1
|
Lee SY, Kim SJ, Ha JH. Quantification of Pectobacterium carotovorum subsp. carotovorum in kimchi cabbage using a surface-enhanced Raman scattering platform with silver nanostructures. Biosens Bioelectron 2025; 267:116766. [PMID: 39265428 DOI: 10.1016/j.bios.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Pectobacterium carotovorum subsp. carotovorum (PCC) is a notorious plant pathogen responsible for severe soft rot in kimchi cabbage, which results in significant economic losses. To detect PCC rapidly and accurately in kimchi cabbage, we developed a surface-enhanced Raman scattering (SERS) substrate on which silver nanospheres (AgNSs), nanowires (AgNWs), and nanoseeds are combined on a polydimethylsiloxane (PDMS) platform. The incorporation of Ag nanoseeds creates a higher density of hotspots, which ensures a low detection limit of 1.001 CFU/mL. Electron microscopy and spectroscopic analyses confirmed the successful fabrication of the substrate and its enhanced sensitivity. The SERS substrate exhibits excellent selectivity by effectively distinguishing PCC from other bacteria commonly found in kimchi cabbage. The substrate gives rise to strong Raman signals across PCC concentrations ranging from 101 to 106 CFU/mL. Additionally, a predictive model was developed for accurately detecting PCC in real kimchi cabbage samples, and the results were validated by polymerase chain reaction measurements. A sensitive, selective, and rapid approach for PCC detection in kimchi cabbage that offers a promising improvement over existing methodologies is presented.
Collapse
Affiliation(s)
- Seong Youl Lee
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea
| | - Su-Ji Kim
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea.
| |
Collapse
|
2
|
Vu NT, Kim H, Lee S, Hwang IS, Kwon CT, Oh CS. Bacteriophage cocktail for biocontrol of soft rot disease caused by Pectobacterium species in Chinese cabbage. Appl Microbiol Biotechnol 2024; 108:11. [PMID: 38159122 DOI: 10.1007/s00253-023-12881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024]
Abstract
Pectobacterium spp. are necrotrophic plant pathogens that cause the soft rot disease in Chinese cabbage, resulting in severe yield loss. The use of conventional antimicrobial agents, copper-based bactericides, and antibiotics has encountered several limitations, such as bioaccumulation on plants and microbial resistance. Bacteriophages (phages) are considered promising alternative antimicrobial agents against diverse phytopathogens. In this study, we isolated and characterized two virulent phages (phiPccP-2 and phiPccP-3) to develop a phage cocktail. Morphological and genomic analyses revealed that two phages belonged to the Tevenvirinae and Mccorquodalevirinae subfamilies, respectively. The phiPccP-2 and phiPccP-3 phages, which have a broad host range, were stable at various environmental conditions, such as various pHs and temperatures and exposure to ultraviolet light. The phage cocktail developed using these two lytic phages inhibited the emergence of phage-resistant bacteria compared to single-phage treatments in in vitro challenge assays. The phage cocktail treatment effectively prevented the development of soft rot symptom in matured Chinese cabbage leaves. Additionally, the phage cocktail comprising three phages (phiPccP-1, phiPccP-2, and phiPccP-3) showed superior biocontrol efficacy against the mixture of Pectobacterium strains in Chinese cabbage seedlings. These results suggest that developing phage cocktails is an effective approach for biocontrol of soft rot disease caused by Pectobacterium strains in crops compared to single-phage treatments. KEY POINTS: •Two newly isolated Pectobacterium phages, phiPccP-2 and phiPccP-3, infected diverse Pectobacterium species and effectively inhibited the emergence of phage-resistant bacteria. •Genomic and physiological analyses suggested that both phiPccP-2 and phiPccP-3 are lytic phages and that their lytic activities are stable in the environmental conditions under which Chinese cabbage grows. •Treatment using a phage cocktail comprising phiPccP-2 and phiPccP-3 efficiently suppressed soft rot disease in detached mature leaves and seedlings of Chinese cabbage, indicating the applicability of the phage cocktail as an alternative antimicrobial agent.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soohong Lee
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choon-Tak Kwon
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Sason G, Chalegoua E, Pun M, Nussinovitch A, Jurkevitch E, Yedidia I. Encapsulated Predatory Bacteria Efficiently Protect Potato Tubers from Soft Rot Disease. PLANT DISEASE 2024:PDIS02240487RE. [PMID: 39003501 DOI: 10.1094/pdis-02-24-0487-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Soft rot Pectobacteriaceae (SRP) are a group of destructive Gram-negative phytopathogens that can infect a wide range of plant hosts, including potatoes. There are no effective control agents available against SRP, making their management challenging. We have developed a novel approach to protect potato tubers against SRP. It makes use of encapsulated predatory Bdellovibrio bacteriovorus bacteria that, upon release from a polymeric carrier, prey upon SRP. We applied a carrageenan-trehalose-based formulation containing a B. bacteriovorus HD100 predator to prevent soft rot disease development in potato tubers, under various conditions. The dried formulation exhibited very high stability over an 18-month period at room temperature (∼25°C), in contrast to unencapsulated suspensions of the predator, in which viability decreased rapidly below detection level. The rehydrated formulation was as efficient as freshly grown unencapsulated predators and provided high protection in potted potato tubers, displaying an average of 50% reduction in disease parameters (e.g., tissue decay and disease index) under controlled conditions at 7 days postinoculation and planting. The protective effect provided by this formulation was maintained in longer-term trials (28 days) conducted in larger vessels within a net house under natural climate conditions, highlighting its potential for practical application in the field.
Collapse
Affiliation(s)
- Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Errikos Chalegoua
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Manoj Pun
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Amos Nussinovitch
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iris Yedidia
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
4
|
Asif M, Xie X, Zhao Z. Virulence regulation in plant-pathogenic bacteria by host-secreted signals. Microbiol Res 2024; 288:127883. [PMID: 39208525 DOI: 10.1016/j.micres.2024.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Sasaki R, Miyashita S, Takahashi H. Complete genome sequences of two novel Ralstonia jumbo phages isolated from leaf litter compost. Arch Virol 2024; 169:235. [PMID: 39485571 PMCID: PMC11530567 DOI: 10.1007/s00705-024-06162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Two Ralstonia phages, FLC1-1B and FLC4-3B, were isolated from leaf litter compost, using Ralstonia pseudosolanacearum, which is a causal agent of bacterial wilt disease, as a host. The genomic DNA sequences of FLC1-1B and FLC4-3B were determined and found to be 290,008 bp and 291,257 bp in length, respectively, and they were therefore classified as jumbo phages. However, they did not show high similarity to any jumbo phage genomic sequence in the NCBI nt database. The closest hit in a BLAST search was the jumbo phage ripduovirus RP12, with only 35% coverage and 77% sequence identity, whereas the FLC1-1B and FLC4-3B sequences were 99.0% identical. Based on these findings, FLC1-1B and FLC4-3B should be classified as members of a new genus in the order Caudoviricetes. FLC4-3B was found to suppress wilt disease in tomato plants, suggesting that it has potential as a biocontrol agent for managing R. pseudosolanacearum infections.
Collapse
Affiliation(s)
- Ryota Sasaki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan.
| |
Collapse
|
6
|
Xu X, Jiang R, Wang X, Liu S, Dong M, Mao H, Li X, Ni Z, Lv N, Deng X, Xiong W, Tao C, Li R, Shen Q, Geisen S. Protorhabditis nematodes and pathogen-antagonistic bacteria interactively promote plant health. MICROBIOME 2024; 12:221. [PMID: 39468636 PMCID: PMC11520073 DOI: 10.1186/s40168-024-01947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fertilization practices control bacterial wilt-causing Ralstonia solanacearum by shaping the soil microbiome. This microbiome is the start of food webs, in which nematodes act as major microbiome predators. However, the multitrophic links between nematodes and the performance of R. solanacearum and plant health, and how these links are affected by fertilization practices, remain unknown. RESULTS Here, we performed a field experiment under no-, chemical-, and bio-organic-fertilization regimes to investigate the potential role of nematodes in suppressing tomato bacterial wilt. We found that bio-organic fertilizers changed nematode community composition and increased abundances of bacterivorous nematodes (e.g., Protorhabditis spp.). We also observed that pathogen-antagonistic bacteria, such as Bacillus spp., positively correlated with abundances of bacterivorous nematodes. In subsequent laboratory and greenhouse experiments, we demonstrated that bacterivorous nematodes preferentially preyed on non-pathogen-antagonistic bacteria over Bacillus. These changes increased the performance of pathogen-antagonistic bacteria that subsequently suppressed R. solanacearum. CONCLUSIONS Overall, bacterivorous nematodes can reduce the abundance of plant pathogens, which might provide a novel protection strategy to promote plant health. Video Abstract.
