1
|
Dasari MR, Roche KE, Jansen D, Anderson J, Alberts SC, Tung J, Gilbert JA, Blekhman R, Mukherjee S, Archie EA. Social and environmental predictors of gut microbiome age in wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605707. [PMID: 39131274 PMCID: PMC11312535 DOI: 10.1101/2024.08.02.605707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting "microbiome clock" predicts host chronological age. Deviations from the clock's predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual's "microbiome age" does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
Collapse
Affiliation(s)
- Mauna R. Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- California Academy of Sciences, San Francisco, CA, USA
| | - Kimberly E. Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jordan Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Jack A. Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke University, Durham, NC, USA
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig Germany
- Max Planck Institute for Mathematics in the Natural Sciences, Leipzig, Germany
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
Lopes MM, Clouard C, Vincent A, Thomas F, Hérault F, Louveau I, Resmond R, Jammes H, Merlot E. Immune transcriptomic profile in adult female pigs: dominance status has more influence than environmental enrichment. BMC Genomics 2024; 25:1211. [PMID: 39695383 DOI: 10.1186/s12864-024-11116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Assessing farm animals' welfare is crucial, yet practical physiological tools are still lacking. In this study, we tested whether the peripheral blood mononuclear cell (PBMC) transcriptome shows variations in association with sows' welfare. To do this, we compared animals whose welfare states were assumed to differ due to their lives in more or less enriched environments and to their different dominance statuses. Sows were housed in a conventional (C, n = 36) or enriched (E, n = 35) environments from gestation day 0 (G0) until three weeks before farrowing (G105), after which they were transferred to individual farrowing crates. From G99 to G103, behavioral analyses were conducted, and sows' dominance status was evaluated. A subset of 28 multiparous sows (C, n = 14 and E, n = 14) was selected for the collection of saliva on G35 and G98 and hair on G98 for cortisol measurement, and of blood samples for PBMC transcriptome analysis on G98 and on lactation day 12 (L12). RESULTS Both environmental enrichment (EE) and dominance status influenced cortisol and variables related to social and exploratory behavior, indicating an influence on sows' welfare. In the transcriptomic analysis, among the 12,260 genes submitted to differential analysis on G98, EE impacted 31 genes, while dominance status impacted 449 genes. Compared with subordinate sows (SUB), dominant (DOM) sows exhibited an upregulation of genes related to inflammatory process and plasma cell function, and downregulation of genes related to B-cell activation. In groups of sows, dominance status is partly related to sows' parity; therefore, we compared the effect of dominance with that of parity. Some common genes emerged when comparing high-parity (HP) vs. low-parity (LP) sows (542 differentially expressed genes (DEGs), including 180 in common with dominance-related genes), indicating that some effects of dominance on the transcriptome during gestation were in fact more due to age or reproductive cycles than to dominance itself. EE and dominance effects appeared relatively short-term, as DEG numbers decreased on L12 (four DEGs for E vs. C, 25 for DOM vs. SUB). CONCLUSIONS Dominance status exerted a more pronounced influence on sows' PBMC transcriptome than did environmental enrichment. In particular, dominance status modulated genes associated with B cells and plasma cell functions. Some of the genes identified in this study could be tested in the future as potential molecular markers of well-being.
Collapse
Affiliation(s)
- Mariana Mescouto Lopes
- PEGASE, INRAE, Institut Agro, Saint-Gilles, 35590, France.
- PEGASE, INRAE, Institut Agro, 16 Le Clos, Saint-Gilles, 35590, France.
| | | | - Annie Vincent
- PEGASE, INRAE, Institut Agro, Saint-Gilles, 35590, France
| | | | | | | | - Rémi Resmond
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, 35653, France
| | - Hélène Jammes
- Université Paris-Saclay, AP-HP, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Elodie Merlot
- PEGASE, INRAE, Institut Agro, Saint-Gilles, 35590, France
| |
Collapse
|
3
|
Lee S, Rutishauser U, Gothard KM. Social status as a latent variable in the amygdala of observers of social interactions. Neuron 2024; 112:3867-3876.e3. [PMID: 39389051 DOI: 10.1016/j.neuron.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Successful integration into a hierarchical social group requires knowledge of the status of each individual and of the rules that govern social interactions within the group. In species that lack morphological indicators of status, social status can be inferred by observing the signals exchanged between individuals. We simulated social interactions between macaques by juxtaposing videos of aggressive and appeasing displays, where two individuals appeared in each other's line of sight and their displays were timed to suggest the reciprocation of dominant and subordinate signals. Viewers of these videos successfully inferred the social status of the interacting characters. Dominant individuals attracted more social attention from viewers even when they were not engaged in social displays. Neurons in the viewers' amygdala signaled the status of both the attended (fixated) and the unattended individuals, suggesting that in third-party observers of social interactions, the amygdala jointly signals the status of interacting parties.
Collapse
Affiliation(s)
- SeungHyun Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katalin M Gothard
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
4
|
Chiche L, Truchetet ME, Cornec D, Immediato Daien C. [Between the normal and the pathological: The concept of pre-disease applied to systemic autoimmune rheumatic diseases]. Rev Med Interne 2024:S0248-8663(24)01282-7. [PMID: 39592283 DOI: 10.1016/j.revmed.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
The incidence of systemic autoimmune diseases is constantly rising. They are chronic diseases requiring prolonged treatment, with considerable psychosocial impact. While attention to the promising results obtained with CAR-T cells in refractory patients is justified, it seems important not to overlook the opportunities for prevention based on the identification of a pre-disease state. After clarifying the various stages that make up this pre-disease state, using the prototypical example of systemic lupus erythematosus, we will apply a transdisciplinary and transpathological approach to describe comparatively recent data obtained for other systemic autoimmune diseases (rheumatoid arthritis, Sjögren's syndrome and systemic scleroderma). We will then discuss the practical implications of this new paradigm in the typical consultation of a potentially "pre-sick" individual, and on the prospects opened up by this new paradigm in care and research.
Collapse
Affiliation(s)
- L Chiche
- Service de médecine interne, hôpital européen, 6, rue Désirée-Clary, 13003 Marseille, France.
| | - M-E Truchetet
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; CHU de Bordeaux, FHU ACRONIM, Centre national de référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), 33000 Bordeaux, France
| | - D Cornec
- Inserm UMR1227 LBAI, Univ Brest, service de rhumatologie, centre national de référence des maladies auto-immunes systémiques rares CERAINOM, CHU de Brest, Brest, France
| | - C Immediato Daien
- Service d'immuno-rhumatologie, CHU de Montpellier, Inserm U1046, CNRS UMR 9214, université de Montpellier, physiologie et médecine expérimentale du cœur et des muscles (PhyMedExp), Montpellier, France
| |
Collapse
|
5
|
Wevers A, San Roman-Mata S, Navarro-Ledesma S, Pruimboom L. The Role of Insulin Within the Socio-Psycho-Biological Framework in Type 2 Diabetes-A Perspective from Psychoneuroimmunology. Biomedicines 2024; 12:2539. [PMID: 39595105 PMCID: PMC11591609 DOI: 10.3390/biomedicines12112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between socio-psychological factors and biological systems is pivotal in defining human health and disease, particularly in chronic non-communicable diseases. Recent advancements in psychoneuroimmunology and mitochondrial psychobiology have emphasized the significance of psychological factors as critical determinants of disease onset, progression, recurrence, and severity. These insights align with evolutionary biology, psychology, and psychiatry, highlighting the inherent social nature of humans. This study proposes a theory that expands insulin's role beyond traditional metabolic functions, incorporating it into the Mitochondrial Information Processing System (MIPS) and exploring it from an evolutionary medicine perspective to explore its function in processing psychological and social factors into biological responses. This narrative review comprises data from preclinical animal studies, longitudinal cohort studies, cross-sectional studies, machine learning analyses, and randomized controlled trials, and investigates the role of insulin in health and disease. The result is a proposal for a theoretical framework of insulin as a social substance within the socio-psycho-biological framework, emphasizing its extensive roles in health and disease. Type 2 Diabetes Mellitus (T2DM) with musculoskeletal disorders and neurodegeneration exemplifies this narrative. We suggest further research towards a comprehensive treatment protocol meeting evolutionary expectations, where incorporating psychosocial interventions plays an essential role. By supporting the concept of 'insulin resilience' and suggesting the use of heart rate variability to assess insulin resilience, we aim to provide an integrative approach to managing insulin levels and monitoring the effectiveness of interventions. This integrative strategy addresses broader socio-psychological factors, ultimately improving health outcomes for individuals with T2DM and musculoskeletal complications and neurodegeneration while providing new insights into the interplay between socio-psychological factors and biological systems in chronic diseases.
