1
|
Vancamp P, Frapin M, Parnet P, Amarger V. Unraveling the Molecular Mechanisms of the Neurodevelopmental Consequences of Fetal Protein Deficiency: Insights From Rodent Models and Public Health Implications. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100339. [PMID: 39040432 PMCID: PMC11262180 DOI: 10.1016/j.bpsgos.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Fetal brain development requires increased maternal protein intake to ensure that offspring reach their optimal cognitive potential in infancy and adulthood. While protein deficiency remains a prevalent issue in developing countries, it is also reemerging in Western societies due to the growing adoption of plant-based diets, some of which are monotonous and may fail to provide sufficient amino acids crucial for the brain's critical developmental phase. Confounding variables in human nutritional research have impeded our understanding of the precise impact of protein deficiency on fetal neurodevelopment, as well as its implications for childhood neurocognitive performance. Moreover, it remains unclear whether such deficiency could predispose to mental health problems in adulthood, mirroring observations in individuals exposed to prenatal famine. In this review, we sought to evaluate mechanistic data derived from rodent models, placing special emphasis on the involvement of neuroendocrine axes, the influence of sex and timing, epigenetic modifications, and cellular metabolism. Despite notable progress, critical knowledge gaps remain, including understanding the long-term reversibility of effects due to fetal protein restriction and the interplay between genetic predisposition and environmental factors. Enhancing our understanding of the precise mechanisms that connect prenatal nutrition to brain development in future research endeavors can be significantly advanced by integrating multiomics approaches and utilizing additional alternative models such as nonhuman primates. Furthermore, it is crucial to investigate potential interventions aimed at alleviating adverse outcomes. Ultimately, this research has profound implications for guiding public health strategies aimed at raising awareness about the crucial role of optimal maternal nutrition in supporting fetal neurodevelopment.
Collapse
Affiliation(s)
- Pieter Vancamp
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Morgane Frapin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patricia Parnet
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Valérie Amarger
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| |
Collapse
|
2
|
Gallagher LT, Bardill J, Sucharov CC, Wright CJ, Karimpour-Fard A, Zarate M, Breckenfelder C, Liechty KW, Derderian SC. Dysregulation of miRNA-mRNA expression in fetal growth restriction in a caloric restricted mouse model. Sci Rep 2024; 14:5579. [PMID: 38448721 PMCID: PMC10918062 DOI: 10.1038/s41598-024-56155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Fetal growth restriction (FGR) is associated with aberrant placentation and accounts for a significant proportion of perinatal deaths. microRNAs have been shown to be dysregulated in FGR. The purpose of this study was to determine microRNA-regulated molecular pathways altered using a caloric restricted mouse model of FGR. Pregnant mice were subjected to a 50% caloric restricted diet beginning at E9. At E18.5, RNA sequencing of placental tissue was performed to identify differences in gene expression between caloric restricted and control placentas. Significant differences in gene expression between caloric restricted and control placentas were observed in 228 of the 1546 (14.7%) microRNAs. Functional analysis of microRNA-mRNA interactions demonstrated enrichment of several biological pathways with oxidative stress, apoptosis, and autophagy pathways upregulated and angiogenesis and signal transduction pathways downregulated. Ingenuity pathway analysis also suggested that ID1 signaling, a pathway integral for trophoblast differentiation, is also dysregulated in caloric restricted placentas. Thus, a maternal caloric restriction mouse model of FGR results in aberrant microRNA-regulated molecular pathways associated with angiogenesis, oxidative stress, signal transduction, apoptosis, and cell differentiation. As several of these pathways are dysregulated in human FGR, our findings suggest that this model may provide an excellent means to study placental microRNA derangements seen in FGR.
Collapse
Affiliation(s)
- Lauren T Gallagher
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - James Bardill
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Miguel Zarate
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Courtney Breckenfelder
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Kenneth W Liechty
- Division of Pediatric Surgery, University of Arizona College of Medicine, Tucson, AZ, 85721, USA
| | - S Christopher Derderian
- Colorado Fetal Care Center, Children's Hospital Colorado, University of Colorado, 13123 E 16th Ave, Aurora, CO, 80045, USA.
- Division of Pediatric Surgery, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Zhang H, Zha X, Zhang B, Zheng Y, Liu X, Elsabagh M, Ma Y, Wang H, Shu G, Wang M. Dietary rumen-protected L-arginine or N-carbamylglutamate enhances placental amino acid transport and suppresses angiogenesis and steroid anabolism in underfed pregnant ewes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:149-158. [PMID: 38023379 PMCID: PMC10679858 DOI: 10.1016/j.aninu.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023]
Abstract
This study aimed to investigate the effects of dietary supplementation of underfed Hu ewes from d 35 to 110 of gestation with either rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) on placental amino acid (AA) transport, angiogenic gene expression, and steroid anabolism. On d 35 of gestation, 32 Hu ewes carrying twin fetuses were randomly divided into four treatment groups, each consisting of eight ewes, and were fed the following diets: A diet providing 100% of NRC's nutrient requirements for pregnant ewes (CON); A diet providing 50% of NRC's nutrient requirements for pregnant ewes (RES); RES diet plus 5 g/d NCG (RES + NCG); or RES diet plus 20 g/d RP-Arg (RES + ARG). On the d 110 of pregnancy, blood samples were taken from the mother, and samples were collected from type A cotyledons (COT; the fetal portions of the placenta). The levels of 17β-estradiol and progesterone in the maternal serum and both the capillary area density (CAD) and capillary surface density (CSD) in type A COT were decreased in response to Arg or NCG supplementation when compared to the RES group. The concentrations of arginine, leucine, putrescine and spermidine in type A COT were higher (P < 0.05) in the RES + ARG or RES + NCG group than in the RES group. The mRNA expression levels of inducible nitric oxide synthase (iNOS) and solute carrier family 15, member 1 (SLC15A1) were increased (P < 0.05) while those of progesterone receptor (PGR) and fibroblast growth factor 2 (FGF2) were decreased in type A COT by supplementation with either NCG or RP-Arg compared to the RES group. The results suggest that providing underfed pregnant ewes from d 35 to 110 of gestation with a diet supplemented with NCG or RP-Arg improves placental AA transport, and reduces the expression of angiogenic growth factor genes and steroid anabolism, leading to better fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guihua Shu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Barroso E, Díaz M, Reguera AC, Peyman M, Balsinde J, Jurado-Aguilar J, Zhang M, Rostami A, Palomer X, Ibáñez L, Vázquez-Carrera M. CHOP upregulation and dysregulation of the mature form of the SNAT2 amino acid transporter in the placentas from small for gestational age newborns. Cell Commun Signal 2023; 21:326. [PMID: 37957724 PMCID: PMC10644500 DOI: 10.1186/s12964-023-01352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The placentas from newborns that are small for gestational age (SGA; birth weight < -2 SD for gestational age) may display multiple pathological characteristics. A key determinant of fetal growth and, therefore, birth weight is placental amino acid transport, which is under the control of the serine/threonine kinase mechanistic target of rapamycin (mTOR). The effects of endoplasmic reticulum (ER) stress on the mTOR pathway and the levels of amino acid transporters are not well established. METHODS Placentas from SGA and appropriate for gestational age (AGA) newborns and the human placental BeWo cell line exposed to the ER stressor tunicamycin were used. RESULTS We detected a significant increase in the levels of C/EBP homologous protein (CHOP) in the placentas from SGA newborns compared with those from AGA newborns, while the levels of other ER stress markers were barely affected. In addition, placental mTOR Complex 1 (mTORC1) activity and the levels of the mature form of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) were also reduced in the SGA group. Interestingly, CHOP has been reported to upregulate growth arrest and DNA damage-inducible protein 34 (GADD34), which in turn suppresses mTORC1 activity. The GADD34 inhibitor guanabenz attenuated the increase in CHOP protein levels and the reduction in mTORC1 activity caused by the ER stressor tunicamycin in the human placental cell line BeWo, but it did not recover mature SNAT2 protein levels, which might be reduced as a result of defective glycosylation. CONCLUSIONS Collectively, these data reveal that GADD34A activity and glycosylation are key factors controlling mTORC1 signaling and mature SNAT2 levels in trophoblasts, respectively, and might contribute to the SGA condition. Video Abstract.
Collapse
Affiliation(s)
- Emma Barroso
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Marta Díaz
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, Barcelona, Esplugues, Spain
| | - Ana Cristina Reguera
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Mona Peyman
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jesús Balsinde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Javier Jurado-Aguilar
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Meijian Zhang
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Adel Rostami
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Xavier Palomer
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Lourdes Ibáñez
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, Barcelona, Esplugues, Spain
| | - Manuel Vázquez-Carrera
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
5
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Guadix P, Corrales I, Vilariño-García T, Rodríguez-Chacón C, Sánchez-Jiménez F, Jiménez-Cortegana C, Dueñas JL, Sánchez-Margalet V, Pérez-Pérez A. Expression of nutrient transporters in placentas affected by gestational diabetes: role of leptin. Front Endocrinol (Lausanne) 2023; 14:1172831. [PMID: 37497352 PMCID: PMC10366688 DOI: 10.3389/fendo.2023.1172831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent pathophysiological state of pregnancy, which in many cases produces fetuses with macrosomia, requiring increased nutrient transport in the placenta. Recent studies by our group have demonstrated that leptin is a key hormone in placental physiology, and its expression is increased in placentas affected by GDM. However, the effect of leptin on placental nutrient transport, such as transport of glucose, amino acids, and lipids, is not fully understood. Thus, we aimed to review literature on the leptin effect involved in placental nutrient transport as well as activated leptin signaling pathways involved in the expression of placental transporters, which may contribute to an increase in placental nutrient transport in human pregnancies complicated by GDM. Leptin appears to be a relevant key hormone that regulates placental transport, and this regulation is altered in pathophysiological conditions such as gestational diabetes. Adaptations in the placental capacity to transport glucose, amino acids, and lipids may underlie both under- or overgrowth of the fetus when maternal nutrient and hormone levels are altered due to changes in maternal nutrition or metabolic disease. Implementing new strategies to modulate placental transport may improve maternal health and prove effective in normalizing fetal growth in cases of intrauterine growth restriction and fetal overgrowth. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Pilar Guadix
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Isabel Corrales
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Vilariño-García
- Clinical Biochemistry Service, Virgen del Rocio University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Carmen Rodríguez-Chacón
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - José L. Dueñas
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
7
|
Elsamadicy EA, Thompson LP. Sex-Selective Increase of IGF-2 Expression in the Hypoxic Guinea Pig Placenta of Growth-Restricted Fetuses. Reprod Sci 2022; 29:3015-3025. [PMID: 35616874 DOI: 10.1007/s43032-022-00979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Chronic hypoxia can cause fetal growth restriction (FGR) through placental dysfunction. Insulin-like growth factors (IGFs), such as IGF-2, play a major role in preservation of placental growth and function. We investigated the effects of chronic hypoxia and sex on protein expression of the IGF-2 pathway in placentas selected from asymmetric-FGR fetuses. Time-mated pregnant guinea pigs were assigned to normoxia (NMX, 21% O2) or hypoxia (HPX, 10.5% O2) during the last 14 days of pregnancy. Placentas were selected from male and female symmetrically grown NMX fetuses (fetal wt between 25th ile-75th ile) and HPX fetuses of asymmetric-FGR (fetal wt < 25th ile and brain:liver wt > 50th ile). Effects of HPX and sex on placenta protein expression of the IGF-2 signaling proteins (IGF-2, PI3K, AKT-P, total AKT, PCNA, a cell proliferation marker) were evaluated by immunoblotting. Effects of HPX and sex on morphometric parameters were analyzed using two-way ANOVA (p < 0.05). HPX reduced (p < 0.005) fetal wt by ~ 35% compared to NMX in both sexes. Expression of IGF-2 was lower (p = 0.029) in NMX female placentas compared to males. Despite lower NMX levels, HPX increased (p < 0.05) expression of IGF-2, AKT-P, relative AKT-P, and PCNA in female placentas only and had no effect on protein expression in male placentas. The female guinea pig placenta exhibits a greater sensitivity than males to HPX in upregulating expression of the IGF-2 axis. In addition, the sex difference in baseline IGF-2 expression suggests a greater capacity for females to increase IGF-2 in response to HPX as a placental adaptation in FGR.