Collapse
Affiliation(s)
- Xu Xu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Renqiang Jiang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinling Wang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shanshan Liu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Menghui Dong
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Hancheng Mao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xingrui Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ziyu Ni
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nana Lv
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wu Xiong
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
7
|
Matilla MA, Krell T. Bacterial amino acid chemotaxis: a widespread strategy with multiple physiological and ecological roles. J Bacteriol 2024; 206:e0030024. [PMID: 39330213 PMCID: PMC11500578 DOI: 10.1128/jb.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Chemotaxis is the directed, flagellum-based movement of bacteria in chemoeffector gradients. Bacteria respond chemotactically to a wide range of chemoeffectors, including amino, organic, and fatty acids, sugars, polyamines, quaternary amines, purines, pyrimidines, aromatic hydrocarbons, oxygen, inorganic ions, or polysaccharides. Most frequent are chemotactic responses to amino acids (AAs), which were observed in numerous bacteria regardless of their phylogeny and lifestyle. Mostly chemoattraction responses are observed, although a number of bacteria are repelled from certain AAs. Chemoattraction is associated with the important metabolic value of AAs as growth substrates or building blocks of proteins. However, additional studies revealed that AAs are also sensed as environmental cues. Many chemoreceptors are specific for AAs, and signaling is typically initiated by direct ligand binding to their four-helix bundle or dCache ligand-binding domains. Frequently, bacteria possess multiple AA-responsive chemoreceptors that at times possess complementary AA ligand spectra. The identification of sequence motifs in the binding sites at dCache_1 domains has permitted to define an AA-specific family of dCache_1AA chemoreceptors. In addition, AAs are among the ligands recognized by broad ligand range chemoreceptors, and evidence was obtained for chemoreceptor activation by the binding of AA-loaded solute-binding proteins. The biological significance of AA chemotaxis is very ample including in biofilm formation, root and seed colonization by beneficial bacteria, plant entry of phytopathogens, colonization of the intestine, or different virulence-related features in human/animal pathogens. This review provides insights that may be helpful for the study of AA chemotaxis in other uncharacterized bacteria.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Nwokocha GC, Ghosh A, Grove A. Regulation of bacterial virulence genes by PecS family transcription factors. J Bacteriol 2024; 206:e0030224. [PMID: 39287432 PMCID: PMC11500572 DOI: 10.1128/jb.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Bacterial plant pathogens adjust their gene expression programs in response to environmental signals and host-derived compounds. This ensures that virulence genes or genes encoding proteins, which promote bacterial fitness in a host environment, are expressed only when needed. Such regulation is in the purview of transcription factors, many of which belong to the ubiquitous multiple antibiotic resistance regulator (MarR) protein family. PecS proteins constitute a subset of this large protein family. PecS has likely been distributed by horizontal gene transfer, along with the divergently encoded efflux pump PecM, suggesting its integration into existing gene regulatory networks. Here, we discuss the roles of PecS in the regulation of genes associated with virulence and fitness of bacterial plant pathogens. A comparison of phenotypes and differential gene expression associated with the disruption of pecS shows that functional consequences of PecS integration into existing transcriptional networks are highly variable, resulting in distinct PecS regulons. Although PecS universally binds to the pecS-pecM intergenic region to repress the expression of both genes, binding modes differ. A particularly relaxed sequence preference appears to apply for Dickeya dadantii PecS, perhaps to optimize its integration as a global regulator and regulate genes ancestral to the acquisition of pecS-pecM. Even inducing ligands for PecS are not universally conserved. It appears that PecS function has been optimized to match the unique regulatory needs of individual bacterial species and that its roles must be appreciated in the context of the regulatory networks into which it was recruited.
Collapse
Affiliation(s)
| | - Arpita Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
9
|
Dou L, Liu W, Hu J, Zhang S, Kong X, Qu X, Jiang W. Separation and purification of antimicrobial substances from Paenibacillus polymyxa KH-19 and analysis of its physicochemical characterization. Antonie Van Leeuwenhoek 2024; 118:23. [PMID: 39446216 DOI: 10.1007/s10482-024-02029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Soft rot is one of the top ten most dangerous plant pathogens in agricultural production, storage, and transport, and the use of microorganisms and their metabolites to control soft rot is a current research hotspot. In this study, we identified the antimicrobial substance in the metabolite of Paenibacillus polymyxa KH-19, and determined that the antimicrobial substance of this strain was an active protein. The protein was completely precipitated at 40-60% ammonium sulphate saturation and showed good inhibitory effects against seven pathogenic bacteria including Pectobacterium carotovorum BC2 and seven pathogenic fungi including Pyricularia oryzae. The MIC of the protein was 51.563 µg/mL, temperature acid-base UV and light stability insensitive to protease, with high-temperature resistance. The antimicrobial protein was isolated and purified by DEAE-anion exchange column and Sephadex G-75 gel filtration chromatography, and the LC-MS/MS assay identified the protein as lysophosphatidyl esterase with a molecular weight of 25.255 kDa. The purified antimicrobial protein increased the inhibitory effect against P. carotovorum BC2, with the diameter of the circle of inhibition being 26.50 ± 0.915 mm. Bioinformatics analysis showed that the protein has the molecular formula of C1117H1732N316O338S5, encodes 224 amino acids, has an aliphatic index of 88.39, and belongs to the category of hydrophilic unstable proteins. The present study is the first report of an active protein with extreme thermoplastic and resistance to P. carotovorum BC2, which provides a reference for the preparation and application of the antimicrobial substances of P. polymyxa KH-19, as well as a theoretical basis for the study of the function of lysophosphodiesterase protein and its use as a microbial preparation.
Collapse
Affiliation(s)
- Longtao Dou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Wei Liu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Jihua Hu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China.
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| | - Wei Jiang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, Heilongjiang Province, China
| |
Collapse
|
10
|
Li Y, Li M, Shakoor N, Wang Q, Zhu G, Jiang Y, Wang Q, Azeem I, Sun Y, Zhao W, Gao L, Zhang P, Rui Y. Metal-Organic Frameworks for Sustainable Crop Disease Management: Current Applications, Mechanistic Insights, and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22985-23007. [PMID: 39380155 DOI: 10.1021/acs.jafc.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient management of crop diseases and yield enhancement are essential for addressing the increasing food demands due to global population growth. Metal-organic frameworks (MOFs), which have rapidly evolved throughout the 21st century, are notable for their vast surface area, porosity, and adaptability, establishing them as highly effective vehicles for controlled drug delivery. This review methodically categorizes common MOFs employed in crop disease management and details their effectiveness against various pathogens. Additionally, by critically evaluating existing research, it outlines strategic approaches for the design of drug-delivery MOFs and explains the mechanisms through which MOFs enhance disease resistance. Finally, this paper identifies the current challenges in MOF research for crop disease management and suggests directions for future research. Through this in-depth review, the paper seeks to enrich the understanding of MOFs applications in crop disease management and offers valuable insights for researchers and practitioners.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences Institute of Plant Protection, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
11
|
Du X, Li P, Fan C, Tian J, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yuan M, Yu X, Tsuda K, Li B. Holliday junction resolvase RuvC targets biofilm eDNA and confers plant resistance to vascular pathogens. NATURE PLANTS 2024:10.1038/s41477-024-01817-6. [PMID: 39384943 DOI: 10.1038/s41477-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
A biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanisms of phytobacterial biofilm are still obscure. Here we found that the protein Ralstonia solanacearum resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by controlling systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm development and specifically targets Holliday junction (HJ)-like structures to disrupt the biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ to prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast-localized HJ resolvase monokaryotic chloroplast 1 (MOC1), which shares structural similarity with bacterial RuvC, shows a strong inhibitory effect on bacterial biofilm formation. Relocalization of SlMOC1 to apoplast in tomato roots leads to increased resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacterial vascular disease.
Collapse
Affiliation(s)
- Xinya Du
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Pengyue Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Changqiu Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingjing Tian
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Qin LL, Yang L, Zhang ZJ, Zhang LJ, Zhang W, Jin YR, Luo XF, Li FP, Zhang SY, Bian Q, Mou GL, Dai TL, Ma L, Liu YQ. Design, Synthesis, and Biological Evaluation of Novel Quinoline Derivatives against Phytopathogenic Bacteria Inspired from Natural Quinine Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39363616 DOI: 10.1021/acs.jafc.4c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A series of 2-(trifluoromethyl)-4-hydroxyquinoline derivatives were designed and synthesized with introduction of the antibacterial fragment amino alcohols, and their antibacterial activity against plant phytopathogenic bacteria was evaluated for the development of quinoline bactericides. It is worth noting that compound Qa5 exhibited excellent antibacterial activity in vitro with a minimum inhibitory concentration (MIC) value of 3.12 μg/mL against Xanthomonas oryzae (Xoo). Furthermore, in vivo assays demonstrated that the protective efficacy of Qa5 against rice bacterial blight at 200 μg/mL (33.0%) was superior to that of the commercial agent bismerthiazol (18.3%), while the curative efficacy (35.0%) was comparable to that of bismerthiazol (35.7%). The antibacterial mechanisms of Qa5 indicated that it affected the activity of bacteria by inducing intracellular oxidative damage in Xoo and disrupting the integrity of the bacterial cell membrane. The above results demonstrated that the novel quinoline derivative Qa5 possessed excellent in vitro and in vivo antibacterial activity, indicating its potential as a novel green agricultural antibacterial agent.
Collapse
Affiliation(s)
- Lu-Lu Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Liu Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li-Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wen Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fu-Ping Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Liang Mou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tian-Li Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
13
|
Yañez-Olvera AG, Gómez-Díaz AG, Sélem-Mojica N, Rodríguez-Orduña L, Lara-Ávila JP, Varni V, Alcoba F, Croce V, Legros T, Torres A, Torres Ruíz A, Tarrats F, Vermunt A, Looije T, Cibrian-Jaramillo A, Valenzuela M, Siri MI, Barona-Gomez F. A host shift as the origin of tomato bacterial canker caused by Clavibacter michiganensis. Microb Genom 2024; 10:001309. [PMID: 39471242 PMCID: PMC11521342 DOI: 10.1099/mgen.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
The Actinomycetota (formerly Actinobacteria) genus Clavibacter includes phytopathogens with devasting effects in several crops. Clavibacter michiganensis, the causal agent of tomato bacterial canker, is the most notorious species of the genus. Yet, its origin and natural reservoirs remain elusive, and its populations show pathogenicity profiles with unpredictable plant disease outcomes. Here, we generate and analyse a decade-long genomic dataset of Clavibacter from wild and commercial tomato cultivars, providing evolutionary insights that directed phenotypic characterization. Our phylogeny situates the last common ancestor of C. michiganensis next to Clavibacter isolates from grasses rather than to the sole strain we could isolate from wild tomatoes. Pathogenicity profiling of C. michiganensis isolates, together with C. phaseoli and C. californiensis as sister taxa and the wild tomato strain, was found to be congruent with the proposed phylogenetic relationships. We then identified gene enrichment after the evolutionary event, leading to the appearance of the C. michiganesis clade, including known pathogenicity factors but also hitherto unnoticed genes with the ability to encode adaptive traits for a pathogenic lifestyle. The holistic perspective provided by our evolutionary analyses hints towards a host shift event as the origin of C. michiganensis as a tomato pathogen and the existence of pathogenic genes that remain to be characterized.
