| | - H Bruining
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Reproduction and Development, N=You Neurodevelopmental Precision Center, Amsterdam, The Netherlands
- Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | - C D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - F E Jansen
- Department of Pediatric Neurology, Brain, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Y de Wit
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - L W Ten Hoopen
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A B Rietman
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B Dierckx
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F A Wijburg
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - E Boot
- 's Heeren Loo Care Group, Amersfoort, The Netherlands
- The Dalglish Family 22Q Clinic, Toronto, ON, Canada
- Department of Psychiatry & Neuropsychology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M M G Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - A M van Eeghen
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- 's Heeren Loo Care Group, Amersfoort, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Bandoli G, Anunziata F, Bogdan R, Zilverstand A, Chaiyachati BH, Gurka KK, Sullivan E, Croff J, Bakhireva LN. Assessment of substance exposures in nail clipping samples: A systematic review. Drug Alcohol Depend 2024; 254:111038. [PMID: 38041982 PMCID: PMC11059950 DOI: 10.1016/j.drugalcdep.2023.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Studies of prenatal substance exposure often rely on self-report, urine drug screens, and/or analyses of blood or meconium biomarkers. Accuracy of these measures is limited when assessing exposure over many weeks or months of gestation. Nails are increasingly being considered as a matrix from which to assess substance exposure. This systematic review synthesizes data on the validity of detecting alcohol, nicotine, cannabis, and opioid from nail clippings, with an emphasis on prenatal exposure assessment. METHODS The systematic review was conducted using PRISMA 2020 guidelines. Seven databases were searched with keywords relevant to the four substances of interest. Results were summarized grouping manuscripts by the exposure of interest with focus on accuracy and feasibility. RESULTS Of 2384 papers initially identified, 35 manuscripts were included in our qualitative synthesis. Only a few studies specifically looked at pregnant individuals or mother-child dyads. Across the four substances, many studies demonstrated a dose-response relationship between exposure and concentration of analytes in nails. Nail assays appear to detect lower level of exposure compared to hair; however, sample insufficiency, especially for multi-substance assays, remains a limitation. CONCLUSIONS Based on the reviewed studies, nail clippings are an acceptable and potentially preferable matrix for the evaluation of these four prenatal substances when sampling frequency and/or study design necessitates assessment of past exposures over an extended period. Nails have the advantage of infrequent sampling and minimal invasiveness to assess a broad exposure period. Future studies should examine validity of analytes in toenail versus fingernail clippings.
Collapse
Affiliation(s)
- Gretchen Bandoli
- Department of Pediatrics, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Florencia Anunziata
- Department of Pediatrics, University of California, La Jolla, San Diego, CA 92093, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO 63130, USA
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis MN 55455, USA
| | | | - Kelly K Gurka
- Department of Epidemiology, Colleges of Public Health & Health Professions and Medicine, University of Florida, Gainesville FL, 32611 USA
| | - Elinor Sullivan
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julie Croff
- Department of Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Ludmila N Bakhireva
- Department of Pharmacy Practice & Administrative Sciences, University of New Mexico Health and Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
45
|
Arthur P, Kalvala AK, Surapaneni SK, Singh MS. Applications of Cannabinoids in Neuropathic Pain: An Updated Review. Crit Rev Ther Drug Carrier Syst 2024; 41:1-33. [PMID: 37824417 PMCID: PMC11228808 DOI: 10.1615/critrevtherdrugcarriersyst.2022038592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Sachdeva Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
46
|
Dawidowicz AL, Typek R, Dybowski MP, Holowinski P, Rombel M. Cannabigerol (CBG) signal enhancement in its analysis by gas chromatography coupled with tandem mass spectrometry. Forensic Toxicol 2024; 42:31-44. [PMID: 37755669 PMCID: PMC10808273 DOI: 10.1007/s11419-023-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE According to recent reports, cannabigerol (CBG) concentration level in blood and body fluids may have forensic utility as a highly specific albeit insensitive biomarker of recent cannabis smoking. While the analytical sensitivity of cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC) or cannabinol (CBN) estimation by gas chromatography-mass spectrometry (GC-MS) is similar and sufficiently high, it is exceptionally low in the case of CBG (ca. 25 times lower than for the other mentioned cannabinoids). The purpose of this study is to explain the reasons for the extremely low analytical sensitivity of GC-MS in estimating CBG and to present possible ways of its improvement. METHODS Nuclear magnetic resonance (NMR) data and GC-MS responses to CBG and its various derivatization and transformation products were studied. RESULTS The validation data of individual derivatives of CBG and its transformation products were established. CBG silylation/acylation or hydration allows to decrease LOD about 3 times, whereas the formation of pyranic CBG derivative leads to 10-times decrease of LOD. The paper enriches the literature of the subject by providing MS and NMR spectra, not published so far, for derivatives of CBG and its transformation products. The most likely cause of low GC-MS response to CBG is also presented. CONCLUSIONS The presented results shows that although the signal increase of CBG can be obtained through its derivatization by silylation and/or acylation, the greatest increase is observed in the case of its cyclization to the pyranic CBG form during the sample preparation process. The CBG cyclization procedure is very simple and workable in estimating this cannabinoid in blood/plasma samples.
