1
|
Taylor J, Bagarti T, Kumar N. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. Phys Biol 2024; 22:016002. [PMID: 39433273 DOI: 10.1088/1478-3975/ad899d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Recent experimental studies have shown that physical exercise has the potential to suppress tumor progression. Such suppression has been reported to be mediated by the exercise-induced activation of natural killer (NK) cells through the release of IL-6, a cytokine. Aimed at shedding light on how exercise-induced NK cell activation helps in the suppression of cancer, we developed a coarse-grained mathematical model based on a system of ordinary differential equations describing the interaction between IL-6, NK-cells, and tumor cells. The model is then used to study how exercise duration and exercise intensity affect tumor suppression. Our results show that increasing exercise intensity or increasing exercise duration leads to greater and sustained tumor suppression. Furthermore, multi-bout exercise patterns hold promise for improving cancer treatment strategies by adjusting exercise intensity and frequency. Thus, the proposed mathematical model provides insights into the role of exercise in tumor suppression and can be instrumental in guiding future experimental studies, potentially leading to more effective exercise interventions.
Collapse
Affiliation(s)
- Jay Taylor
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, United States of America
| | - T Bagarti
- Graphene Center, Tata Steel Limited, Jamshedpur 831007, India
| | - Niraj Kumar
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, United States of America
| |
Collapse
|
2
|
Choudhury R, Bahadi CK, Ray IP, Dash P, Pattanaik I, Mishra S, Mohapatra SR, Patnaik S, Nikhil K. PIM1 kinase and its diverse substrate in solid tumors. Cell Commun Signal 2024; 22:529. [PMID: 39487435 PMCID: PMC11531143 DOI: 10.1186/s12964-024-01898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Rituparna Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Chandan Kumar Bahadi
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Ipsa Pratibimbita Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Pragyanshree Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Isha Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Suman Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Soumya R Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Kumar Nikhil
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India.
| |
Collapse
|
3
|
He TS, Cai K, Lai W, Yu J, Qing F, Shen A, Sui L, He W, Wang W, Xiao Q, Lei X, Guo T, Liu Z. E3 ubiquitin ligase RNF128 attenuates colitis and colorectal tumorigenesis by triggering the degradation of IL-6 receptors. J Adv Res 2024:S2090-1232(24)00262-5. [PMID: 38964734 DOI: 10.1016/j.jare.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Intestinal immune dysregulation is strongly linked to the occurrence and formation of tumors. RING finger protein 128 (RNF128) has been identified to play distinct immunoregulatory functions in innate and adaptive systems. However, the physiological roles of RNF128 in intestinal inflammatory conditions such as colitis and colorectal cancer (CRC) remain controversial. OBJECTIVES To elucidate the function and mechanism of RNF128 in colitis and CRC. METHODS Animal models of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced CRC were established in WT and Rnf128-deficient mice and evaluated by histopathology. Co-immunoprecipitation and ubiquitination analyses were employed to investigate the role of RNF128 in IL-6-STAT3 signaling. RESULTS RNF128 was significantly downregulated in clinical CRC tissues compared with paired peritumoral tissues. Rnf128-deficient mice were hypersusceptible to both colitis induced by DSS and CRC induced by AOM/DSS or APC mutation. Loss of RNF128 promoted the proliferation of CRC cells and STAT3 activation during the early transformative stage of carcinogenesis in vivo and in vitro when stimulated by IL-6. Mechanistically, RNF128 interacted with the IL-6 receptor α subunit (IL-6Rα) and membrane glycoprotein gp130 and mediated their lysosomal degradation in ligase activity-dependent manner. Through a series of point mutations in the IL-6 receptor, we identified that RNF128 promoted K48-linked polyubiquitination of IL-6Rα at K398/K401 and gp130 at K718/K816/K866. Additionally, blocking STAT3 activation effectively eradicated the inflammatory damage of Rnf128-deficient mice during the transformative stage of carcinogenesis. CONCLUSION RNF128 attenuates colitis and colorectal tumorigenesis by inhibiting IL-6-STAT3 signaling, which sheds novel insights into the modulation of IL-6 receptors and the inflammation-to-cancer transition.
Collapse
Affiliation(s)
- Tian-Sheng He
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kuntai Cai
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weiling Lai
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jingge Yu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Furong Qing
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ao Shen
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lina Sui
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenji He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China; Graduate School, China Medical University, Shenyang, Liaoning, China
| | - Weihua Wang
- Graduate School, China Medical University, Shenyang, Liaoning, China; Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- Graduate School, China Medical University, Shenyang, Liaoning, China; Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiong Lei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Zhiping Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
4
|
Florescu DN, Boldeanu MV, Șerban RE, Florescu LM, Serbanescu MS, Ionescu M, Streba L, Constantin C, Vere CC. Correlation of the Pro-Inflammatory Cytokines IL-1β, IL-6, and TNF-α, Inflammatory Markers, and Tumor Markers with the Diagnosis and Prognosis of Colorectal Cancer. Life (Basel) 2023; 13:2261. [PMID: 38137862 PMCID: PMC10744550 DOI: 10.3390/life13122261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most important global health problems, being in the top 3 neoplasms in terms of the number of cases worldwide. Although CRC develops predominantly from the adenoma-adenocarcinoma sequence through APC gene mutations, in recent years, studies have demonstrated the role of chronic inflammation in this neoplasia pathogenesis. Cytokines are important components of chronic inflammation, being some of the host regulators in response to inflammation. The pro-inflammatory cytokines IL-1β, IL-6, and TNF-α are involved in tumor cell proliferation, angiogenesis, and metastasis and seem to strengthen each other's mode of action, these being stimulated by the same mediators. In our study, we collected data on 68 patients with CRC and 20 healthy patients from the Gastroenterology Department of Craiova County Emergency Clinical Hospital, who were assessed between January 2022 and February 2023. The main purpose of this study was to investigate the correlation between increased plasma levels of the cytokines and the extent of the tumor, lymph nodes, and metastasis-(TNM stage), as well as the patients' prognoses. We also compared the plasma levels of cytokines and acute inflammatory markers, namely, the erythrocyte sedimentation rate (ESR), c-reactive protein (CRP), and fibrinogen, along with the tumor markers, carcinoembryonic antigen (CEA) and carbohydrate antigen 19.9 (CA 19.9), in CRC patients. We showed that all the pro-inflammatory cytokines studied had higher levels in patients with CRC in comparison with the control group. We also showed that the acute inflammatory markers of erythrocyte sedimentation rate, C-reactive protein, and fibrinogen, and the tumor markers of CEA and CA 19.9 can be useful in diagnosis and prognosis in patients with CRC. Considering the association between pro-inflammatory cytokines and CRC, the development of new targeted therapies against IL-1β, IL-6, and TNF-α can improve patient care and the CRC survival rate.
Collapse
Affiliation(s)
- Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.F.); (C.C.V.)
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihail-Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Robert-Emmanuel Șerban
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.F.); (C.C.V.)
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Lucian Mihai Florescu
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.M.F.); (C.C.)
| | - Mircea-Sebastian Serbanescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Liliana Streba
- Department of Oncology, University of Medicine and Pharmacy Craiova, 2 Petru Rares Str., 200349 Craiova, Romania;
| | - Cristian Constantin
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.M.F.); (C.C.)
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.F.); (C.C.V.)
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
5
|
Conesa MPB, Blixt FW, Peesh P, Khan R, Korf J, Lee J, Jagadeesan G, Andersohn A, Das TK, Tan C, Di Gesu C, Colpo GD, Moruno-Manchón JF, McCullough LD, Bryan R, Ganesh BP. Stabilizing histamine release in gut mast cells mitigates peripheral and central inflammation after stroke. J Neuroinflammation 2023; 20:230. [PMID: 37805585 PMCID: PMC10560441 DOI: 10.1186/s12974-023-02887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/31/2023] [Indexed: 10/09/2023] Open
Abstract
Stroke is the most common cause of long-term disability and places a high economic burden on the global healthcare system. Functional outcomes from stroke are largely determined by the extent of ischemic injury, however, there is growing recognition that systemic inflammatory responses also contribute to outcomes. Mast cells (MCs) rapidly respond to injury and release histamine (HA), a pro-inflammatory neurotransmitter that enhances inflammation. The gut serves as a major reservoir of HA. We hypothesized that cromolyn, a mast cell stabilizer that prevents the release of inflammatory mediators, would decrease peripheral and central inflammation, reduce MC trafficking to the brain, and improve stroke outcomes. We used the transient middle cerebral artery occlusion (MCAO) model of ischemic stroke in aged (18 mo) male mice to investigate the role of MC in neuroinflammation post-stroke. After MCAO we treated mice with 25 mg/kg body weight of cromolyn (MC stabilizer) by oral gavage. Cromolyn was administered at 3 h, 10 h, 24 h and every 24 h for 3 days post-stroke. Three control groups were used. One group underwent a sham surgery and was treated with cromolyn, one received sham surgery with PBS vehicle and the third underwent MCAO with PBS vehicle. Mice were euthanized at 24 h and 3 days post-stroke. Cromolyn administration significantly reduced MC numbers in the brain at both 24 h and 3 days post-stroke. Infarct volume was not significantly different between groups, however improved functional outcomes were seen at 3 days post-stroke in mice that received cromolyn. Treatment with cromolyn reduced plasma histamine and IL-6 levels in both the 24-h and 3-day cohorts. Gut MCs numbers were significantly reduced after cromolyn treatment at 24 h and 3 days after stroke. To determine if MC trafficking from the gut to the brain occurred after injury, GFP+MCs were adoptively transferred to c-kit-/- MC knock-out animals prior to MCAO. 24 h after stroke, elevated MC recruitment was seen in the ischemic brain. Preventing MC histamine release by cromolyn improved gut barrier integrity and an improvement in stroke-induced dysbiosis was seen with treatment. Our results show that preventing MC histamine release possesses prevents post-stroke neuroinflammation and improves neurological and functional outcomes.