Collapse
Affiliation(s)
- Emad A Elsamadicy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Zhao C, Biondic S, Vandal K, Björklund ÅK, Hagemann-Jensen M, Sommer TM, Canizo J, Clark S, Raymond P, Zenklusen DR, Rivron N, Reik W, Petropoulos S. Single-cell multi-omics of human preimplantation embryos shows susceptibility to glucocorticoids. Genome Res 2022; 32:1627-1641. [PMID: 35948369 PMCID: PMC9528977 DOI: 10.1101/gr.276665.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
The preconceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of assisted reproductive technologies (ART; ∼25%), additives and adjuvants, such as glucocorticoids, are used to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and the ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study, we present a comprehensive single-cell transcriptome, methylome, and small RNA atlas in the day 7 human embryo. We show that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the trophectoderm (TE) lineage, and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sublineages, supported by the presence of extravillous trophoblast markers in the polar sublineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation-DNA methylation and microRNAs (miRNAs)-likely underlies the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Savana Biondic
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Katherine Vandal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden
| | | | - Theresa Maria Sommer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jesica Canizo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Stephen Clark
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Pascal Raymond
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Daniel R Zenklusen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Wellcome Sanger Institute, Cambridge CB10 1RQ, United Kingdom
- Center for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| |
Collapse
|
9
|
Fang Q, Liu J, Chen L, Chen Q, Wang Y, Li Z, Fu W, Liu Y. Taurine supplementation improves hippocampal metabolism in immature rats with intrauterine growth restriction (IUGR) through protecting neurons and reducing gliosis. Metab Brain Dis 2022; 37:2077-2088. [PMID: 35048325 DOI: 10.1007/s11011-021-00896-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Taurine as an essential amino acid in the brain could play an important role in protecting the fetal brain of intrauterine growth restriction (IUGR). The hippocampus with IUGR showed neural metabolic disorder and structure changed that affected memory and learning ability. This study was aimed to identify the effect of taurine supplementation on the metabolism alterations and cellular composition changes of the hippocampus in IUGR immature rats. Metabolite concentrations were determined by magnetic resonance spectroscopy (MRS) in the hippocampus of juvenile rats with IUGR following taurine supplementation with antenatal or postnatal supply. The composition of neural cells in the hippocampus was observed by immunohistochemical staining (IHC) and western blotting (WB). Antenatal taurine supplementation increased the ratios of N-acetylaspartate (NAA) /creatine (Cr) and glutamate (Glu) /Cr of the hippocampus in the IUGR immature rats, but reduced the ratios of choline (Cho) /Cr and myoinositol (mI) /Cr. At the same time, the protein expression of NeuN in the IUGR rats was increased through intrauterine taurine supplementation, and the GFAP expression was reduced. Especially the effect of antenatal taurine was better than postpartum. Furthermore, there existed a positive correlation between the NAA/Cr ratio and the NeuN protein expression (R = 0.496 p < 0.001 IHC; R = 0.568 p < 0.001 WB), the same results existed in the relationship between the mI/Cr ratio and the GFAP protein expression (R = 0.338 p = 0.019 IHC; R = 0.440 p = 0.002 WB). Prenatal taurine supplementation can better improve hippocampal neuronal metabolism by increasing NAA / Cr ratio related to the number of neurons and reducing Cho / Cr ratio related to the number of glial cells.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jing Liu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China.
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun district, Guangzhou, 510515, Guangdong Province, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yan Wang
- Neonatal Intensive Care Unit of Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian Province, China
| | - Wei Fu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China
| | - Ying Liu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
10
|
Brown LD, Palmer C, Teynor L, Boehmer BH, Stremming J, Chang EI, White A, Jones AK, Cilvik SN, Wesolowski SR, Rozance PJ. Fetal Sex Does Not Impact Placental Blood Flow or Placental Amino Acid Transfer in Late Gestation Pregnant Sheep With or Without Placental Insufficiency. Reprod Sci 2022; 29:1776-1789. [PMID: 34611848 PMCID: PMC8980110 DOI: 10.1007/s43032-021-00750-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Pregnant sheep have been used to model complications of human pregnancies including placental insufficiency and intrauterine growth restriction. Some of the hallmarks of placental insufficiency are slower uterine and umbilical blood flow rates, impaired placental transport of oxygen and amino acids, and lower fetal arterial concentrations of anabolic growth factors. An impact of fetal sex on these outcomes has not been identified in either human or sheep pregnancies. This is likely because most studies measuring these outcomes have used small numbers of subjects or animals. We undertook a secondary analysis of previously published data generated by our laboratory in late-gestation (gestational age of 133 ± 0 days gestational age) control sheep (n = 29 male fetuses; n = 26 female fetuses; n = 3 sex not recorded) and sheep exposed to elevated ambient temperatures to cause experimental placental insufficiency (n = 23 male fetuses; n = 17 female fetuses; n = 1 sex not recorded). The primary goal was to determine how fetal sex modifies the effect of the experimental insult on outcomes related to placental blood flow, amino acid and oxygen transport, and fetal hormones. Of the 112 outcomes measured, we only found an interaction between fetal sex and experimental insult for the uterine uptake rates of isoleucine, phenylalanine, and arginine. Additionally, most outcomes measured did not show a difference based on fetal sex when adjusting for the impact of placental insufficiency. Exceptions included fetal norepinephrine and cortisol concentrations, which were higher in female compared to male fetuses. For the parameters measured in the current analysis, the impact of fetal sex was not widespread.
Collapse
Affiliation(s)
- Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Claire Palmer
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Lucas Teynor
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Brit H Boehmer
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Jane Stremming
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Eileen I Chang
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Alicia White
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Amanda K Jones
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Sarah N Cilvik
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13243 East 23rd Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Choi W, Kim J, Ko JW, Choi A, Kwon YH. Effects of maternal branched-chain amino acid and alanine supplementation on growth and biomarkers of protein metabolism in dams fed a low-protein diet and their offspring. Amino Acids 2022; 54:977-988. [PMID: 35353249 DOI: 10.1007/s00726-022-03157-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/13/2022] [Indexed: 11/24/2022]
Abstract
A considerable number of studies have reported that maternal protein restriction may disturb fetal growth and organ development due to a lower availability of amino acids. Leucine, one of branched-chain amino acid (BCAA) promotes protein synthesis through mechanistic target of rapamycin signaling. Here, we investigated the effects of BCAA supplementation in the dams fed a low-protein diet on serum and hepatic biochemical parameters of protein metabolism of dams and their offspring. Female ICR mice were fed a control (20% casein), a low-protein (10% casein), a low-protein with 2% BCAAs or a low-protein with 2% alanine diet for 2 weeks before mating and then throughout pregnancy and lactation. Alanine was used as an amino nitrogen control for the BCAA. Dams and their male offspring were sacrificed at postnatal day 21. There were no changes in body weight and fat mass in low-protein fed dams; however, BCAA supplementation significantly increased fat mass and serum leptin levels. Low-protein diet consumption reduced maternal protein synthesis based on biochemical analysis of serum albumin and hepatic protein levels and immunoblotting of S6 protein, which were increased by BCAA and alanine supplementation. Offspring from dams fed a low-protein diet exhibited lower body and organ weights. Body weight and hepatic protein levels of the offspring were increased by alanine supplementation. However, the decreased serum biochemical parameters, including glucose, triglyceride, total protein and albumin levels in the low-protein offspring group were not changed in response to BCAA or alanine supplementation. A reduced density of the hepatic vessel system in the offspring from dams fed a low-protein diet was restored in the offspring from dams fed either BCAA and alanine-supplemented diet. These results suggest that supplementation of amino nitrogen per se may be responsible for inducing hepatic protein synthesis in the dams fed a low-protein diet and alleviating the distorted growth and liver development of their offspring.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.,Department of Pharmacology, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Je Won Ko
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
12
|
Prenatal Low-Protein Diet Affects Mitochondrial Structure and Function in the Skeletal Muscle of Adult Female Offspring. Nutrients 2022; 14:nu14061158. [PMID: 35334815 PMCID: PMC8954615 DOI: 10.3390/nu14061158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Gestational low-protein (LP) diet leads to glucose intolerance and insulin resistance in adult offspring. We had earlier demonstrated that LP programming affects glucose disposal in females. Mitochondrial health is crucial for normal glucose metabolism in skeletal muscle. In this study, we sought to analyze mitochondrial structure, function, and associated genes in skeletal muscles to explore the molecular mechanism of insulin resistance LP-programmed female offspring. On day four of pregnancy, rats were assigned to a control diet containing 20% protein or an isocaloric 6% protein-containing diet. Standard laboratory diet was given to the dams after delivery until the end of weaning and to pups after weaning. Gestational LP diet led to changes in mitochondrial ultrastructure in the gastrocnemius muscles, including a nine-fold increase in the presence of giant mitochondria along with unevenly formed cristae. Further, functional analysis showed that LP programming caused impaired mitochondrial functions. Although the mitochondrial copy number did not show significant changes, key genes involved in mitochondrial structure and function such as Fis1, Opa1, Mfn2, Nrf1, Nrf2, Pgc1b, Cox4b, Esrra, and Vdac were dysregulated. Our study shows that prenatal LP programming induced disruption in mitochondrial ultrastructure and function in the skeletal muscle of female offspring.
Collapse
|
13
|
Toschi P, Baratta M. Ruminant Placental Adaptation in Early Maternal Undernutrition: An Overview. Front Vet Sci 2021; 8:755034. [PMID: 34746288 PMCID: PMC8565373 DOI: 10.3389/fvets.2021.755034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Correct placental development during early gestation is considered the main determinant of fetal growth in late pregnancy. A reduction in maternal nourishment occurring across the early developmental window has been linked to a wide range of pregnancy disorders affecting placental transport capacity and consequently the fetal nutrient supply line, with long-term implications for offspring health and productivity. In livestock, ruminant species specifically experience maternal undernutrition in extensive systems due to seasonal changes in food availability, with significant economic losses for the farmer in some situations. In this review, we aim to discuss the effects of reduced maternal nutrition during early pregnancy on placental development with a specific focus on ruminant placenta physiology. Different types of placental adaptation strategies were examined, also considering the potential effects on the epigenetic landscape, which is known to undergo extensive reprogramming during early mammalian development. We also discussed the involvement of autophagy as a cellular degradation mechanism that may play a key role in the placental response to nutrient deficiency mediated by mammalian target of rapamycin, named the mTOR intracellular pathway.