Collapse
Affiliation(s)
- Anne Wevers
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia San Roman-Mata
- Department of Nursing, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain;
| | - Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
6
|
Campbell CR, Manser M, Shiratori M, Williams K, Barreiro L, Clutton-Brock T, Tung J. A female-biased gene expression signature of dominance in cooperatively breeding meerkats. Mol Ecol 2024; 33:e17467. [PMID: 39021304 PMCID: PMC11521775 DOI: 10.1111/mec.17467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Dominance is a primary determinant of social dynamics and resource access in social animals. Recent studies show that dominance is also reflected in the gene regulatory profiles of peripheral immune cells. However, the strength and direction of this relationship differs across the species and sex combinations investigated, potentially due to variation in the predictors and energetic consequences of dominance status. Here, we investigated the association between social status and gene expression in the blood of wild meerkats (Suricata suricatta; n = 113 individuals), including in response to lipopolysaccharide, Gardiquimod (an agonist of TLR7, which detects single-stranded RNA in vivo) and glucocorticoid stimulation. Meerkats are cooperatively breeding social carnivores in which breeding females physically outcompete other females to suppress reproduction, resulting in high reproductive skew. They therefore present an opportunity to disentangle the effects of social dominance from those of sex per se. We identify a sex-specific signature of dominance, including 1045 differentially expressed genes in females but none in males. Dominant females exhibit elevated activity in innate immune pathways and a larger fold-change response to LPS challenge. Based on these results and a preliminary comparison to other mammals, we speculate that the gene regulatory signature of social status in the immune system depends on the determinants and energetic costs of social dominance, such that it is most pronounced in hierarchies where physical competition is important and reproductive skew is large. Such a pattern has the potential to mediate life history trade-offs between investment in reproduction versus somatic maintenance.
Collapse
Affiliation(s)
- C. Ryan Campbell
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Mari Shiratori
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kelly Williams
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Luis Barreiro
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Tim Clutton-Brock
- Kalahari Research Centre, Kuruman River Reserve, Northern Cape, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke Population Research Institute, Duke University, Durham, North Carolina, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
7
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
8
|
Bartolomucci A, Kane AE, Gaydosh L, Razzoli M, McCoy BM, Ehninger D, Chen BH, Howlett SE, Snyder-Mackler N. Animal Models Relevant for Geroscience: Current Trends and Future Perspectives in Biomarkers, and Measures of Biological Aging. J Gerontol A Biol Sci Med Sci 2024; 79:glae135. [PMID: 39126297 PMCID: PMC11316208 DOI: 10.1093/gerona/glae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 08/12/2024] Open
Abstract
For centuries, aging was considered inevitable and immutable. Geroscience provides the conceptual framework to shift this focus toward a new view that regards aging as an active biological process, and the biological age of an individual as a modifiable entity. Significant steps forward have been made toward the identification of biomarkers for and measures of biological age, yet knowledge gaps in geroscience are still numerous. Animal models of aging are the focus of this perspective, which discusses how experimental design can be optimized to inform and refine the development of translationally relevant measures and biomarkers of biological age. We provide recommendations to the field, including: the design of longitudinal studies in which subjects are deeply phenotyped via repeated multilevel behavioral/social/molecular assays; the need to consider sociobehavioral variables relevant for the species studied; and finally, the importance of assessing age of onset, severity of pathologies, and age-at-death. We highlight approaches to integrate biomarkers and measures of functional impairment using machine learning approaches designed to estimate biological age as well as to predict future health declines and mortality. We expect that advances in animal models of aging will be crucial for the future of translational geroscience but also for the next chapter of medicine.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alice E Kane
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lauren Gaydosh
- Department of Sociology, University of Texas at Austin, Austin, Texas, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brianah M McCoy
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Brian H Chen
- California Pacific Medical Center Research Institute, Sutter Health, San Francisco, CA, 94143, USA
| | - Susan E Howlett
- Departments of Pharmacology and Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
9
|
Bertrand A, Sugrue J, Lou T, Bourke NM, Quintana-Murci L, Saint-André V, O'Farrelly C, Duffy D. Impact of socioeconomic status on healthy immune responses in humans. Immunol Cell Biol 2024; 102:618-629. [PMID: 38862267 DOI: 10.1111/imcb.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Individuals with low socioeconomic status (SES) are at greater risk of contracting and developing severe disease compared with people with higher SES. Age, sex, host genetics, smoking and cytomegalovirus (CMV) serostatus are known to have a major impact on human immune responses and thus susceptibility to infection. However, the impact of SES on immune variability is not well understood or explored. Here, we used data from the Milieu Intérieur project, a study of 1000 healthy volunteers with extensive demographic and biological data, to examine the effect of SES on immune variability. We developed an Elo-rating system using socioeconomic features such as education, income and home ownership status to objectively rank SES in the 1000 donors. We observed sex-specific SES associations, such as females with a low SES having a significantly higher frequency of CMV seropositivity compared with females with high SES, and males with a low SES having a significantly higher frequency of active smoking compared with males with a high SES. Using random forest models, we identified specific immune genes which were significantly associated with SES in both baseline and immune challenge conditions. Interestingly, many of the SES associations were sex stimuli specific, highlighting the complexity of these interactions. Our study provides a new way of computing SES in human populations that can help identify novel SES associations and reinforces biological evidence for SES-dependent susceptibility to infection. This should serve as a basis for further understanding the molecular mechanisms behind SES effects on immune responses and ultimately disease.
Collapse
Affiliation(s)
- Anthony Bertrand
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Frontiers of Innovation in Research and Education PhD Program, LPI Doctoral School, Université Paris Cité, Paris, France
| | - Jamie Sugrue
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Tianai Lou
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nollaig M Bourke
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- Chair of Human Genomics and Evolution, Collège de France, Paris, France
| | - Violaine Saint-André
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Cliona O'Farrelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Ahmad I, Xuan T, Wang Q, Zhang S, Wang L, Gu J, Qi F, Luan W. Bacterial Lipoteichoic Acid Induces Capsular Contracture by Activating Innate Immune Response. Plast Reconstr Surg 2024; 154:333-342. [PMID: 37699551 DOI: 10.1097/prs.0000000000011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Capsular contracture is attributed to an exaggerated fibrosis response within the capsule and is partly associated with bacterial contamination in situ. However, the cellular mechanisms that initiate this response are unclear. METHODS The authors developed a mouse model of capsular contracture by repeated injection of 10 μg/mL lipoteichoic acid (LTA). The histological changes in the capsule tissue were measured by hematoxylin and eosin, Masson trichrome, and immunohistochemical staining. The expression of cytokines was measured by quantitative reverse transcription polymerase chain reaction. The authors also used pharmacological methods to verify the roles of macrophages and toll-like receptor 2 (TLR2) signaling in this pathological process. RESULTS The authors discovered that repeated LTA injection, at a low concentration, could induce thickening of the capsule tissue. Macrophage infiltration and TLR2/nuclear factor-κB signaling activated in this process could be suppressed by macrophage depletion or TLR2 receptor inhibition. CONCLUSION As TLR2 signal activation was found to cause capsular contracture by inducing macrophage infiltration as a consequence of trace amounts of LTA contamination in situ, this target is helpful for understanding that chronic or repeated subclinical infection can activate capsular contracture. CLINICAL RELEVANCE STATEMENT This finding is of significant importance for understanding that chronic or repeated subclinical infection could activate a persistent immune response and capsular contracture, and provides novel strategies to interfere with the formation of capsular contracture.
Collapse
Affiliation(s)
- Ikram Ahmad
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Tianfan Xuan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
- Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Jiangnan University
| | - Qiang Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Simin Zhang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Lu Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Jianying Gu
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Wenjie Luan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|
11
|
Ghanooni D, Flentje A, Hirshfield S, Horvath KJ, Moreno PI, Harkness A, Ross EJ, Dilworth SE, Pahwa S, Pallikkuth S, Carrico AW. Structural Determinants of Health and Markers of Immune Activation and Systemic Inflammation in Sexual Minority Men With and Without HIV. J Urban Health 2024; 101:867-877. [PMID: 38831153 PMCID: PMC11329474 DOI: 10.1007/s11524-024-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Among sexual minority men (SMM), HIV and use of stimulants such as methamphetamine are linked with immune activation and systemic inflammation. Throughout the COVID-19 pandemic, SMM encountered financial challenges and structural obstacles that might have uniquely contributed to immune dysregulation and systemic inflammation, beyond the impacts of HIV and stimulant use. Between August 2020 and February 2022, 72 SMM with and without HIV residing in South Florida enrolled in a COVID-19 prospective cohort study. Multiple linear regression analyses examined unemployment, homelessness, and history of arrest as structural correlates of soluble markers of immune activation (i.e., sCD14 and sCD163) and inflammation (i.e., sTNF-α receptors I and II) at baseline after adjusting for HIV status, stimulant use, and recent SARS-CoV-2 infection. Enrolled participants were predominantly Latino (59%), gay-identified (85%), and with a mean age of 38 (SD, 12) years with approximately one-third (38%) of participants living with HIV. After adjusting for HIV status, SARS-CoV-2 infection, and recent stimulant use, unemployment independently predicted higher levels of sCD163 (β = 0.24, p = 0.04) and sTNF-α receptor I (β = 0.26, p = 0.02). Homelessness (β = 0.25, p = 0.02) and history of arrest (β = 0.24, p = 0.04) independently predicted higher levels of sCD14 after adjusting for HIV status, SARS-CoV-2 infection, and recent stimulant use. Independent associations exist between structural barriers and immune activation and systemic inflammation in SMM with and without HIV. Future longitudinal research should further elucidate complex bio-behavioral mechanisms linking structural factors with immune activation and inflammation.