Collapse
Affiliation(s)
- Maria P Blasco Conesa
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Frank W Blixt
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Pedram Peesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Romeesa Khan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Janelle Korf
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gayathri Jagadeesan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Alexander Andersohn
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Tushar K Das
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Chunfeng Tan
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudia Di Gesu
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | | | - Louise D McCullough
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Robert Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Carsuzaa F, Bequignon E, Bartier S, Coste A, Dufour X, Bainaud M, Lecron JC, Louis B, Tringali S, Favot L, Fieux M. Oncostatin M Contributes to Airway Epithelial Cell Dysfunction in Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2023; 24:6094. [PMID: 37047067 PMCID: PMC10094365 DOI: 10.3390/ijms24076094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a typical type-2 inflammation involving several cytokines and is associated with epithelial cell dysfunction. Oncostatin M (OSM) (belonging to the interleukin(IL)-6 family) could be a key driver of epithelial barrier dysfunction. Therefore, we investigated the presence of OSM and IL-6 and the expression pattern of tight junctions (TJs) in the nasal tissue of CRSwNP patients and controls using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Then, their potential role in the epithelial barrier was evaluated in vitro in 27 different primary cultures of human nasal epithelial cells (HNECs) by measuring TJ expression and transepithelial electric resistance (TEER) with or without OSM or IL-6 (1, 10, and 100 ng/mL). The effect on ciliary beating efficiency was evaluated by high-speed videomicroscopy and on repair mechanisms with a wound healing model with or without OSM. OSM and IL-6 were both overexpressed, and TJ (ZO-1 and occludin) expression was decreased in the nasal polyps compared to the control mucosa. OSM (100 ng/mL) but not IL-6 induced a significant decrease in TJ expression, TEER, and ciliary beating efficiency in HNECs. After 24 h, the wound repair rate was significantly higher in OSM-stimulated HNECs at 100 ng/mL. These results suggest that OSM could become a new target for monoclonal antibodies.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, F-86000 Poitiers, France
| | - Emilie Bequignon
- Centre Hospitalier Intercommunal de Créteil, Service d’Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, F-94010 Créteil, France
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Sophie Bartier
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Hôpital Henri-Mondor, Assistance Publique des Hôpitaux de Paris, F-94010 Créteil, France
| | - André Coste
- Centre Hospitalier Intercommunal de Créteil, Service d’Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, F-94010 Créteil, France
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, F-86000 Poitiers, France
| | - Matthieu Bainaud
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, F-86021 Poitiers, France
| | - Jean Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, F-86021 Poitiers, France
| | - Bruno Louis
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Stéphane Tringali
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, F-69310 Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, F-69003 Lyon, France
- UMR 5305, Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
| | - Maxime Fieux
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, F-69310 Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, F-69003 Lyon, France
| |
Collapse
|
7
|
Cataldo Russomando A, Steinberg D, Gati I, Vogt Sionov R, Eliashar R, Friedman M, Gross M. Sinonasal Stent Coated with Sustained-Release Varnish of Mometasone Furoate Inhibits Pro-Inflammatory Cytokine Release from Macrophages: An In Vitro Study. Pharmaceutics 2023; 15:pharmaceutics15031015. [PMID: 36986875 PMCID: PMC10051169 DOI: 10.3390/pharmaceutics15031015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the study was to develop a sustained-release varnish (SRV) containing mometasone furoate (MMF) for sinonasal stents (SNS) to reduce mucosa inflammation in the sinonasal cavity. The SNS' segments coated with SRV-MMF or an SRV-placebo were incubated daily in a fresh DMEM at 37 °C for 20 days. The immunosuppressive activity of the collected DMEM supernatants was tested on the ability of mouse RAW 264.7 macrophages to secrete the cytokines' tumor necrosis factor α (TNFα) and interleukin (IL)-10 and IL-6 in response to lipopolysaccharide (LPS). The cytokine levels were determined by respective Enzyme-Linked Immunosorbent Assays (ELISAs). We found that the daily amount of MMF released from the coated SNS was sufficient to significantly inhibit LPS-induced IL-6 and IL-10 secretion from the macrophages up to days 14 and 17, respectively. SRV-MMF had, however, only a mild inhibitory effect on LPS-induced TNFα secretion as compared to the SRV-placebo-coated SNS. In conclusion, the coating of SNS with SRV-MMF provides a sustained delivery of MMF for at least 2 weeks, maintaining a level sufficient for inhibiting pro-inflammatory cytokine release. This technological platform is, therefore, expected to provide anti-inflammatory benefits during the postoperative healing period and may play a significant role in the future treatment of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Alessandra Cataldo Russomando
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Doron Steinberg
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Irith Gati
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ron Eliashar
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael Friedman
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Menachem Gross
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
8
|
Mierzejewski K, Gerwel Z, Kurzyńska A, Golubska M, Bogacka I. In vitro effects of PPAR gamma ligands on gene expression in corpus luteum explants in non-pregnant pigs - Transcriptome analysis. Theriogenology 2023; 203:69-81. [PMID: 36977370 DOI: 10.1016/j.theriogenology.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
The corpus luteum (CL) is a temporary endocrine structure in the female ovaries that develops cyclically in mature females during luteinization. This study aimed to determine the in vitro effects of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the transcriptomic profile of the porcine CL in the mid- and late-luteal phase of the estrous cycle using RNA-seq technology. The CL slices were incubated in the presence of PPARγ agonist - pioglitazone or antagonist - T0070907. We identified 40 differentially expressed genes after treatment with pioglitazone and 40 after treatment with T0070907 in the mid-luteal phase as well as 26 after pioglitazone and 29 after T0070907 treatment in the late-luteal phase of the estrous cycle. In addition, we detected differences in gene expression between the mid- and late-luteal phase without treatment (409 differentially expressed genes). This study revealed a number of novel candidate genes that may play a role in controlling the function of CL by regulating signaling pathways related to ovarian steroidogenesis, metabolic processes, cell differentiation, apoptosis, and immune responses. These findings become a basis for further studies to explain the mechanism of PPARγ action in the reproductive system.
Collapse
|
9
|
Pozios I, Hering NA, Guenzler E, Arndt M, Elezkurtaj S, Knösel T, Bruns CJ, Margonis GA, Beyer K, Seeliger H. Gp130 is expressed in pancreatic cancer and can be targeted by the small inhibitor molecule SC144. J Cancer Res Clin Oncol 2023; 149:271-280. [PMID: 36495330 PMCID: PMC9889481 DOI: 10.1007/s00432-022-04518-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Interleukin 6 (IL-6), Oncostatin M (OSM), and downstream effector STAT3 are pro-tumorigenic agents in pancreatic ductal adenocarcinoma (PDAC). Glycoprotein 130 (gp130) is a compound of the IL-6 and OSM receptor complex that triggers STAT3 signaling. SC144 is a small molecule gp130 inhibitor with anticancer activity. This study examines the gp130 expression in human PDAC specimens and the in vitro effects of SC144 in PDAC cell lines. METHODS Tissue micro-arrays were constructed from 175 resected human PDAC. The gp130 expression in tumor epithelium and stroma was determined by immunohistochemistry, and survival analysis was performed. Growth inhibition by SC144 was assessed in vitro using BrdU and MTT assays. Western blotting was performed to evaluate the SC144 effect on IL-6 and OSM signaling. RESULTS Gp130 was expressed in the epithelium of 78.8% and the stroma of 9.4% of the tumor samples. The median overall survival for patients with or without epithelial gp130 expression was 16.7 months and 15.9 months, respectively (p = 0.830). Patients with no stromal gp130 expression showed poorer survival than patients with stromal gp130 expression (median 16.2 and 22.9 months, respectively), but this difference did not reach significance (p = 0.144). SC144 inhibited cell proliferation and viability and suppressed IL-6- and OSM-stimulated STAT3Y705 phosphorylation in PDAC cells. CONCLUSION Gp130 is expressed in the epithelium of most human PDAC, but stromal expression is rare. The small molecule gp130 inhibitor SC144 potently inhibits PDAC progression in vitro and may abrogate IL-6 or OSM/gp130/STAT3 signaling. These results suggest gp130 as a novel drug target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ioannis Pozios
- grid.6363.00000 0001 2218 4662Department of General and Visceral Surgery, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nina A. Hering
- grid.6363.00000 0001 2218 4662Department of General and Visceral Surgery, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Emily Guenzler
- grid.6363.00000 0001 2218 4662Department of General and Visceral Surgery, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marco Arndt
- grid.6363.00000 0001 2218 4662Department of General and Visceral Surgery, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sefer Elezkurtaj
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Thomas Knösel
- grid.411095.80000 0004 0477 2585Institute of Pathology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Christiane J. Bruns
- grid.6190.e0000 0000 8580 3777Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Georgios A. Margonis
- grid.51462.340000 0001 2171 9952Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Katharina Beyer
- grid.6363.00000 0001 2218 4662Department of General and Visceral Surgery, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Hendrik Seeliger
- grid.6363.00000 0001 2218 4662Department of General and Visceral Surgery, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany ,IU Health University, 55116 Mainz, Germany
| |
Collapse
|
10
|
Inflammatory Cytokines and Radiotherapy in Pancreatic Ductal Adenocarcinoma. Biomedicines 2022; 10:biomedicines10123215. [PMID: 36551971 PMCID: PMC9775272 DOI: 10.3390/biomedicines10123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge in clinical oncology. Surgery is the only potentially curative treatment. However, the majority of PDAC patients present with locally advanced/unresectable or metastatic disease, where palliative multiagent chemotherapy is the first-line treatment with the therapeutic intent to delay progression and prolong survival. For locally advanced/unresectable pancreatic cancer patients who are treated with chemotherapy, consolidative radiotherapy in the form concurrent chemoradiation or stereotactic ablative radiotherapy improves locoregional control and pain/symptom control. To improve clinical outcomes of PDAC patients, there is a dire need for discoveries that will shed more light on the pathophysiology of the disease and lead to the development of more efficacious treatment strategies. Inflammatory cytokines are known to play a role in mediating tumor progression, chemoresistance, and radioresistance in PDAC. A PubMed search on published articles related to radiotherapy, inflammatory cytokines, and pancreatic cancer patients in the English language was performed. This article primarily focuses on reviewing the clinical literature that examines the association of inflammatory cytokines with clinical outcomes and the effects of radiotherapy on inflammatory cytokines in PDAC patients.
Collapse
|
11
|
Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022; 156:155916. [DOI: 10.1016/j.cyto.2022.155916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
12
|
Interleukin-6 Signaling in Triple Negative Breast Cancer Cells Elicits the Annexin A1/Formyl Peptide Receptor 1 Axis and Affects the Tumor Microenvironment. Cells 2022; 11:cells11101705. [PMID: 35626741 PMCID: PMC9139391 DOI: 10.3390/cells11101705] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Annexin A1 (AnxA1) is a pleiotropic protein that exerts essential roles in breast cancer (BC) growth and aggressiveness. In our previous work, we described the autocrine signaling of AnxA1 through formyl peptide receptor 1 (FPR1) in the triple-negative (TN) BC cell line, MDA-MB-231. Here, we aimed to describe the interaction between the AnxA1/FPR1 and the Interleukin-6 (IL-6) signaling pathways and their role in the tumor microenvironment (TME). First, we demonstrated that AnxA1 and IL-6 expression levels are correlated in BC tissue samples. In three TNBC cell lines, overexpression of both AnxA1 and IL-6 was also identified. Next, we inhibited FPR1, the IL-6 receptor and STAT3 in both MDA-MB-231 and MDA-MB-157 cells. The FPR1 inhibition led to increased levels of IL-6 and secreted AnxA1 in both cell lines. On the other side, inhibition of the IL-6 receptor or STAT3 led to the impairment of AnxA1 secretion, suggesting the essential role of the IL-6 signaling cascade in the activation of the AnxA1/FPR1 autocrine axis. Finally, we described the interaction between IL-6 and the AnxA1/FPR1 pathways and their role on the TME by analyzing the effect of supernatants derived from MDA-MB-231 and MDA-MB-157 cells under the inhibition of FPR1 or IL-6 signaling on fibroblast cell motility.
Collapse
|
13
|
Carsuzaa F, Béquignon É, Dufour X, de Bonnecaze G, Lecron JC, Favot L. Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2021; 23:ijms23010417. [PMID: 35008843 PMCID: PMC8745309 DOI: 10.3390/ijms23010417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cytokines are well known to play a central role in chronic rhinosinusitis with nasal polyps (CRSwNP), particularly in maintenance of the inflammatory response and the recruitment of eosinophils. The pathophysiological concepts concerning the involvement of inflammatory cytokines in CRSwNP have gradually evolved. Although the Th2 cytokines environment associated with an eosinophilic infiltration has retained a central role in the genesis of polyps, the role of other cytokine subpopulations has also and more recently been detailed, leading to a specific and complex signature in CRSwNP. The purpose of this review is to summarize the current state of knowledge about the cytokine signature in CRSwNP, the role of cytokines in the pathogenesis of this disease and in the intercellular dialog between epithelial cells, fibroblasts and inflammatory cells. Knowledge of this precise cytokine signature in CRSwNP is fundamental in the perspective of potential targeting biotherapies.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Maxillo-Faciale, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
- Correspondence: ; Tel.: +33-(0)5-49-44-43-28
| | - Émilie Béquignon
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010 Créteil, France;
- INSERM U955, Équipe 13, Centre Henri Mondor de Recherche Biomédicale, 94000 Créteil, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Maxillo-Faciale, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Guillaume de Bonnecaze
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Toulouse, 31400 Toulouse, France;
| | - Jean-Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
| |
Collapse
|
14
|
Perri F, Crispo A, Ionna F, Muto P, Caponigro F, Longo F, Montagnese C, Franco P, Pavone E, Aversa C, Guida A, Bimonte S, Ottaiano A, Di Marzo M, Porciello G, Amore A, Celentano E, Della Vittoria Scarpati G, Cascella M. Patients affected by squamous cell carcinoma of the head and neck: A population particularly prone to developing severe forms of COVID-19. Exp Ther Med 2021; 22:1298. [PMID: 34630653 PMCID: PMC8461515 DOI: 10.3892/etm.2021.10733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/17/2021] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the recent Coronavirus Disease 2019 (COVID-19) pandemic, which has spread all over the world over the past year. Comorbidities appear to affect the prognosis of patients with such diseases, but the impact of cancer on the course of SARS-CoV2 has remained largely elusive. The aim of the present study is to analyze the outcome of patients affected by squamous cell carcinoma of the head and neck (SCCHN) and a number of their comorbidities, if infected with SARS-CoV2. The clinical data of 100 patients affected by SCCHN, who were undergoing treatment or who had finished their oncologic treatment in the past 6 months, were retrospectively collected and analysed. For each patient, the Charlson Comorbidity Index (CCI) was calculated to provide a score assessing the real weight of comorbidities on the patient's outcome at the time of diagnosis. It was discovered that these patients, besides the SCCHN, frequently presented at diagnosis with several other comorbidities, including hypertension, type 2 diabetes, cardiac arrhytmia, chronic obstructive pulmonary disease and various forms of vasculopathy (and thus a poor CCI). This feature suggest that, given the high frequency of various comorbidities in patients with SCCHN, additional SARS-CoV2 infection could have particularly devastating consequences.