Collapse
Affiliation(s)
- Paola Toschi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, Viale delle Scienze, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice. Clin Sci (Lond) 2021; 135:2049-2066. [PMID: 34406367 PMCID: PMC8410983 DOI: 10.1042/cs20210575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.
Collapse
|
15
|
Reduction of In Vivo Placental Amino Acid Transport Precedes the Development of Intrauterine Growth Restriction in the Non-Human Primate. Nutrients 2021; 13:nu13082892. [PMID: 34445051 PMCID: PMC8401823 DOI: 10.3390/nu13082892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with reduced placental amino acid transport (AAT). However, it remains to be established if changes in AAT contribute to restricted fetal growth. We hypothesized that reduced in vivo placental AAT precedes the development of IUGR in baboons with maternal nutrient restriction (MNR). Baboons were fed either a control (ad libitum) or MNR diet (70% of control diet) from gestational day (GD) 30. At GD 140, in vivo transplacental AA transport was measured by infusing nine (13)C- or (2)H-labeled essential amino acids (EAAs) as a bolus into the maternal circulation at cesarean section. A fetal vein-to-maternal artery mole percent excess ratio for each EAA was measured. Microvillous plasma membrane (MVM) system A and system L transport activity were determined. Fetal and placental weights were not significantly different between MNR and control. In vivo, the fetal vein-to-maternal artery mole percent excess ratio was significantly decreased for tryptophan in MNR. MVM system A and system L activity was markedly reduced in MNR. Reduction of in vivo placental amino acid transport precedes fetal growth restriction in the non-human primate, suggesting that reduced placental amino acid transfer may contribute to IUGR.
Collapse
|
16
|
Steinhauser CB, Lambo CA, Askelson K, Burns GW, Behura SK, Spencer TE, Bazer FW, Satterfield MC. Placental Transcriptome Adaptations to Maternal Nutrient Restriction in Sheep. Int J Mol Sci 2021; 22:ijms22147654. [PMID: 34299281 PMCID: PMC8306922 DOI: 10.3390/ijms22147654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Placental development is modified in response to maternal nutrient restriction (NR), resulting in a spectrum of fetal growth rates. Pregnant sheep carrying singleton fetuses and fed either 100% (n = 8) or 50% (NR; n = 28) of their National Research Council (NRC) recommended intake from days 35–135 of pregnancy were used to elucidate placentome transcriptome alterations at both day 70 and day 135. NR fetuses were further designated into upper (NR NonSGA; n = 7) and lower quartiles (NR SGA; n = 7) based on day 135 fetal weight. At day 70 of pregnancy, there were 22 genes dysregulated between NR SGA and 100% NRC placentomes, 27 genes between NR NonSGA and 100% NRC placentomes, and 22 genes between NR SGA and NR NonSGA placentomes. These genes mediated molecular functions such as MHC class II protein binding, signaling receptor binding, and cytokine activity. Gene set enrichment analysis (GSEA) revealed significant overrepresentation of genes for natural-killer-cell-mediated cytotoxicity in NR SGA compared to 100% NRC placentomes, and alterations in nutrient utilization pathways between NR SGA and NR NonSGA placentomes at day 70. Results identify novel factors associated with impaired function in SGA placentomes and potential for placentomes from NR NonSGA pregnancies to adapt to nutritional hardship.
Collapse
Affiliation(s)
- Chelsie B. Steinhauser
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Colleen A. Lambo
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX 77843, USA;
| | - Katharine Askelson
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (S.K.B.); (T.E.S.)
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (S.K.B.); (T.E.S.)
| | - Fuller W. Bazer
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Michael Carey Satterfield
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
- Correspondence: ; Tel.: +1-979-845-6448
| |
Collapse
|
17
|
Fang Q, Liu J, Chen L, Chen Q, Ke J, Zhang J, Liu Y, Fu W. Taurine improves the differentiation of neural stem cells in fetal rats with intrauterine growth restriction via activation of the PKA-CREB-BDNF signaling pathway. Metab Brain Dis 2021; 36:969-981. [PMID: 33608831 DOI: 10.1007/s11011-021-00672-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023]
Abstract
Intrauterine growth restriction (IUGR) affects brain neural stem cell (NSC) differentiation. In the present study, we investigated whether taurine supplementation may improve NSC differentiation in IUGR fetal rats via the protein kinase A-cyclic adenosine monophosphate (cAMP) response element protein-brain derived neurotrophic factor (PKA-CREB-BDNF) signaling pathway. The IUGR fetal rat model was established with a low-protein diet. Fresh subventricular zone (SVZ) tissue from the fetuses on the 14th day of pregnancy was microdissected and dissociated into single-cell suspensions, then was cultured to form neurospheres. The neurospheres were divided into the control group, the IUGR group, the IUGR+taurine (taurine) group, the IUGR+H89 (H89) group and the IUGR+taurine+H89 (taurine+H89) group. The mRNA and protein expression levels of PKA, CREB and BDNF were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB). Tuj-1-positive neurons and GFAP-positive glial cells were detected by immunofluorescence. The total number of proliferating NSCs and the percentage of Tuj-1-positive neurons in the IUGR group were lower than those in the control group, but the percentage of GFAP-positive cells was higher in the IUGR group than in the control group. Taurine supplementation increased the total number of neural cells and the percentage of Tuj-1-positive neurons, and reduced the percentage of GFAP-positive cells among differentiated NSCs after IUGR. H89 reduced the total number and percentage of Tuj-1-positive neurons and increased the percentage of GFAP-positive cells. The mRNA and protein levels of PKA, CREB, and BDNF were lower in the IUGR group. The mRNA and protein expression levels of these factors were increased by taurine supplementation but reduced by the addition of H89. Taurine supplementation increased the ratio of neurons to glial cells and prevented gliosis in the differentiation of NSCs in IUGR fetal rats by activating the PKA-CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Neonatal Intensive Care Unit of Bayi Children's Hospital, Seventh Medical Center of PLA General Hospital affiliated to Southern Medical University, Beijing, 100700, China
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, 100021, China
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jing Liu
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- Department of Neonatal Intensive Care Unit of Bayi Children's Hospital, Seventh Medical Center of PLA General Hospital affiliated to Southern Medical University, Beijing, 100700, China.
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, 100021, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jun Ke
- Department of Emergency, Fujian Provincial Hospital, Provincial Clinical Medical College Affiliated to Fujian Medical University, Fujian Provincial Institute of Emergency Medicine, Fuzhou, 350001, China
| | - Jiuyun Zhang
- Department of Emergency, Fujian Provincial Hospital, Provincial Clinical Medical College Affiliated to Fujian Medical University, Fujian Provincial Institute of Emergency Medicine, Fuzhou, 350001, China
| | - Ying Liu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, 100021, China
| | - Wei Fu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, 100021, China
| |
Collapse
|
18
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
19
|
Castillo-Castrejon M, Yang IV, Davidson EJ, Borengasser SJ, Jambal P, Westcott J, Kemp JF, Garces A, Ali SA, Saleem S, Goldenberg RL, Figueroa L, Hambidge KM, Krebs NF, Powell TL. Preconceptional Lipid-Based Nutrient Supplementation in 2 Low-Resource Countries Results in Distinctly Different IGF-1/mTOR Placental Responses. J Nutr 2021; 151:556-569. [PMID: 33382407 PMCID: PMC7948206 DOI: 10.1093/jn/nxaa354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/27/2020] [Accepted: 10/14/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Preconceptional maternal small-quantity lipid-based nutrient supplementation (SQLNS) improved intrauterine linear growth in low-resource countries as demonstrated by the Women First Preconception Maternal Nutrition Trial (WF). Fetal growth is dependent on nutrient availability and regulated by insulin-like growth factor 1 (IGF-1) through changes in placental transfer capacity, mediated by the mechanistic target of rapamycin (mTOR) pathway. OBJECTIVES Our objective was to evaluate the role of placental mTOR and IGF-1 signaling on fetal growth in women from 2 low-resource countries with high rates of stunting after they received preconceptional SQLNS. METHODS We studied 48 women from preconception through delivery who were from Guatemala and Pakistan and received SQLNS or not, as part of the WF study. Placental samples were obtained at delivery (control, n = 24; SQLNS, n = 24). Placental protein or mRNA expression of eukaryotic translation initiation factor binding protein-1 (4E-BP1), ribosomal protein S6 (rpS6), AMP-activated protein kinase α (AMPKA), IGF-1, insulin-like growth factor receptor (IGF-1R), and pregnancy associated plasma protein (PAPP)-A, and DNA methylation of the IGF1 promoter were determined. Maternal serum IGF-1, insulin-like growth factor binding protein (IGFBP)-3, IGFBP-4, IGFBP-5, PAPP-A, PAPP-A2, and zinc were measured. RESULTS Mean ± SEM maternal prepregnancy BMI differed between participants in Guatemala (26.5 ± 1.3) and Pakistan (19.8 ± 0.7) (P < 0.001). In Pakistani participants, SQLNS increased the placental rpS6(T37/46):rpS6 ratio (1.5-fold) and decreased the AMPKA(T172):AMPKA ratio. Placental IGF1 mRNA expression was positively correlated with birth length and birth weight z-scores. Placental PAPP-A (30-fold) and maternal serum zinc (1.2-fold) increased with SQLNS. In Guatemalan participants SQLNS did not influence placental mTOR signaling. Placental IGF-1R protein expression was positively associated with birth length and birth weight z-scores. SQLNS increased placental PAPP-A (40-fold) and maternal serum IGFBP-4 (1.6-fold). CONCLUSIONS In Pakistani pregnant women with poor nutritional status, preconceptional SQLNS activated placental mTOR and IGF-1 signaling and was associated with improved fetal growth. In contrast, in Guatemalan women SQLNS did not activate placental nutrient-sensing pathways. In populations experiencing childhood stunting, preconceptional SQLNS improves placental function and fetal growth only in the context of poor maternal nutrition. This trial was registered at clinicaltrials.gov as NCT01883193.