Collapse
Affiliation(s)
- Delaram Ghanooni
- Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8Th Street, AHC5, #414, Miami, FL, 33199, USA.
| | - Annesa Flentje
- Community Health Systems, San Francisco School of Nursing and Alliance Health Project, School of Medicine, University of California, San Francisco, CA, USA
| | - Sabina Hirshfield
- Department of Medicine, STAR Program Brooklyn, State University of New York - Downstate Health Sciences University, Brooklyn, NY, USA
| | - Keith J Horvath
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Patricia I Moreno
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Audrey Harkness
- School of Nursing and Health Sciences, University of Miami, Coral Gables, FL, USA
| | - Emily J Ross
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Samantha E Dilworth
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Savita Pahwa
- Miller School of Medicine, Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Suresh Pallikkuth
- Miller School of Medicine, Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Adam W Carrico
- Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8Th Street, AHC5, #414, Miami, FL, 33199, USA
| |
Collapse
|
12
|
Lee S, Rutishauser U, Gothard KM. Social Status as a Latent Variable in the Amygdala of Observers of Social Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603487. [PMID: 39071330 PMCID: PMC11275939 DOI: 10.1101/2024.07.15.603487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Successful integration into a hierarchical social group requires knowledge of the status of each individual and of the rules that govern social interactions within the group. In species that lack morphological indicators of status, social status can be inferred by observing the signals exchanged between individuals. We simulated social interactions between macaques by juxtaposing videos of aggressive and appeasing displays where two individuals appeared in each other's line of sight and their displays were timed to suggest the reciprocation of dominant and subordinate signals. Viewers of these videos successfully inferred the social status of the interacting characters. Dominant individuals attracted more social attention from viewers even when they were not engaged in social displays. Neurons in the viewers' amygdala signaled the status of both the attended (fixated) and the unattended individuals suggesting that in third party observers of social interactions, the amygdala signals jointly the status of interacting parties. Highlights Monkeys infer the social status of conspecifics from videos of simulated dyadic interactionsDuring fixations neural populations signal the social status of the attended individualsNeurons in the amygdala jointly encode the status of interacting individuals. In brief Third party-viewers of pairwise dominant-subordinate interactions infer social status from the observed behaviors. Neurons in the amygdala are tuned to the inferred dominant/subordinate status of both individuals.
Collapse
|
13
|
O'Connor AM, Hagenauer MH, Thew Forrester LC, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. Neurobiol Stress 2024; 31:100651. [PMID: 38933284 PMCID: PMC11201356 DOI: 10.1016/j.ynstr.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | - Megan Hastings Hagenauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Liam Cannon Thew Forrester
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Pamela M. Maras
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Keiko Arakawa
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elaine K. Hebda-Bauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huzefa Khalil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Evelyn R. Richardson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Farizah I. Rob
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Yusra Sannah
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Stanley J. Watson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huda Akil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
14
|
Bartolomucci A, Tung J, Harris KM. The fortunes and misfortunes of social life across the life course: A new era of research from field, laboratory and comparative studies. Neurosci Biobehav Rev 2024; 162:105655. [PMID: 38583652 DOI: 10.1016/j.neubiorev.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Social gradients in health and aging have been reported in studies across many human populations, and - as the papers included in this special collection highlight - also occur across species. This paper serves as a general introduction to the special collection of Neuroscience and Biobehavioral Reviews entitled "Social dimensions of health and aging: population studies, preclinical research, and comparative research using animal models". Authors of the fourteen reviews are primarily members of a National Institute of Aging-supported High Priority Research Network on "Animal Models for the Social Dimensions of Health and Aging". The collection is introduced by a foreword, commentaries, and opinion pieces by leading experts in related fields. The fourteen reviews are divided into four sections: Section 1: Biodemography and life course studies; Section 2: Social behavior and healthy aging in nonhuman primates; Section 3: Social factors, stress, and hallmarks of aging; Section 4: Neuroscience and social behavior.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham, NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Duke Population Research Institute, Duke University, Durham, NC, USA.
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Chen S, Xing L, Xie Z, Zhao M, Yu H, Gan J, Zhao H, Ma Z, Li H. Single-cell transcriptomic reveals a cell atlas and diversity of chicken amygdala responded to social hierarchy. iScience 2024; 27:109880. [PMID: 38952686 PMCID: PMC11215297 DOI: 10.1016/j.isci.2024.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 07/03/2024] Open
Abstract
Amygdala serves as a highly cellular, heterogeneous brain region containing excitatory and inhibitory neurons and is involved in the dopamine and serotoninergic neuron systems. An increasing number of studies have revealed the underpinned mechanism mediating social hierarchy in mammal and vertebrate, however, there are rare studies conducted on how amygdala on social hierarchy in poultry. In this study, we conducted food competition tests and determined the social hierarchy of the rooster. We performed cross-species analysis with mammalian amygdala, and found that cell types of human and rhesus monkeys were more closely related and that of chickens were more distant. We identified 26 clusters and divided them into 10 main clusters, of which GABAergic and glutamatergic neurons were associated with social behaviors. In conclusion, our results provide to serve the developmental studies of the amygdala neuron system and new insights into the underpinned mechanism of social hierarchy in roosters.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Zhijiang Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Mengqiao Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Jiankang Gan
- Guangdong Tinoo’s FOODS Group Co., Ltd, Qingyuan 511500, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
- Guangdong Tinoo’s FOODS Group Co., Ltd, Qingyuan 511500, China
| |
Collapse
|
16
|
O'Connor AM, Hagenauer MH, Forrester LCT, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560702. [PMID: 38645129 PMCID: PMC11030238 DOI: 10.1101/2023.10.03.560702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huda Akil
- Univ. of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Rosado MRS, Marzan-Rivera N, Watowich MM, Valle ADND, Pantoja P, Pavez-Fox MA, Siracusa ER, Cooper EB, Valle JEND, Phillips D, Ruiz-Lambides A, Martinez MI, Montague MJ, Platt ML, Higham JP, Brent LJN, Sariol CA, Snyder-Mackler N. Immune cell composition varies by age, sex and exposure to social adversity in free-ranging Rhesus Macaques. GeroScience 2024; 46:2107-2122. [PMID: 37853187 PMCID: PMC10828448 DOI: 10.1007/s11357-023-00962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.
Collapse
Affiliation(s)
- Mitchell R Sanchez Rosado
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA.
| | - Nicole Marzan-Rivera
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Petraleigh Pantoja
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Eve B Cooper
- Department of Anthropology, New York University, New York, NY, USA
| | - Josue E Negron-Del Valle
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Angelina Ruiz-Lambides
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melween I Martinez
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Carlos A Sariol
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
18
|
Vullioud C, Benhaiem S, Meneghini D, Szyf M, Shao Y, Hofer H, East ML, Fickel J, Weyrich A. Epigenetic signatures of social status in wild female spotted hyenas (Crocuta crocuta). Commun Biol 2024; 7:313. [PMID: 38548860 PMCID: PMC10978994 DOI: 10.1038/s42003-024-05926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024] Open
Abstract
In mammalian societies, dominance hierarchies translate into inequalities in health, reproductive performance and survival. DNA methylation is thought to mediate the effects of social status on gene expression and phenotypic outcomes, yet a study of social status-specific DNA methylation profiles in different age classes in a wild social mammal is missing. We tested for social status signatures in DNA methylation profiles in wild female spotted hyenas (Crocuta crocuta), cubs and adults, using non-invasively collected gut epithelium samples. In spotted hyena clans, female social status influences access to resources, foraging behavior, health, reproductive performance and survival. We identified 149 differentially methylated regions between 42 high- and low-ranking female spotted hyenas (cubs and adults). Differentially methylated genes were associated with energy conversion, immune function, glutamate receptor signalling and ion transport. Our results provide evidence that socio-environmental inequalities are reflected at the molecular level in cubs and adults in a wild social mammal.
Collapse
Affiliation(s)
- Colin Vullioud
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Dorina Meneghini
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- University of Potsdam, Potsdam, Germany
| | - Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
19
|
Petersen RM, Lea AJ. Diet composition impacts eQTL discovery across multiple tissues in baboons. CELL GENOMICS 2024; 4:100524. [PMID: 38484702 PMCID: PMC10943575 DOI: 10.1016/j.xgen.2024.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Understanding how genetic variation impacts gene expression is a major goal of genomics; however, only a fraction of disease-associated loci have been demonstrated to impact gene expression when cells are in an unperturbed "steady state." In this issue of Cell Genomics, Lin et al.1 investigate how exposure to a particular cellular context (i.e., a high-cholesterol, high-fat diet) can enhance our ability to identify new regulatory variants through longitudinal sampling of three tissue types in the baboon.