Collapse
Affiliation(s)
- Francesco Perri
- Head and Neck Medical and Experimental Oncology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy,Correspondence to: Dr Francesco Perri, Head and Neck Medical and Experimental Oncology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, 8031 Via M. Semmola, I-80131 Naples, Italy
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Franco Ionna
- Otolaryngology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Paolo Muto
- Radiation Oncology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Francesco Caponigro
- Head and Neck Medical and Experimental Oncology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Francesco Longo
- Otolaryngology Unit, Casa Sollievo della Sofferenza di San Giovanni Rotondo, I-71013 Foggia, Italy
| | - Concetta Montagnese
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Pierluigi Franco
- Otolaryngology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Ettore Pavone
- Otolaryngology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Corrado Aversa
- Otolaryngology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Agostino Guida
- Otolaryngology Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Sabrina Bimonte
- Department of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Alessandro Ottaiano
- Innovative Therapies for Abdominal Metastases, Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Massimiliano Di Marzo
- Colorectal and Abdominal Surgery Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Giuseppe Porciello
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Alfonso Amore
- Department Melanoma, Soft Tissue, Muscle-Skeletal and Head-Neck, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | - Egidio Celentano
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| | | | - Marco Cascella
- Department of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS ‘Fondazione G. Pascale’, I-80131 Naples, Italy
| |
Collapse
|
15
|
Zhang L, Zhang Y, Pan J. Immunopathogenic mechanisms of rheumatoid arthritis and the use of anti-inflammatory drugs. Intractable Rare Dis Res 2021; 10:154-164. [PMID: 34466337 PMCID: PMC8397820 DOI: 10.5582/irdr.2021.01022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/05/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease characterized by synovitis and symmetrical joint destruction. RA has become one of the key diseases endangering human health, but its etiology is not clear. Therefore, identifying the immunopathogenic mechanisms of RA and developing therapeutic drugs to treat autoimmune diseases have always been difficult. This article mainly reviews the immunopathogenic mechanism of RA and advances in the study of anti-inflammatory drugs in order to provide a reference for the treatment of RA and drug development in the future.
Collapse
Affiliation(s)
- Ling Zhang
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Yihang Zhang
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Jihong Pan
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Ji'nan, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
- Address correspondence to:Pan Jihong, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University, # 6699 Qingdao Road, Ji'nan 250117, China. E-mail:
| |
Collapse
|
16
|
Lee HN, Choi YS, Kim SH, Zhong X, Kim W, Park JS, Saeidi S, Han BW, Kim N, Lee HS, Choi YJ, Baek JH, Na HK, Surh YJ. Resolvin D1 suppresses inflammation-associated tumorigenesis in the colon by inhibiting IL-6-induced mitotic spindle abnormality. FASEB J 2021; 35:e21432. [PMID: 33794029 DOI: 10.1096/fj.202002392r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023]
Abstract
While failure in resolution of inflammation is considered to increase the risk of tumorigenesis, there is paucity of experimental as well as clinical evidence supporting this association. Resolvin D1 (RvD1) is a representative pro-resolving lipid mediator that is endogenously generated from docosahexaenoic acid for the resolution of inflammation. Here, we report a decreased level of RvD1 in the blood from colorectal cancer patients and mice having inflammation-induced colon cancer, suggesting plasma RvD1 as a potential biomarker for monitoring colorectal cancer. Administration of RvD1 attenuated dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM) plus DSS-induced colorectal carcinogenesis by suppressing the production of interleukin-6 (IL-6) and IL-6-mediated chromosomal instability. The protective effect of RvD1 against chromosomal instability is associated with downregulation of IL-6-induced Cyclin D1 expression, which appears to be mediated by blocking the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) axis. RvD1 inhibited the STAT3 signaling pathway by interfering with the binding of IL-6 to its receptor (IL-6R), suggesting the novel function of RvD1 as a putative IL-6R antagonist. Together, our findings suggest that RvD1-mediated blockade of IL-6 signal transmission may contribute to inhibition of chromosomal instability and tumorigenesis.
Collapse
Affiliation(s)
- Ha-Na Lee
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yeon-Seo Choi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Seong Hoon Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xiancai Zhong
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Wonki Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Joon Sung Park
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Byung Woo Han
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Dos Santos Quaresma MVL, Campos R, Tavares-Silva E, Marques CG, Thomatieli-Santos RV. Effect of acute caffeine supplementation before intermittent high-intensity exercise on cytokine levels and psychobiological parameters: A randomized, cross-over, placebo-controlled trial. Cytokine 2021; 144:155583. [PMID: 34074584 DOI: 10.1016/j.cyto.2021.155583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
The present study aimed to verify the effects of caffeine supplementation on psychobiological parameters and its relationship with inflammatory cytokines in non-athlete subjects. We hypothesized that IL-10 may be responsible for the reduction in fatigue perception in response to caffeine supplementation. It was a randomized, double-blinded, cross-over, placebo-controlled study. Ten non-athlete subjects (26.9 ± 4.01 years old; 73.44 ± 9.57 kg; 15.94 ± 4.32 body fat kg) were evaluated. Sixty-min after caffeine (6 mg-1.kg-1 body mass) or placebo supplementation, high-intensity interval exercise test (1 min at 90% of Wmax and 2 min at 50% of Wmax) was performed to maximum voluntary exhaustion. Cytokine concentrations and psychobiological parameters were evaluated before (BE), immediately after (post-PE) and 1 h after exercise (1 h post-PE). We verify that IL-6 (0.35; 95% CI: 0.13 to 0.56; z = 3.24; p = 0.001; d = 1.14) and IL-10 (9.06; 95% CI 0.41 to 17.70; z = 2.05; p = 0.04; d = 1.12) increases post-PE in CAF group versus PLA group. Still, IL-10 levels were higher in CAF group 1 h post-PE (25.04; 95% CI: 8.95 to 41.31; z = 3.05; p = 0.002; d = 1.9) than PLA group. Moreover, 1 h post-PE vigor level was higher in the CAF group versus PLA group (4.53; 95% CI: 1.27 to 7.80; z = 2.72; p = 0.006; d = 0.46), and fatigue was lower in CAF group than PLA group (-5.08; 95% CI: -9.93 to -0.227; z = -2.05; p = 0.040; d = 0.67). We conclude that 1 h post-PE caffeine was able to decrease fatigue and increase vigor perception. IL-10 levels were higher 1 h post-PE in CAF group, suggesting, according to our hypothesis, that IL-10 may be associated with decrease fatigue perceptions after exercise.
Collapse
Affiliation(s)
- Marcus V L Dos Santos Quaresma
- Curso de Nutrição, Centro Universitário São Camilo, São Paulo, SP, Brazil; Pós-graduação em Nutrição e Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Raquel Campos
- Pós-graduação em Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Edgar Tavares-Silva
- Pós-graduação em Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ronaldo Vagner Thomatieli-Santos
- Pós-graduação em Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
18
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Didehdar M, Khoshbayan A, Vesal S, Darban-Sarokhalil D, Razavi S, Chegini Z, Shariati A. An overview of possible pathogenesis mechanisms of Alternaria alternata in chronic rhinosinusitis and nasal polyposis. Microb Pathog 2021; 155:104905. [PMID: 33930423 DOI: 10.1016/j.micpath.2021.104905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023]
Abstract
Chronic Rhinosinusitis (CRS) is a multifactorial disease, and different etiologies like metabolism and immunity disorders, bacterial superantigens, biofilms, and fungal allergens are known to develop this disease, especially the CRS with nasal polyps. Alternaria alternata (Alternaria) is one of the most prevalent airborne fungal species in the nasal discharge, which might have vigorous immunologic activities in nasal epithelial cells and play an essential role in the pathogenesis of CRS. Moreover, the interaction between this fungus and the innate and adaptive immune systems leads to the development of chronic inflammation. This inflammation may consequently instigate the CRS and nasal polyposis. The attenuation of surfactant protein synthesis or intracellular reserves and mucus hypersecretion could prevent the clearance of Alternaria from sinuses and may be correlated with colonization and re-infection of airborne fungi. Furthermore, higher expression of cathelicidin, thymic stromal lymphopoietin, toll-like receptors, and T helper 2-dominant immune responses can result in an IgE-mediated pathway activation and eosinophils degranulation. Moreover, higher local Alternaria-specific IgE was shown to be correlated with eosinophilic cationic proteins and might relate to nasal polyps. However, the role of genetic and environmental factors affecting CRS and nasal polyposis is not well studied. Likewise, further animal and clinical studies are required to better understand the role of Alternaria in CRS disease. The current article reviews the recent findings around the Alternaria-induced CRS and nasal polyposis.