Collapse
Affiliation(s)
- Alan Guillermo Yañez-Olvera
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ambar Grissel Gómez-Díaz
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Nelly Sélem-Mojica
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Lorena Rodríguez-Orduña
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - José Pablo Lara-Ávila
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Vanina Varni
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Florencia Alcoba
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Valentina Croce
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | - Alfonso Torres Ruíz
- Departamento de Investigación y Desarrollo, Koppert México, Querétaro, Mexico
| | - Félix Tarrats
- Centro Universitario CEICKOR, Bernal, Querétaro, Mexico
| | | | | | | | | | - María Inés Siri
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
14
|
Velando F, Monteagudo-Cascales E, Matilla MA, Krell T. Differential CheR Affinity for Chemoreceptor C-Terminal Pentapeptides Modulates Chemotactic Responses. Mol Microbiol 2024; 122:465-476. [PMID: 39180229 DOI: 10.1111/mmi.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Many chemoreceptors contain a C-terminal pentapeptide at the end of a linker. In Escherichia coli, this pentapeptide forms a high-affinity binding site for CheR and phosphorylated CheB, and its removal interferes with chemoreceptor adaptation. Analysis of chemoreceptors revealed significant variation in their pentapeptide sequences, and bacteria often possess multiple chemoreceptors with differing pentapeptides. To assess whether this sequence variation alters CheR affinity and chemotaxis, we used Pectobacterium atrosepticum SCRI1043 as a model. SCRI1043 has 36 chemoreceptors, with 19 of them containing a C-terminal pentapeptide. We show that the affinity of CheR for the different pentapeptides varies up to 11-fold (KD 90 nM to 1 μM). Pentapeptides with the highest and lowest affinities differ only in a single amino acid. Deletion of the cheR gene abolishes chemotaxis. The replacement of the pentapeptide in the PacC chemoreceptor with those of the highest and lowest affinities significantly reduced chemotaxis to its cognate chemoeffector, L-Asp. Altering the PacC pentapeptide also reduced chemotaxis to L-Ser, but not to nitrate, which are responses mediated by the nontethered PacB and PacN chemoreceptors, respectively. Changes in the pentapeptide sequence thus modulate the response of the cognate receptor and that of another chemoreceptor.
Collapse
Affiliation(s)
- Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
15
|
Qing Z, Jida Y, Chengxiu F, Yanli Y, Xia L, Sihe D. Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities. THE PLANT PATHOLOGY JOURNAL 2024; 40:498-511. [PMID: 39397304 PMCID: PMC11471926 DOI: 10.5423/ppj.oa.06.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a destructive disease that affects potato production, leading to severe yield losses. Currently, little is known about the changes in the assembly and functional adaptation of potato rhizosphere microbial communities during different stages of R. solanacearum infection. In this study, using amplicon and metagenomic sequencing approaches, we analyzed the changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere across four stages of R. solanacearum infection. The results showed that R. solanacearum infection led to significant changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere, with various microbial properties (including α,β-diversity, species composition, and community ecological functions) all being driven by R. solanacearum infection. The relative abundance of some beneficial microorganisms in the potato rhizosphere, including Firmicutes, Bacillus, Pseudomonas, and Mortierella, decreased as the duration of infection increased. Moreover, the related microbial communities played a significant role in basic metabolism and signal transduction; however, the functions involved in soil C, N, and P transformation weakened. This study provides new insights into the dynamic changes in the composition and functions of potato rhizosphere microbial communities at different stages of R. solanacearum infection to adapt to the growth promotion or disease suppression strategies of host plants, which may provide guidance for formulating future strategies to regulate microbial communities for the integrated control of soil-borne plant diseases.
Collapse
Affiliation(s)
- Zhang Qing
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Yang Jida
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Fu Chengxiu
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| | - Yang Yanli
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
| | - Liu Xia
- Yunnan Agricultural University, Plant Protection College, Kunming, Yunnan 650000, China
| | - Deng Sihe
- Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute, Kunming, Yunnan 650000, China
| |
Collapse
|
16
|
Bispo Carvalho IC, Silva Carvalho AM, Wendland A, Rossato M. Colorimetric LAMP Assay for Detection of Xanthomonas phaseoli pv. manihotis in Cassava Through Genomics: A New Approach to an Old Problem. PLANT DISEASE 2024; 108:2993-3000. [PMID: 38422453 DOI: 10.1094/pdis-08-23-1507-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bacterial blight caused by Xanthomonas phaseoli pv. manihotis (Xpm) is considered the main bacterial disease that affects cassava, causing significant losses when not properly managed. In the present study, a fast, sensitive, and easy-to-apply method to detect Xpm via colorimetric loop-mediated isothermal amplification (LAMP) was developed. To ensure the use of a unique-to-the-target pathovar core region for primer design, 74 complete genomic sequences of Xpm together with different bacterial species and pathovars were used for comparative genomics. A total of 42 unique genes were used to design 27 LAMP primer sets, from which nine primers were synthesized, and only one (Xpm_Lp1 primer set) showed sufficient efficiency in preliminary tests. The sensitivity, assessed by a serial dilution of the type strain (IBSBF 278) DNA, yielded high sensitivity, detecting up to 100 fg. The LAMP primers showed high specificity, did not cross-react with other bacterial species or other pathovars tested, and amplified only the Xpm isolates. Tests confirmed the high efficiency of the protocol using infected or inoculated macerated cassava leaves without the need for additional sample treatment. The LAMP test developed in this study was able to detect Xpm in a fast, simple, and sensitive way, and it can be used to monitor the disease under laboratory and field conditions.
Collapse
|
17
|
Rudt E, Faist C, Schwantes V, Konrad N, Wiedmaier-Czerny N, Lehnert K, Topman-Rakover S, Brill A, Burdman S, Hayouka Z, Vetter W, Hayen H. LC-MS/MS-based phospholipid profiling of plant-pathogenic bacteria with tailored separation of methyl-branched species. Anal Bioanal Chem 2024; 416:5513-5525. [PMID: 39052053 PMCID: PMC11427607 DOI: 10.1007/s00216-024-05451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Plant-pathogenic bacteria are one of the major constraints on agricultural yield. In order to selectively treat these bacteria, it is essential to understand the molecular structure of their cell membrane. Previous studies have focused on analyzing hydrolyzed fatty acids (FA) due to the complexity of bacterial membrane lipids. These studies have highlighted the occurrence of branched-chain fatty acids (BCFA) alongside normal-chain fatty acids (NCFA) in many bacteria. As several FA are bound in the intact phospholipids of the bacterial membrane, the presence of isomeric FA complicates lipid analysis. Furthermore, commercially available reference standards do not fully cover potential lipid isomers. To address this issue, we have developed a reversed-phase high-performance liquid chromatography (RP-HPLC) method with tandem mass spectrometry (MS/MS) to analyze the phospholipids of various plant-pathogenic bacteria with a focus on BCFA containing phospholipids. The study revealed the separation of three isomeric phosphatidylethanolamines (PE) depending on the number of bound BCFA to NCFA. The validation of the retention order was based on available reference standards in combination with the analysis of hydrolyzed fatty acids through gas chromatography with mass spectrometry (GC/MS) after fractionation. Additionally, the transferability of the retention order to other major lipid classes, such as phosphatidylglycerols (PG) and cardiolipins (CL), was thoroughly examined. Using the information regarding the retention behavior, the phospholipid profile of six plant-pathogenic bacteria was structurally elucidated. Furthermore, the developed LC-MS/MS method was used to classify the plant-pathogenic bacteria based on the number of bound BCFA in the phospholipidome.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Christian Faist
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Vera Schwantes
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nele Konrad
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nina Wiedmaier-Czerny
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Shiri Topman-Rakover
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Walter Vetter
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany.
| |
Collapse
|
18
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
19
|
Coll A, Lukan T, Stare K, Zagorščak M, Mahkovec Povalej T, Baebler Š, Prat S, Coll NS, Valls M, Petek M, Gruden K. The StPti5 ethylene response factor acts as a susceptibility factor by negatively regulating the potato immune response to pathogens. THE NEW PHYTOLOGIST 2024; 244:202-218. [PMID: 39129060 DOI: 10.1111/nph.20004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non-model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ralstonia solanacearum, pathogens with completely different modes of action, and thereby has a different role than its orthologue in tomato. Remarkably, StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5 promoter and activate its expression, while synergistic activity of the ethylene and salicylic acid pathways is required for regulated StPti expression. To gain further insight into the mode of StPti5 action in attenuating potato defence responses, we investigated transcriptional changes in salicylic acid deficient potato lines with silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and downregulates the ubiquitin-proteasome pathway as well as several proteases involved in directed proteolysis. This study adds a novel element to the complex puzzle of immune regulation, by deciphering a two-level regulation of ERF transcription factor activity in response to pathogens.
Collapse
Affiliation(s)
- Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Katja Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Mahkovec Povalej
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Salomé Prat
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Núria Sánchez Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Catalonia, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| |
Collapse
|
20
|
Jantarit N, Tanaka H, Lin Y, Lee Y, Kurisu G. Crystal structure of pectocin M1 reveals diverse conformations and interactions during its initial step via the ferredoxin uptake system. FEBS Open Bio 2024; 14:1731-1745. [PMID: 39123319 PMCID: PMC11452297 DOI: 10.1002/2211-5463.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Pectocin M1 (PM1), the bacteriocin from phytopathogenic Pectobacterium carotovorum which causes soft rot disease, has a unique ferredoxin domain that allows it to use FusA of the plant ferredoxin uptake system. To probe the structure-based mechanism of PM1 uptake, we determined the X-ray structure of full-length PM1, containing an N-terminal ferredoxin and C-terminal catalytic domain connected by helical linker, at 2.04 Å resolution. Based on published FusA structure and NMR data for PM1 ferredoxin domain titrated with FusA, we modeled docking of the ferredoxin domain with FusA. Combining the docking models with the X-ray structures of PM1 and FusA enables us to propose the mechanism by which PM1 undergoes dynamic domain rearrangement to translocate across the target cell outer membrane.