Collapse
Affiliation(s)
- Rachel M Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Anderson JA, Lin D, Lea AJ, Johnston RA, Voyles T, Akinyi MY, Archie EA, Alberts SC, Tung J. DNA methylation signatures of early-life adversity are exposure-dependent in wild baboons. Proc Natl Acad Sci U S A 2024; 121:e2309469121. [PMID: 38442181 PMCID: PMC10945818 DOI: 10.1073/pnas.2309469121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 03/07/2024] Open
Abstract
The early-life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early-life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early-life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early-life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early-life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early-life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early-life effects on fitness-related traits.
Collapse
Affiliation(s)
- Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Dana Lin
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Amanda J. Lea
- Canadian Institute for Advanced Research, Child & Brain Development Program, Toronto, ONM5G 1M1, Canada
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
| | | | - Tawni Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
| | - Mercy Y. Akinyi
- Institute of Primate Research, National Museums of Kenya, Nairobi00502, Kenya
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
- Duke Population Research Institute, Duke University, Durham, NC27708
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC27708
- Canadian Institute for Advanced Research, Child & Brain Development Program, Toronto, ONM5G 1M1, Canada
- Department of Biology, Duke University, Durham, NC27708
- Duke Population Research Institute, Duke University, Durham, NC27708
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| |
Collapse
|
21
|
Aracena KA, Lin YL, Luo K, Pacis A, Gona S, Mu Z, Yotova V, Sindeaux R, Pramatarova A, Simon MM, Chen X, Groza C, Lougheed D, Gregoire R, Brownlee D, Boye C, Pique-Regi R, Li Y, He X, Bujold D, Pastinen T, Bourque G, Barreiro LB. Epigenetic variation impacts individual differences in the transcriptional response to influenza infection. Nat Genet 2024; 56:408-419. [PMID: 38424460 DOI: 10.1038/s41588-024-01668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Humans display remarkable interindividual variation in their immune response to identical challenges. Yet, our understanding of the genetic and epigenetic factors contributing to such variation remains limited. Here we performed in-depth genetic, epigenetic and transcriptional profiling on primary macrophages derived from individuals of European and African ancestry before and after infection with influenza A virus. We show that baseline epigenetic profiles are strongly predictive of the transcriptional response to influenza A virus across individuals. Quantitative trait locus (QTL) mapping revealed highly coordinated genetic effects on gene regulation, with many cis-acting genetic variants impacting concomitantly gene expression and multiple epigenetic marks. These data reveal that ancestry-associated differences in the epigenetic landscape can be genetically controlled, even more than gene expression. Lastly, among QTL variants that colocalized with immune-disease loci, only 7% were gene expression QTL, while the remaining genetic variants impact epigenetic marks, stressing the importance of considering molecular phenotypes beyond gene expression in disease-focused studies.
Collapse
Affiliation(s)
| | - Yen-Lung Lin
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Alain Pacis
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Saideep Gona
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zepeng Mu
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Vania Yotova
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Renata Sindeaux
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | | | | | - Xun Chen
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Cristian Groza
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - David Lougheed
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Romain Gregoire
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - David Brownlee
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Carly Boye
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yang Li
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - David Bujold
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- McGill Genome Centre, Montreal, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Genomic Medicine Center, Children's Mercy, Kansas City, MO, USA
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada.
- McGill Genome Centre, Montreal, Quebec, Canada.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | - Luis B Barreiro
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Truby NL, Kim RK, Silva GM, Qu X, Picone JA, Alemu R, Atiyeh CN, Neve RL, Liu J, Cui X, Hamilton PJ. A zinc finger transcription factor enables social behaviors while controlling transposable elements and immune response in prefrontal cortex. Transl Psychiatry 2024; 14:59. [PMID: 38272911 PMCID: PMC10810849 DOI: 10.1038/s41398-024-02775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in rodent prefrontal cortex was previously demonstrated to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Following viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, inversion of ZFP189-mediated transcription in this brain area, achieved by viral delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. RNA sequencing of virally manipulated prefrontal cortex tissues reveals that ZFP189 transcription factors of opposing regulatory function (ZFP189WT versus ZFP189VPR) have opposite influence on the expression of genetic transposable elements as well as genes that participate in adaptive immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for complex social behaviors while regulating transposable element-rich regions of DNA and the expression of immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.
Collapse
Affiliation(s)
- Natalie L Truby
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - R Kijoon Kim
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Gabriella M Silva
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Xufeng Qu
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Joseph A Picone
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rebecca Alemu
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Claire N Atiyeh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Xiaohong Cui
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Peter J Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
23
|
Rodriguez LA, Tran MN, Garcia-Flores R, Oh S, Phillips RA, Pattie EA, Divecha HR, Kim SH, Shin JH, Lee YK, Montoya C, Jaffe AE, Collado-Torres L, Page SC, Martinowich K. TrkB-dependent regulation of molecular signaling across septal cell types. Transl Psychiatry 2024; 14:52. [PMID: 38263132 PMCID: PMC10805920 DOI: 10.1038/s41398-024-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Collapse
Affiliation(s)
- Lionel A Rodriguez
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Renee Garcia-Flores
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Seyun Oh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Robert A Phillips
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sun Hong Kim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Carly Montoya
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| | - Keri Martinowich
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Downie AE, Oyesola O, Barre RS, Caudron Q, Chen YH, Dennis EJ, Garnier R, Kiwanuka K, Menezes A, Navarrete DJ, Mondragón-Palomino O, Saunders JB, Tokita CK, Zaldana K, Cadwell K, Loke P, Graham AL. Spatiotemporal-social association predicts immunological similarity in rewilded mice. SCIENCE ADVANCES 2023; 9:eadh8310. [PMID: 38134275 PMCID: PMC10745690 DOI: 10.1126/sciadv.adh8310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.
Collapse
Affiliation(s)
- Alexander E. Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramya S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Quentin Caudron
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Emily J. Dennis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Romain Garnier
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kasalina Kiwanuka
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arthur Menezes
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J. Navarrete
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesse B. Saunders
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Christopher K. Tokita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kimberly Zaldana
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
25
|
Xie Z, Xing L, Zhao M, Zhao L, Liu J, Li Y, Gan J, Chen S, Li H. Versatile, vigilance, and gut microbiome support the priority of high-ranking hens. Front Vet Sci 2023; 10:1324937. [PMID: 38179328 PMCID: PMC10764595 DOI: 10.3389/fvets.2023.1324937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Dominance hierarchy exists in social animals and shows profound impacts on animals' survival, physical and mental health, and reproductive success. Aggressive interaction, as the main indicator used to calculate social hierarchy, however, is not found in some female animals. In this study, we aimed to figure out the establishment of social hierarchy in hens that almost perform aggressive behaviors and investigated the interactions of social hierarchy with production performance and gut microbiome. Forty 49-day-old Qingyuan hens were randomly divided into four groups. The social hierarchy of hens was calculated by the relative position around the feeder. The rank 1 (R1), R2, R3, R4, R5, R6, R7, R8, R9, and R10 birds were determined in ascending order. Then, R1 and R2 birds (four duplicates, n = 8) were named as the high-ranking hens (HR) group, while R9 and R10 individuals were named as the low-ranking hens (LR) group (four duplicates, n = 8). The heart index (p = 0.01), number of visits per day, daily feed intake, and occupation time per day were higher in the HR group than LR group, but the LR group had a higher feed intake per visit than the HR group. The alpha diversity was significantly lower in the HR group than the LR group (p = 0.05). The relative abundance of phylum Firmicutes was higher while that of phylum Deferribacterota was lower in the HR group than LR group (p < 0.05). At the genus level, the relative abundance of Succinatimonas, Eubacterium hallii group, and Anaerostipes were higher in HR group than in LR group. The relative abundance of Bacteroides, Mucispirillum, Subdoligranulum, and Barnesiellaceae unclassified was higher in the LR group than HR group (p < 0.05). In conclusion, the rank of hens could be calculated by the relative position around the feeder when they compete for food. The dominant hens have a versatile. Moreover, they are more vigilant and have priority when foraging. Low-ranking hens adopt strategies to get enough food to sustain themselves. Hens of high-rank possess beneficial bacteria that use favorable substances to maintain the balance of the gut environment.
Collapse
Affiliation(s)
- Zhijiang Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengqiao Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jinling Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yushan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiankang Gan
- Guangdong Tinoo’s Foods Group Co., Ltd., Qingyuan, China
| | - Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
26
|
Belsky DW, Baccarelli AA. To promote healthy aging, focus on the environment. NATURE AGING 2023; 3:1334-1344. [PMID: 37946045 DOI: 10.1038/s43587-023-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
To build health equity for an aging world marked by dramatic disparities in healthy lifespan between countries, regions and population groups, research at the intersections of biology, toxicology and the social and behavioral sciences points the way: to promote healthy aging, focus on the environment. In this Perspective, we suggest that ideas and tools from the emerging field of geroscience offer opportunities to advance the environmental science of aging. Specifically, the capacity to measure the pace and progress of biological processes of aging within individuals from relatively young ages makes it possible to study how changing environments can change aging trajectories from early in life, in time to prevent or delay aging-related disease and disability and build aging health equity.