Collapse
Affiliation(s)
- Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Ahluwalia TS, Prins BP, Abdollahi M, Armstrong NJ, Aslibekyan S, Bain L, Jefferis B, Baumert J, Beekman M, Ben-Shlomo Y, Bis JC, Mitchell BD, de Geus E, Delgado GE, Marek D, Eriksson J, Kajantie E, Kanoni S, Kemp JP, Lu C, Marioni RE, McLachlan S, Milaneschi Y, Nolte IM, Petrelis AM, Porcu E, Sabater-Lleal M, Naderi E, Seppälä I, Shah T, Singhal G, Standl M, Teumer A, Thalamuthu A, Thiering E, Trompet S, Ballantyne CM, Benjamin EJ, Casas JP, Toben C, Dedoussis G, Deelen J, Durda P, Engmann J, Feitosa MF, Grallert H, Hammarstedt A, Harris SE, Homuth G, Hottenga JJ, Jalkanen S, Jamshidi Y, Jawahar MC, Jess T, Kivimaki M, Kleber ME, Lahti J, Liu Y, Marques-Vidal P, Mellström D, Mooijaart SP, Müller-Nurasyid M, Penninx B, Revez JA, Rossing P, Räikkönen K, Sattar N, Scharnagl H, Sennblad B, Silveira A, Pourcain BS, Timpson NJ, Trollor J, van Dongen J, Van Heemst D, Visvikis-Siest S, Vollenweider P, Völker U, Waldenberger M, Willemsen G, Zabaneh D, Morris RW, Arnett DK, Baune BT, Boomsma DI, Chang YPC, Deary IJ, Deloukas P, Eriksson JG, Evans DM, Ferreira MA, Gaunt T, Gudnason V, Hamsten A, Heinrich J, Hingorani A, Humphries SE, Jukema JW, Koenig W, Kumari M, Kutalik Z, Lawlor DA, Lehtimäki T, März W, Mather KA, Naitza S, Nauck M, Ohlsson C, Price JF, Raitakari O, Rice K, Sachdev PS, Slagboom E, Sørensen TIA, Spector T, Stacey D, Stathopoulou MG, Tanaka T, Wannamethee SG, Whincup P, Rotter JI, Dehghan A, Boerwinkle E, Psaty BM, Snieder H, Alizadeh BZ. Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Hum Mol Genet 2021; 30:393-409. [PMID: 33517400 PMCID: PMC8098112 DOI: 10.1093/hmg/ddab023] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
Collapse
Affiliation(s)
- Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Gentofte DK2820, Denmark.,Department of Biology, The Bioinformatics Center, University of Copenhagen, Copenhagen DK2200, Denmark
| | - Bram P Prins
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Mohammadreza Abdollahi
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | | | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, Alabama 35233, USA
| | - Lisa Bain
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Barbara Jefferis
- Department of Primary Care & Population Health, UCL Institute of Epidemiology & Health Care, University College London, London NW3 2PF, UK
| | - Jens Baumert
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Eco de Geus
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Diana Marek
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Joel Eriksson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, Centre for Bone and Arthritis Research (CBAR), University of Gothenburg, Gothenburg 41345, Sweden
| | - Eero Kajantie
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, PO Box 30, Helsinki 00271, Finland.,Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts & the London Medical School, Queen Mary University of London, London EC1M 6BQ, UK
| | - John P Kemp
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Chen Lu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Stela McLachlan
- Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam 1081 HJ, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | | | - Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato (CA) 09042, Italy
| | - Maria Sabater-Lleal
- Cardiovascular Medicine, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden.,Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Barcelona 08041, Spain
| | - Elnaz Naderi
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Tina Shah
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Gaurav Singhal
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany.,Division of Metabolic Diseases and Nutritional Medicine, Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Munich 80337, Germany
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.,Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | | | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA.,Section of Cardiovascular Medicine and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Juan P Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Catherine Toben
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - George Dedoussis
- 44Department of Nutrition-Dietetics, Harokopio University, Athens 17671, Greece
| | - Joris Deelen
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.,Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jorgen Engmann
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany.,German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Ann Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-41345, Sweden
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku 20520, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku 20520, Finland
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London SW17 0RE, UK
| | - Magdalene C Jawahar
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Tine Jess
- 55Department of Epidemiology Research, Statens Serum Institute, Copenhagen DK2300, Denmark
| | - Mika Kivimaki
- Department of Epidemiology & Public Health, UCL Institute of Epidemiology & Health Care, University College London, London WC1E 7HB, UK
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Jari Lahti
- Turku Institute for Advanced Studies, University of Turku, Turku 20014, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki 00014, Finland
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Pedro Marques-Vidal
- Department of Internal Medicine, Lausanne University Hospital (CHUV), Lausanne 1011, Switzerland.,University of Lausanne, Lausanne 1011, Switzerland
| | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, Centre for Bone and Arthritis Research (CBAR), University of Gothenburg, Gothenburg 41345, Sweden
| | - Simon P Mooijaart
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Martina Müller-Nurasyid
- IBE, Faculty of Medicine, Ludwig Maximilians University (LMU) Munich, Munich 81377, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johhanes Gutenberg University, Mainz 55101, Germany
| | - Brenda Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam 1081 HJ, The Netherlands
| | - Joana A Revez
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte DK2820, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen DK2200, Denmark
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki 00014, Finland
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow G12 8TA, UK
| | - Hubert Scharnagl
- 66Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria
| | - Bengt Sennblad
- Cardiovascular Medicine, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden.,Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala 75124, Sweden
| | - Angela Silveira
- Cardiovascular Medicine, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Beate St Pourcain
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK.,Max Planck Institute for Psycholinguistics, Nijmegen XD 6525, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia.,Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney 2031, Australia
| | | | - Jenny van Dongen
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | | | | | - Peter Vollenweider
- Department of Internal Medicine, Lausanne University Hospital (CHUV), Lausanne 1011, Switzerland.,University of Lausanne, Lausanne 1011, Switzerland
| | - Uwe Völker
- MediCity Research Laboratory, University of Turku, Turku 20520, Finland
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Delilah Zabaneh
- Department of Genetics, Environment and Evolution, University College London Genetics Institute, London WC1E 6BT, UK
| | - Richard W Morris
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Donna K Arnett
- Dean's Office, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville 3000, Australia.,Department of Psychiatry and Psychotherapy, University of Muenster, Muenster 48149, Germany.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville 3000, Australia
| | - Dorret I Boomsma
- Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands.,Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Yen-Pei C Chang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts & the London Medical School, Queen Mary University of London, London EC1M 6BQ, UK.,77Centre for Genomic Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Johan G Eriksson
- National Institute for Health and Welfare, University of Helsinki, Helsinki 00014, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki 00014, Finland
| | - David M Evans
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | | | - Tom Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS6 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kópavogur 201, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Anders Hamsten
- Cardiovascular Medicine, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17176, Sweden
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany.,Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich 81377, Germany.,Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3010, Australia
| | - Aroon Hingorani
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Steve E Humphries
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - J Wouter Jukema
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.,Durrer Center for Cardiogenetic Research, Amsterdam 1105 AZ, The Netherlands
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich 80636, Germany.,88DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm 89081, Germany
| | - Meena Kumari
- Department of Epidemiology & Public Health, UCL Institute of Epidemiology & Health Care, University College London, London WC1E 7HB, UK.,Institute for Social and Economic Research, University of Essex, Colchester CO4 3SQ, Germany
| | - Zoltan Kutalik
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS6 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany.,66Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria.,SYNLAB Academy, SYNALB Holding Deutschland GmbH, Mannheim 68163, Germany
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia.,Neuroscience Research Australia, Sydney 2031, Australia
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato (CA) 09042, Italy
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany.,DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald 17475, Germany
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, Centre for Bone and Arthritis Research (CBAR), University of Gothenburg, Gothenburg 41345, Sweden
| | - Jackie F Price
- Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku 20520, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20014, Finland
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney 2031, Australia
| | - Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.,Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center For Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK2200, Denmark.,Department of Public Health, Section on Epidemiology, University of Copenhagen, Copenhagen DK1014, Denmark
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - David Stacey
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | | | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - S Goya Wannamethee
- Department of Primary Care & Population Health, UCL Institute of Epidemiology & Health Care, University College London, London NW3 2PF, UK
| | - Peter Whincup
- Population Health Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, Rotterdam 3000 CA, The Netherlands
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA.,Departments of Epidemiology and Health Services, University of Washington, Seattle, WA 98101, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
21
|
Ma X, Chen J, Liu J, Xu B, Liang X, Yang X, Feng Y, Liang X, Liu J. IL-8/CXCR2 mediates tropism of human bone marrow-derived mesenchymal stem cells toward CD133 + /CD44 + Colon cancer stem cells. J Cell Physiol 2021; 236:3114-3128. [PMID: 33078417 DOI: 10.1002/jcp.30080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
In cancer treatment, the most attractive feature of mesenchymal stem cells (MSCs) is it's homing to tumor tissues. MSC is an important part of the "colon cancer stem cell niche", but little research has been done on the tropism of human MSCs toward colon cancer stem cells (CCSCs). In this study, we first compared the effects of three tissue-derived MSCs (bone marrow, adipose tissue, and placenta) in vivo on colon tumor xenograft growth. Then, we analyzed the tropism of bone marrow-derived MSCs (BMSCs) toward normal intestinal epithelial cells (NCM460), parental colon cancer cells, CD133- /CD44-, and CD133+ /CD44+ colon cancer cells in vitro. Microarray analysis and in vitro experiments explored the mechanism of mediating the homing of BMSCs toward CCSCs. Compared with the parental and CD133- /CD44- colon cancer cells, CD133+ /CD44+ cells have a stronger ability to recruit BMSCs. In addition, BMSCs were significantly transformed into cancer-associated fibroblasts after being recruited by CCSCs. After coculture of BMSCs and CCSCs, the expression of interleukin (IL)-6, IL-8, IL-32, and CCL20 was significantly increased. Compared with parental strains, CD133- /CD44- cells, and NCM460, BMSC secreted significantly more IL-8 after coculture with CD133+ /CD44+ cells. Low concentration of IL-8 peptide inhibitors (100 ng/ml) and CXC receptor 2 (CXCR2) inhibitors have little effect on the migration of BMSCs, but can effectively weaken CCSC stemness and promote dormant CSCs in the coculture system to re-enter into the cell cycle. The endogenous IL-8 knockout in BMSCs or BMSCs loaded with IL-8 and/or CXCR2 inhibitors will make the therapy of BMSC targeting CCSCs function at its best.
Collapse
Affiliation(s)
- Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jingyun Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyu Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaotong Yang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Sheikhpour M, Maleki M, Ebrahimi Vargoorani M, Amiri V. A review of epigenetic changes in asthma: methylation and acetylation. Clin Epigenetics 2021; 13:65. [PMID: 33781317 PMCID: PMC8008616 DOI: 10.1186/s13148-021-01049-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Several studies show that childhood and adulthood asthma and its symptoms can be modulated through epigenetic modifications. Epigenetic changes are inheritable modifications that can modify the gene expression without changing the DNA sequence. The most common epigenetic alternations consist of DNA methylation and histone modifications. How these changes lead to asthmatic phenotype or promote the asthma features, in particular by immune pathways regulation, is an understudied topic. Since external effects, like exposure to tobacco smoke, air pollution, and drugs, influence both asthma development and the epigenome, elucidating the role of epigenetic changes in asthma is of great importance. This review presents available evidence on the epigenetic process that drives asthma genes and pathways, with a particular focus on DNA methylation, histone methylation, and acetylation. We gathered and assessed studies conducted in this field over the past two decades. Our study examined asthma in different aspects and also shed light on the limitations and the important factors involved in the outcomes of the studies. To date, most of the studies in this area have been carried out on DNA methylation. Therefore, the need for diagnostic and therapeutic applications through this molecular process calls for more research on the histone modifications in this disease.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ebrahimi Vargoorani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, College of Basic Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Amiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
23
|
Lin JJ, Tao K, Gao N, Zeng H, Wang DL, Yang J, Weng J. Triptolide Inhibits Expression of Inflammatory Cytokines and Proliferation of Fibroblast-like Synoviocytes Induced by IL-6/sIL-6R-Mediated JAK2/STAT3 Signaling Pathway. Curr Med Sci 2021; 41:133-139. [PMID: 33582917 DOI: 10.1007/s11596-020-2302-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Triptolide, a component of the Chinese herb Tripterygium wilfordii Hook F, has been proved to be effective in the treatment of rheumatoid arthritis (RA). However, its underlying mechanisms on RA have not yet been well established. We observed the inhibitory effect of triptolide on the expression of inflammatory cytokines and proliferation of fibroblast-like synoviocytes (FLS) induced by the complex of interleukin-6 (IL-6) and the soluble form of the IL-6 receptor (sIL-6R). Furthermore, to clarify the underlying mechanisms, we treated FLS with the Janus-activated kinase 2 (JAK2) inhibitor/signal transducer and activator of transcription 3 (STAT3) activation blocker AZD1480. In this study, immunohistochemical staining was used to identify vimentin (+) and CD68 (-) in FLS. The FLS proliferation was measured by cell proliferation assay, and the cell cycles were analyzed by flow cytometry. Furthermore, ELISA was used to detect the expression of the inflammatory factors in culture solution. The expression levels of p-JAK2, JAK2, p-STAT3 and STAT3 were investigated through Western blotting analysis. The results showed that IL-6/sIL-6R significantly increased the cell proliferation and expression of inflammatory cytokines, including IL-6, interleukin-1β (IL-1β) and vascular endothelial growth factor (VEGF). Triptolide or AZD1480 inhibited the cell proliferation and inflammatory cytokine expression in IL-6/sIL-6R-stimulated FLS by suppressing JAK2/STAT3. The study suggested that the physiological effects of triptolide on RA were due to its contribution to the inhibition of the inflammatory cytokine expression and FLS proliferation by suppressing the JAK2/STAT3 signaling pathway. It may provide an innovative insight into the effect of triptolide in preventing RA pathogenesis.
Collapse
Affiliation(s)
- Jian-Jing Lin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China.,Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, 100044, China
| | - Ke Tao
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, 100044, China
| | - Nan Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - De-Li Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
24
|
Yarmohammadi A, Yarmohammadi M, Fakhri S, Khan H. Targeting pivotal inflammatory pathways in COVID-19: A mechanistic review. Eur J Pharmacol 2021; 890:173620. [PMID: 33038418 PMCID: PMC7539138 DOI: 10.1016/j.ejphar.2020.173620] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
As an emerging global health crisis, coronavirus disease 2019 (COVID-19) has been labeled a worldwide pandemic. Growing evidence is revealing further pathophysiological mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amongst these dysregulated pathways inflammation seems to play a more critical role toward COVID-19 complications. In the present study, precise inflammatory pathways triggered by SARS-CoV-2, along with potential therapeutic candidates have been discussed. Prevailing evidence has indicated a close correlation of inflammatory cascades with severity, pathological progression, and organ damages in COVID-19 patients. From the mechanistic point of view, interleukin-6, interleukin-1β receptor, interferon-gamma, tumor necrosis factor-alpha receptor, toll-like receptor, receptor tyrosine kinases, growth factor receptor, Janus kinase/signal transducers and transcription pathway, mammalian target of rapamycin, cytokine storm and macrophage activation have shown to play critical roles in COVID-19 complications. So, there is an urgent need to provide novel mechanistic-based anti-inflammatory agents. This review highlights inflammatory signaling pathways of SARS-CoV-2. Several therapeutic targets and treatment strategies have also been provided in an attempt to tackle COVID-19 complications.