Collapse
Affiliation(s)
- Nawee Jantarit
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Hideaki Tanaka
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Yuxi Lin
- Biopharmaceutical Research CenterKorea Basic Science InstituteOchangSouth Korea
| | - Young‐Ho Lee
- Biopharmaceutical Research CenterKorea Basic Science InstituteOchangSouth Korea
- Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonSouth Korea
- Department of Systems BiotechnologyChung‐Ang UniversityGyeonggiSouth Korea
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
| | - Genji Kurisu
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
- Institute of ScienceSuranaree University of TechnologyNakohn RatchasimaThailand
| |
Collapse
|
21
|
Li Y, Mu Y, Cao Y, Xu D, Liu X, Xu G. Synthesis and Evaluation of Novel 1-Methyl-1 H-pyrazol-5-amine Derivatives with Disulfide Moieties as Potential Antimicrobial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20658-20669. [PMID: 39226125 DOI: 10.1021/acs.jafc.4c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sulfur-containing compounds have diverse biological functions and are crucial in crop protection chemistry. In this study, a series of novel 1-methyl-1H-pyrazol-5-amine derivatives incorporating disulfide moieties were synthesized and evaluated for their antimicrobial properties. In vitro bioassays demonstrated that compound 7f displayed potent antifungal activity against Valsa mali, with an EC50 value of 0.64 mg/L, outperforming allicin (EC50 = 26.0 mg/L) but lower than tebuconazole (EC50 = 0.33 mg/L). In vivo experiments confirmed that compound 7f could effectively inhibit V. mali infection on apples at a concentration of 100 mg/L, similar to the positive control tebuconazole. Mechanistic studies revealed that compound 7f could induce hyphal shrinkage and collapse, trigger intracellular reactive oxygen species accumulation, modulate antioxidant enzyme activities, initiate lipid peroxidation, and ultimately cause irreversible oxidative damage to the cells of V. mali. Additionally, compound 7b exhibited notable antibacterial activity, particularly against Pseudomonas syringae pv. actinidiae, with a MIC90 value of 1.56 mg/L, surpassing the positive controls allicin, bismerthiazol, and streptomycin sulfate. These findings suggest that 1-methyl-1H-pyrazol-5-amine derivatives containing disulfide moieties hold promise as potent candidates for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yantao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuxin Mu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuan Cao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
22
|
Wen Y, Cao H, Mo Z, Fang H, Xu Z. Complete genome sequence of Pseudomonas aeruginosa Y010, a taro rhizosphere strain producing potent antimicrobial agents. Microbiol Resour Announc 2024; 13:e0066824. [PMID: 39162466 PMCID: PMC11384746 DOI: 10.1128/mra.00668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa Y010, isolated from the taro rhizosphere, exhibits great antagonistic abilities against Dickeya strains that cause soft-rot and blackleg diseases of plants by producing potent antimicrobial agents. The complete genome of Y010 was sequenced and annotated, which is 6,415,628 bp in length with 66.39% GC content.
Collapse
Affiliation(s)
- Yongqi Wen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhifeng Mo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hanshu Fang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Bashir S, Behiry S, Al-Askar AA, Kowalczewski PŁ, Emaish HH, Abdelkhalek A. Antibacterial, antifungal, and phytochemical properties of Salsola kali ethanolic extract. Open Life Sci 2024; 19:20220962. [PMID: 39247796 PMCID: PMC11377937 DOI: 10.1515/biol-2022-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The research into the use of plants as plentiful reservoirs of bioactive chemicals shows significant potential for agricultural uses. This study focused on analyzing the chemical composition and potency of an ethanolic extract obtained from the aerial parts (leaves and stems) of Salsola kali against potato pathogenic fungal and bacterial pathogens. The isolated fungal isolates were unequivocally identified as Fusarium oxysporum and Rhizoctonia solani based on morphological characteristics and internal transcribed spacer genetic sequencing data. The antifungal activity of the extract revealed good inhibition efficacy against R. solani (60.4%) and weak activity against F. oxysporum (11.1%) at a concentration of 5,000 µg/mL. The S. kali extract exhibited strong antibacterial activity, as evidenced by the significant inhibition zone diameter (mm) observed in all three strains of bacteria that were tested: Pectobacterium carotovorum (13.33), Pectobacterium atrosepticum (9.00), and Ralstonia solanacearum (9.33), at a concentration of 10,000 µg/mL. High-performance liquid chromatography analysis revealed the presence of several polyphenolic compounds (μg/g), with gallic acid (2942.8), caffeic acid (2110.2), cinnamic acid (1943.1), and chlorogenic acid (858.4) being the predominant ones. Quercetin and hesperetin were the predominant flavonoid components, with concentrations of 1110.3 and 1059.3 μg/g, respectively. Gas chromatography-mass spectrometry analysis revealed the presence of many bioactive compounds, such as saturated and unsaturated fatty acids, diterpenes, and phytosterols. The most abundant compound detected was n-hexadecanoic acid, which accounted for 28.1%. The results emphasize the potential of S. kali extract as a valuable source of bioactive substances that possess good antifungal and antibacterial effects, which highlights its potential for many agricultural uses.
Collapse
Affiliation(s)
- Shimaa Bashir
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Said Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Haitham H Emaish
- Department of Soils and Agricultural Chemistry, Biosystem Engineering, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| |
Collapse
|
24
|
Vlková-Žlebková M, Yuen FW, McCann HC. Evolving Archetypes: Learning from Pathogen Emergence on a Nonmodel Host. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:49-68. [PMID: 38885452 DOI: 10.1146/annurev-phyto-021622-095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Research initiatives undertaken in response to disease outbreaks accelerate our understanding of microbial evolution, mechanisms of virulence and resistance, and plant-pathogen coevolutionary interactions. The emergence and global spread of Pseudomonas syringae pv. actinidiae (Psa) on kiwifruit (Actinidia chinensis) showed that there are parallel paths to host adaptation and antimicrobial resistance evolution, accelerated by the movement of mobile elements. Significant progress has been made in identifying type 3 effectors required for virulence and recognition in A. chinensis and Actinidia arguta, broadening our understanding of how host-mediated selection shapes virulence. The rapid development of Actinidia genomics after the Psa3 pandemic began has also generated new insight into molecular mechanisms of immunity and resistance gene evolution in this recently domesticated, nonmodel host. These findings include the presence of close homologs of known resistance genes RPM1 and RPS2 as well as the novel expansion of CCG10-NLRs (nucleotide-binding leucine-rich repeats) in Actinidia spp. The advances and approaches developed during the pandemic response can be applied to new pathosystems and new outbreak events.
Collapse
Affiliation(s)
| | - Fang Wei Yuen
- Max Planck Institute for Biology, Tübingen, Germany;
| | | |
Collapse
|
25
|
Zheng L, Gao S, Bai Y, Zeng H, Shi H. NF-YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2424-2434. [PMID: 38600705 PMCID: PMC11331790 DOI: 10.1111/pbi.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.
Collapse
Affiliation(s)
- Liyan Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Shuai Gao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Yujing Bai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Hongqiu Zeng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| |
Collapse
|
26
|
Saarenpää S, Shalev O, Ashkenazy H, Carlos V, Lundberg DS, Weigel D, Giacomello S. Spatial metatranscriptomics resolves host-bacteria-fungi interactomes. Nat Biotechnol 2024; 42:1384-1393. [PMID: 37985875 PMCID: PMC11392817 DOI: 10.1038/s41587-023-01979-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2023] [Indexed: 11/22/2023]
Abstract
The interactions of microorganisms among themselves and with their multicellular host take place at the microscale, forming complex networks and spatial patterns. Existing technology does not allow the simultaneous investigation of spatial interactions between a host and the multitude of its colonizing microorganisms, which limits our understanding of host-microorganism interactions within a plant or animal tissue. Here we present spatial metatranscriptomics (SmT), a sequencing-based approach that leverages 16S/18S/ITS/poly-d(T) multimodal arrays for simultaneous host transcriptome- and microbiome-wide characterization of tissues at 55-µm resolution. We showcase SmT in outdoor-grown Arabidopsis thaliana leaves as a model system, and find tissue-scale bacterial and fungal hotspots. By network analysis, we study inter- and intrakingdom spatial interactions among microorganisms, as well as the host response to microbial hotspots. SmT provides an approach for answering fundamental questions on host-microbiome interplay.