Collapse
Affiliation(s)
- Andrzej L Dawidowicz
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland.
| | - Rafal Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Michal P Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Piotr Holowinski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Michal Rombel
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| |
Collapse
|
47
|
Calapai F, Esposito E, Ammendolia I, Mannucci C, Calapai G, Currò M, Cardia L, Chinou I. Pharmacovigilance of unlicensed cannabidiol in European countries. Phytother Res 2024; 38:74-81. [PMID: 37800192 DOI: 10.1002/ptr.8028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Cannabidiol (CBD) is a multitarget agent possessing anti-inflammatory and antioxidant properties. Unlicensed CBD gained public favor for the care of general health and well-being as well as to get comfort from inflammatory complaints, pain, anxiety, mood, and sleep disorders. Safety profile of unlicensed CBD has been not sufficiently described. For this reason, suspected adverse reactions (SARs) to CBD unlicensed products were analyzed. Serious SARs to unlicensed CBD products in EudraVigilance, a system purchased by the European Medicines Agency, were analyzed for age, sex of the patient, adverse reactions, indication for use, and concomitant drugs. Serious SARs were 18.9% of all adverse events to unlicensed CBD; they were more frequent in men and adult people and, to a less extent, in children (3-11 years). About sex, in EudraVigilance serious Individual Cases Safety Reports of SARs to CBD in men are in the largest number (58.8%) with respect to women. Unlicensed CBD was used in the 38.8% of cases for treatment of epilepsy; more frequent adverse effects were: mental disorders, hepatic disorders, and aggravation of pre-existing epilepsy. Drugs or substances more frequently associated with SARs were the antiepileptics clobazam and valproic acid, followed by cannabis. Results suggest that precautions and appropriate surveillance of adverse effects should be taken when unlicensed CBD is used.
Collapse
Affiliation(s)
- Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ilaria Ammendolia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Gioacchino Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mariaconcetta Currò
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luigi Cardia
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Ioanna Chinou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Ikbal MDA, Kang S, Chen X, Gu L, Wang C. Picomolar-Level Sensing of Cannabidiol by Metal Nanoparticles Functionalized with Chemically Induced Dimerization Binders. ACS Sens 2023; 8:4696-4706. [PMID: 38084058 PMCID: PMC11500188 DOI: 10.1021/acssensors.3c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Simple and fast detection of small molecules is critical for health and environmental monitoring. Methods for chemical detection often use mass spectrometers or enzymes; the former relies on expensive equipment, and the latter is limited to those that can act as enzyme substrates. Affinity reagents like antibodies can target a variety of small-molecule analytes, but the detection requires the successful design of chemically conjugated targets or analogs for competitive binding assays. Here, we developed a generalizable method for the highly sensitive and specific in-solution detection of small molecules, using cannabidiol (CBD) as an example. Our sensing platform uses gold nanoparticles (AuNPs) functionalized with a pair of chemically induced dimerization (CID) nanobody binders (nanobinders), where CID triggers AuNP aggregation and sedimentation in the presence of CBD. Despite moderate binding affinities of the two nanobinders to CBD (equilibrium dissociation constants KD of ∼6 and ∼56 μM), a scheme consisting of CBD-AuNP preanalytical incubation, centrifugation, and electronic detection (ICED) was devised to demonstrate a high sensitivity (limit of detection of ∼100 picomolar) in urine and saliva, a relatively short sensing time (∼2 h), a large dynamic range (5 logs), and a sufficiently high specificity to differentiate CBD from its analog, tetrahydrocannabinol. The high sensing performance was achieved with the multivalency of AuNP sensing, the ICED scheme that increases analyte concentrations in a small assay volume, and a portable electronic detector. This sensing system is readily applicable for wide molecular diagnostic applications.
Collapse
Affiliation(s)
- MD Ashif Ikbal
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, WA 98195, USA
| | - Xiahui Chen
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| | - Liangcai Gu
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, WA 98195, USA
| | - Chao Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
49
|
Dziwenka M, Dolan LC, Rao M. Safety of Elixinol Hemp Extract: In Vitro Genetic Toxicity and Subchronic Toxicity in Rats. J Toxicol 2023; 2023:5982883. [PMID: 38111631 PMCID: PMC10727801 DOI: 10.1155/2023/5982883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 12/20/2023] Open
Abstract
The results of safety studies performed with Elixinol Hemp Extract, a blend of hemp extract, cannabidiol (CBD) isolate, and copaiba containing approximately 65% total CBD, are described in this paper. In a 15-day range-finding study in rats, there were no effects of treatment with up to 101.4 mg/kg bw/day of the extract by gavage on any safety parameter measured in the study, with the exception that centrilobular hepatocellular hypertrophy occurred in all treatment groups, which correlated with increases in absolute liver weight in high-dose females and liver to terminal body weight ratio in mid-dose and high-dose females. A GLP-compliant 90-day OECD Guideline 408 study in rats that included a behavioral battery and a 28-day recovery phase was also conducted with Elixinol Hemp Extract administered by gavage. The doses used in the 90-day study were 0 (vehicle), 28.94, 50.64, and 86.81 mg/kg bw/day. The findings were similar to those observed in the range-finding study. There were no effects of the test material on any test parameter in the 90-day study other than findings related to the liver (increased liver weight in high-dose main study males and mid-dose and high-dose main study females and low incidences of hepatocellular hypertrophy and vacuolation in main study high-dose males). Similar findings were not observed in the recovery animals, and there were no alterations in the clinical chemistry suggestive of liver toxicity in any of the main study or recovery animals. Therefore, the liver outcomes observed in the main study were not considered adverse. The test material also tested negative for mutagenicity in bacterial reverse mutation assays (plate incorporation and preincubation) in the absence and presence of metabolic activation. The results indicate that the oral 90-day no observed adverse effect level (NOAEL) of Elixinol Hemp Extract in rats is 86.81 mg/kg bw/day (highest dose administered), and that the extract is not mutagenic.