Collapse
Affiliation(s)
- Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Mostafa Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
25
|
Yousif AS, Ronsard L, Shah P, Omatsu T, Sangesland M, Bracamonte Moreno T, Lam EC, Vrbanac VD, Balazs AB, Reinecker HC, Lingwood D. The persistence of interleukin-6 is regulated by a blood buffer system derived from dendritic cells. Immunity 2020; 54:235-246.e5. [PMID: 33357409 PMCID: PMC7836640 DOI: 10.1016/j.immuni.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.
Collapse
Affiliation(s)
- Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Pankaj Shah
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Tatsushi Omatsu
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Evan C Lam
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Vladimir D Vrbanac
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Hans-Christian Reinecker
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; The Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Chen Y, Cong R, Ji C, Ruan W. The prognostic role of C-reactive protein in patients with head and neck squamous cell carcinoma: A meta-analysis. Cancer Med 2020; 9:9541-9553. [PMID: 33201589 PMCID: PMC7774749 DOI: 10.1002/cam4.3520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background The prognostic role of the C‐reactive protein (CRP) in head and neck squamous cell carcinoma (HNSCC) has not been well investigated. This meta‐analysis aimed to evaluate the prognostic relevance of elevated CRP levels in patients with HNSCC. Methods A relevant literature search was performed in PubMed, Web of Science, and Embase up to September 1, 2020. The pooled odds ratio and hazard ratio (HR) with 95% confidence interval (CI) were applied to evaluate the difference in overall survival (OS), progress‐free survival (PFS), and cancer‐specific survival (CSS) between patients with high CRP and those without. The pooled odds ratio (OR) with 95% CI were used to assess the association between CRP and clinicopathological features. Results A total of 17 studies, including 4449 patients, were included. Pooled results showed that an elevated CRP was associated with worse OS (HR = 1.48, 95% CI: 1.24‐1.77), CSS (HR = 1.85, 95% CI: 1.38‐2.46), and PFS (HR = 1.73, 95% CI: 1.38‐2.17). Male patients, lymph node metastases, and higher tumor stage were related to elevated CRP level (OR = 1.67, 95% CI: 1.34‐2.09; OR = 2.40, 95% CI: 1.44‐3.99; OR = 1.39, 95% CI: 1.12‐1.74). Conclusion Our meta‐analysis demonstrated that an elevated pretreatment of CRP indicates poor prognosis in HNSCC. Therefore, CRP is an indicator of the prognosis of patients with HNSCC and can be recommended for assessing prognoses in clinical work.
Collapse
Affiliation(s)
- Yanglan Chen
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Rong Cong
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengjian Ji
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhua Ruan
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| |
Collapse
|
27
|
Wu Q, Hu Y. Integrated network pharmacology and molecular docking strategy to explore the mechanism of medicinal and edible Astragali Radix-Atractylodis Macrocephalae Rhizoma acting on pneumonia via immunomodulation. J Food Biochem 2020; 44:e13510. [PMID: 33025599 DOI: 10.1111/jfbc.13510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
Pneumonia refers to a death-causing infection. Astragali Radix (AR) and Atractylodis Macrocephalae Rhizoma (AMR) are widely used as traditional tonic and promising edible immunomodulatory herbal medicine, but the systemic mechanism is not well understood. Therefore, a strategy based on network pharmacology and molecular docking was designed to explore the systemic mechanism of AR-AMR acting on pneumonia. After a series of bioinformatics assays, seven kernel targets were obtained, including TNF, IL6, IFNG, IL1B, IL10, IL4, and TLR9. And seven key compounds were identified as the synergy components of AR-AMR acting on pneumonia, the four key compounds belonging to AR were (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)-7-chromanol, formononetin, quercetin, and kaempferol, the three key compounds belonging to AMR were atractylone, 14-acetyl-12-senecioyl-2E, 8E, 10E-atractylentriol, and α-Amyrin. The crucial pathways were mainly related to three modules, including immune diseases, infectious disease, and organismal systems. Collectively, these observations strongly suggest that the molecular mechanisms of AR-AMR regulating pneumonia were closely related to the correlation between inflammation and immune response. PRACTICAL APPLICATIONS: Astragali radix and Atractylodis macrocephalae rhizoma can be used as "medicine-food homology" for dietary supplement. AR and AMR are widely used as a traditional tonic and promising edible immunomodulatory herbal medicine. The AR-AMR herb pairs are used for compatibility many times in the recommended prescriptions in COVID-19 develop pneumonia in China. However, the ingredients and mechanisms of AR-AMR acting on Pneumonia via immunomodulation are unclear. In this paper, bioinformatics and network biology were used to systematically explore the mechanisms of the AR-AMR herb pairs in treatment of pneumonia, and further analyze the correlation mechanism between it and COVID-19 develop pneumonia. To sum up, our study reveals the interrelationships between components, targets, and corresponding biological processes of AR-AMR acting on pneumonia. Understanding these relationships may provide guidance and theoretical basis for the further application of AR-AMR herb pairs.
Collapse
Affiliation(s)
- Qiguo Wu
- Department of Pharmacy, Anqing Medical College, Anqing, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yeqing Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Wertel I, Suszczyk D, Pawłowska A, Bilska M, Chudzik A, Skiba W, Paduch R, Kotarski J. Prognostic and Clinical Value of Interleukin 6 and CD45 +CD14 + Inflammatory Cells with PD-L1 +/PD-L2 + Expression in Patients with Different Manifestation of Ovarian Cancer. J Immunol Res 2020; 2020:1715064. [PMID: 33062717 PMCID: PMC7545411 DOI: 10.1155/2020/1715064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers. Recent studies suggest a crucial role of inflammatory immune system cells in the progression and metastasis of OC. The understanding of inflammatory mechanisms is pivotal for the selection of a biomarker that allows the differentiation between malignant and benign tumors, monitoring the progression of the disease, and identification of patients that will respond to implemented treatment. Our study is aimed at evaluating the profile of IL-6 in the plasma and peritoneal fluid (PF) of patients with various clinical manifestations of OC (n = 78). We also examined the relationship between IL-6 and PD-L1/PD-L2 positive CD45+CD14+ inflammatory cell (MO/MA) levels in three OC environments (TME): peripheral blood (PB), PF, and tumor (TT) and their clinical and prognostic relevance in OC patients. The expression of PD-L1/PD-L2 molecules was analyzed by flow cytometry. The IL-6 levels were determined by ELISA. We found an elevated level of PD-L1/PD-L2 positive MO/MA in TT compared to PB (p < 0.0001). Significantly higher (p < 0.0001) levels of IL-6 were observed in PF of the OC patients than in the benign ovarian tumor group (n = 31). Additionally, we found higher IL-6 levels in PF than in the plasma of the OC patients. Interestingly, accumulation of IL-6 was observed in PF of patients with low-differentiated OC and correlated with worse prognosis. Moreover, we observed correlations between the level of IL-6 and CD45+CD14+ cells and between CD45+CD14+PD-L1+ cells and the IL-6 level in PF. For the first time, we discovered that the higher percentage of CD45+CD14+PD-L2+ cells in PF predicts better survival of OC patients. Our study suggests that CD45+CD14+PD-L2+ cells and IL-6 may be predictive biomarkers for OC patients. Understanding how the composition of TME changes during OC development and progression is a prerequisite for projecting new therapeutic strategies. Overall, further validation research is warranted.
Collapse
Affiliation(s)
- Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Monika Bilska
- Independent Public Clinical Hospital No. 1, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Agata Chudzik
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Wiktoria Skiba
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Jan Kotarski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| |
Collapse
|
29
|
Copaescu A, Smibert O, Gibson A, Phillips EJ, Trubiano JA. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol 2020; 146:518-534.e1. [PMID: 32896310 PMCID: PMC7471766 DOI: 10.1016/j.jaci.2020.07.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
The coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome coronavirus 2 presents with a spectrum of clinical manifestations from asymptomatic or mild, self-limited constitutional symptoms to a hyperinflammatory state ("cytokine storm") followed by acute respiratory distress syndrome and death. The objective of this study was to provide an evidence-based review of the associated pathways and potential treatment of the hyperinflammatory state associated with severe acute respiratory syndrome coronavirus 2 infection. Dysregulated immune responses have been reported to occur in a smaller subset of those infected with severe acute respiratory syndrome coronavirus 2, leading to clinical deterioration 7 to 10 days after initial presentation. A hyperinflammatory state referred to as cytokine storm in its severest form has been marked by elevation of IL-6, IL-10, TNF-α, and other cytokines and severe CD4+ and CD8+ T-cell lymphopenia and coagulopathy. Recognition of at-risk patients could permit early institution of aggressive intensive care and antiviral and immune treatment to reduce the complications related to this proinflammatory state. Several reports and ongoing clinical trials provide hope that available immunomodulatory therapies could have therapeutic potential in these severe cases. This review highlights our current state of knowledge of immune mechanisms and targeted immunomodulatory treatment options for the current coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Ana Copaescu
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Australia.
| | - Olivia Smibert
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Australia
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; Department of Infectious Diseases, Vanderbilt University Medical Centre, Nashville, Tenn
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Australia; Department of Oncology, Sir Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, Australia; Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Parkville, Australia
| |
Collapse
|
30
|
Kim D, Illeperuma RP, Kim J. The Protective Effect of Antioxidants in Areca Nut Extract-Induced Oral Carcinogenesis. Asian Pac J Cancer Prev 2020; 21:2447-2452. [PMID: 32856877 PMCID: PMC7771929 DOI: 10.31557/apjcp.2020.21.8.2447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: Oral submucous fibrosis (OSF) is the premalignant disorder associated with fibrosis and epithelial atrophy. Areca Nut (AN) is the most significant risk factors for OSF. However, the molecular mechanism behind AN induced OSF remains unclear, and there exists no effective treatment for the malignant disorder. We aimed to investigate whether AN-extract causes epithelial-mesenchymal transition (EMT) in oral keratinocytes, and evaluated the therapeutic potential of antioxidants. Methods: The HPV16 E6/E7-transfected immortalized human oral keratinocytes (IHOK) were employed in the present study. For the preparation of AN-extract, dried AN was dissolved in distilled water overnight. The solution was centrifuged and the supernatant was collected for further use. For the determination of change in cytokine levels, ELISA was performed. To investigate EMT-related protein expression and phenotype, immunoblot and immunofluorescence were performed. Results: Among tumor-promoting cytokines (Gro-α, IL-6 and IL-8), IL-6 was remarkably increased by AN in IHOK. AN-extract induced EMT phenotypes, such as cell elongation, up-regulation of vimentin and snail. After treatment with neutralizing antibody of IL-6, AN-induced snail expression was reduced remarkably. Collectively, AN-extract induced IL-6 expression and mediated EMT. The use of antioxidants (EGCG, glutathione and NAC) significantly reduced IL-6 expression in AN-treated IHOK. Also, AN-decreased E-cadherin and increased vimentin were reversed by antioxidants, indicating that the effectiveness of antioxidants in inhibiting IL-6-induced EMT by AN. Conclusion: AN promotes EMT and antioxidants interrupt AN-induced-EMT in oral keratinocytes. Consequently, it is proposed that antioxidants could prevent AN-induced carcinogenesis and function as a prototype for developing therapeutic interventions of OSF.