Collapse
Affiliation(s)
- Marisol Castillo-Castrejon
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth J Davidson
- Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jamie Westcott
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer F Kemp
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ana Garces
- Maternal and Infant Health Center, Institute of Nutrition of Central America and Panama (INCAP), Guatemala City, Guatemala
| | - Sumera A Ali
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Sarah Saleem
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Robert L Goldenberg
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Lester Figueroa
- Maternal and Infant Health Center, Institute of Nutrition of Central America and Panama (INCAP), Guatemala City, Guatemala
| | - K Michael Hambidge
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nancy F Krebs
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
20
|
Morgan HL, Aljumah A, Rouillon C, Watkins AJ. Paternal low protein diet and the supplementation of methyl-donors impact fetal growth and placental development in mice. Placenta 2020; 103:124-133. [PMID: 33120048 PMCID: PMC7907633 DOI: 10.1016/j.placenta.2020.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
Introduction Paternal low-protein diet can alter sperm methylation status, fetal growth and program offspring ill-health, however its impact on the placenta remains poorly defined. Here we examine the influence paternal low-protein diet has on fetal and placental development and the additional impact of supplementary methyl-donors on fetoplacental physiology. Methods Male C57BL/6J mice were fed a control normal protein diet (NPD; 18% protein), a low-protein diet (LPD; 9% protein) or LPD with methyl-donor supplementation (MD-LPD; choline chloride, betaine, methionine, folic acid, vitamin B12) for a minimum of 8 weeks. Males were mated with 8–11 week old female C57BL/6J mice and fetal and placental tissue collected on embryonic day 17.5. Results Paternal LPD was associated with increased fetal weights compared to NPD and MD-LPD with 22% fetuses being above the 90th centile for fetal weight. However, LPD and MD-LPD placental weights were reduced when compared to NPD. Placentas from LPD fathers demonstrated a reduced junctional zone area and reduced free-fatty acid content. MD-LPD placentas did not mirror these finding, demonstrating an increased chorion area, a reduction in junctional-specific glycogen staining and reduced placental Dnmt3bexpression, none of which were apparent in either NPD or LPD placentas. Discussion A sub-optimal paternal diet can influence fetal growth and placental development, and dietary methyl-donor supplementation alters placental morphology and gene expression differentially to that observed with LPD alone. Understanding how paternal diet and micro-nutrient supplementation influence placental development is crucial for determining connections between paternal well-being and future offspring health. Paternal low protein diet (LPD) increased late gestation fetal weight. Supplementing the LPD with methyl donors (MD-LPD) normalised fetal weight. Placental weight and morphology are altered by both LPD and MD-LPD. Placental metabolite content and gene expression were perturbed by paternal LPD and MD-LPD.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Arwa Aljumah
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Charlène Rouillon
- INRAE, Fish Physiology and Genomics, Bat 16A, Campus de Beaulieu, Rennes, France
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK; Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK(1)
| |
Collapse
|
21
|
McIntyre KR, Vincent KMM, Hayward CE, Li X, Sibley CP, Desforges M, Greenwood SL, Dilworth MR. Human placental uptake of glutamine and glutamate is reduced in fetal growth restriction. Sci Rep 2020; 10:16197. [PMID: 33004923 PMCID: PMC7530652 DOI: 10.1038/s41598-020-72930-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Fetal growth restriction (FGR) is a significant risk factor for stillbirth, neonatal complications and adulthood morbidity. Compared with those of appropriate weight for gestational age (AGA), FGR babies have smaller placentas with reduced activity of amino acid transporter systems A and L, thought to contribute to poor fetal growth. The amino acids glutamine and glutamate are essential for normal placental function and fetal development; whether transport of these is altered in FGR is unknown. We hypothesised that FGR is associated with reduced placental glutamine and glutamate transporter activity and expression, and propose the mammalian target of rapamycin (mTOR) signaling pathway as a candidate mechanism. FGR infants [individualised birth weight ratio (IBR) < 5th centile] had lighter placentas, reduced initial rate uptake of 14C-glutamine and 14C-glutamate (per mg placental protein) but higher expression of key transporter proteins (glutamine: LAT1, LAT2, SNAT5, glutamate: EAAT1) versus AGA [IBR 20th-80th]. In further experiments, in vitro exposure to rapamycin inhibited placental glutamine and glutamate uptake (24 h, uncomplicated pregnancies) indicating a role of mTOR in regulating placental transport of these amino acids. These data support our hypothesis and suggest that abnormal glutamine and glutamate transporter activity is part of the spectrum of placental dysfunction in FGR.
Collapse
Affiliation(s)
- Kirsty R McIntyre
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK. .,School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Wolfson Medical School Building, University Avenue, Glasgow, G12 8QQ, UK.
| | - Kirsty M M Vincent
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Christina E Hayward
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Xiaojia Li
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michelle Desforges
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
22
|
Picking EM, Trubenbach LA, Bazer FW, Sawyer JE, Wickersham TA, Satterfield MC. Technical note: Relationship between placentome location and gene expression in bovine pregnancy. J Anim Sci 2020; 98:5844073. [PMID: 32452520 DOI: 10.1093/jas/skaa176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 11/12/2022] Open
Abstract
A novel, non-terminal surgical procedure to remove a single placentome from the pregnant ewe for gene expression and histological analyses was recently developed in our laboratory. This technique allows for evaluation of nutritional insults on placental development at more than one stage of gestation using a single animal. Early attempts to develop a similar technique in cattle were met with complications due to inaccessibility of the gravid uterine horn because of its location and mass. One alternative is to collect a placentome from the contralateral uterine horn; however, the question remains as to whether gene expression varies among placentomes based on location relative to the fetus. Pregnant heifers were maintained on forage during early gestation and later moved into pens with a Calan gate system (American Calan, Northwood, NH). On gestational day (GD) 158, five heifers were assigned to receive a hay-based diet formulated to meet 100% of NRC requirements, and five heifers were fed 70% of NRC requirements until necropsy on GD244. At necropsy, a single representative placentome was selected for analysis from the antimesometrial side: (1) of the gravid uterine horn central to the amnion, (2) over the allantois immediately adjacent to the amnion, (3) in the tip of the gravid uterine horn, and (4) in the tip of the contralateral uterine horn. Mean placentome weight was greater (P < 0.05) for locations central to the amnion and allantois compared to locations within the tips of the ipsilateral and contralateral horns, respectively. Gene expression for angiogenic factors (FGF2, ODC1, VEGFA, and FLT1), nutrient transporters (SLC7A1 and SLC2A1), and factors associated with hormone action (ESR1, IGF1, IGFBP3, CSH1, and PAG1) were unaffected (P > 0.05) by dietary treatment or location of the placentome. Results indicate that location of the placentome in relation to the fetus does not impact gene expression, enhancing the efficacy of nonterminal methodologies for sampling gene expression in placentomes.
Collapse
Affiliation(s)
| | - Levi A Trubenbach
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Jason E Sawyer
- Department of Animal Science, Texas A&M University, College Station, TX.,King Ranch® Institute for Ranch Management, Texas A&M University, Kingsville, TX
| | | | | |
Collapse
|
23
|
Torreggiani M, Fois A, D’Alessandro C, Colucci M, Orozco Guillén AO, Cupisti A, Piccoli GB. Of Mice and Men: The Effect of Maternal Protein Restriction on Offspring's Kidney Health. Are Studies on Rodents Applicable to Chronic Kidney Disease Patients? A Narrative Review. Nutrients 2020; 12:E1614. [PMID: 32486266 PMCID: PMC7352514 DOI: 10.3390/nu12061614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the almost 30 years that have passed since the postulation of the "Developmental Origins of Health and Disease" theory, it has been clearly demonstrated that a mother's dietary habits during pregnancy have potential consequences for her offspring that go far beyond in utero development. Protein malnutrition during pregnancy, for instance, can cause severe alterations ranging from intrauterine growth retardation to organ damage and increased susceptibility to hypertension, diabetes mellitus, cardiovascular diseases and chronic kidney disease (CKD) later in life both in experimental animals and humans. Conversely, a balanced mild protein restriction in patients affected by CKD has been shown to mitigate the biochemical derangements associated with kidney disease and even slow its progression. The first reports on the management of pregnant CKD women with a moderately protein-restricted plant-based diet appeared in the literature a few years ago. Today, this approach is still being debated, as is the optimal source of protein during gestation in CKD. The aim of this report is to critically review the available literature on the topic, focusing on the similarities and differences between animal and clinical studies.
Collapse
Affiliation(s)
- Massimo Torreggiani
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
| | - Antioco Fois
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
| | - Claudia D’Alessandro
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.D.); (A.C.)
| | - Marco Colucci
- Unit of Nephrology and Dialysis, ICS Maugeri S.p.A. SB, Via S. Maugeri 10, 27100 Pavia, Italy;
| | | | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.D.); (A.C.)
| | - Giorgina Barbara Piccoli
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, 10100 Torino, Italy
| |
Collapse
|
24
|
Xu J, Wang J, Cao Y, Jia X, Huang Y, Cai M, Lu C, Zhu H. Downregulation of Placental Amino Acid Transporter Expression and mTORC1 Signaling Activity Contributes to Fetal Growth Retardation in Diabetic Rats. Int J Mol Sci 2020; 21:ijms21051849. [PMID: 32156054 PMCID: PMC7084659 DOI: 10.3390/ijms21051849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 11/25/2022] Open
Abstract
Alterations in placental transport may contribute to abnormal fetal intrauterine growth in pregnancies complicated by diabetes, but it is not clear whether the placental amino acid transport system is altered in diabetic pregnancies. We therefore studied the changes in the expressions of placental amino acid transporters in a rat model of diabetes induced by streptozotocin, and tested the effects of hyperglycemia on trophoblast amino acid transporter in vitro. Our results showed that the expressions for key isoforms of system L amino acid transporters were significantly reduced in the placentas of streptozotocin-induced diabetic pregnant rats, which was associated with the decreased birthweight in the rats. A decreased placental efficiency and decreased placental mammalian target of rapamycin (mTOR) complex 1 (mTORC1) activity were also found in the rat model. In addition, hyperglycemia in vitro could inhibit amino acid transporter expression and mTORC1 activity in human trophoblast. Inhibition of mTORC1 activity led to reduced amino acid transporter expression in placental trophoblast. We concluded that reduced placental mTORC1 activity during pregnancy resulted in decreased placental amino acid transporter expression and, subsequently, contributed to fetal intrauterine growth restriction in pregnancies complicated with diabetes.
Collapse
Affiliation(s)
- Jie Xu
- Department of Physiology, Harbin Medical University, Harbin 150081, China; (J.X.); (J.W.); (Y.C.); (X.J.); (Y.H.); (M.C.)
| | - Jiao Wang
- Department of Physiology, Harbin Medical University, Harbin 150081, China; (J.X.); (J.W.); (Y.C.); (X.J.); (Y.H.); (M.C.)
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin 150081, China; (J.X.); (J.W.); (Y.C.); (X.J.); (Y.H.); (M.C.)
| | - Xiaotong Jia
- Department of Physiology, Harbin Medical University, Harbin 150081, China; (J.X.); (J.W.); (Y.C.); (X.J.); (Y.H.); (M.C.)
| | - Yujia Huang
- Department of Physiology, Harbin Medical University, Harbin 150081, China; (J.X.); (J.W.); (Y.C.); (X.J.); (Y.H.); (M.C.)
| | - Minghui Cai
- Department of Physiology, Harbin Medical University, Harbin 150081, China; (J.X.); (J.W.); (Y.C.); (X.J.); (Y.H.); (M.C.)
| | - Chunmei Lu
- Department of Physiology, Harbin Medical University, Harbin 150081, China; (J.X.); (J.W.); (Y.C.); (X.J.); (Y.H.); (M.C.)
- Correspondence: (C.L.); (H.Z.); Tel./Fax: +86-451-8667-4538 (C.L. & H.Z.)
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin 150081, China; (J.X.); (J.W.); (Y.C.); (X.J.); (Y.H.); (M.C.)