Collapse
Affiliation(s)
- Daniel W Belsky
- Robert N. Butler Columbia Aging Center and Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
27
|
Newman LE, Testard C, DeCasien AR, Chiou KL, Watowich MM, Janiak MC, Pavez-Fox MA, Sanchez Rosado MR, Cooper EB, Costa CE, Petersen RM, Montague MJ, Platt ML, Brent LJN, Snyder-Mackler N, Higham JP. The biology of aging in a social world: Insights from free-ranging rhesus macaques. Neurosci Biobehav Rev 2023; 154:105424. [PMID: 37827475 PMCID: PMC10872885 DOI: 10.1016/j.neubiorev.2023.105424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques (Macaca mulatta). We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.
Collapse
Affiliation(s)
- Laura E Newman
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alex R DeCasien
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Marina M Watowich
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Biology, University of Washington, Seattle, WA, USA
| | - Mareike C Janiak
- Department of Anthropology, New York University, New York, NY, USA
| | - Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| | | | - Eve B Cooper
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Christina E Costa
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Rachel M Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
28
|
Wakeford A, Nye JA, Grieb ZA, Voisin DA, Mun J, Huhman KL, Albers E, Michopoulos V. Sex influences the effects of social status on socioemotional behavior and serotonin neurochemistry in rhesus monkeys. Biol Sex Differ 2023; 14:75. [PMID: 37898775 PMCID: PMC10613371 DOI: 10.1186/s13293-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Despite observed sex differences in the prevalence of stress-related psychiatric conditions, most preclinical and translational studies have only included male subjects. Therefore, it has not been possible to effectively assess how sex interacts with other psychosocial risk factors to impact the etiology and maintenance of stress-related psychopathology. One psychosocial factor that interacts with sex to impact risk for stress-related behavioral and physiological deficits is social dominance. The current study was designed to assess sex differences in the effects of social status on socioemotional behavior and serotonin neurochemistry in socially housed rhesus monkeys. We hypothesized that sex and social status interact to influence socioemotional behaviors as well as serotonin 1A receptor binding potential (5HT1AR-BP) in regions of interest (ROIs) implicated in socioemotional behavior. METHODS Behavioral observations were conducted in gonadally intact adult female (n = 14) and male (n = 13) rhesus monkeys. 5HT1AR-BP was assessed via positron emission tomography using 4-(2'-Methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p[18F]fluorobenzamido]ethylpiperazine ([18F]MPPF). RESULTS Aggression emitted was greater in dominant compared to subordinate animals, regardless of sex. Submission emitted was significantly greater in subordinate versus dominant animals and greater in females than males. Affiliative behaviors emitted were not impacted by sex, status, or their interaction. Anxiety-like behavior emitted was significantly greater in females than in males regardless of social status. Hypothalamic 5HT1AR-BP was significantly greater in females than in males, regardless of social status. 5HT1AR-BP in the dentate gyrus of the hippocampus was significantly impacted by a sex by status interaction whereby 5HT1AR-BP in the dentate gyrus was greater in dominant compared to subordinate females but was not different between dominant and subordinate males. There were no effects of sex, status, or their interaction on 5HT1AR-BP in the DRN and in the regions of the PFC studied. CONCLUSIONS These data have important implications for the treatment of stress-related behavioral health outcomes, as they suggest that sex and social status are important factors to consider in the context of serotonergic drug efficacy.
Collapse
Affiliation(s)
- Alison Wakeford
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Jonathon A Nye
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Zachary A Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jiyoung Mun
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Emory National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
29
|
Whitten CJ, Hooker MK, Wells AN, Kearney JN, Jenkins MS, Cooper MA. Sex differences in dominance relationships in Syrian hamsters. Physiol Behav 2023; 270:114294. [PMID: 37453726 PMCID: PMC10529893 DOI: 10.1016/j.physbeh.2023.114294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Dominance relationships are identified by changes in agonistic behavior toward specific individuals. While there are considerable individual and species differences in dominance relationships, sex differences are poorly understood in rodent models because aggression among female rodents is rare. The aim of this study was to characterize sex differences in the formation and maintenance of dominance relationships in same-sex pairs of male and female Syrian hamsters. We pooled data from multiple projects in our lab to evaluate dominance interactions in 68 male dyads and 88 female dyads. In each project, animals were matched with a partner similar in age, sex, and estrous cycle and we exposed animals to daily social encounters for two weeks in a resident-intruder format. We found that female hamsters were quicker to attack and attacked at higher rates compared to males regardless of dominance status. In addition, resident female hamsters were quicker to attack and attacked at higher rates than intruder females, but aggression in males did not depend on residency status. Female subordinates were quicker to submit and fled at higher rates from their dominant counterparts compared to male subordinates. Intruder subordinate females were quicker to submit and fled at higher rates than resident subordinate females. Females were also more resistant than males to becoming subordinate in that they fought back more consistently and were more likely to reverse their dominance status. These findings indicate that dominance relationships are less stable in females compared to males and that residency status has a larger impact on agonistic behavior in females than males. Overall, differences in how males and females display territorial aggression can lead to sex differences in the establishment and maintenance of dominance relationships.
Collapse
Affiliation(s)
- Conner J Whitten
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | | | - Ashley N Wells
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Jessica N Kearney
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Matthew S Jenkins
- Department of Psychology, The University of Tennessee, Knoxville, USA
| | - Matthew A Cooper
- Department of Psychology, The University of Tennessee, Knoxville, USA.
| |
Collapse
|
30
|
Hernández-Pacheco R, Steiner UK, Rosati AG, Tuljapurkar S. Advancing methods for the biodemography of aging within social contexts. Neurosci Biobehav Rev 2023; 153:105400. [PMID: 37739326 PMCID: PMC10591901 DOI: 10.1016/j.neubiorev.2023.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Several social dimensions including social integration, status, early-life adversity, and their interactions across the life course can predict health, reproduction, and mortality in humans. Accordingly, the social environment plays a fundamental role in the emergence of phenotypes driving the evolution of aging. Recent work placing human social gradients on a biological continuum with other species provides a useful evolutionary context for aging questions, but there is still a need for a unified evolutionary framework linking health and aging within social contexts. Here, we summarize current challenges to understand the role of the social environment in human life courses. Next, we review recent advances in comparative biodemography and propose a biodemographic perspective to address socially driven health phenotype distributions and their evolutionary consequences using a nonhuman primate population. This new comparative approach uses evolutionary demography to address the joint dynamics of populations, social dimensions, phenotypes, and life history parameters. The long-term goal is to advance our understanding of the link between individual social environments, population-level outcomes, and the evolution of aging.
Collapse
Affiliation(s)
- Raisa Hernández-Pacheco
- Department of Biological Sciences, California State University, Long Beach, 1250 N Bellflower Blvd, Long Beach, CA 90840-0004, USA.