Collapse
Affiliation(s)
- Dokyeong Kim
- Department of Dental hygiene, Jeonju Kijeon College, Jeonju, Republic of Korea
| | - Rasika Pawiththra Illeperuma
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Jin Kim
- Department of Oral pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
31
|
McGonagle D, Sharif K, O'Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev 2020; 19:102537. [PMID: 32251717 PMCID: PMC7195002 DOI: 10.1016/j.autrev.2020.102537] [Citation(s) in RCA: 1144] [Impact Index Per Article: 286.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Severe COVID-19 associated pneumonia patients may exhibit features of systemic hyper-inflammation designated under the umbrella term of macrophage activation syndrome (MAS) or cytokine storm, also known as secondary haemophagocytic lymphohistocytosis (sHLH). This is distinct from HLH associated with immunodeficiency states termed primary HLH -with radically different therapy strategies in both situations. COVID-19 infection with MAS typically occurs in subjects with adult respiratory distress syndrome (ARDS) and historically, non-survival in ARDS was linked to sustained IL-6 and IL-1 elevation. We provide a model for the classification of MAS to stratify the MAS-like presentation in COVID-19 pneumonia and explore the complexities of discerning ARDS from MAS. We discuss the potential impact of timing of anti-cytokine therapy on viral clearance and the impact of such therapy on intra-pulmonary macrophage activation and emergent pulmonary vascular disease.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK.
| | - Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; Sheba Medical Center, Tel Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anthony O'Regan
- National University of Ireland, Saolta University Healthcare Group, Galway, Ireland
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| |
Collapse
|
32
|
Blasco MP, Chauhan A, Honarpisheh P, Ahnstedt H, d’Aigle J, Ganesan A, Ayyaswamy S, Blixt F, Venable S, Major A, Durgan D, Haag A, Kofler J, Bryan R, McCullough LD, Ganesh BP. Age-dependent involvement of gut mast cells and histamine in post-stroke inflammation. J Neuroinflammation 2020; 17:160. [PMID: 32429999 PMCID: PMC7236952 DOI: 10.1186/s12974-020-01833-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Risk of stroke-related morbidity and mortality increases significantly with age. Aging is associated with chronic, low-grade inflammation, which is thought to contribute to the poorer outcomes after stroke seen in the elderly. Histamine (HA) is a major molecular mediator of inflammation, and mast cells residing in the gut are a primary source of histamine. METHODS Stroke was induced in male C57BL/6 J mice at 3 months (young) and 20 months (aged) of age. Role of histamine after stroke was examined using young (Yg) and aged (Ag) mice; mice underwent MCAO surgery and were euthanized at 6 h, 24 h, and 7 days post-ischemia; sham mice received the same surgery but no MCAO. In this work, we evaluated whether worsened outcomes after experimental stroke in aged mice were associated with age-related changes in mast cells, histamine levels, and histamine receptor expression in the gut, brain, and plasma. RESULTS We found increased numbers of mast cells in the gut and the brain with aging. Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we demonstrate that stroke leads to increased numbers of gut mast cells and gut histamine receptor expression levels. These gut-centric changes are associated with elevated levels of HA and other pro-inflammatory cytokines including IL-6, G-CSF, TNF-α, and IFN-γ in the peripheral circulation. Our data also shows that post-stroke gut inflammation led to a significant reduction of mucin-producing goblet cells and a loss of gut barrier integrity. Lastly, gut inflammation after stroke is associated with changes in the composition of the gut microbiota as early as 24-h post-stroke. CONCLUSION An important theme emerging from our results is that acute inflammatory events following ischemic insults in the brain persist longer in the aged mice when compared to younger animals. Taken together, our findings implicate mast cell activation and histamine signaling as a part of peripheral inflammatory response after ischemic stroke, which are profound in aged animals. Interfering with histamine signaling orally might provide translational value to improve stroke outcome.
Collapse
Affiliation(s)
- Maria Pilar Blasco
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Hilda Ahnstedt
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - John d’Aigle
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Arunkumar Ganesan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Sriram Ayyaswamy
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Frank Blixt
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Susan Venable
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, USA
| | - Angela Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, USA
| | - David Durgan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Anthony Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburg, Pittsburgh, USA
| | - Robert Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Louise D. McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, USA
| |
Collapse
|
33
|
Sun T, Sakata F, Ishii T, Tawada M, Suzuki Y, Kinashi H, Katsuno T, Takei Y, Maruyama S, Mizuno M, Ito Y. Excessive salt intake increases peritoneal solute transport rate via local tonicity-responsive enhancer binding protein in subtotal nephrectomized mice. Nephrol Dial Transplant 2020; 34:2031-2042. [PMID: 30897196 DOI: 10.1093/ndt/gfz045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND High peritoneal transport is associated with high mortality and technical failure in peritoneal dialysis (PD). Baseline peritoneal solute transport rate (PSTR) as measured by the peritoneal equilibration test (PET) within 6 months after PD initiation varies between patients. Sodium is reported to be stored in the skin or muscle of dialysis patients. This study investigated whether excessive salt intake in uremic mice caused peritoneal alterations without exposure to PD fluid. METHODS Sham-operated (Sham) and subtotal nephrectomized (Nx) mice were randomly given tap water or 1% sodium chloride (NaCl)-containing water for 8 weeks. PET was then performed to evaluate peritoneal function. Human mesothelial cell line Met-5A was used for in vitro studies. RESULTS We observed higher PSTR in Nx mice with 1% NaCl-containing drinking water (Nx + salt) compared with those with tap water (Nx + water), along with enhanced angiogenesis and inflammation in the peritoneum. Blockade of interleukin (IL)-6 signaling rescued peritoneal transport function in Nx + salt mice. In cultured Met-5A, additional NaCl in the medium upregulated IL-6 as well as vascular endothelial growth factor-A, associated with increased expression and nuclear translocation of tonicity-responsive enhancer binding protein (TonEBP). Knockdown of TonEBP lowered the induction caused by high tonicity. Peritoneal TonEBP expression was higher in Nx + salt mice, while removal of high-salt diet lowered TonEBP level and improved peritoneal transport function. CONCLUSIONS Excessive dietary salt intake caused peritoneal membrane functional and structural changes under uremic status. TonEBP regulated hypertonicity-related inflammatory changes and might play a crucial role in high baseline peritoneal transport.
Collapse
Affiliation(s)
- Ting Sun
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiko Sakata
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Ishii
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Tawada
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Yoshifumi Takei
- Department of Medicinal Biochemistry, Aichi Gakuin University School of Pharmacy, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
34
|
Karstens KF, Kempski J, Giannou AD, Freiwald E, Reeh M, Tachezy M, Izbicki JR, Lohse AW, Gagliani N, Huber S, Pelczar P. Systemic interleukin 10 levels indicate advanced stages while interleukin 17A levels correlate with reduced survival in esophageal adenocarcinomas. PLoS One 2020; 15:e0231833. [PMID: 32298379 PMCID: PMC7162521 DOI: 10.1371/journal.pone.0231833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Reflux promotes esophageal adenocarcinomas (EAC) creating a chronic inflammatory environment. EAC show an increasing incidence in the Western World and median survival rates are still low. The main reasons for poor prognosis despite new multimodal therapies are diagnosis of EACs at an already advanced stage and distant metastases. Hence, we wanted to investigate the presence of systemic inflammatory interleukins (IL) and their impact on patient prognosis. Material and methods Systemic expression levels of pro- and anti-inflammatory markers (IL-2, IL-4, IL-6, IL-10, IL-17A and IL-22) in the sera of 43 EAC patients without neoadjuvant radiochemotherapy were measured by flow cytometric analysis. A correlation to clinicopathological data was performed. Log-rank and Cox regression analysis were used to investigate the impact on patient survival. 43 sera of age and gender matched healthy volunteers were used as controls. Results Increased systemic IL-6 (p = 0.044) and lower IL-17A (p = 0.002) levels were found in EAC patients as opposed to controls. A correlation of IL-10 levels with an increased T stage was found (p = 0.020). Also, systemic IL-10 levels were highly elevated in patients with distant metastasis (p<0.001). However, only systemic IL-17A levels had an influence on patient survival in multivariate analysis. Conclusion Systemic IL-6 levels are increased, while IL-17A levels are reduced in EAC patients compared to healthy controls. In addition, circulating IL-10 might help to identify patients with advanced disease and high IL-17A might indicate a limited prognosis.
Collapse
Affiliation(s)
- Karl-Frederick Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erik Freiwald
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W. Lohse
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Penelope Pelczar
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Bequignon E, Mangin D, Bécaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, Papon JF, Coste A. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med 2020; 18:136. [PMID: 32209102 PMCID: PMC7092549 DOI: 10.1186/s12967-020-02309-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by an alteration in airway epithelial cell functions including barrier function, wound repair mechanisms, mucociliary clearance. The mechanisms leading to epithelial cell dysfunction in nasal polyps (NPs) remain poorly understood. Our hypothesis was that among the inflammatory cytokines involved in NPs, IL-6 could alter epithelial repair mechanisms and mucociliary clearance. The aim of this study was to evaluate the in vitro effects of IL-6 on epithelial repair mechanisms in a wound repair model and on ciliary beating in primary cultures of Human Nasal Epithelial Cells (HNEC). Methods Primary cultures of HNEC taken from 38 patients during surgical procedures for CRSwNP were used in an in vitro model of wound healing. Effects of increasing concentrations of IL-6 (1 ng/mL, 10 ng/mL, and 100 ng/mL) and other ILs (IL-5, IL-9, IL-10) on wound closure kinetics were compared to cultures without IL-modulation. After wound closure, the differentiation process was characterized under basal conditions and after IL supplementation using cytokeratin-14, MUC5AC, and βIV tubulin as immunomarkers of basal, mucus, and ciliated cells, respectively. The ciliated edges of primary cultures were analyzed on IL-6 modulation by digital high-speed video-microscopy to measure: ciliary beating frequency (CBF), ciliary length, relative ciliary density, metachronal wavelength and the ciliary beating efficiency index. Results Our results showed that: (i) IL-6 accelerated airway wound repair in vitro, with a dose–response effect whereas no effect was observed after other ILs-stimulation. After 24 h, 79% of wounded wells with IL6-100 were fully repaired, vs 46% in the IL6-10 group, 28% in the IL6-1 group and 15% in the control group; (ii) specific migration analyses of closed wound at late repair stage (Day 12) showed IL-6 had the highest migration compared with other ILs (iii) The study of the IL-6 effect on ciliary function showed that CBF and metachronal wave increased but without significant modifications of ciliary density, length of cilia and efficiency index. Conclusion The up-regulated epithelial cell proliferation observed in polyps could be induced by IL-6 in the case of prior epithelial damage. IL-6 could be a major cytokine in NP physiopathology.
Collapse
Affiliation(s)
- Emilie Bequignon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France. .,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France. .,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France. .,CNRS ERL 7000, 94010, Créteil, France.
| | - David Mangin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Justine Bécaud
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jennifer Pasquier
- Nice Breast Institute, 06000, Nice, France.,Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christelle Angely
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Mathieu Bottier
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Estelle Escudier
- Inserm U933, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Service de génétique et d'embryologie médicale, AP-HP Hôpital Armand-Trousseau, Paris, France
| | - Daniel Isabey
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Marcel Filoche
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Bruno Louis
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jean-François Papon
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France.,Faculté de Médecine, Université Paris-Sud, 94275, Le Kremlin-Bicêtre, France
| | - André Coste
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| |
Collapse
|
36
|
Takač B, Mihaljević S, Glavaš-Obrovac L, Kibel A, Suver-Stević M, Canecki-Varžić S, Samardžija M, Rajkovac I, Kovač D, Štefanić M. INTERACTIONS AMONG INTERLEUKIN-6, C-REACTIVE PROTEIN AND INTERLEUKIN-6 (-174) G/C POLYMORPHISM IN THE PATHOGENESIS OF CROHN'S DISEASE AND ULCERATIVE COLITIS. Acta Clin Croat 2020; 59:67-80. [PMID: 32724277 PMCID: PMC7382872 DOI: 10.20471/acc.2020.59.01.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel diseases are multifactorial disorders the clinical manifestation of which depends on the interaction among immune response, genetic and environmental factors. There is growing evidence that cytokines and gene polymorphisms have an important role in disease pathogenesis in various populations although molecular mechanism of their signaling and interactions is not fully understood yet. The present study aimed at exploring the effects of interleukin-6, C-reactive protein and interleukin-6 rs1800795 polymorphism on the development of Crohn’s disease, ulcerative colitis and inflammatory bowel diseases overall and at determining differences between inflammatory bowel disease patients and healthy controls. A total of 132 inflammatory bowel disease patients and 71 healthy blood donors were investigated. In order to assess the clinical relevance of interleukin-6 and C-reactive protein serum concentration and interleukin-6 rs1800795 single nucleotide polymorphism in patients with Crohn’s disease and ulcerative colitis, we performed a cross-sectional, case-control study. Quantitative assessment of serum interleukin-6 and C-reactive protein was performed with solid-phase, enzyme-labeled, chemiluminescent sequential immunometric and immunoturbidimetric assay, respectively. A real-time fluorescence resonance energy transfer-based method on a LightCyclerTM PCR 1.2 was used for genotyping of IL-6 rs1800795 polymorphism. Both interleukin-6 and C-reactive protein serum levels were elevated in Crohn’s disease and ulcerative colitis patients. Positive correlations were observed between C-reactive protein and interleukin-6 serum concentration and ulcerative colitis activity index as measured by modified Truelove-Witt’s severity index scale. C-reactive protein serum level was higher in Crohn’s disease patients without intestinal resection than in Crohn’s disease patients with prior intestinal resection. In ulcerative colitis patients, interleukin-6 and C-reactive protein serum levels were statistically significantly higher in CC interleukin-6 genotype in comparison to GG+GC genotype. Analysis of the promoter region of the interleukin-6 rs1800795 gene polymorphism showed no statistically significant difference in allele frequency either between inflammatory bowel disease patients and healthy controls or between the two inflammatory bowel disease phenotypes and healthy controls. Associations presented in this study give a potentially important insight into the role of interleukin-6 and C-reactive protein signaling and interleukin-6 polymorphism in the pathogenesis of Crohn’s disease and ulcerative colitis disease.