- Laboratory of Medical Genetics, Harbin Medical University, and The Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Chinese Ministry of Education, Harbin 150081, China
- Correspondence: (C.L.); (H.Z.); Tel./Fax: +86-451-8667-4538 (C.L. & H.Z.)
| |
Collapse
|
25
|
Chassen S, Jansson T. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165373. [PMID: 30684642 PMCID: PMC6650384 DOI: 10.1016/j.bbadis.2018.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023]
Abstract
The most common cause of intrauterine growth restriction (IUGR) in the developed world is placental insufficiency, a concept often used synonymously with reduced utero-placental and umbilical blood flows. However, placental insufficiency and IUGR are associated with complex, coordinated and highly regulated changes in placental signaling and nutrient transport including inhibition of insulin and mTOR signaling and down-regulation of specific amino acid transporters, Na+/K+-ATPase, the Na+/H+-exchanger, folate and lactate transporters. In contrast, placental glucose transport capacity is unaltered and Ca2+-ATPase activity and the expression of proteins involved in placental lipid transport are increased in IUGR. These findings are not entirely consistent with the traditional view that the placenta is dysfunctional in IUGR, but rather suggest that the placenta adapts to reduce fetal growth in response to an inability of the mother to allocate resources to the fetus. This new model has implications for the understanding of the mechanisms underpinning IUGR and for the development of intervention strategies.
Collapse
Affiliation(s)
- Stephanie Chassen
- Department of Pediatrics, Division of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado, Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
26
|
Denisova EI, Kozhevnikova VV, Bazhan NM, Makarova EN. Sex-specific effects of leptin administration to pregnant mice on the placentae and the metabolic phenotypes of offspring. FEBS Open Bio 2019; 10:96-106. [PMID: 31703240 PMCID: PMC6943234 DOI: 10.1002/2211-5463.12757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity during pregnancy has been shown to increase the risk of metabolic diseases in the offspring. However, the factors within the maternal milieu which affect offspring phenotypes and the underlying mechanisms remain unknown. The adipocyte hormone leptin plays a key role in regulating energy homeostasis and is known to participate in sex‐specific developmental programming. To examine the action of leptin on fetal growth, placental gene expression and postnatal offspring metabolism, we injected C57BL mice with leptin or saline on gestational day 12 and then measured body weights (BWs) of offspring fed on a standard or obesogenic diet, as well as mRNA expression levels of insulin‐like growth factors and glucose and amino acid transporters. Male and female offspring born to leptin‐treated mothers exhibited growth retardation before and a growth surge after weaning. Mature male offspring, but not female offspring, exhibited increased BWs on a standard diet. Leptin administration prevented the development of hyperglycaemia in the obese offspring of both sexes. The placentas of the male and female foetuses differed in size and gene expression, and leptin injection decreased the fetal weights of both sexes, the placental weights of the male foetuses and placental gene expression of the GLUT1 glucose transporter in female foetuses. The data suggest that mid‐pregnancy is an ontogenetic window for the sex‐specific programming effects of leptin, and these effects may be exerted via fetal sex‐specific placental responses to leptin administration.
Collapse
Affiliation(s)
- Elena I Denisova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeria V Kozhevnikova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda M Bazhan
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Physiology, Novosibirsk State University, Novosibirsk, Russia
| | - Elena N Makarova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
27
|
Rutherford JN, Victoria A deMartelly, Ragsdale HB, Avila JL, Lee NR, Kuzawa CW. Global population variation in placental size and structure: Evidence from Cebu, Philippines. Placenta 2019; 85:40-48. [PMID: 31445348 PMCID: PMC6742541 DOI: 10.1016/j.placenta.2019.08.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Placental morphology influences the intrauterine environment and fetal growth, which help set life-course health trajectories across generations. Little is known about placental characteristics in populations with chronic nutritional insufficiency where birth weights tend to be lower, and how these relationships between birth and placental weights vary across populations. METHODS We collected weights and stereologically-determined villous mass and surface area of 21 placentas from offspring of women enrolled in a birth cohort study in metropolitan Cebu, Philippines, a low-income population. We identified 15 samples from other global populations ranging from low to high income that had similar data to ours to assess patterns of variation between birth and placental weights and microscopic characteristics. We ranked the population samples in order for each characteristic. RESULTS Mean birth weight in Cebu was 3162 ± 80 g (ranked 9/16) and placental weight was 454 ± 32 g (ranked 12/16). Birth:placental weight ratio was 7.0 (ranked 3/16). Average villous surface area for Cebu placentas was 6.5 m2 (ranked 9/12); Birth weight:villous surface area was 0.048 g/m2 (ranked 4/12). DISCUSSION Placentas from Cebu produced heavier neonates per units of placental weight and villous surface area than most other populations, despite lower villous surface areas and less complex surface-to-volume topography. This range of placental efficiency spurs questions about the mechanisms by which placental morphology optimizes efficiency in different environmental contexts during gestation. Placental variation both within and across populations is likely due to many intersecting environmental, metabolic, and (epi)genetic factors that will require additional research to clarify.
Collapse
Affiliation(s)
- Julienne N Rutherford
- Department of Women, Children, and Family Health, Department of Anthropology, University of Illinois at Chicago, Chicago, IL, USA.
| | | | - Haley B Ragsdale
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Josephine L Avila
- USC- Office of Population Studies Foundation, University of San Carlos, Cebu, Philippines
| | - Nanette R Lee
- USC- Office of Population Studies Foundation, University of San Carlos, Cebu, Philippines
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
28
|
McIntyre KR, Hayward CE, Sibley CP, Greenwood SL, Dilworth MR. Evidence of adaptation of maternofetal transport of glutamine relative to placental size in normal mice, and in those with fetal growth restriction. J Physiol 2019; 597:4975-4990. [PMID: 31400764 PMCID: PMC6790568 DOI: 10.1113/jp278226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Key points Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid‐pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR.
Abstract Fetal growth restriction (FGR), a major risk factor for stillbirth, and neonatal and adulthood morbidity, is associated with reduced placental size and decreased placental nutrient transport. In mice, a small, normal placenta increases its nutrient transport, thus compensating for its reduced size and maintaining normal fetal growth. Whether this adaptation occurs for glutamine and glutamate, two key amino acids for placental metabolism and fetal growth, is unknown. Additionally, an assessment of placental transport of glutamine and glutamate between FGR and normal pregnancy is currently lacking. We thus tested the hypothesis that the transport of glutamine and glutamate would be increased (per gram of tissue) in a small normal placenta [C57BL6/J (wild‐type, WT) mice], but that this adaptation fails in the small dysfunctional placenta in FGR [insulin‐like growth factor 2 knockout (P0) mouse model of FGR]. In WT mice, comparing the lightest versus heaviest placenta in a litter, unidirectional maternofetal clearance (Kmf) of 14C‐glutamine and 14C‐glutamate (glutamineKmf and glutamateKmf) was significantly higher at embryonic day (E) 18.5, in line with increased expression of LAT1, a glutamine transporter protein. In P0 mice, glutamineKmf and glutamateKmf were higher (P0 versus wild‐type littermates, WTL) at E15.5. At E18.5, glutamineKmf remained elevated whereas glutamateKmf was similar between groups. In summary, we provide evidence that glutamineKmf and glutamateKmf adapt according to placental size in WT mice. The placenta of the growth‐restricted P0 fetus also elevates transport capacity to compensate for size at E15.5, but this adaptation is insufficient at E18.5; this may contribute to decreased fetal growth. Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid‐pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR.
Collapse
Affiliation(s)
- Kirsty R McIntyre
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christina E Hayward
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
29
|
Liu H, Wang Y, Liu J, Fu W. Proteomics analysis of fetal growth restriction and taurine‑treated fetal growth restriction rat brain tissue by 2D DIGE and MALDI‑TOF/TOF MS analysis. Int J Mol Med 2019; 44:207-217. [PMID: 31115483 PMCID: PMC6559329 DOI: 10.3892/ijmm.2019.4182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Fetal growth restriction (FGR) is caused by placental insufficiency and can lead to short and long‑term neurodevelopmental delays. Taurine, one of the most abundant amino acids in the brain, is critical for the normal growth and development of the nervous system; however, the mechanistic role of taurine in neural growth and development remains unknown. The present study investigated the role of taurine in FGR. Specifically, we explored the proteomic profiles of fetal rats at 6 h postpartum by two‑dimensional difference gel electrophoresis combined with matrix assisted laser desorption ionization‑time‑of‑flight (TOF)/TOF tandem mass spectrometry; the findings were verified via reverse transcription‑quantitative polymerase chain reaction. A total of 31 differentially expressed protein spots were selected. Among these, 31 were matched, including dihydropyrimidinase‑related protein 2 and , CRK and peroxiredoxin 2. Functional analysis using the Gene Ontology database and Ingenuity Pathway Analysis demonstrated that the differentially expressed proteins were mainly associated with neuronal differentiation, 'metabolic process', 'biological regulation' and developmental processes. The present study identified several proteins that were differentially expressed in rats with FGR in the presence or absence of taurine administration. The results of the present study suggest a potential role for taurine in the treatment and prevention of FGR.
Collapse
Affiliation(s)
- Haifeng Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Department of Neonatology, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000
- Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of The Chinese PLA, Beijing 100700
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| | - Yan Wang
- NICU of Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Jing Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of The Chinese PLA, Beijing 100700
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
- Correspondence to: Dr Jing Liu, The Second School of Clinical Medicine, Southern Medical University, 1023-1063 South Shatai Road, Baiyun, Guangzhou, Guangdong 510515, P.R. China, E-mail:
| | - Wei Fu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| |
Collapse
|
30
|
López-Tello J, Pérez-García V, Khaira J, Kusinski LC, Cooper WN, Andreani A, Grant I, Fernández de Liger E, Lam BY, Hemberger M, Sandovici I, Constancia M, Sferruzzi-Perri AN. Fetal and trophoblast PI3K p110α have distinct roles in regulating resource supply to the growing fetus in mice. eLife 2019; 8:45282. [PMID: 31241463 PMCID: PMC6634971 DOI: 10.7554/elife.45282] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Studies suggest that placental nutrient supply adapts according to fetal demands. However, signaling events underlying placental adaptations remain unknown. Here we demonstrate that phosphoinositide 3-kinase p110α in the fetus and the trophoblast interplay to regulate placental nutrient supply and fetal growth. Complete loss of fetal p110α caused embryonic death, whilst heterozygous loss resulted in fetal growth restriction and impaired placental formation and nutrient transport. Loss of trophoblast p110α resulted in viable fetuses, abnormal placental development and a failure of the placenta to transport sufficient nutrients to match fetal demands for growth. Using RNA-seq we identified genes downstream of p110α in the trophoblast that are important in adapting placental phenotype. Using CRISPR/Cas9 we showed loss of p110α differentially affects gene expression in trophoblast and embryonic stem cells. Our findings reveal important, but distinct roles for p110α in the different compartments of the conceptus, which control fetal resource acquisition and growth.