Collapse
Affiliation(s)
- Sami Saarenpää
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Or Shalev
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Systems Biology of Microbial Communities, University of Tübingen, Tübingen, Germany
| | - Haim Ashkenazy
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Vanessa Carlos
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Derek Severi Lundberg
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Stefania Giacomello
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
27
|
Wang X, Li C, Huang S, Gao H, Li Y, Chen X, Huang L, Luo J, Zhang L, Zhou X. Pathogenic and Comparative Genomic Analysis of Ralstonia pseudosolanacearum Isolated from Casuarina. PLANT DISEASE 2024; 108:2809-2819. [PMID: 38687570 DOI: 10.1094/pdis-01-24-0118-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Casuarina equisetifolia is crucial in protecting coastal regions of China against typhoon attacks but has faced a substantial challenge due to wilt disease caused by pathogens of the Ralstonia solanacearum species complex (RSSC). Although the initial outbreak of Casuarina wilt in the 1970s was effectively controlled by disease-resistant C. equisetifolia varieties, the disease has recently re-emerged in coastal regions of Guangdong. In this study, we report the isolation, characterization, and comparative genomic analysis of 11 RSSC strains from diseased C. equisetifolia at various locations along the coast of Guangdong. Phylogenomic analysis showed that the strains were closely related and clustered with phylotype I strains previously isolated from peanuts. Single-gene-based analysis further suggested these strains could be derived from strains present in Guangdong since the 1980s, indicating a historical context to their current pathogenicity. Casuarina-isolated strains exhibited notably higher virulence against C. equisetifolia and peanuts than the representative RSSC strains GMI1000 and EP1, suggesting host-specific adaptations that possibly contributed to the recent outbreak. Comparative genomic analysis among RSSC strains revealed a largely conserved genome structure and high levels of conservation in gene clusters encoding extracellular polysaccharide biosynthesis, secretion systems, and quorum sensing regulatory systems. However, we also found a number of unique genes in the Casuarina-isolated strains that were absent in GMI1000 and EP1, and vice versa, pointing to potential genetic factors underpinning their differential virulence. These unique genes offer promising targets for future functional studies. Overall, our findings provide crucial insights into the RSSC pathogens causing Casuarina wilt in Guangdong, guiding future efforts in disease control and prevention.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chuhao Li
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Huang
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Huagui Gao
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yonglin Li
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xuemei Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Liangzhou Huang
- Forestry Research Institute of Zhanjiang City, Zhanjiang 524037, Guangdong, China
| | - Jianhua Luo
- Forestry Research Institute of Zhanjiang City, Zhanjiang 524037, Guangdong, China
| | - LianHui Zhang
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaofan Zhou
- Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
28
|
Song K, Li R, Cui Y, Chen B, Zhou L, Han W, Jiang B, He Y. The phytopathogen Xanthomonas campestris senses and effluxes salicylic acid via a sensor HepR and an RND family efflux pump to promote virulence in host plants. MLIFE 2024; 3:430-444. [PMID: 39359673 PMCID: PMC11442134 DOI: 10.1002/mlf2.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
Salicylic acid (SA) plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. Following pathogen recognition, SA biosynthesis dramatically increases at the infection site of the host plant. The manner in which pathogens sense and tolerate the onslaught of SA stress to survive in the plant following infection remains to be understood. The objective of this work was to determine how the model phytopathogen Xanthomonas campestris pv. campestris (Xcc) senses and effluxes SA during infection inside host plants. First, RNA-Seq analysis identified an SA-responsive operon Xcc4167-Xcc4171, encoding a MarR family transcription factor HepR and an RND (resistance-nodulation-cell division) family efflux pump HepABCD in Xcc. Electrophoretic mobility shift assays and DNase I footprint analysis revealed that HepR negatively regulated hepABCD expression by specifically binding to an AT-rich region of the promoter of the hepRABCD operon, Phep. Second, isothermal titration calorimetry and further genetic analysis suggest that HepR is a novel SA sensor. SA binding released HepR from its cognate promoter Phep and then induced the expression of hepABCD. Third, the RND family efflux pump HepABCD was responsible for SA efflux. The hepRABCD cluster was also involved in the regulation of culture pH and quorum sensing signal diffusible signaling factor turnover. Finally, the hepRABCD cluster was transcribed during the XC1 infection of Chinese radish and was required for the full virulence of Xcc in Chinese radish and cabbage. These findings suggest that the ability of Xcc to co-opt the plant defense signal SA to activate the multidrug efflux pump may have evolved to ensure Xcc survival and virulence in susceptible host plants.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ruifang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lian Zhou
- Zhiyuan Innovative Research CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Wenying Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Bo‐Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ya‐Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
29
|
Chen L, Zhang X, Li Q, Yang X, Huang Y, Zhang B, Ye L, Li X. Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. Int J Mol Sci 2024; 25:9491. [PMID: 39273439 PMCID: PMC11395649 DOI: 10.3390/ijms25179491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.
Collapse
Affiliation(s)
- Li Chen
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lei Ye
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
30
|
Huang J, Dong Y, Li N, He Y, Zhou H. The Type III Effector XopL Xcc in Xanthomonas campestris pv. campestris Targets the Proton Pump Interactor 1 and Suppresses Innate Immunity in Arabidopsis. Int J Mol Sci 2024; 25:9175. [PMID: 39273124 PMCID: PMC11394911 DOI: 10.3390/ijms25179175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Xanthomonas campestris pathovar campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Xcc injects a variety of type III effectors (T3Es) into the host cell to assist infection or propagation. A number of T3Es inhibit plant immunity, but the biochemical basis for a vast majority of them remains unknown. Previous research has revealed that the evolutionarily conserved XopL-family effector XopLXcc inhibits plant immunity, although the underlying mechanisms remain incompletely elucidated. In this study, we identified proton pump interactor (PPI1) as a specific virulence target of XopLXcc in Arabidopsis. Notably, the C-terminus of PPI1 and the Leucine-rich repeat (LRR) domains of XopLXcc are pivotal for facilitating this interaction. Our findings indicate that PPI1 plays a role in the immune response of Arabidopsis to Xcc. These results propose a model in which XopLXcc binds to PPI1, disrupting the early defense responses activated in Arabidopsis during Xcc infection and providing valuable insights into potential strategies for regulating plasma membrane (PM) H+-ATPase activity during infection. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to the development of effective strategies for controlling bacterial diseases.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yuru Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Nana Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Hao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
31
|
Vasilyeva AA, Evseev PV, Ignatov AN, Dzhalilov FSU. Pectobacterium punjabense Causing Blackleg and Soft Rot of Potato: The First Report in the Russian Federation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2144. [PMID: 39124263 PMCID: PMC11313954 DOI: 10.3390/plants13152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Phytopathogenic bacteria of the genus Pectobacterium are responsible for several diseases that affect potato (Solanum tuberosum L.) production worldwide, including blackleg and tuber soft rot. These bacteria are highly diverse, with over 17 different species currently identified. However, some of the recently described species, such as Pectobacterium punjabense, are still poorly understood. In this study, we focused on P. punjabense isolates collected from diseased potato tubers in Russia in 2021. Whole-genome sequencing was used to characterise the genomic diversity of the pathogen and determine the biochemical profiles of the isolated bacteria. The ability of these isolates to cause soft rot symptoms was tested. A comparative assessment of the potential pathogenicity of the Pectobacterium isolates was conducted by infecting potato tubers and measuring the accumulation of biomass in a liquid medium during cultivation at different temperatures. A TaqMan qPCR assay was developed for the highly sensitive and specific characterisation of P. punjabense strains, which can be used in diagnostic systems. This is the first report on P. punjabense causing potato disease in the Russian Federation.
Collapse
Affiliation(s)
- Anna A. Vasilyeva
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
| | - Peter V. Evseev
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexandr N. Ignatov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
| |
Collapse
|
32
|
Huang B, Ge L, Xiang D, Tan G, Liu L, Yang L, Jing Y, Liu Q, Chen W, Li Y, He H, Sun H, Pan Q, Yi K. Isolation, characterization, and genomic analysis of a lytic bacteriophage, PQ43W, with the potential of controlling bacterial wilt. Front Microbiol 2024; 15:1396213. [PMID: 39149212 PMCID: PMC11324598 DOI: 10.3389/fmicb.2024.1396213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.
Collapse
Affiliation(s)
- Binbin Huang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Long Ge
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Dong Xiang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Ge Tan
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lijia Liu
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lei Yang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Jing
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ye Li
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Haoxin He
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Huzhi Sun
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Qiang Pan
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
- Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Ke Yi
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
33
|
Jin C, Matsuo H, Nakayama Y, Shigita G, Inoue Y, Kato K, Takano Y. A deletion in FLS2 and its expansion after domestication caused global dissemination of melon cultivars defective in flagellin recognition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1671-1684. [PMID: 38924650 DOI: 10.1111/tpj.16895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
FLAGELLIN SENSING 2 (FLS2) encodes a pattern recognition receptor that perceives bacterial flagellin. While putative FLS2 orthologs are broadly conserved in plants, their functional characterization remains limited. Here, we report the identification of orthologs in cucumber (Cucumis sativus) and melon (C. melo), named CsFLS2 and CmFLS2, respectively. Homology searching identified CsFLS2, and virus-induced gene silencing (VIGS) demonstrated that CsFLS2 is required for flg22-triggered ROS generation. Interestingly, genome re-sequencing of melon cv. Lennon and subsequent genomic PCR revealed that Lennon has two CmFLS2 haplotypes, haplotype I encoding full-length CmFLS2 and haplotype II encoding a truncated form. We show that VIGS-mediated knockdown of CmFLS2 haplotype I resulted in a significant reduction in both flg22-triggered ROS generation and immunity to a bacterial pathogen in melon cv. Lennon. Remarkably, genomic PCR of CmFLS2 revealed that 68% of tested commercial melon cultivars possess only CmFLS2 haplotype II: these cultivars thus lack functional CmFLS2. To explore evolutionary aspects of CmFLS2 haplotype II occurrence, we genotyped the CmFLS2 locus in 142 melon accessions by genomic PCR and analyzed 437 released sequences. The results suggest that CmFLS2 haplotype II is derived from C. melo subsp. melo. Furthermore, we suggest that the proportion of CmFLS2 haplotype II increased among the improved melo group compared with the primitive melo group. Collectively, these findings suggest that the deleted FLS2 locus generated in the primitive melo subspecies expanded after domestication, resulting in the spread of commercial melon cultivars defective in flagellin recognition, which is critical for bacterial immunity.
Collapse
Affiliation(s)
- Chujia Jin
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroki Matsuo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshizo Nakayama
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Gentaro Shigita
- Laboratory of Plant Biodiversity Research, Department of Life Science Systems, Technical University of Munich, Freising, 85354, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshihiro Inoue
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Kato
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
34
|
Qu H, Leng H, Luo Q, Tan H, Zheng D. PhoB-regulated phosphate assimilation of Ralstonia solanacearum is cross-activated by VsrB in Pi-abundant rich medium. Microbiol Res 2024; 285:127772. [PMID: 38797110 DOI: 10.1016/j.micres.2024.127772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Ralstonia solanacearum is a devastating phytopathogen infecting a broad range of economically important crops. Phosphate (Pi) homeostasis and assimilation play a critical role in the environmental adaptation and pathogenicity of many bacteria. However, the Pi assimilation regulatory mechanism of R. solanacearum remains unknown. This study revealed that R. solanacearum pstSCAB-phoU-phoBR operon expression is sensitive to extracellular Pi concentration, with higher expression under Pi-limiting conditions. The PhoB-PhoR fine-tunes the Pi-responsive expression of the Pho regulon genes, demonstrating its pivotal role in Pi assimilation. By contrast, neither PhoB, PhoR, PhoU, nor PstS was found to be essential for virulence on tomato plants. Surprisingly, the PhoB regulon is activated in a Pi-abundant rich medium. Results showed that histidine kinase VsrB, which is known for the exopolysaccharide production regulation, partially mediates PhoB activation in the Pi-abundant rich medium. The 271 histidine of VsrB is vital for this activation. This cross-activation mechanism between the VsrB and PhoB-PhoR systems suggests the carbohydrate-Pi metabolism coordination in R. solanacearum. Overall, this research provides new insights into the complex regulatory interplay between Pi metabolism and growth in R. solanacearum.