Collapse
Affiliation(s)
| | - Silvio Mihaljević
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| | - Ljubica Glavaš-Obrovac
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| | - Aleksandar Kibel
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| | - Mirjana Suver-Stević
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| | - Silvija Canecki-Varžić
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| | - Marko Samardžija
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| | - Ines Rajkovac
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| | - Damir Kovač
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| | - Mario Štefanić
- 1Department of Nuclear Medicine and Radiation Protection, Osijek University Hospital Centre, Osijek, Croatia; 2Department of Internal Medicine, Division of Gastroenterology, Osijek University Hospital Centre, Osijek, Croatia; 3Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia; 4Department of Transfusion Medicine, Osijek University Hospital Centre, Osijek, Croatia; 5Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism Disorders, Osijek University Hospital Centre, Osijek, Croatia; 6Department of Surgery, Division of Vascular Surgery, Osijek University Hospital Centre, Osijek, Croatia; 7Department of Gastroenterology and Hepatology, Dr. Josip Benčević General Hospital, Slavonski Brod, Croatia
| |
Collapse
|
37
|
Epstein Shochet G, Brook E, Bardenstein-Wald B, Shitrit D. TGF-β pathway activation by idiopathic pulmonary fibrosis (IPF) fibroblast derived soluble factors is mediated by IL-6 trans-signaling. Respir Res 2020; 21:56. [PMID: 32070329 PMCID: PMC7029598 DOI: 10.1186/s12931-020-1319-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and ultimately fatal disease characterized by a progressive decline in lung function. Fibrotic diseases, such as IPF, are characterized by uncontrolled activation of fibroblasts. Since the microenvironment is known to affect cell behavior, activated fibroblasts can in turn activate healthy neighboring cells. Thus, we investigated IPF paracrine signaling in human lung fibroblasts (HLFs) derived from patients with IPF. Methods Primary human fibroblast cultures from IPF (IPF-HLF) and control donor (N-HLF) lung tissues were established and their supernatants were collected. These supernatants were then added to N-HLFs for further culture. Protein and RNA were extracted from IPF/ N-HLFs at baseline. Interleukin-6 (IL-6) and TGF-β-related signaling factors (e.g. STAT3, Smad3) were evaluated by western blot and qPCR. IL-6 levels were measured by ELISA. IL-6 signaling was blocked by Tocilizumab (TCZ) (10 ng/ml). Results IPF-HLFs were found to significantly overexpress IL-6 receptor (IL-6R), suppressor of cytokine signaling 3 (SOCS3), phospho-STAT3-Y705 and phospho-Smad3 in comparison to N-HLFs (p < 0.05). In addition, they were found to proliferate faster, secrete more IL-6 and express higher levels of the soluble IL-6R. IPF-HLF increased proliferation was inhibited by TCZ. Moreover, IPF-HLF derived supernatants induced both direct and indirect STAT3 activation that resulted in Smad3 phosphorylation and elevated Gremlin levels in N-HLFs. These effects were also successfully blocked by TCZ. Conclusions IPF-HLF paracrine signaling leads to IL-6R overexpression, which in turn, affects N-HLF survival. The IL-6/STAT3/Smad3 axis facilitates cellular responses that could potentially promote fibrotic disease. This interplay was successfully blocked by TCZ.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Pulmonary Medicine Department, Meir Medical Department, 59 Tchernichovsky St, 44281, Kfar Saba, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Elizabetha Brook
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - David Shitrit
- Pulmonary Medicine Department, Meir Medical Department, 59 Tchernichovsky St, 44281, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Taher Y, Ali I, Al-Ani G, Alwan A. Prognostic values of β2 microglobulin, interleukin-4, and interleukin-6 in patients with different stages of chronic lymphocytic leukemia. IRAQI JOURNAL OF HEMATOLOGY 2020. [DOI: 10.4103/ijh.ijh_4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Chen IM, Johansen AZ, Dehlendorff C, Jensen BV, Bojesen SE, Pfeiffer P, Bjerregaard JK, Nielsen SE, Andersen F, Holländer NH, Yilmaz MK, Rasmussen LS, Johansen JS. Prognostic Value of Combined Detection of Serum IL6, YKL-40, and C-reactive Protein in Patients with Unresectable Pancreatic Cancer. Cancer Epidemiol Biomarkers Prev 2019; 29:176-184. [DOI: 10.1158/1055-9965.epi-19-0672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
|
40
|
Development and Validation of a Reporter-Cell-Line-Based Bioassay for Therapeutic Soluble gp130-Fc. Molecules 2019; 24:molecules24213845. [PMID: 31731431 PMCID: PMC6864625 DOI: 10.3390/molecules24213845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
Soluble glycoprotein 130 kDa (sgp130)-Fc fusion protein, an innovative therapeutic bio-macromolecular drug specifically targeting IL-6 trans-signaling, proved to have good potential for application in the treatment of chronic inflammatory diseases. A simple and quick bioassay for sgp130-Fc was developed in this study. First, a stable reporter cell line was obtained by transfecting CHO-K1 cells with a sis-inducible element (SIE)-driving luciferase reporter gene (CHO/SIE-Luc). Sgp130-Fc could inhibit the expression of luciferase induced by IL-6/sIL-6Rα complex, and the dose–response curve fitted the four-parameter logistic model, with 50% inhibitive concentration (IC50) being about 500 ng/mL and detection range between 40 and 5000 ng/mL. Both the intra-assay and inter-assay coefficient of variation (CV) were below 10.0%, and the accuracy estimates ranged from 94.1% to 106.2%. The assay indicated a good linearity (R² = 0.99) in the range of 50% to 150% of optimized initial concentration. No significant difference was found between the test results of new assay and BAF3/gp130 proliferation assay (unpaired t test, p = 0.4960, n = 6). The dose-response effect and copy number of the luciferase gene was basically unchanged after long-term culture (up to passage 60), demonstrating the stability of CHO/SIE-Luc cells. These results suggested that the new reporter assay was suited to routine potency determination of therapeutic sgp130-Fc.
Collapse
|
41
|
Kaneshiro K, Sakai Y, Suzuki K, Uchida K, Tateishi K, Terashima Y, Kawasaki Y, Shibanuma N, Yoshida K, Hashiramoto A. Interleukin-6 and tumour necrosis factor-α cooperatively promote cell cycle regulators and proliferate rheumatoid arthritis fibroblast-like synovial cells. Scand J Rheumatol 2019; 48:353-361. [DOI: 10.1080/03009742.2019.1602164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- K Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Y Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K Suzuki
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Terashima
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Kawasaki
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, Japan
| | - N Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - K Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - A Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
42
|
Significant body mass increase by oral administration of a cascade of shIL21-MSTN yeast-based DNA vaccine in mice. Biomed Pharmacother 2019; 118:109147. [PMID: 31302418 DOI: 10.1016/j.biopha.2019.109147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Base on the practical of MSTN-specific yeast-based protein vaccine in mice as described previously, this research was designed for developing a better DNA vaccine (a cascade of shIL21-MSTN yeast-based DNA vaccine) than solely MSTN yeast-based DNA vaccine to block the endogenous MSTN in the murine model. We first constructed the target vectors, including CMV-driven MSTN expression vector and a combined shIL21-MSTN vector which containing MSTN expression cassette and shIL21 (short hairpin RNA-IL21) expression cassette. After necessary validation, recombinant yeast vaccines harboring different vectors were well prepared. Subsequently, after 2-month administration, the MSTN-specific immune response was detected with western blots. The commercial ELISA assays indicated that the production of IL21 and IL6 were decreased compared with control groups. More importantly, the MSTN-specific antibody titer was much higher in the shIL21-MSTN group than MSTN group, which was consistent with the western blots result. The most important finding was significant body mass increased after oral administration of these yeast-based DNA vaccines, in which the shIL21-MSTN vaccine is slightly higher than the sole MSTN vaccine in mice. In this study, we confirmed the role of different MSTN-specific yeast-based DNA vaccines on increasing body mass in mice, to provide a good inspiration for livestock breeding through the new type of immunoregulatory method. On the other hand, we also detected the possible modulating role of shIL21 on the dendritic cell-mediated immune function which needs more practical application and deeper exploration.
Collapse
|
43
|
Yu X, Zhang Q, Zhang X, Han Q, Li H, Mao Y, Wang X, Guo H, Irwin DM, Niu G, Tan H. Exosomes from Macrophages Exposed to Apoptotic Breast Cancer Cells Promote Breast Cancer Proliferation and Metastasis. J Cancer 2019; 10:2892-2906. [PMID: 31281466 PMCID: PMC6590039 DOI: 10.7150/jca.31241] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Exosomes have recently become the subject of increasing research interest. Interactions between tumor and host cells via exosomes play crucial roles in the initiation, progression and invasiveness of breast cancer. In our study, we used exosomes isolated from a co-culture model of THP-1-derived macrophages exposed to apoptotic MCF-7 or MDA-MB-231 breast cancer cell line cells to investigate their effects on naïve MCF-7 or MDA-MB-231 cells in vitro and in vivo. This post-chemotherapy tumor microenvironment model allowed us to explore possible mechanisms that explain increased proliferation and metastasis of breast cancer seen in some patients. Our results suggest that while exosomes derived from macrophages normally inhibit proliferation and metastasis of MCF-7 or MDA-MB-231 cells, exposure of macrophages to breast cancer cells that have experienced chemotherapy are modified them to promote these processes. Exosomes from macrophages exposed to apoptotic cancer cells have increased amounts of IL-6 that increases the phosphorylation of STAT3, which likely explains the increased transcription of STAT3 target genes such as CyclinD1, MMP2 and MMP9. These observations suggest that the inhibition of exosome secretion and STAT3 signaling pathway activation might suppress the growth and metastasis of malignant tumors, and provide new targets for therapeutic treatment of malignant tumors after chemotherapy.
Collapse
Affiliation(s)
- Xiuyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Qun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Xuehui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Qing Han
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Hui Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yiqing Mao
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Xi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Hongyan Guo
- Department of Gynaecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing 100082, China
| | - Huanran Tan
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
44
|
Liu J, Li C, Yin P, Guo X, Liu Z. Rs531564 polymorphism in microRNA-214 regulates interleukin-6R expression in anal fissure patients to affect the risk of anal abscess formation. J Cell Biochem 2019; 120:17098-17107. [PMID: 31148212 DOI: 10.1002/jcb.28970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND Anal abscess is an important complication of anal fissure (AF), whereas interleukin-6R (IL-6R) has been implicated in the development of abscess. In this study, we aimed to explore the possible molecular mechanisms underlying the regulatory effects of miRNAs on IL-6R and other inflammatory factors related to the induction of anal abscess in AF. METHODS Bioinformatics analysis, luciferase assay, real-time polymerase chain reaction, and Western blot analysis were performed to identify the possible regulatory relationships between IL-6R and miR-124/miR-125a by comparing the differentiated expression of miR-125a, miR-124, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and IL-4 among different groups of AF patients. RESULTS IL-6R messenger RNA (mRNA) was identified as a target gene of miR-124 because the luciferase activity in cells cotransfected with wild-type IL-6R and miR-124 mimics was significantly reduced. In addition, the expression of IL-6R mRNA and protein was significantly inhibited in the presence of miR-124 or an IL-6R inhibitor, confirming the presence of a negative regulatory relationship between miR-124 and IL-6R. Moreover, miR-124 and inflammatory factors were differentially expressed in AF patients carrying different genotypes of rs531564 polymorphism. CONCLUSIONS miR-124 and inflammatory factors TNF-α, IFN-γ, and IL-4 may be used as indicators of anal abscess development in AF patients. In addition, miR-124 polymorphism rs531564 is involved with the pathogenesis of anal abscess in AF patients, and the presence of rs531564 may increase the incidence of anal abscess via upregulating the expression of IL-6R, TNF-α, IFN-γ, and IL-4.