Collapse
Affiliation(s)
- Jorge López-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Vicente Pérez-García
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Jaspreet Khaira
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Laura C Kusinski
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, The Rosie Hospital, Cambridge, United Kingdom
| | - Wendy N Cooper
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, The Rosie Hospital, Cambridge, United Kingdom
| | - Adam Andreani
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Imogen Grant
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Edurne Fernández de Liger
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Brian Yh Lam
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, The Rosie Hospital, Cambridge, United Kingdom
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ionel Sandovici
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, The Rosie Hospital, Cambridge, United Kingdom
| | - Miguel Constancia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, The Rosie Hospital, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Mangwiro YTM, Cuffe JSM, Mahizir D, Anevska K, Gravina S, Romano T, Moritz KM, Briffa JF, Wlodek ME. Exercise initiated during pregnancy in rats born growth restricted alters placental mTOR and nutrient transporter expression. J Physiol 2019; 597:1905-1918. [PMID: 30734290 DOI: 10.1113/jp277227] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Fetal growth is dependent on effective placental nutrient transportation, which is regulated by mammalian target of rapamycin (mTOR) complex 1 modulation of nutrient transporter expression. These transporters are dysregulated in pregnancies affected by uteroplacental insufficiency and maternal obesity. Nutrient transporters and mTOR were altered in placentae of mothers born growth restricted compared to normal birth weight dams, with maternal diet- and fetal sex-specific responses. Exercise initiated during pregnancy downregulated mTOR protein expression, despite an increase in mTOR activation in male associated placentae, and reduced nutrient transporter gene abundance, which was also dependent on maternal diet and fetal sex. Limited changes were characterized with exercise initiated before and continued throughout pregnancy in nutrient transporter and mTOR expression. Maternal exercise during pregnancy differentially regulated mTOR and nutrient transporters in a diet- and sex-specific manner, which likely aimed to improve late gestational placental growth and neonatal survival. ABSTRACT Adequate transplacental nutrient delivery is essential for fetoplacental development. Intrauterine growth restriction and maternal obesity independently alter placental nutrient transporter expression. Although exercise is beneficial for maternal health, limited studies have characterized how the timing of exercise initiation influences placental nutrient transport. Therefore, this study investigated the impact of maternal exercise on placental mechanistic target of rapamycin (mTOR) and nutrient transporter expression in growth restricted mothers and whether these outcomes were dependent on maternal diet or fetal sex. Uteroplacental insufficiency or sham surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a chow or high-fat diet from weaning and at 16 weeks were randomly allocated to an exercise protocol: sedentary, exercised prior to and during pregnancy, or exercised during pregnancy only. Females were mated with normal males (20 weeks) and F2 placentae collected at E20. Exercise during pregnancy only, reduced mTOR protein expression in all groups and increased mTOR activation in male associated placentae. Exercise during pregnancy only, decreased the expression of amino acid transporters in a diet- and sex-specific manner. Maternal growth restriction altered mTOR and system A amino acid transporter expression in a sex- and diet-specific manner. These data highlight that maternal exercise initiated during pregnancy alters placental mTOR expression, which may directly regulate amino acid transporter expression, to a greater extent than exercise initiated prior to and continued during pregnancy, in a diet- and fetal sex-dependent manner. These findings highlight that the timing of exercise initiation is important for optimal placental function.
Collapse
Affiliation(s)
- Yeukai T M Mangwiro
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3083, Australia.,Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Dayana Mahizir
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3083, Australia.,Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sogand Gravina
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia.,Child Health Research Centre, University of Queensland, South Brisbane, Queensland, 4101, Australia
| | - Jessica F Briffa
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
32
|
Seitz J, Morales-Prieto DM, Favaro RR, Schneider H, Markert UR. Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne) 2019; 10:98. [PMID: 30930847 PMCID: PMC6405475 DOI: 10.3389/fendo.2019.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Malaria in pregnancy still constitutes a particular medical challenge in tropical and subtropical regions. Of the five Plasmodium species that are pathogenic to humans, infection with Plasmodium falciparum leads to fulminant progression of the disease with massive impact on pregnancy. Severe anemia of the mother, miscarriage, stillbirth, preterm delivery and intrauterine growth restriction (IUGR) with reduced birth weight are frequent complications that lead to more than 10,000 maternal and 200,000 perinatal deaths annually in sub-Saharan Africa alone. P. falciparum can adhere to the placenta via the expression of the surface antigen VAR2CSA, which leads to sequestration of infected erythrocytes in the intervillous space. This process induces a placental inflammation with involvement of immune cells and humoral factors. Especially, monocytes get activated and change the release of soluble mediators, including a variety of cytokines. This proinflammatory environment contributes to disorders of angiogenesis, blood flow, autophagy, and nutrient transport in the placenta and erythropoiesis. Collectively, they impair placental functions and, consequently, fetal growth. The discovery that women in endemic regions develop a certain immunity against VAR2CSA-expressing parasites with increasing number of pregnancies has redefined the understanding of malaria in pregnancy and offers strategies for the development of vaccines. The following review gives an overview of molecular processes in P. falciparum infection in pregnancy which may be involved in the development of IUGR.
Collapse
Affiliation(s)
- Johanna Seitz
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | - Rodolfo R. Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Henning Schneider
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Udo Rudolf Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
33
|
Hart B, Morgan E, Alejandro EU. Nutrient sensor signaling pathways and cellular stress in fetal growth restriction. J Mol Endocrinol 2019; 62:R155-R165. [PMID: 30400060 PMCID: PMC6443503 DOI: 10.1530/jme-18-0059] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
Fetal growth restriction is one of the most common obstetrical complications resulting in significant perinatal morbidity and mortality. The most frequent etiology of human singleton fetal growth restriction is placental insufficiency, which occurs secondary to reduced utero-placental perfusion, abnormal placentation, impaired trophoblast invasion and spiral artery remodeling, resulting in altered nutrient and oxygen transport. Two nutrient-sensing proteins involved in placental development and glucose and amino acid transport are mechanistic target of rapamycin (mTOR) and O-linked N-acetylglucosamine transferase (OGT), which are both regulated by availability of oxygen. Impairment in either of these pathways is associated with fetal growth restriction and accompanied by cellular stress in the forms of hypoxia, oxidative and endoplasmic reticulum (ER) stress, metabolic dysfunction and nutrient starvation in the placenta. Recent evidence has emerged regarding the potential impact of nutrient sensors on fetal stress response, which occurs in a sexual dysmorphic manner, indicating a potential element of genetic gender susceptibility to fetal growth restriction. In this mini review, we focus on the known role of mTOR and OGT in placental development, nutrient regulation and response to cellular stress in human fetal growth restriction with supporting evidence from rodent models.
Collapse
Affiliation(s)
- Bethany Hart
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth Morgan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
34
|
Schmidt M, Rauh M, Schmid MC, Huebner H, Ruebner M, Wachtveitl R, Cordasic N, Rascher W, Menendez-Castro C, Hartner A, Fahlbusch FB. Influence of Low Protein Diet-Induced Fetal Growth Restriction on the Neuroplacental Corticosterone Axis in the Rat. Front Endocrinol (Lausanne) 2019; 10:124. [PMID: 30915031 PMCID: PMC6421269 DOI: 10.3389/fendo.2019.00124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/11/2019] [Indexed: 01/21/2023] Open
Abstract
Objectives: Placental steroid metabolism is linked to the fetal hypothalamus-pituitary-adrenal axis. Intrauterine growth restriction (IUGR) might alter this cross-talk and lead to maternal stress, in turn contributing to the pathogenesis of anxiety-related disorders of the offspring, which might be mediated by fetal overexposure to, or a reduced local enzymatic protection against maternal glucocorticoids. So far, direct evidence of altered levels of circulating/local glucocorticoids is scarce. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) allows quantitative endocrine assessment of blood and tissue. Using a rat model of maternal protein restriction (low protein [LP] vs. normal protein [NP]) to induce IUGR, we analyzed fetal and maternal steroid levels via LC-MS/MS along with the local expression of 11beta-hydroxysteroid-dehydrogenase (Hsd11b). Methods: Pregnant Wistar dams were fed a low protein (8%, LP; IUGR) or an isocaloric normal protein diet (17%, NP; controls). At E18.5, the expression of Hsd11b1 and 2 was determined by RT-PCR in fetal placenta and brain. Steroid profiling of maternal and fetal whole blood, fetal brain, and placenta was performed via LC-MS/MS. Results: In animals with LP-induced reduced body (p < 0.001) and placental weights (p < 0.05) we did not observe any difference in the expressional Hsd11b1/2-ratio in brain or placenta. Moreover, LP diet did not alter corticosterone (Cort) or 11-dehydrocorticosterone (DH-Cort) levels in dams, while fetal whole blood levels of Cort were significantly lower in the LP group (p < 0.001) and concomitantly in LP brain (p = 0.003) and LP placenta (p = 0.002). Maternal and fetal progesterone levels (whole blood and tissue) were not influenced by LP diet. Conclusion: Various rat models of intrauterine stress show profound alterations in placental Hsd11b2 gatekeeper function and fetal overexposure to corticosterone. In contrast, LP diet in our model induced IUGR without altering maternal steroid levels or placental enzymatic glucocorticoid barrier function. In fact, IUGR offspring showed significantly reduced levels of circulating and local corticosterone. Thus, our LP model might not represent a genuine model of intrauterine stress. Hypothetically, the observed changes might reflect a fetal attempt to maintain anabolic conditions in the light of protein restriction to sustain regular brain development. This may contribute to fetal origins of later neurodevelopmental sequelae.
Collapse
Affiliation(s)
- Marius Schmidt
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias C. Schmid
- Institute of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Hanna Huebner
- Department of Gynaecology and Obstetrics/Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynaecology and Obstetrics/Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Wachtveitl
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Nada Cordasic
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Rascher
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian B. Fahlbusch
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- *Correspondence: Fabian B. Fahlbusch
| |
Collapse
|
35
|
Abstract
Currently, there is a steady increase in the incidence of diabetes mellitus (DM) in the global population, which causes an increase in maternal and perinatal mortality. Children born to mothers with DM have a high risk of not only congenital abnormalities, but also cardiovascular and metabolic disorders in later life. Fetal growth is determined by both the metabolic and nutritional status of the mother, and the placental nutrient transfer capacity. Pregnancy complicated by DM is associated not only with overgrowth of the fetus, but also with the excess deposition of metabolites in the placenta. The role of disorders of carbohydrate metabolism, obesity and other factors in relation to the function of the placenta and fetal growth remains not fully understood. This review provides an overview of the literature on the placental complex status in pregnancy complicated by obesity, as well as pre-gestational and gestational types of DM. The focus is on three key substrates in these conditions: glucose, lipids, and amino acids, and their influence on placental metabolic activity and on the fetus. Improved knowledge of morphology and understanding of changes in the function of the placenta that lead to abnormal growth of the fetus will allow for the development of new therapeutic approaches to improve the outcomes of pregnancy, maternal and child health.
Collapse
|
36
|
Cleal JK, Lofthouse EM, Sengers BG, Lewis RM. A systems perspective on placental amino acid transport. J Physiol 2018; 596:5511-5522. [PMID: 29984402 PMCID: PMC6265537 DOI: 10.1113/jp274883] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
Placental amino acid transfer is a complex process that is essential for fetal development. Impaired amino acid transfer causes fetal growth restriction, which may have lifelong health consequences. Transepithelial transfer of amino acids across the placental syncytiotrophoblast requires accumulative, exchange and facilitated transporters on the apical and basal membranes to work in concert. However, transporters alone do not determine amino acid transfer and factors that affect substrate availability, such as blood flow and metabolism, may also become rate-limiting for transfer. In order to determine the rate-limiting processes, it is necessary to take a systems approach which recognises the interdependence of these processes. New technologies have the potential to deliver targeted interventions to the placenta and help poorly growing fetuses. While many factors are necessary for amino acid transfer, novel therapies need to target the rate-limiting factors if they are going to be effective. This review will outline the factors which determine amino acid transfer and describe how they become interdependent. It will also highlight the role of computational modelling as a tool to understand this process.