Collapse
Affiliation(s)
- Margitta Dziwenka
- GRAS Associates, LLC 11810 Grand Park Avenue, Suite 500, North Bethesda, MD 20852, USA
| | - Laurie C. Dolan
- GRAS Associates, LLC 11810 Grand Park Avenue, Suite 500, North Bethesda, MD 20852, USA
| | - Mithila Rao
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ 08810, USA
| |
Collapse
|
50
|
Martínez-Aguirre C, Márquez LA, Santiago-Castañeda CL, Carmona-Cruz F, Nuñez-Lumbreras MDLA, Martínez-Rojas VA, Alonso-Vanegas M, Aguado-Carrillo G, Gómez-Víquez NL, Galván EJ, Cuéllar-Herrera M, Rocha L. Cannabidiol Modifies the Glutamate Over-Release in Brain Tissue of Patients and Rats with Epilepsy: A Pilot Study. Biomedicines 2023; 11:3237. [PMID: 38137458 PMCID: PMC10741033 DOI: 10.3390/biomedicines11123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Drug-resistant epilepsy (DRE) is associated with high extracellular levels of glutamate. Studies support the idea that cannabidiol (CBD) decreases glutamate over-release. This study focused on investigating whether CBD reduces the evoked glutamate release in cortical synaptic terminals obtained from patients with DRE as well as in a preclinical model of epilepsy. Synaptic terminals (synaptosomes) were obtained from the epileptic neocortex of patients with drug-resistant temporal lobe epilepsy (DR-TLE, n = 10) or drug-resistant extratemporal lobe epilepsy (DR-ETLE, n = 10) submitted to epilepsy surgery. Synaptosomes highly purified by Percoll-sucrose density gradient were characterized by confocal microscopy and Western blot. Synaptosomes were used to estimate the high KCl (33 mM)-evoked glutamate release in the presence of CBD at different concentrations. Our results revealed responsive tissue obtained from seven patients with DR-TLE and seven patients with DR-ETLE. Responsive tissue showed lower glutamate release (p < 0.05) when incubated with CBD at low concentrations (less than 100 µM) but not at higher concentrations. Tissue that was non-responsive to CBD (DR-TLE, n = 3 and DR-ELTE, n = 3) showed high glutamate release despite CBD exposure at different concentrations. Simultaneously, a block of the human epileptic neocortex was used to determine its viability through whole-cell and extracellular electrophysiological recordings. The electrophysiological evaluations supported that the responsive and non-responsive human epileptic neocortices used in the present study exhibited proper neuronal viability and stability to acquire electrophysiological responses. We also investigated whether the subchronic administration of CBD could reduce glutamate over-release in a preclinical model of temporal lobe epilepsy. Administration of CBD (200 mg/kg, p.o. every 24 h for 7 days) to rats with lithium-pilocarpine-evoked spontaneous recurrent seizures reduced glutamate over-release in the hippocampus. The present study revealed that acute exposure to low concentrations of CBD can reduce the glutamate over-release in synaptic terminals obtained from some patients with DRE. This effect is also evident when applied subchronically in rats with spontaneous recurrent seizures. An important finding was the identification of a group of patients that were non-responsive to CBD effects. Future studies are essential to identify biomarkers of responsiveness to CBD to control DRE.
Collapse
Affiliation(s)
- Christopher Martínez-Aguirre
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Luis Alfredo Márquez
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Cindy Lizbeth Santiago-Castañeda
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Francia Carmona-Cruz
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Maria de los Angeles Nuñez-Lumbreras
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Vladimir A. Martínez-Rojas
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
- Center for Research on Aging, Center for Research and Advanced Studies, Mexico City 14330, Mexico
| | - Mario Alonso-Vanegas
- International Center for Epilepsy Surgery, HMG-Coyoacán Hospital, Mexico City 04380, Mexico;
| | - Gustavo Aguado-Carrillo
- Clinic of Epilepsy, General Hospital of México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Norma L. Gómez-Víquez
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Emilio J. Galván
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
- Center for Research on Aging, Center for Research and Advanced Studies, Mexico City 14330, Mexico
| | - Manola Cuéllar-Herrera
- Clinic of Epilepsy, General Hospital of México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| |
Collapse
|