| | - Ulrich K Steiner
- Freie Universität Berlin, Biological Institute, Königin-Luise Str. 1-3, 14195 Berlin, Germany
| | - Alexandra G Rosati
- Departments of Psychology and Anthropology, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
31
|
Lyons CE, Razzoli M, Bartolomucci A. The impact of life stress on hallmarks of aging and accelerated senescence: Connections in sickness and in health. Neurosci Biobehav Rev 2023; 153:105359. [PMID: 37586578 PMCID: PMC10592082 DOI: 10.1016/j.neubiorev.2023.105359] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Chronic stress is a risk factor for numerous aging-related diseases and has been shown to shorten lifespan in humans and other social mammals. Yet how life stress causes such a vast range of diseases is still largely unclear. In recent years, the impact of stress on health and aging has been increasingly associated with the dysregulation of the so-called hallmarks of aging. These are basic biological mechanisms that influence intrinsic cellular functions and whose alteration can lead to accelerated aging. Here, we review correlational and experimental literature (primarily focusing on evidence from humans and murine models) on the contribution of life stress - particularly stress derived from adverse social environments - to trigger hallmarks of aging, including cellular senescence, sterile inflammation, telomere shortening, production of reactive oxygen species, DNA damage, and epigenetic changes. We also evaluate the validity of stress-induced senescence and accelerated aging as an etiopathological proposition. Finally, we highlight current gaps of knowledge and future directions for the field, and discuss perspectives for translational geroscience.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
32
|
Taff CC, McNew SM, Zimmer C, Uehling JJ, Houtz JL, Ryan TA, Chang van Oordt D, Injaian AS, Vitousek MN. Social signal manipulation and environmental challenges have independent effects on physiology, internal microbiome, and reproductive performance in tree swallows (Tachycineta bicolor). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:723-735. [PMID: 37306329 DOI: 10.1002/jez.2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
The social environment that individuals experience appears to be a particularly salient mediator of stress resilience, as the nature and valence of social interactions are often related to subsequent health, physiology, microbiota, and overall stress resilience. Relatively few studies have simultaneously manipulated the social environment and ecological challenges under natural conditions. Here, we report the results of experiments in wild tree swallows (Tachycineta bicolor) in which we manipulated both ecological challenges (predator encounters and flight efficiency reduction) and social interactions (by experimental dulling of a social signal). In two experiments conducted in separate years, we reversed the order of these treatments so that females experienced either an altered social signal followed by a challenge or vice-versa. Before, during, and after treatments were applied, we tracked breeding success, morphology and physiology (mass, corticosterone, and glucose), nest box visits via an RFID sensor network, cloacal microbiome diversity, and fledging success. Overall, we found that predator exposure during the nestling period reduced the likelihood of fledging and that signal manipulation sometimes altered nest box visitation patterns, but little evidence that the two categories of treatment interacted with each other. We discuss the implications of our results for understanding what types of challenges and what conditions are most likely to result in interactions between the social environment and ecological challenges.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Sabrina M McNew
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Cedric Zimmer
- Laboratoire d'Ethologie Expérimentale et Comparée, University Sorbonne Paris Nord, Paris, France
| | - Jennifer J Uehling
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Jennifer L Houtz
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Thomas A Ryan
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - David Chang van Oordt
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | | | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
33
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
34
|
Baumer Y, Singh K, Baez AS, Gutierrez-Huerta CA, Chen L, Igboko M, Turner BS, Yeboah JA, Reger RN, Ortiz-Whittingham LR, Bleck CK, Mitchell VM, Collins BS, Pirooznia M, Dagur PK, Allan DS, Muallem-Schwartz D, Childs RW, Powell-Wiley TM. Social Determinants modulate NK cell activity via obesity, LDL, and DUSP1 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556825. [PMID: 37745366 PMCID: PMC10515802 DOI: 10.1101/2023.09.12.556825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Adverse social determinants of health (aSDoH) are associated with obesity and related comorbidities like diabetes, cardiovascular disease, and cancer. Obesity is also associated with natural killer cell (NK) dysregulation, suggesting a potential mechanistic link. Therefore, we measured NK phenotypes and function in a cohort of African-American (AA) women from resource-limited neighborhoods. Obesity was associated with reduced NK cytotoxicity and a shift towards a regulatory phenotype. In vitro, LDL promoted NK dysfunction, implicating hyperlipidemia as a mediator of obesity-related immune dysregulation. Dual specific phosphatase 1 (DUSP1) was induced by LDL and was upregulated in NK cells from subjects with obesity, implicating DUSP1 in obesity-mediated NK dysfunction. In vitro, DUSP1 repressed LAMP1/CD107a, depleting NK cells of functional lysosomes to prevent degranulation and cytokine secretion. Together, these data provide novel mechanistic links between aSDoH, obesity, and immune dysregulation that could be leveraged to improve outcomes in marginalized populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Long Chen
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muna Igboko
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Josette A. Yeboah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert N. Reger
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - David S.J. Allan
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Richard W. Childs
- Section of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Cooper MA, Hooker MK, Whitten CJ, Kelly JR, Jenkins MS, Mahometano SC, Scarbrough MC. Dominance status modulates activity in medial amygdala cells with projections to the bed nucleus of the stria terminalis. Behav Brain Res 2023; 453:114628. [PMID: 37579818 PMCID: PMC10496856 DOI: 10.1016/j.bbr.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
The medial amygdala (MeA) controls several types of social behavior via its projections to other limbic regions. Cells in the posterior dorsal and posterior ventral medial amygdala (MePD and MePV, respectively) project to the bed nucleus of the stria terminalis (BNST) and these pathways respond to chemosensory cues and regulate aggressive and defensive behavior. Because the BNST is also essential for the display of stress-induced anxiety, a MePD/MePV-BNST pathway may modulate both aggression and responses to stress. In this study we tested the hypothesis that dominant animals would show greater neural activity than subordinates in BNST-projecting MePD and MePV cells after winning a dominance encounter as well as after losing a social defeat encounter. We created dominance relationships in male and female Syrian hamsters (Mesocricetus auratus), used cholera toxin b (CTB) as a retrograde tracer to label BNST-projecting cells, and collected brains for c-Fos staining in the MePD and MePV. We found that c-Fos immunoreactivity in the MePD and MePV was positively associated with aggression in males, but not in females. Also, dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells compared to their same-sex subordinate counterparts. Another set of animals received social defeat stress after acquiring a dominant or subordinate social status and we stained for stress-induced c-Fos expression in the MePD and MePV. We found that dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells in the MePD after social defeat stress compared to subordinates. Also, dominants showed a longer latency to submit during social defeat than subordinates. Further, in males, latency to submit was positively associated with the proportion of c-Fos+ /CTB+ double-labeled cells in the MePD and MePV. These findings indicate that social dominance increases neural activity in BNST-projecting MePD and MePV cells and activity in this pathway is also associated with proactive responses during social defeat stress. In sum, activity in a MePD/MePV-BNST pathway contributes to status-dependent differences in stress coping responses and may underlie experience-dependent changes in stress resilience.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, USA.
| | | | - Conner J Whitten
- Department of Psychology, University of Tennessee Knoxville, USA
| | - Jeff R Kelly
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | | | | |
Collapse
|
36
|
Thompson González N, Machanda Z, Emery Thompson M. Age-related social selectivity: An adaptive lens on a later life social phenotype. Neurosci Biobehav Rev 2023; 152:105294. [PMID: 37380041 PMCID: PMC10529433 DOI: 10.1016/j.neubiorev.2023.105294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Age-related social selectivity is a process in which older humans reduce their number of social partners to a subset of positive and emotionally fulfilling relationships. Although selectivity has been attributed to humans' unique perceptions of time horizons, recent evidence demonstrates that these social patterns and processes occur in other non-human primates, suggesting an evolutionarily wider phenomenon. Here, we develop the hypothesis that selective social behavior is an adaptive strategy that allows social animals to balance the costs and benefits of navigating social environments in the face of age-related functional declines. We first aim to distinguish social selectivity from the non-adaptive social consequences of aging. We then outline multiple mechanisms by which social selectivity in old age may enhance fitness and healthspan. Our goal is to lay out a research agenda to identify selective strategies and their potential benefits. Given the importance of social support for health across primates, understanding why aging individuals lose social connections and how they can remain resilient has vital applications to public health research.
Collapse
Affiliation(s)
- Nicole Thompson González
- Integrative Anthropological Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zarin Machanda
- Department of Anthropology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
37
|
Stockmaier S. Bat behavioral immune responses in social contexts: current knowledge and future directions. Front Immunol 2023; 14:1232556. [PMID: 37662931 PMCID: PMC10469833 DOI: 10.3389/fimmu.2023.1232556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Animals often mount complex immune responses to infections. Aside from cellular and molecular defense mechanisms, animals can alter their behavior in response to infection by avoiding, resisting, or tolerating negative effects of pathogens. These behaviors are often connected to cellular and molecular immune responses. For instance, sickness behaviors are a set of behavioral changes triggered by the host inflammatory response (e.g., cytokines) and could aid in resisting or tolerating infection, as well as affect transmission dynamics if sick animals socially withdraw or are being avoided by others. To fully understand the group and population level transmission dynamics and consequences of pathogen infections in bats, it is not only important to consider cellular and molecular defense mechanisms, but also behavioral mechanisms, and how both interact. Although there has been increasing interest in bat immune responses due to their ability to successfully cope with viral infections, few studies have explored behavioral anti-pathogen defense mechanisms. My main objective is to explore the interaction of cellular and molecular defense mechanisms, and behavioral alterations that results from infection in bats, and to outline current knowledge and future research avenues in this field.