Collapse
Affiliation(s)
- Jiangang Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Changlu Li
- Department of Anorectal, Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Peiwei Yin
- Department of General Surgery, The Second People's Hospital of Xintai, Xintai, China
| | - Xiuli Guo
- Department of Dermatology, Chinese Medicine Hospital in Qufu, Qufu, Shandong, China
| | - Zhichao Liu
- Departments of Dermatology, Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| |
Collapse
|
45
|
Aloke C, Ibiam UA, Obasi NA, Orji OU, Ezeani NN, Aja PM, Alum EU, Mordi JC. Effect of ethanol and aqueous extracts of seed pod of Copaifera salikounda (Heckel) on complete Freund's adjuvant-induced rheumatoid arthritis in rats. J Food Biochem 2019; 43:e12912. [PMID: 31353723 DOI: 10.1111/jfbc.12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/20/2019] [Accepted: 05/04/2019] [Indexed: 01/14/2023]
Abstract
The antirheumatoid arthritis potential of ethanol and aqueous extracts of seed pod of Copaifera salikounda (SPCS) was evaluated using the chicken collagen/complete Freund's adjuvant-induced arthritic rats model. Adjuvat-induced rats were treated with varied doses of the extracts (400, 600, and 800 mg/kg body weight) and with reference drug, indomethacin for 21 days. Antiarthritic evaluation was done through measurement of body weight, paw size, inflammatory makers, hematological parameters, cytokines, antioxidant enzymes, reduced glutathione, lipid peroxidation as well as histopathological examinations. Treatment with the ethanol and aqueous extracts of SPCS markedly inhibited the paw size and caused weight gain. The extracts considerably modulated the hematological as well as the antioxidant parameters. Likewise, the extract restored the altered lipid peroxidation, pro-inflammatory mediators, and inflammatory factors which further accentuate the implication in adjuvant-induced arthritis. Thus, the ethanol and aqueous extracts of SPCS showed a significant antiarthritic activity that was statistically analogous to that of indomethacin. Practical applications Copaifera salikounda (Heckel) has been used in treatment of different ailments including rheumatoid arthritis in folklore medicine. This is the first reported proof of the antiarthritic potential of the seed pod. Oxidative stress has been implicated in rheumatoid arthritis. Ethanol extract of SPCS has been shown to be predominantly rich in phenols, terpenoids, alkaloids, and flavonoids which are natural antioxidant. The present study has demonstrated that ethanol and aqueous extracts of SPCS can exert antioxidative and antiinflammatory effects, thus strengthening its antiarthritic potentials.
Collapse
Affiliation(s)
- Chinyere Aloke
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Abakaliki, Nigeria
| | - Udu Ama Ibiam
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Nwogo Ajuka Obasi
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Abakaliki, Nigeria
| | - Obasi Uche Orji
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Nkiru Nwamaka Ezeani
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | | |
Collapse
|
46
|
Expansion of different subpopulations of CD26 -/low T cells in allergic and non-allergic asthmatics. Sci Rep 2019; 9:7556. [PMID: 31101830 PMCID: PMC6525268 DOI: 10.1038/s41598-019-43622-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
CD26 displays variable levels between effector (TH17 ≫ TH1 > TH2 > Treg) and naïve/memory (memory > naïve) CD4+ T lymphocytes. Besides, IL-6/IL−6R is associated with TH17-differentiation and asthma severity. Allergic/atopic asthma (AA) is dominated by TH2 responses, while TH17 immunity might either modulate the TH2-dependent inflammation in AA or be an important mechanism boosting non-allergic asthma (NAA). Therefore, in this work we have compared the expression of CD26 and CD126 (IL-6Rα) in lymphocytes from different groups of donors: allergic (AA) and non-allergic (NAA) asthma, rhinitis, and healthy subjects. For this purpose, flow cytometry, haematological/biochemical, and in vitro proliferation assays were performed. Our results show a strong CD26-CD126 correlation and an over-representation of CD26− subsets with a highly-differentiated effector phenotype in AA (CD4+CD26−/low T cells) and NAA (CD4−CD26− γδ-T cells). In addition, we found that circulating levels of CD26 (sCD26) were reduced in both AA and NAA, while loss of CD126 expression on different leukocytes correlated with higher disease severity. Finally, selective inhibition of CD26-mRNA translation led to enhanced T cell proliferation in vitro. These findings support that CD26 down-modulation could play a role in facilitating the expansion of highly-differentiated effector T cell subsets in asthma.
Collapse
|
47
|
O'Neill L, McCormick J, Gao W, Veale DJ, McCarthy GM, Murphy CC, Fearon U, Molloy ES. Interleukin-6 does not upregulate pro-inflammatory cytokine expression in an ex vivo model of giant cell arteritis. Rheumatol Adv Pract 2019; 3:rkz011. [PMID: 31431999 PMCID: PMC6649906 DOI: 10.1093/rap/rkz011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/17/2019] [Indexed: 11/14/2022] Open
Abstract
Objective The aim of this study was to examine the pro-inflammatory effects of IL-6 in ex vivo temporal artery explant cultures. Methods Patients meeting 1990 ACR classification criteria for GCA were prospectively recruited. Temporal artery biopsies were obtained and temporal artery explants cultured ex vivo with IL-6 (10-40 ng/ml) in the presence or absence of its soluble receptor (sIL-6R; 20 ng/ml) for 24 h. Explant supernatants were harvested after 24 h and assayed for IFN-γ, TNF-α, Serum amyloid A, IL-1β, IL-17, IL-8, angiotensin II and VEGF by ELISA. Myofibroblast outgrowths, cytoskeletal rearrangement and wound repair assays were performed. Results IL-6 augmented production of VEGF, but not of any of the other pro-inflammatory mediators assayed. No differences were observed in the explants cultured in the presence or absence of the sIL-6R or between those with a positive (n = 11) or negative (n = 17) temporal artery biopsy. IL-6 did not enhance myofibroblast proliferation or migration. Western blot analysis confirmed signalling activation, with increased expression of pSTAT3 in response to IL-6+sIL-6R. Conclusion IL-6 stimulation of temporal artery explants from patients with GCA neither increased expression of key pro-inflammatory mediators nor influenced myofibroblast proliferation or migration.
Collapse
Affiliation(s)
- Lorraine O'Neill
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Jennifer McCormick
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Wei Gao
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Geraldine M McCarthy
- Mater Misericordiae University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Conor C Murphy
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Royal College of Surgeons, Ireland
| | - Ursula Fearon
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| | - Eamonn S Molloy
- Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin Academic Medical Centre, Royal College of Surgeons, Ireland
| |
Collapse
|
48
|
Moresi V, Adamo S, Berghella L. The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Front Physiol 2019; 10:500. [PMID: 31114509 PMCID: PMC6502894 DOI: 10.3389/fphys.2019.00500] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is a key intracellular mediator of a variety of metabolically relevant hormones and cytokines, including the interleukin-6 (IL-6) family of cytokines. The JAK/STAT pathway transmits extracellular signals to the nucleus, leading to the transcription of genes involved in multiple biological activities. The JAK/STAT pathway has been reported to be required for the homeostasis of different tissues and organs. Indeed, when deregulated, it promotes the initiation and progression of pathological conditions, including cancer, obesity, diabetes, and other metabolic diseases. In skeletal muscle, activation of the JAK/STAT pathway by the IL-6 cytokines accounts for opposite effects: on the one hand, it promotes muscle hypertrophy, by increasing the proliferation of satellite cells; on the other hand, it contributes to muscle wasting. The expression of IL-6 and of key members of the JAK/STAT pathway is regulated at the epigenetic level through histone methylation and histone acetylation mechanisms. Thus, manipulation of the JAK/STAT signaling pathway by specific inhibitors and/or drugs that modulate epigenetics is a promising therapeutic intervention for the treatment of numerous diseases. We focus this review on the JAK/STAT pathway functions in striated muscle pathophysiology and the potential role of IL-6 as an effector of the cross talk between skeletal muscle and other organs.
Collapse
Affiliation(s)
- Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Libera Berghella
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
49
|
MSC.sTRAIL Has Better Efficacy than MSC.FL-TRAIL and in Combination with AKTi Blocks Pro-Metastatic Cytokine Production in Prostate Cancer Cells. Cancers (Basel) 2019; 11:cancers11040568. [PMID: 31010082 PMCID: PMC6521093 DOI: 10.3390/cancers11040568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Cell therapy is a promising new treatment option for cancer. In particular, mesenchymal stem cells (MSCs) have shown potential in delivering therapeutic genes in various tumour models and are now on the verge of being tested in the clinic. A number of therapeutic genes have been examined in this context, including the death ligand TRAIL. For cell therapy, it can be used in its natural form as a full-length and membrane-bound protein (FL-TRAIL) or as an engineered version commonly referred to as soluble TRAIL (sTRAIL). As to which is more therapeutically efficacious, contradicting results have been reported. We discovered that MSCs producing sTRAIL have significantly higher apoptosis-inducing activity than cells expressing FL-TRAIL and found that FL-TRAIL, in contrast to sTRAIL, is not secreted. We also demonstrated that TRAIL does induce the expression of pro-metastatic cytokines in prostate cancer cells, but that this effect could be overcome through combination with an AKT inhibitor. Thus, a combination consisting of small-molecule drugs specifically targeting tumour cells in combination with MSC.sTRAIL, not only provides a way of sensitising cancer cells to TRAIL, but also reduces the issue of side-effect-causing cytokine production. This therapeutic strategy therefore represents a novel targeted treatment option for advanced prostate cancer and other difficult to treat tumours.
Collapse
|
50
|
Elevated plasma interleukin 6 predicts poor response in patients treated with sunitinib for metastatic clear cell renal cell carcinoma. Cancer Treat Res Commun 2019; 19:100127. [PMID: 30913495 DOI: 10.1016/j.ctarc.2019.100127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is the most common type among renal cell carcinomas, and anti-angiogenic treatment is currently first line therapy in metastatic ccRCC (mccRCC). Response rates and duration of response show considerable variation, and adverse events have major influence on patient's quality of life. The need for predictive biomarkers to select those patients most likely to respond to receptor tyrosine kinase inhibitors (rTKI) upfront is urgent. We investigated the predictive value of plasma interleukin-6 (pIL6), interleukin-6 receptor α (pIL6Rα) and interleukin 6 signal transducer (pIL6ST) in mccRCC patients treated with sunitinib. MATERIAL AND METHODS Forty-six patients with metastatic or non-resectable ccRCC treated with sunitinib were included. Full blood samples were collected at baseline before start of sunitinib and after every second cycle of treatment during the study time. pIL6, pIL6R and pIL6ST at baseline and week 12 samples were analysed by ELISA. The predictive potential of the candidate markers was assessed by correlation with response rates (RECIST). In addition, progression free survival (PFS) and overall survival (OS) were analysed. RESULTS Low pIL6 at baseline was significantly associated with improved response to sunitinib (Fisher's exact test, p < 0.01). Furthermore, low pIL6 at baseline was significantly associated with improved PFS (log rank, p = 0.04). In addition, patients with a decrease in concentration of pIL6R between baseline and week 12 showed significantly improved PFS (log rank, p = 0.04) and patients with high pIL6ST at baseline showed significantly improved OS (log rank, p = 0.03). CONCLUSION Low pIL6 at baseline in mccRCC patients treated with sunitinib predicts improved treatment response, and might represent a candidate predictive marker.
Collapse
|