Collapse
Affiliation(s)
- Hao Qu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Haitao Leng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Qiaoxian Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Huihua Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Dehong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
35
|
Ishida K, Litomska A, Dunbar KL, Hertweck C. An Enzymatic Prodrug-like Route to Thio and Selenoamides. Angew Chem Int Ed Engl 2024; 63:e202404243. [PMID: 38747847 DOI: 10.1002/anie.202404243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 06/28/2024]
Abstract
6-Thioguanine (6TG) is a clinically used antitumor agent that was rationally designed as a DNA-targeting antimetabolite, but it also occurs naturally. 6TG is a critical virulence factor produced by Erwinia amylovorans, a notorious plant pathogen that causes fire blight of pome fruit trees. The biosynthesis of the rare thioamide metabolite involves an adenylating enzyme (YcfA) and a sulfur-mobilizing enzyme (YcfC), but the mechanism of sulfur transfer and putative intermediates have remained elusive. Through dissection and in vitro reconstitution of the thionation process using diverse substrates, we uncover an intermediate, prodrug-like thio-conjugate and elucidate the precise enzyme functions. YcfA not only adenylates GMP but also transfers the mercapto group of l-cysteine to the activated carbonyl. A designated C-S lyase (YcfC) then cleaves the resulting S-adduct to yield the thioamide. This pathway is distinct from canonical tRNA sulfur modifications and known enzymatic peptide thionations. By exploring a wide range of substrate surrogates, we exploited the tolerance of the enzyme pair to produce even a seleno analog. This study provides valuable insight into a previously unexplored area of bacterial thioamide formation and lays the groundwork for synthetic biology approaches to produce thioamide antimetabolites.
Collapse
Affiliation(s)
- Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
36
|
Ocán-Torres D, Martínez-Burgos WJ, Manzoki MC, Soccol VT, Neto CJD, Soccol CR. Microbial Bioherbicides Based on Cell-Free Phytotoxic Metabolites: Analysis and Perspectives on Their Application in Weed Control as an Innovative Sustainable Solution. PLANTS (BASEL, SWITZERLAND) 2024; 13:1996. [PMID: 39065523 PMCID: PMC11280510 DOI: 10.3390/plants13141996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Weeds cause significant agricultural losses worldwide, and herbicides have traditionally been the main solution to this problem. However, the extensive use of herbicides has led to multiple cases of weed resistance, which could generate an increase in the application concentration and consequently a higher persistence in the environment, hindering natural degradation processes. Consequently, more environmentally friendly alternatives, such as microbial bioherbicides, have been sought. Although these bioherbicides are promising, their efficacy remains a challenge, as evidenced by their limited commercial and industrial production. This article reviews the current status of microbial-based bioherbicides and highlights the potential of cell-free metabolites to improve their efficacy and commercial attractiveness. Stirred tank bioreactors are identified as the most widely used for production-scale submerged fermentation. In addition, the use of alternative carbon and nitrogen sources, such as industrial waste, supports the circular economy. Furthermore, this article discusses the optimization of downstream processes using bioprospecting and in silico technologies to identify target metabolites, which leads to more precise and efficient production strategies. Bacterial bioherbicides, particularly those derived from Pseudomonas and Xanthomonas, and fungal bioherbicides from genera such as Alternaria, Colletotrichum, Trichoderma and Phoma, show significant potential. Nevertheless, limitations such as their restricted range of action, their persistence in the environment, and regulatory issues restrict their commercial availability. The utilization of cell-free microbial metabolites is proposed as a promising solution due to their simpler handling and application. In addition, modern technologies, including encapsulation and integrated management with chemical herbicides, are investigated to enhance the efficacy and sustainability of bioherbicides.
Collapse
Affiliation(s)
| | - Walter José Martínez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.O.-T.); (M.C.M.); (V.T.S.); (C.J.D.N.)
| | | | | | | | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.O.-T.); (M.C.M.); (V.T.S.); (C.J.D.N.)
| |
Collapse
|
37
|
Sakane K, Ueno T, Shigyo M, Sasaki K, Ito SI. Pathogenicity Differentiation of Fusarium spp. Causing Fusarium Basal Rot and Wilt Disease in Allium spp. Pathogens 2024; 13:591. [PMID: 39057818 PMCID: PMC11279435 DOI: 10.3390/pathogens13070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Here, 12 Fusarium strains, previously described as F. oxysporum f. sp. cepae (Foc), were examined via multi-locus sequencing of calmodulin (cmdA), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1), to verify the taxonomic position of Foc in the newly established epitype of F. oxysporum. The strains in this study were divided into two clades: F. nirenbergiae and Fusarium sp. To further determine the host specifications of the strains, inoculation tests were performed on onion bulbs and Welsh onion seedlings as potential hosts. Four strains (AC145, AP117, Ru-13, and TA) isolated from diseased onions commonly possessed the secreted in xylem (SIX)-3, 5, 7, 9, 10, 12, and 14 genes and were pathogenic and highly aggressive to onion bulbs, whereas all strains except for one strain (AF97) caused significant inhibition of Welsh onion growth. The inoculation test also revealed that the strains harboring the SIX9 gene were highly aggressive to both onion and Welsh onion and the gene was expressed during infection of both onions and Welsh onions, suggesting the important role of the SIX9 gene in pathogenicity. This study provides insights into the evolutionary pathogenicity differentiation of Fusarium strains causing Fusarium basal rot and wilt diseases in Allium species.
Collapse
Affiliation(s)
- Kosei Sakane
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan;
| | - Takashi Ueno
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
| | - Masayoshi Shigyo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
| | - Kazunori Sasaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shin-ichi Ito
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
38
|
Nguyen HA, Anh Thi NP, Thien Trang NP, Ho TT, Trinh TND, Tran NKS, Trinh KTL. Recent advances in biosensors for screening plant pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4485-4495. [PMID: 38940060 DOI: 10.1039/d4ay00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Worldwide, plant pathogens have been a considerably important cause of economic loss in agriculture especially in the decades of agricultural intensification. The increasing losses in agriculture due to biotic plant diseases have drawn attention towards the development of plant disease analyzing methods. In this context, biosensors have emerged as significantly important tools which help farmers in on-field diagnosis of plant diseases. Compared to traditional methods, biosensors have outstanding features such as being highly sensitive and selective, cost-effective, portable, fast and user-friendly operation, and so on. There are three common types of biosensors including electrochemical, fluorescent, and colorimetric biosensors. In this review, some common biotic plant diseases caused by fungi, bacteria, and viruses are first summarized. Then, current advances in developing biosensors are discussed.
Collapse
Affiliation(s)
- Hanh An Nguyen
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Pham Anh Thi
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Pham Thien Trang
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Biotechnology Department, College of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Vietnam
| | - Nguyen Khoi Song Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam.
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
39
|
Motoche-Monar C, Andrade D, Pijal WD, Hidrobo F, Armas R, Sánchez-Real E, Rocha-Chauca G, Castillo JA. CRISPRals: A Web Database for Assessing the CRISPR Defense System in the Ralstonia solanacearum Species Complex to Avoid Phage Resistance. PHYTOPATHOLOGY 2024; 114:1462-1465. [PMID: 38427684 DOI: 10.1094/phyto-01-24-0010-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has been widely characterized as a defense system against phages and other invading elements in bacteria and archaea. A low percentage of Ralstonia solanacearum species complex (RSSC) strains possess the CRISPR array and the CRISPR-associated proteins (Cas) that would confer immunity against various phages. To provide a wide-range screen of the CRISPR presence in the RSSC, we analyzed 378 genomes of RSSC strains to find the CRISPR locus. We found that 20.1, 14.3, and 54.5% of the R. solanacearum, R. pseudosolanacearum, and R. syzygii strains, respectively, possess the CRISPR locus. In addition, we performed further analysis to identify the respective phages that are restricted by the CRISPR arrays. We found 252 different phages infecting different strains of the RSSC, by means of the identification of similarities between the protospacers in phages and spacers in bacteria. We compiled this information in a database with web access called CRISPRals (https://crisprals.yachaytech.edu.ec/). Additionally, we made available a number of tools to detect and identify CRISPR array and Cas genes in genomic sequences that could be uploaded by users. Finally, a matching tool to relate bacteria spacer with phage protospacer sequences is available. CRISPRals is a valuable resource for the scientific community that contributes to the study of bacteria-phage interaction and a starting point that will help to design efficient phage therapy strategies.