Collapse
Affiliation(s)
- Sebastian Stockmaier
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, United States
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
38
|
Strauss ED. Demographic turnover can be a leading driver of hierarchy dynamics, and social inheritance modifies its effects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220308. [PMID: 37381857 PMCID: PMC10291429 DOI: 10.1098/rstb.2022.0308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 06/30/2023] Open
Abstract
Individuals and societies are linked through a feedback loop of mutual influence. Demographic turnover shapes group composition and structure by adding and removing individuals, and social inheritance shapes social structure through the transmission of social traits from parents to offspring. Here I examine how these drivers of social structure feedback to influence individual outcomes. I explore these society-to-individual effects in systems with social inheritance of hierarchy position, as occur in many primates and spotted hyenas. Applying Markov chain models to empirical and simulated data reveals how demography and social inheritance interact to strongly shape individual hierarchy positions. In hyena societies, demographic processes-not status seeking-account for the majority of hierarchy dynamics and cause an on-average lifetime decline in social hierarchy position. Simulated societies clarify how social inheritance alters demographic effects-demographic processes cause hierarchy position to regress to the mean, but the addition of social inheritance modifies this pattern. Notably, the combination of social inheritance and rank-related reproductive success causes individuals to decline in rank over their lifespans, as seen in the hyena data. Further analyses explore how 'queens' escape this pattern of decline, and how variation in social inheritance generates variability in reproductive inequality. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Baden-Württemberg, 78464, Germany
- Ecology of Animal Societies Department, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, 78315, Germany
- Collective Behavior Department, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, 78315, Germany
- Integrative Biology Department, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
39
|
Luo M, Xie X, Wu J, Zhang L, Zheng X, Xie M, Lin N, Xiao H, Zeng J, Lan G, Lu X, Ye X, Huang Z, Xu T, Wang T, Lin K, Guo Y, Xie X. Association of ambient PM 10 and PM 2.5 with coronary stenosis measured using selective coronary angiography. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115338. [PMID: 37556955 DOI: 10.1016/j.ecoenv.2023.115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Long-term ambient particulate matter (PM) exposure exerts detrimental effects on cardiovascular health. Evidence on the relation of chronically exposed ambient PM10 and PM2.5 with coronary stenosis remains lacking. Our aim was to investigate the association of PM10 and PM2.5 with coronary stenosis in patients undergoing coronary angiography. METHODS We performed a retrospective cohort study consisting of 7513 individuals who underwent coronary angiography in Fujian Province, China, from January 2019 to December 2021. We calculated a modified Gensini score (GS) to represent the degree of stenosis in coronary arteries by selective coronary angiography. We fitted linear regressions and logistic models to assess the association of PM10 and PM2.5 with coronary stenosis. We employed restricted cubic splines to describe the exposure-response curves. We performed mediation analyses to assess the potential mediators. RESULTS Long-term ambient PM10 and PM2.5 (prior three years average) exposure was significantly associated with the GS, with a breakpoint concentration of 47.5 μg/m3 and 25.8 μg/m3 for PM10 and PM2.5, respectively, above which we found a linear positive exposure-response relationship of ambient PM with GS. Each 10 µg /m3 increase in PM10 exposure (β: 4.81, 95 % CI: 0.44-9.19) and PM2.5 exposure [β: 10.50, 95 % CI: 3.14-17.86] were positively related to the GS. The adjusted odds ratio (OR) for each 10 µg/m3 increment in PM10 exposure on severe coronary stenosis was 1.33 (95 % CI: 1.04-1.76). Correspondingly, the adjusted OR for PM2.5 was 1.87 (95 % CI: 1.24-2.99). The mediation analysis indicated that the effect of PM10 on coronary stenosis may be partially mediated through total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B, serum creatinine and blood urea nitrogen, and the effect of PM2.5 may be mediated in part by hemoglobin A1c. CONCLUSION Our study provides the first evidence that chronic ambient PM10 and PM2.5 exposure was associated with coronary stenosis assessed by GS in patients with suspected coronary artery disease and reveals its potential mediators.
Collapse
Affiliation(s)
- Manqing Luo
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Xiaowei Xie
- The First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Jieyu Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Liwei Zhang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Xi Zheng
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Mengying Xie
- The Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Na Lin
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Huazhen Xiao
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Jilang Zeng
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Guohui Lan
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoli Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoying Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zelin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tingting Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tinggui Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Kaiyang Lin
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Yansong Guo
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China.
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| |
Collapse
|
40
|
MacLeod KJ, English S, Ruuskanen SK, Taborsky B. Stress in the social context: a behavioural and eco-evolutionary perspective. J Exp Biol 2023; 226:jeb245829. [PMID: 37529973 PMCID: PMC10445731 DOI: 10.1242/jeb.245829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The social environment is one of the primary sources of challenging stimuli that can induce a stress response in animals. It comprises both short-term and stable interactions among conspecifics (including unrelated individuals, mates, potential mates and kin). Social stress is of unique interest in the field of stress research because (1) the social domain is arguably the most complex and fluctuating component of an animal's environment; (2) stress is socially transmissible; and (3) stress can be buffered by social partners. Thus, social interactions can be both the cause and cure of stress. Here, we review the history of social stress research, and discuss social stressors and their effects on organisms across early life and adulthood. We also consider cross-generational effects. We discuss the physiological mechanisms underpinning social stressors and stress responses, as well as the potential adaptive value of responses to social stressors. Finally, we identify outstanding challenges in social stress research, and propose a framework for addressing these in future work.
Collapse
Affiliation(s)
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Suvi K. Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, FI-40014, Finland
- Department of Biology, University of Turku, Turku, FI-20014, Finland
| | - Barbara Taborsky
- Division of Behavioural Biology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Institute for Advanced Study, 14193 Berlin, Germany
| |
Collapse
|
41
|
Rodriguez LA, Tran MN, Garcia-Flores R, Pattie EA, Divecha HR, Kim SH, Shin JH, Lee YK, Montoya C, Jaffe AE, Collado-Torres L, Page SC, Martinowich K. TrkB-dependent regulation of molecular signaling across septal cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547069. [PMID: 37425939 PMCID: PMC10327212 DOI: 10.1101/2023.06.29.547069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Collapse
Affiliation(s)
- Lionel A. Rodriguez
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Renee Garcia-Flores
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Elizabeth A. Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sun Hong Kim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Carly Montoya
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E. Jaffe
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
42
|
Anderson JA, Lin D, Lea AJ, Johnston RA, Voyles T, Akinyi MY, Archie EA, Alberts SC, Tung J. DNA methylation signatures of early life adversity are exposure-dependent in wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.542485. [PMID: 37333311 PMCID: PMC10274726 DOI: 10.1101/2023.06.05.542485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The early life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early life effects on fitness-related traits.
Collapse
Affiliation(s)
- Jordan A Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Dana Lin
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Amanda J Lea
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1, Canada
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37235, USA
| | - Rachel A Johnston
- Zoo New England, Stoneham, Massachusetts, 02180
- Broad Institute, Cambridge, Massachusetts, 02142
| | - Tawni Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Mercy Y Akinyi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1, Canada
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
43
|
Escoda T, Jourde-Chiche N, Granel B, Cornec D, Chiche L. Complex relationships between inflammatory manifestations/type 1 and type 2 symptoms in systemic lupus erythematosus: A narrative literature review. Lupus 2023:9612033231179773. [PMID: 37229792 DOI: 10.1177/09612033231179773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Recent studies have highlighted that systemic lupus erythematosus (SLE) is characterized by different types of symptoms: type 1 symptoms related to inflammation and disease activity and type 2 symptoms such as fatigue, anxiety-depression, and pain. Our aim was to investigate the relation between type 1 and type 2 symptoms, and their impact on health-related quality of life (HRQoL) in SLE. METHODS A literature review was conducted about disease activity/type1 and type 2 symptoms. Articles in English published after 2000 were located on Medline via Pubmed. The articles chosen evaluated at least one type 2 symptom or HRQoL using a validated scale in adult patients. RESULTS Overall, 182 articles were analyzed and 115 were retained including 21 randomized, controlled trials and corresponding to 36 831 patients. We found that in SLE, inflammatory activity/type 1 symptoms were mostly uncorrelated with type 2 symptoms and/or HRQoL. Several studies even showing an inverse relationship. No or weak correlation was observed in 85, 3% (92, 6%), 76, 7% (74, 4%) and 37, 5% (73, 1%) of studies (patients) for fatigue, anxiety-depression, and pain, respectively. For HRQoL, no or weak correlation was observed in 77, 5% of studies (88% of patients). CONCLUSION Type 2 symptoms are poorly correlated with inflammatory activity/type 1 symptoms in SLE. Possible explanations and implications for clinical care and therapeutic evaluation are discussed.
Collapse
Affiliation(s)
- Thomas Escoda
- Service de Médecine Interne, Hôpital Européen, Marseille, France
| | - Noémie Jourde-Chiche
- Service de Néphrologie, Hôpital de la Conception, Marseille Public University Hospital System, Marseille, France
| | - Brigitte Granel
- Service de Médecine Interne, Hôpital Nord, Aix Marseille Université, Marseille Public University Hospital System, Marseille, France
| | - Divi Cornec
- Service de Rhumatologie, Hôpital de la Cavale Blanche, Brest University, Brest, France
| | - Laurent Chiche
- Service de Médecine Interne, Hôpital Européen, Marseille, France
| |
Collapse
|
44
|
Yang R, Huang BY, Wang YN, Meng Q, Guo Y, Wang S, Yin XY, Feng H, Gong M, Wang S, Niu CY, Shi Y, Shi HS. Excision of mesenteric lymph nodes alters gut microbiota and impairs social dominance in adult mice. Brain Behav 2023:e3053. [PMID: 37157948 DOI: 10.1002/brb3.3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION Mesenteric lymph nodes (MLNs) are central in immune anatomy. MLNs are associated with the composition of gut microbiota, affecting the central system and immune system. Gut microbiota was found to differ among individuals of different social hierarchies. Nowadays, excision of MLNs is more frequently involved in gastrointestinal surgery; however, the potential side effects of excision of MLNs on social dominance are still unknown. METHODS MLNs were removed from male mice (7-8 weeks old). Four weeks after MLN removal, social dominance test was performed to investigate social dominance; hippocampal and serum interleukin (IL)-1β, IL-10, and tumor necrosis factor-alpha (TNF-α) were investigated; and histopathology was used to evaluate local inflammation of the ileum. The composition of the gut microbiota was then examined to understand the possible mechanism, and finally intraperitoneal injection of IL-10 was used to validate the effect of IL-10 on social dominance. RESULTS There was a decrease in social dominance in the operation group compared to the control group, as well as a decrease in serum and hippocampal IL-10 levels, but no difference in serum and hippocampal IL-1β and TNF-α levels, and no local inflammation of the ileum after MLN removal. 16S rRNA sequencing analysis showed that the relative abundance of the class Clostridia was decreased in the operation group. This decrease was positively associated with serum IL-10 levels. Furthermore, intraperitoneal injection of IL-10 in a subset of mice increased social dominance. CONCLUSIONS Our findings suggested that MLNs contributed to maintaining social dominance, which might be associated with reduced IL-10 and the imbalance of specific flora in gut microbiota.