Collapse
Affiliation(s)
- Jane K. Cleal
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Emma M. Lofthouse
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Bram G. Sengers
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
- Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
| | - Rohan M. Lewis
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
37
|
Wai SG, Rozance PJ, Wesolowski SR, Hay WW, Brown LD. Prolonged amino acid infusion into intrauterine growth-restricted fetal sheep increases leucine oxidation rates. Am J Physiol Endocrinol Metab 2018; 315:E1143-E1153. [PMID: 30205012 PMCID: PMC6336957 DOI: 10.1152/ajpendo.00128.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overcoming impaired growth in an intrauterine growth-restricted (IUGR) fetus has potential to improve neonatal morbidity, long-term growth, and metabolic health outcomes. The extent to which fetal anabolic capacity persists as the IUGR condition progresses is not known. We subjected fetal sheep to chronic placental insufficiency and tested whether prolonged amino acid infusion would increase protein accretion in these IUGR fetuses. IUGR fetal sheep were infused for 10 days with either mixed amino acids providing ~2 g·kg-1·day-1 (IUGR-AA) or saline (IUGR-Sal) during late gestation. At the end of the infusion, fetal plasma leucine, isoleucine, lysine, methionine, and arginine concentrations were higher in the IUGR-AA than IUGR-Sal group ( P < 0.05). Fetal plasma glucose, oxygen, insulin, IGF-1, cortisol, and norepinephrine concentrations were similar between IUGR groups, but glucagon concentrations were fourfold higher in the IUGR-AA group ( P < 0.05). Net umbilical amino acid uptake rate did not differ between IUGR groups; thus the total amino acid delivery rate (net umbilical amino acid uptake + infusion rate) was higher in the IUGR-AA than IUGR-Sal group (30 ± 4 vs. 19 ± 1 μmol·kg-1·min-1, P < 0.05). Net umbilical glucose, lactate, and oxygen uptake rates were similar between IUGR groups. Fetal leucine oxidation rate, measured using a leucine tracer, was higher in the IUGR-AA than IUGR-Sal group (2.5 ± 0.3 vs. 1.7 ± 0.3 μmol·kg-1·min-1, P < 0.05). Fetal protein accretion rate was not statistically different between the IUGR groups (1.6 ± 0.4 and 0.8 ± 0.3 μmol·kg-1·min-1 in IUGR-AA and IUGR-Sal, respectively) due to variability in response to amino acids. Prolonged amino acid infusion into IUGR fetal sheep increased leucine oxidation rates with variable anabolic response.
Collapse
Affiliation(s)
- Sandra G Wai
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
38
|
Gross M, Romi H, Gilimovich Y, Drori E, Pinhasov A. Placental glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 recruitment indicates impact of prenatal adversity upon postnatal development in mice. Stress 2018; 21:474-483. [PMID: 29648494 DOI: 10.1080/10253890.2018.1460660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prenatal stress may increase concentrations of maternal glucocorticoids, which restrict fetal growth, with variable impact upon postnatal development. Among key regulators of stress hormone effects are the glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase-2 (11βHSD2), the enzyme that inactivates glucocorticoid. This study utilized mice selectively bred for social dominance (Dom) or submissiveness (Sub), respectively exhibiting resilience or sensitivity to stress, to test whether stress-induced alterations in placental GR and 11βHSD2 protein expression may mediate divergent effects of prenatal adversity upon postnatal development. Pregnant Dom and Sub dams underwent prenatal restraint stress (PRS) for 45 min on gestational days (GD) 15-17. PRS induced a similar spike in serum corticosterone concentrations of dams from each strain on GD15 (p < .001, n = 8), and impaired fetal growth (p < .01, n = 5 litters), although Dom placentae were larger than Sub placentae (p < .01). Among placentae from Dom dams, PRS elevated protein contents of both GR (p < .05, n = 5 litters) and 11βHSD2 (p < .01) on GD19. In contrast, GR contents were reduced among placentae from PRS-exposed Sub mice (p < .01), without changes in 11βHSD2 content. Correspondingly, Dom PRS pup growth recovered by PND14, yet Sub PRS pups remained underweight into adolescence (p < .0001, n = 40 pups). Thus, prenatal stress more strongly increased placental GR and 11βHSD2 levels among Dom mice than in Subs. Increased GR may improve placental function and up-regulate 11βHSD2 expression, protecting fetuses from effects of prenatal stress upon postnatal development. Placental recruitment of GR and 11βHSD2 are potential markers of stress-induced developmental disorders, in accordance with maternal resilience or sensitivity to stress.
Collapse
Affiliation(s)
- Moshe Gross
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Hava Romi
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Elyashiv Drori
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, Israel
- Agriculture and Oenology Research Department, Eastern R&D center, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
39
|
Excess Hydrocortisone Hampers Placental Nutrient Uptake Disrupting Cellular Metabolism. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5106174. [PMID: 30402483 PMCID: PMC6198558 DOI: 10.1155/2018/5106174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022]
Abstract
Low birth weight increases neonatal morbidity and mortality, and surviving infants have increased risk of metabolic and cardiovascular disturbances later in life, as well as other neurological, psychiatric, and immune complications. A gestational excess of glucocorticoids (GCs) is a well-known cause for fetal growth retardation, but the biological basis for this association remains elusive. Placental growth is closely related to fetal growth. The placenta is the main regulator of nutrient transport to the fetus, resulting from the difference between placental nutrient uptake and the placenta's own metabolism. The aim of this study was to analyze how excess hydrocortisone affects placental glucose and lipid metabolism. Human placenta explants from term physiological pregnancies were cultured for 18 hours under different hydrocortisone concentrations (2.75, 5.5, and 55 mM; 1, 2, and 20 mg/ml). Placental glucose and lipid uptake and the metabolic partitioning of fatty acids were quantified by isotopic techniques, and expression of specific glucose transporter GLUT1 was quantified by western blot. Cell viability was assessed by MTT, immunohistochemistry and caspase activity. We found that excess hydrocortisone impairs glucose uptake and lipoprotein lipase (LPL) activity, coincident with a GC-dose dependent inhibition of fatty acid oxidation and esterification. None of the experimental conditions showed an increased cell death. In conclusion, our results show that GC overexposure exerts a dysfunctional effect on lipid transport and metabolism and glucose uptake in human placental explants. These findings could well be directly related to a reduced placental growth and possibly to a reduced supply of nutrients to the fetus and the consequent fetal growth retardation and metabolic programming.
Collapse
|
40
|
Kumagai A, Itakura A, Koya D, Kanasaki K. AMP-Activated Protein (AMPK) in Pathophysiology of Pregnancy Complications. Int J Mol Sci 2018; 19:ijms19103076. [PMID: 30304773 PMCID: PMC6212814 DOI: 10.3390/ijms19103076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Although the global maternal mortality ratio has been consistently reduced over time, in 2015, there were still 303,000 maternal deaths throughout the world, of which 99% occurred in developing countries. Understanding pathophysiology of pregnancy complications contributes to the proper prenatal care for the reduction of prenatal, perinatal and neonatal mortality and morbidity ratio. In this review, we focus on AMP-activated protein kinase (AMPK) as a regulator of pregnancy complications. AMPK is a serine/threonine kinase that is conserved within eukaryotes. It regulates the cellular and whole-body energy homeostasis under stress condition. The functions of AMPK are diverse, and the dysregulation of AMPK is known to correlate with many disorders such as cardiovascular disease, diabetes, inflammatory disease, and cancer. During pregnancy, AMPK is necessary for the proper placental differentiation, nutrient transportation, maternal and fetal energy homeostasis, and protection of the fetal membrane. Activators of AMPK such as 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), resveratrol, and metformin restores pregnancy complications such as gestational diabetes mellitus (GDM), preeclampsia, intrauterine growth restriction, and preterm birth preclinically. We also discuss on the relationship between catechol-O-methyltransferase (COMT), an enzyme that metabolizes catechol, and AMPK during pregnancy. It is known that metformin cannot activate AMPK in COMT deficient mice, and that 2-methoxyestradiol (2-ME), a metabolite of COMT, recovers the AMPK activity, suggesting that COMT is a regulator of AMPK. These reports suggest the therapeutic use of AMPK activators for various pregnancy complications, however, careful analysis is required for the safe use of AMPK activators since AMPK activation could cause fetal malformation.
Collapse
Affiliation(s)
- Asako Kumagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Department of Obstetrics and Gynecology, Juntendo University, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| |
Collapse
|
41
|
Kemp MW, Jobe AH, Usuda H, Nathanielsz PW, Li C, Kuo A, Huber HF, Clarke GD, Saito M, Newnham JP, Stock SJ. Efficacy and safety of antenatal steroids. Am J Physiol Regul Integr Comp Physiol 2018; 315:R825-R839. [PMID: 29641233 DOI: 10.1152/ajpregu.00193.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antenatal steroids (ANS) are among the most important and widely utilized interventions to improve outcomes for preterm infants. A significant body of evidence demonstrates improved outcomes in preterm infants (24-34 wk) delivered between 1 and 7 days after the administration of a single course of ANS. Moreover, ANS have the advantage of being widely available, low cost, and easily administered via maternal intramuscular injection. The use of ANS to mature the fetal lung is, however, not without contention. Their use in pregnancy is not FDA approved, and treatment doses and regimens remain largely unoptimized. Their mode of use varies considerably between countries, and there are lingering concerns regarding the safety of exposing the fetus to high doses of exogenous steroids. A significant proportion of women deliver outside the 1- to 7-day therapeutic window after ANS treatment, and this delay may be associated with an increased risk of adverse outcomes for both mother and baby. Today, animal-based studies are one means by which key questions of dosing and safety relating to ANS may be resolved, allowing for further refinement(s) of this important therapy. Complementary approaches using nonhuman primates, sheep, and rodents have provided invaluable advances to our understanding of how exogenous steroid exposure impacts fetal development. Focusing on these three major model groups, this review highlights the role of three key animal models (sheep, nonhuman primates, rodents) in the development of antenatal steroid therapy, and provides an up-to-date synthesis of current efforts to refine this therapy in an era of personalised medicine.