Collapse
Affiliation(s)
- Cristofer Motoche-Monar
- Phage Therapy Group, School of Biological Sciences and Engineering, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Diego Andrade
- Phage Therapy Group, School of Mathematical and Computational Sciences, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Washington D Pijal
- Phage Therapy Group, School of Mathematical and Computational Sciences, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Francisco Hidrobo
- Phage Therapy Group, School of Mathematical and Computational Sciences, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Rolando Armas
- Phage Therapy Group, School of Mathematical and Computational Sciences, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Emily Sánchez-Real
- Phage Therapy Group, School of Biological Sciences and Engineering, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Gabriela Rocha-Chauca
- Phage Therapy Group, School of Biological Sciences and Engineering, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - José A Castillo
- Phage Therapy Group, School of Biological Sciences and Engineering, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| |
Collapse
|
40
|
Wang R, Li B, Cai S, Ding Y, Shi M, Jin T, Lin W, Liu P. Genetic Diversity of Ralstonia solanacearum Causing Tobacco Bacterial Wilt in Fujian Province and Identification of Biocontrol Streptomyces sp. PLANT DISEASE 2024; 108:1946-1958. [PMID: 38499975 DOI: 10.1094/pdis-08-23-1604-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tobacco bacterial wilt is a highly destructive soilborne disease caused by the Ralstonia solanacearum species complex, exhibiting a significant risk to global flue-cured tobacco cultivation and resulting in substantial economic loss. In this study, 77 isolates were collected from three prominent flue-cured tobacco cultivation areas in Fujian, China (Nanping, Sanming, and Longyan), in 2021 and 2022. The isolated strains were classified through phylotype-specific multiplex polymerase chain reaction (Pmx-PCR) and physiological tests. The analysis showed that all the strains were associated with phylotype I, race 1, and biovar III. Subsequent phylogenetic analysis using partial egl gene sequences classified the 77 isolates into 5 distinct sequevars: 13, 15, 16, 17, and 34. Notably, a remarkable predominance of sequevar 15 was observed in Fujian Province, while sequevar 16 was first reported on tobacco in China, which was identified in other plants, expanding the understanding of its host range and distribution in the country. In addition, a Streptomyces strain extracted from the rhizosphere soil of tobacco was found to inhibit the growth of multiple sequevars of tobacco R. solanacearum, indicating its broad-spectrum antagonistic properties. Furthermore, pot experiments showed that the strain St35 effectively controlled tobacco bacterial wilt. The isolate St35 was conclusively identified as Streptomyces gancidicus according to the morphological and genetic features. In summary, the present study demonstrated the genetic diversity and distribution of tobacco R. solanacearum strains in the Fujian province of China, as well as the identification of a candidate biological control agent for the management of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Songling Cai
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yingfu Ding
- Nanping Branch, Fujian Tobacco Company, Nanping 353000, China
| | - Mingyue Shi
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Ting Jin
- Xiamen Chanke Bioengineering Co., Ltd., Xiamen 361000, China
| | - Wei Lin
- Nanping Branch, Fujian Tobacco Company, Nanping 353000, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
41
|
Shi L, Shi W, Qiu Z, Yan S, Liu Z, Cao B. CaMAPK1 Plays a Vital Role in the Regulation of Resistance to Ralstonia solanacearum Infection and Tolerance to Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1775. [PMID: 38999615 PMCID: PMC11243954 DOI: 10.3390/plants13131775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
As an important member of mitogen-activated protein kinase (MAPK) cascades, MAPKs play an important role in plant defense response against biotic and abiotic stresses; however, the involvement of the majority of the MAPK family members against Ralstonia solanacearum and heat stress (HS) remains poorly understood. In the present study, CaMAPK1 was identified from the genome of pepper and its function against R. solanacearum and HS was analyzed. The transcript accumulations of CaMAPK1 and the activities of its native promoter were both significantly induced by R. solanacearum inoculation, HS, and the application of exogenous hormones, including SA, MeJA, and ABA. Transient expression of CaMAPK1 showed that CaMAPK1 can be targeted throughout the whole cells in Nicotiana benthamiana and triggered chlorosis and hypersensitive response-like cell death in pepper leaves, accompanied by the accumulation of H2O2, and the up-regulations of hormones- and H2O2-associated marker genes. The knock-down of CaMAPK1 enhanced the susceptibility to R. solanacearum partially by down-regulating the expression of hormones- and H2O2-related genes and impairing the thermotolerance of pepper probably by attenuating CaHSFA2 and CaHSP70-1 transcripts. Taken together, our results revealed that CaMAPK1 is regulated by SA, JA, and ABA signaling and coordinates responses to R. solanacearum infection and HS in pepper.
Collapse
Affiliation(s)
- Lanping Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Wei Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| |
Collapse
|
42
|
Rocha J, Shapiro LR, Chimileski S, Kolter R. Complementary roles of EPS, T3SS and Expansin for virulence of Erwinia tracheiphila, the causative agent of cucurbit wilt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600446. [PMID: 38979168 PMCID: PMC11230154 DOI: 10.1101/2024.06.24.600446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Erwinia tracheiphila (Smith) is a recently emerged plant pathogen that causes severe economic losses in cucurbit crops in temperate Eastern North America. E. tracheiphila is xylem restricted, and virulence is thought to be related to Exopolysaccharides (EPS) and biofilm formation, which occlude the passage of sap in xylem vessels and causes systemic wilt. However, the role of EPS and biofilm formation, and their contribution to disease in relation to other virulence loci are unknown. Here, we use deletion mutants to explore the roles of EPS, Hrp Type III secretion system (Hrp T3SS) and Expansin in plant colonization and virulence. Then, we quantify the expression of the genes encoding these factors during infection. Our results show that Exopolysaccharides are essential for E. tracheiphila survival in host plants, while Hrp T3SS and Expansin are dispensable for survival but needed for systemic wilt symptom development. EPS and Hrp T3SS display contrasting expression patterns in the plant, reflecting their relevance in different stages of the infection. Finally, we show that expression of the eps and hrpT3SS operons is downregulated in mildly increased temperatures, suggesting a link between expression of these virulence factors and geographic restriction of E. tracheiphila to temperate regions. Our work highlights how E. tracheiphila virulence is a complex trait where several loci are coordinated during infection. These results further shed light into the relationship between virulence factors and the ecology of this pathosystem, which will be essential for developing sustainable management strategies for this emerging pathogen.
Collapse
Affiliation(s)
- Jorge Rocha
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Progama de Agricultura en Zonas Áridas; Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195, La Paz, B.C.S. México 23096
| | - Lori R Shapiro
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| | - Scott Chimileski
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory; Woods Hole, MA, US 02543
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| |
Collapse
|
43
|
Zhang J, Sun D, Shen H, Pu X, Liu P, Lin B, Yang Q. Dickeya fangzhongdai was prevalent and caused taro soft rot when coexisting with the Pectobacterium complex, with a preference for Araceae plants. Front Microbiol 2024; 15:1431047. [PMID: 38983626 PMCID: PMC11231085 DOI: 10.3389/fmicb.2024.1431047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Bacterial soft rot caused by coinfection with Dickeya spp. and Pectobacterium spp. in hosts can cause successive changes in fields, and it is difficult to prevent the spread of and control the infection. Pectobacterium spp. are prevalent in the growing areas of tuberous crops, including taro and potato. Recently, Dickeya fangzhongdai has emerged as a virulent pathogen in taro. To determine the prevalence status of the causal agents and evaluate the potential spreading risks of D. fangzhongdai, screening and taxonomic classification were performed on phytopathogenic bacteria collected from different taro-growing areas in Guangdong Province, China, and biological and genomic characteristics were further compared among typical strains from all defined species. The causative agents were verified to be phytobacterial strains of D. fangzhongdai, Pectobacterium aroidearum and Pectobacterium colocasium. P. aroidearum and P. colocasium were found to form a complex preferring Araceae plants and show intensive genomic differentiation, indicating their ancestor had adapted to taro a long time prior. Compared with Pectobacterium spp., D. fangzhongdai was more virulent to taro corms under conditions of exogenous infection and more adaptable at elevated temperatures. D. fangzhongdai strains isolated from taro possessed genomic components of additional T4SSs, which were accompanied by additional copies of the hcp-vgrG genes of the T6SS, and these contributed to the expansion of their genomes. More gene clusters encoding secondary metabolites were found within the D. fangzhongdai strains than within the Pectobacterium complex; interestingly, distinct gene clusters encoding zeamine and arylpolyene were both most similar to those in D. solani that caused potato soft rot. These comparisons provided genomic evidences for that the newly emerging pathogen was potentially equipped to compete with other pathogens. Diagnostic qPCR verified that D. fangzhongdai was prevalent in most of the taro-growing areas and coexisted with the Pectobacterium complex, while the plants enriching D. fangzhongdai were frequently symptomatic at developing corms and adjacent pseudostems and caused severe symptoms. Thus, the emerging need for intensive monitoring on D. fangzhongdai to prevent it from spreading to other taro-growing areas and to other tuberous crops like potato; the adjustment of control strategies based on different pathopoiesis characteristics is recommended.
Collapse
Affiliation(s)
- Jingxin Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dayuan Sun
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Huifang Shen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xiaoming Pu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Pingping Liu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Birun Lin
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiyun Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
44
|
Yu X, Yan Y, Zeng J, Liu Y, Sun X, Wang Z, Li L. T6SS nuclease effectors in Pseudomonas syringae act as potent antimicrobials in interbacterial competition. J Bacteriol 2024; 206:e0027323. [PMID: 38717111 PMCID: PMC11332151 DOI: 10.1128/jb.00273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024] Open
Abstract
Type VI secretion system (T6SS) is a potent weapon employed by various Pseudomonas species to compete with neighboring microorganisms for limited nutrients and ecological niches. However, the involvement of T6SS effectors in interbacterial competition within the phytopathogen Pseudomonas syringae remains unknown. In this study, we examined two T6SS clusters in a wild-type P. syringae MB03 and verified the involvement of one cluster, namely, T6SS-1, in interbacterial competition. Additionally, our results showed that two T6SS DNase effectors, specifically Tde1 and Tde4, effectively outcompeted antagonistic bacteria, with Tde4 playing a prominent role. Furthermore, we found several cognate immunity proteins, including Tde1ia, Tde1ib, and Tde4i, which are located in the downstream loci of their corresponding effector protein genes and worked synergistically to protect MB03 cells from self-intoxication. Moreover, expression of either Tde1 or C-terminus of Tde4 in Escherichia coli cells induced DNA degradation and changes in cell morphology. Thus, our results provide new insights into the role of the T6SS effectors of P. syringae in the interbacterial competition in the natural environment. IMPORTANCE The phytopathogen Pseudomonas syringae employs an active type VI secretion system (T6SS) to outcompete other microorganisms in the natural environment, particularly during the epiphytic growth in the phyllosphere. By examining two T6SS clusters in P. syringae MB03, T6SS-1 is found to be effective in killing Escherichia coli cells. We highlight the excellent antibacterial effect of two T6SS DNase effectors, namely, Tde1 and Tde4. Both of them function as nuclease effectors, leading to DNA degradation and cell filamentation in prey cells, ultimately resulting in cell death. Our findings deepen our understanding of the T6SS effector repertoires used in P. syringae and will facilitate the development of effective antibacterial strategies.