Collapse
Affiliation(s)
- Matthew W Kemp
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre , Cincinnati, Ohio
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | | | - Cun Li
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
| | - Anderson Kuo
- Department of Radiology, University of Texas Health Science Center San Antonio , San Antonio, Texas
| | - Hillary F Huber
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center San Antonio , San Antonio, Texas
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Tohoku University Hospital, Sendai, Miyagi , Japan
| | - John P Newnham
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
| | - Sarah J Stock
- Division of Obstetrics and Gynaecology, University of Western Australia , Perth , Australia
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Mohan R, Baumann D, Alejandro EU. Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. Am J Physiol Regul Integr Comp Physiol 2018; 315:R867-R878. [PMID: 30110175 DOI: 10.1152/ajpregu.00072.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of obesity and type 2 (T2D) diabetes is a major health concern in the United States and around the world. T2D is a complex disease characterized by pancreatic β-cell failure in association with obesity and insulin resistance in peripheral tissues. Although several genes associated with T2D have been identified, it is speculated that genetic variants account for only <10% of the risk for this disease. A strong body of data from both human epidemiological and animal studies shows that fetal nutrient factors in utero confer significant susceptibility to T2D. Numerous studies done in animals have shown that suboptimal maternal environment or placental insufficiency causes intrauterine growth restriction (IUGR) in the fetus, a critical factor known to predispose offspring to obesity and T2D, in part by causing permanent consequences in total functional β-cell mass. This review will focus on the potential contribution of the placenta in fetal programming of obesity and TD and its likely impact on pancreatic β-cell development and growth.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Emilyn Uy Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
43
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
44
|
Grandvuillemin I, Buffat C, Boubred F, Lamy E, Fromonot J, Charpiot P, Simoncini S, Sabatier F, Dignat-George F, Peyter AC, Simeoni U, Yzydorczyk C. Arginase upregulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2018; 315:R509-R520. [PMID: 29741931 DOI: 10.1152/ajpregu.00354.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the l-arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LPD, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-wk-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, endothelial NO synthase (eNOS) protein content, arginase activity, and superoxide anion production. SBP was not different at 5 wk but significantly increased in 8-wk-old offspring of maternal LPD (LP) versus CTRL offspring. In 5-wk-old LP versus CTRL males, endothelium-dependent vasorelaxation was significantly impaired but restored by preincubation with l-arginine or the arginase inhibitor S-(2-boronoethyl)-l-cysteine; NO production was significantly reduced but restored by l-arginine pretreatment; total eNOS protein, dimer-to-monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced but normalized by pretreatment with the NO synthase inhibitor Nω-nitro-l-arginine. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase upregulation and eNOS uncoupling, which precedes the development of HTN.
Collapse
Affiliation(s)
- Isabelle Grandvuillemin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France.,Department of Neonatology, Assistance Publique Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) La Conception, Marseille, France
| | - Christophe Buffat
- Unité de Recherche sur les Maladies Infectieuses Tropicales, Emergentes, Laboratory of Biochimical and Molecular Biology, Centre National de la Recherche Scientifique (CNRS), APHM, CHU la Conception, Aix Marseille University, Marseille, France
| | - Farid Boubred
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France.,Department of Neonatology, Assistance Publique Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) La Conception, Marseille, France
| | - Edouard Lamy
- CNRS, Inst Movement Sci (ISM); Service Central de la Qualité et de l'Information Pharmaceutiques, APHM, Aix-Marseille University, Marseille, France
| | - Julien Fromonot
- UMR MD2 and Institute of Biological Research French Defense Ministry (IRBA), Aix-Marseille University, Marseille, France
| | - Philippe Charpiot
- CNRS, Inst Movement Sci (ISM); Service Central de la Qualité et de l'Information Pharmaceutiques, APHM, Aix-Marseille University, Marseille, France
| | - Stephanie Simoncini
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France
| | - Florence Sabatier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France
| | - Françoise Dignat-George
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France
| | - Anne-Christine Peyter
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Umberto Simeoni
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Lamm KYB, Johnson ML, Baker Phillips J, Muntifering MB, James JM, Jones HN, Redline RW, Rokas A, Muglia LJ. Inverted formin 2 regulates intracellular trafficking, placentation, and pregnancy outcome. eLife 2018; 7. [PMID: 29309034 PMCID: PMC5758111 DOI: 10.7554/elife.31150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
Healthy pregnancy depends on proper placentation-including proliferation, differentiation, and invasion of trophoblast cells-which, if impaired, causes placental ischemia resulting in intrauterine growth restriction and preeclampsia. Mechanisms regulating trophoblast invasion, however, are unknown. We report that reduction of Inverted formin 2 (INF2) alters intracellular trafficking and significantly impairs invasion in a model of human extravillous trophoblasts. Furthermore, global loss of Inf2 in mice recapitulates maternal and fetal phenotypes of placental insufficiency. Inf2-/- dams have reduced spiral artery numbers and late gestational hypertension with resolution following delivery. Inf2-/- fetuses are growth restricted and demonstrate changes in umbilical artery Doppler consistent with poor placental perfusion and fetal distress. Loss of Inf2 increases fetal vascular density in the placenta and dysregulates trophoblast expression of angiogenic factors. Our data support a critical regulatory role for INF2 in trophoblast invasion-a necessary process for placentation-representing a possible future target for improving placentation and fetal outcomes.
Collapse
Affiliation(s)
- Katherine Young Bezold Lamm
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States.,Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Maddison L Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Julie Baker Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Michael B Muntifering
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeanne M James
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Helen N Jones
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Raymond W Redline
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Louis J Muglia
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
46
|
Gao H, Ho E, Balakrishnan M, Yechoor V, Yallampalli C. Decreased insulin secretion in pregnant rats fed a low protein diet. Biol Reprod 2017; 97:627-635. [PMID: 29025046 PMCID: PMC9630396 DOI: 10.1093/biolre/iox100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 12/07/2023] Open
Abstract
Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring.
Collapse
Affiliation(s)
- Haijun Gao
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Eric Ho
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Meena Balakrishnan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Vijay Yechoor
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
47
|
Han A, Won SB, Kwon YH. Different Effects of Maternal Low-Isoflavone Soy Protein and Genistein Consumption on Hepatic Lipid Metabolism of 21-Day-Old Male Rat Offspring. Nutrients 2017; 9:nu9091039. [PMID: 28930193 PMCID: PMC5622799 DOI: 10.3390/nu9091039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022] Open
Abstract
Amino acid composition and isoflavone are alleged contributors to the beneficial effects of soy protein isolate (SPI) on lipid metabolism. Therefore, we investigated the contributing component(s) of SPI in a maternal diet to the regulation of lipid metabolism in offspring. We also determined serum parameters in dams to investigate specific maternal cues that might be responsible for this regulation. Female rats were fed either a casein (CAS), a low-isoflavone SPI, or a casein plus genistein (GEN, 250 mg/kg) diet for two weeks before mating, as well as during pregnancy and lactation. Male offspring (CAS, SPI and GEN groups) were studied 21 days after birth. The SPI group had lower serum triglyceride levels than the other groups. Serum cholesterol was reduced in both the SPI and GEN groups compared with the CAS group. Expressions of target genes of peroxisome proliferator-activated receptor α were altered in the SPI group. Serum aromatic amino acid levels in dams were associated with serum triglyceride in offspring. In conclusion, the maternal consumption of a low-isoflavone SPI diet or a casein diet containing genistein has different effects on the lipid metabolism of their offspring; however, more profound effects were observed in the SPI group. Therefore, the altered lipid metabolism of offspring may be attributed to amino acid composition in maternal dietary protein sources.
Collapse
Affiliation(s)
- Anna Han
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea.
| | - Sae Bom Won
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
48
|
Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol 2017; 595:5057-5093. [PMID: 28337745 DOI: 10.1113/jp273330] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype, which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ionel Sandovici
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Miguel Constancia
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, Robinson Way, Cambridge, CB2 0SW, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
49
|
Baker BC, Mackie FL, Lean SC, Greenwood SL, Heazell AEP, Forbes K, Jones RL. Placental dysfunction is associated with altered microRNA expression in pregnant women with low folate status. Mol Nutr Food Res 2017; 61. [PMID: 28105727 PMCID: PMC5573923 DOI: 10.1002/mnfr.201600646] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/27/2016] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
SCOPE Low maternal folate status during pregnancy increases the risk of delivering small for gestational age (SGA) infants, but the mechanistic link between maternal folate status, SGA, and placental dysfunction is unknown. microRNAs (miRNAs) are altered in pregnancy pathologies and by folate in other systems. We hypothesized that low maternal folate status causes placental dysfunction, mediated by altered miRNA expression. METHODS AND RESULTS A prospective observational study recruited pregnant adolescents and assessed third trimester folate status and placental function. miRNA array, QPCR, and bioinformatics identified placental miRNAs and target genes. Low maternal folate status is associated with higher incidence of SGA infants (28% versus 13%, p < 0.05) and placental dysfunction, including elevated trophoblast proliferation and apoptosis (p < 0.001), reduced amino acid transport (p < 0.01), and altered placental hormones (pregnancy-associated plasma protein A, progesterone, and human placental lactogen). miR-222-3p, miR-141-3p, and miR-34b-5p were upregulated by low folate status (p < 0.05). Bioinformatics predicted a gene network regulating cell turnover. Quantitative PCR demonstrated that key genes in this network (zinc finger E-box binding homeobox 2, v-myc myelocytomatosis viral oncogene homolog (avian), and cyclin-dependent kinase 6) were reduced (p < 0.05) in placentas with low maternal folate status. CONCLUSION This study supports that placental dysfunction contributes to impaired fetal growth in women with low folate status and suggests altered placental expression of folate-sensitive miRNAs and target genes as a mechanistic link.
Collapse
Affiliation(s)
- Bernadette C Baker
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | - Fiona L Mackie
- Centre of Women's and Newborn's Health & Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Samantha C Lean
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | | | - Karen Forbes
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Che L, Yang Z, Xu M, Xu S, Che L, Lin Y, Fang Z, Feng B, Li J, Chen D, Wu D. Maternal nutrition modulates fetal development by inducing placental efficiency changes in gilts. BMC Genomics 2017; 18:213. [PMID: 28245787 PMCID: PMC5331709 DOI: 10.1186/s12864-017-3601-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 02/22/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Intra-uterine growth restriction (IUGR) and fetal overgrowth increase risks to postnatal health. Maternal nutrition is the major intrauterine environmental factor that alters fetal weight. However, the mechanisms underlying the effects of maternal nutrition on fetal development are not entirely clear. We developed a pig model, and using isobaric tags for relative and absolute quantification (iTRAQ), we investigated alterations in the placental proteome of gilts on a normal-energy-intake (Con) and high-energy-intake (HE) diet. RESULTS In the Con group, heavy and light fetuses were found at the tubal and cervical ends of the uterus respectively at 90 d of gestation. Moreover, the heavy fetuses had a higher glucose concentration than the light fetuses. However, a higher uniformity was noted in the HE group. Placental promoters between these two positions indicated that 78 and 50 differentially expressed proteins were detected in the Con and HE groups respectively. In the Con group, these proteins were involved in lipid metabolism (HADHA, AACS, CAD), nutrient transport (GLUT, SLC27A1), and energy metabolism (NDUFV1, NDUFV2, ATP5C1). However, in the HE group they mainly participated in transcriptional and translational regulation, and intracellular vesicular transport. CONCLUSIONS Our findings revealed that maternal nutrition may alter birth weight mainly through the modulation of placental lipid and energy metabolism, which also provides a possible mechanism to explain the higher uniformity of fetal weight in gilts fed a HE diet.
Collapse
Affiliation(s)
- Long Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - ZhenGuo Yang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - MengMeng Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - ShengYu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - LianQiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - ZhengFeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - DaiWen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|