Collapse
Affiliation(s)
- Xun Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yubo Yan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
45
|
Charest AM, Reed E, Bozorgzadeh S, Hernandez L, Getsey NV, Smith L, Galperina A, Beauregard HE, Charest HA, Mitchell M, Riley MA. Nisin Inhibition of Gram-Negative Bacteria. Microorganisms 2024; 12:1230. [PMID: 38930612 PMCID: PMC11205666 DOI: 10.3390/microorganisms12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aims: This study investigates the activity of the broad-spectrum bacteriocin nisin against a large panel of Gram-negative bacterial isolates, including relevant plant, animal, and human pathogens. The aim is to generate supportive evidence towards the use/inclusion of bacteriocin-based therapeutics and open avenues for their continued development. Methods and Results: Nisin inhibitory activity was screened against a panel of 575 strains of Gram-negative bacteria, encompassing 17 genera. Nisin inhibition was observed in 309 out of 575 strains, challenging the prevailing belief that nisin lacks effectiveness against Gram-negative bacteria. The genera Acinetobacter, Helicobacter, Erwinia, and Xanthomonas exhibited particularly high nisin sensitivity. Conclusions: The findings of this study highlight the promising potential of nisin as a therapeutic agent for several key Gram-negative plant, animal, and human pathogens. These results challenge the prevailing notion that nisin is less effective or ineffective against Gram-negative pathogens when compared to Gram-positive pathogens and support future pursuits of nisin as a complementary therapy to existing antibiotics. Significance and Impact of Study: This research supports further exploration of nisin as a promising therapeutic agent for numerous human, animal, and plant health applications, offering a complementary tool for infection control in the face of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Adam M. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Ethan Reed
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Samantha Bozorgzadeh
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Lorenzo Hernandez
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Natalie V. Getsey
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Liam Smith
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Anastasia Galperina
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hadley E. Beauregard
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hailey A. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Mathew Mitchell
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| | - Margaret A. Riley
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| |
Collapse
|
46
|
Savov S, Marinova B, Teofanova D, Savov M, Odjakova M, Zagorchev L. Parasitic Plants-Potential Vectors of Phytopathogens. Pathogens 2024; 13:484. [PMID: 38921782 PMCID: PMC11207070 DOI: 10.3390/pathogens13060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Parasitic plants represent a peculiar group of semi- or fully heterotrophic plants, possessing the ability to extract water, minerals, and organic compounds from other plants. All parasitic plants, either root or stem, hemi- or holoparasitic, establish a vascular connection with their host plants through a highly specialized organ called haustoria. Apart from being the organ responsible for nutrient extraction, the haustorial connection is also a highway for various macromolecules, including DNA, proteins, and, apparently, phytopathogens. At least some parasitic plants are considered significant agricultural pests, contributing to enormous yield losses worldwide. Their negative effect is mainly direct, by the exhaustion of host plant fitness and decreasing growth and seed/fruit formation. However, they may pose an additional threat to agriculture by promoting the trans-species dispersion of various pathogens. The current review aims to summarize the available information and to raise awareness of this less-explored problem. We further explore the suitability of certain phytopathogens to serve as specific and efficient methods of control of parasitic plants, as well as methods for control of the phytopathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyuben Zagorchev
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria; (S.S.); (B.M.); (D.T.); (M.S.); (M.O.)
| |
Collapse
|
47
|
Quiroz Monnens T, Boulanger A. A large scale bacterial attraction assay: A new quantitative bacterial migration assay suitable for genetic screens. PLoS One 2024; 19:e0305037. [PMID: 38837976 DOI: 10.1371/journal.pone.0305037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Bacteria use various motility mechanisms to explore their environments. Chemotaxis is the ability of a motile bacterial cell to direct its movement in response to chemical gradients. A number of methods have been developed and widely used to study chemotactic responses to chemoeffectors including capillary, agar plug, microscopic slide, and microfluidic assays. While valuable, these assays are primarily designed to monitor rapid chemotactic responses to chemoeffectors on a small scale, which poses challenges in collecting large quantities of attracted bacteria. Consequently, these setups are not ideal for experiments like forward genetic screens. To overcome this limitation, we developed the Large Scale Bacterial Attraction assay (LSBA), which relies on the use of a Nalgene™ Reusable Filter Unit and other materials commonly found in laboratories. We validate the LSBA by investigating chemoeffector kinetics in the setup and by using chemoattractants to quantify the chemotactic response of wild-type, and motility impaired strains of the plant pathogenic bacterium Xanthomonas campestris pv. campestris and the environmental bacterium Shewanella oneidensis. We show that the LSBA establishes a long lasting chemoeffector gradient, that the setup can be used to quantify bacterial migration over time and that the LSBA offers the possibility to collect high numbers of attracted bacteria, making it suitable for genetic screens.
Collapse
Affiliation(s)
- Thomas Quiroz Monnens
- LIPME, INRAE, CNRS, Université de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| | - Alice Boulanger
- LIPME, INRAE, CNRS, Université de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| |
Collapse
|
48
|
Erdrich SH, Schurr U, Frunzke J, Arsova B. Seed coating with phages for sustainable plant biocontrol of plant pathogens and influence of the seed coat mucilage. Microb Biotechnol 2024; 17:e14507. [PMID: 38884488 PMCID: PMC11181459 DOI: 10.1111/1751-7915.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Pathogens resistant to classical control strategies pose a significant threat to crop yield, with seeds being a major transmission route. Bacteriophages, viruses targeting bacteria, offer an environmentally sustainable biocontrol solution. In this study, we isolated and characterized two novel phages, Athelas and Alfirin, which infect Pseudomonas syringae and Agrobacterium fabrum, respectively, and included the recently published Pfeifenkraut phage infecting Xanthomonas translucens. Using a simple immersion method, phages coated onto seeds successfully lysed bacteria post air-drying. The seed coat mucilage (SCM), a polysaccharide-polymer matrix exuded by seeds, plays a critical role in phage binding. Seeds with removed mucilage formed five to 10 times less lysis zones compared to those with mucilage. The podovirus Athelas showed the highest mucilage dependency. Phages from the Autographiviridae family also depended on mucilage for seed adhesion. Comparative analysis of Arabidopsis SCM mutants suggested the diffusible cellulose as a key component for phage binding. Long-term activity tests demonstrated high phage stability on seed surfaces and significantly increasing seedling survival rates in the presence of pathogens. Using non-virulent host strains enhanced phage presence on seeds but also has potential limitations. These findings highlight phage-based interventions as promising, sustainable strategies for combating pathogen resistance and improving crop yield.
Collapse
Affiliation(s)
- Sebastian H. Erdrich
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
- Forschungszentrum JülichDepartment for Biotechnology (IBG‐1), Institute of Bio‐ and GeosciencesJülichGermany
| | - Ulrich Schurr
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
| | - Julia Frunzke
- Forschungszentrum JülichDepartment for Biotechnology (IBG‐1), Institute of Bio‐ and GeosciencesJülichGermany
| | - Borjana Arsova
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
| |
Collapse
|
49
|
Ahmed A, He P, He Y, Singh BK, Wu Y, Munir S, He P. Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. Crit Rev Biotechnol 2024; 44:562-580. [PMID: 37055183 DOI: 10.1080/07388551.2023.2183379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/15/2023]
Abstract
Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
50
|
Gu G, Hou X, Xue M, Pan X, Dong J, Yang Y, Amuzu P, Xu D, Lai D, Zhou L. Diphenyl ethers from endophytic fungus Rhexocercosporidium sp. Dzf14 and their antibacterial activity by affecting homeostasis of cell membranes. PEST MANAGEMENT SCIENCE 2024; 80:2658-2667. [PMID: 38284314 DOI: 10.1002/ps.7972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Phytopathogenic bacteria cause severe losses to crops every year. The management of crop bacterial diseases with chemical agents has been considered as the main strategy. In order to cope with the bactericide resistance made by the pathogens, new antibacterials need to be continuously developed. RESULTS A chemical investigation from the endophytic fungus Rhexocercosporidium sp. Dzf14 has led to the isolation of 12 diphenyl ethers including two new ones named rhexocerin E (1) and rhexocercosporin G (2), along with two new depsides named rhexocerdepsides A (3) and B (4). The structures and absolute configurations of the new compounds were determined through comprehensive analysis of spectroscopic data and quantum chemical ECD calculations. Diphenyl ethers showed obviously antibacterial activity on Gram-positive bacteria. The structure-activity relationship of diphenyl ethers revealed that prenylation was critical to the antibacterial activity. Among them, rhexocercosporin D (12) possessed the strongest activity against Clavibacter michiganensis and Bacillus subtilis, and was selected for further mechanistic studies. It was found that rhexocercosporin D displayed bactericidal activity by affecting homeostasis of cell membranes. In addition to its rapid bactericidal effects on Gram-positive bacteria, rhexocercosporin D could restore the susceptibility against Gram-negative Agrobacterium tumefaciens by synergistic action with colistin. CONCLUSION Twelve diphenyl ethers and two depsides were isolated from endophytic fungus Rhexocercosporidium sp. Dzf14. Isopentenyl was critical for diphenyl ethers against Gram-positive bacteria. Rhexocercosporin D could affect homeostasis of bacterial cell membrane to exert rapid bactericidal activity. These findings highlight the antibacterial potential of the diphenyl ethers in crop bacterial disease management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gan Gu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuwen Hou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengyao Xue
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoqian Pan
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Dong
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yonglin Yang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Prosper Amuzu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dan Xu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Daowan Lai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ligang Zhou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|