Collapse
Affiliation(s)
- Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Bo-Ya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ning Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xue-Yong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Chun-Yu Niu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Shui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
45
|
Kirkland JM, Patel I, Ardeshna MS, Kopec AM. Microglial synaptic pruning in the nucleus accumbens during adolescence sex-specifically influences splenic immune outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539317. [PMID: 37205376 PMCID: PMC10187280 DOI: 10.1101/2023.05.03.539317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Strong social support promotes a variety of positive health outcomes in humans and rodent models, while social isolation in rodents shortens lifespan, perceived social isolation (i.e. loneliness) can increase mortality by up to 50% in humans. How social relationships lead to these drastic health effects is unclear, but may involve modulation of the peripheral immune system. The reward circuitry of the brain and social behaviors undergo a critical period of development during adolescence. We published that microglia-mediated synaptic pruning occurs in the nucleus accumbens (NAc) reward region during adolescence to mediate social development in male and female rats. We hypothesized that if reward circuitry activity and social relationships directly impact the peripheral immune system, then natural developmental changes in the reward circuitry and social behaviors during adolescence should also directly impact the peripheral immune system. To test this, we inhibited microglial pruning in the NAc during adolescence, and then collected spleen tissue for mass spectrometry proteomic analysis and ELISA validation. We found that the global proteomic consequences of inhibiting microglial pruning in the NAc were similar between the sexes, but target-specific examination suggests that NAc pruning impacts Th1 cell-related immune markers in the spleen in males, but not females, and broad neurochemical systems in the spleen in females, but not males.
Collapse
Affiliation(s)
- J. M. Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Monali S. Ardeshna
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
46
|
Truby NL, Kim RK, Silva GM, Qu X, Picone JA, Alemu R, Neve RL, Cui X, Liu J, Hamilton PJ. A zinc finger transcription factor tunes social behaviors by controlling transposable elements and immune response in prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535374. [PMID: 37066210 PMCID: PMC10103968 DOI: 10.1101/2023.04.03.535374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in the rodent prefrontal cortex was previously determined to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Upon viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, dysregulation of ZFP189-mediated transcription in this brain area, achieved by delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. By performing RNA sequencing in virally manipulated prefrontal cortex tissues, we discover that ZFP189 transcription factors of opposing regulatory function have opposite influence on the expression of genetic transposable elements as well as genes that participate in immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for social behaviors by binding transposable element-rich regions of DNA to regulate immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.
Collapse
Affiliation(s)
- Natalie L. Truby
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - R. Kijoon Kim
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Gabriella M. Silva
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Xufeng Qu
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Joseph A. Picone
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rebecca Alemu
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rachael L. Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - Xiaohong Cui
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Peter J. Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
47
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
48
|
Godfrey JR, Howell BR, Mummert A, Shi Y, Styner M, Wilson ME, Sanchez M. Effects of social rank and pubertal delay on brain structure in female rhesus macaques. Psychoneuroendocrinology 2023; 149:105987. [PMID: 36529113 PMCID: PMC9931669 DOI: 10.1016/j.psyneuen.2022.105987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Adverse social experience during childhood and adolescence leads to developmental alterations in emotional and stress regulation and underlying neurocircuits. We examined the consequences of social subordination (low social rank) in juvenile female rhesus monkeys, as an ethologically valid model of chronic social stressor exposure, on brain structural and behavioral development through the pubertal transition. Adolescence is a developmental period of extensive brain remodeling and increased emotional and stress reactivity. Puberty-induced increases in gonadal hormones, particularly estradiol (E2), are likely involved due to its organizational effects on the brain and behavior. Thus, we also examined how experimentally delaying pubertal onset with Lupron (gonadotropin releasing hormone -GnRH- agonist used clinically to delay early puberty) interacted with social rank (dominant vs. subordinate) to affect brain and behavioral outcomes. Using a longitudinal experimental design, structural MRI (sMRI) scans were collected on socially housed juvenile female rhesus monkeys living in indoor-outdoor enclosures prior to the onset of puberty (18-25 months), defined as menarche or the initial occurrence of perineal swelling and coloration, and again at 29-36 months, when all control animals had reached puberty but none of the Lupron-treated had. We examined the effects of both social rank and pubertal delay on overall structural brain volume (i.e. intracranial, grey matter (GM) and white matter (WM) volumes), as well as on cortico-limbic regions involved in emotion and stress regulation: amygdala (AMYG), hippocampus (HC), and prefrontal cortex (PFC). Measures of stress physiology, social behavior, and emotional reactivity were collected to examine functional correlates of the brain structural effects. Apart from expected developmental effects, subordinates had bigger AMYG volumes than dominant animals, most notably in the right hemisphere, but pubertal delay with Lupron-treatment abolished those differences, suggesting a role of gonadal hormones potentiating the brain structural impact of social stress. Subordinates also had elevated baseline cortisol, indicating activation of stress systems. In general, Lupron-treated subjects had smaller AMYG and HC volume than controls, but larger total PFC (driven by bigger GM volumes), and different, region-specific, developmental patterns dependent on age and social rank. These findings highlight a region-specific effect of E2 on structural development during female adolescence, independent of those due to chronological age. Pubertal delay and AMYG volume, in turn, predicted differences in emotional reactivity and social behavior. These findings suggest that exposure to developmental increases in E2 modifies the consequences of adverse social experience on the volume of cortico-limbic regions involved in emotional and stress regulation during maturation. But, even more importantly, they indicate different brain structural effects of chronological age and pubertal developmental stage in females, which are very difficult to disentangle in human studies. These findings have additional relevance for young girls who experience prolonged pubertal delays or for those whose puberty is clinically arrested by pharmacological administration of Lupron.
Collapse
Affiliation(s)
- Jodi R Godfrey
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Brittany R Howell
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Emory University, 12 Executive Park Drive NE #200, Atlanta, GA 30322, USA; Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016, USA; Department of Human Development and Family Science, Virginia Tech, 366 Wallace Hall, 295 West Campus Drive, Blacksburg, VA 24061, USA
| | - Amanda Mummert
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA
| | - Yundi Shi
- Department of Psychiatry, University of North Carolina, 352 Medical School Wing C, Chapel Hill, NC 27599, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, 352 Medical School Wing C, Chapel Hill, NC 27599, USA
| | - Mark E Wilson
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Emory University, 12 Executive Park Drive NE #200, Atlanta, GA 30322, USA
| | - Mar Sanchez
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Emory University, 12 Executive Park Drive NE #200, Atlanta, GA 30322, USA.
| |
Collapse
|
49
|
Korobkova L, Morin EL, Aoued H, Sannigrahi S, Garza KM, Siebert ER, Walum H, Cabeen RP, Sanchez MM, Dias BG. RNA in extracellular vesicles during adolescence reveal immune, energetic and microbial imprints of early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529808. [PMID: 36865138 PMCID: PMC9980043 DOI: 10.1101/2023.02.23.529808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of neuropsychiatric disorders in adolescence and adulthood. Despite this relationship being well established, the underlying mechanisms remain unclear. One way to achieve this understanding is to identify molecular pathways and processes that are perturbed as a consequence of childhood maltreatment. Ideally, these perturbations would be evident as changes in DNA, RNA or protein profiles in easily accessible biological samples collected in the shadow of childhood maltreatment. In this study, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT) or maternal maltreatment (MALT) in infancy. RNA sequencing of RNA in plasma EVs and gene enrichment analysis revealed that genes related to translation, ATP synthesis, mitochondrial function and immune response were downregulated in MALT samples, while genes involved in ion transport, metabolism and cell differentiation were upregulated. Interestingly, we found that a significant proportion of EV RNA aligned to the microbiome and that MALT altered the diversity of microbiome-associated RNA signatures found in EVs. Part of this altered diversity suggested differences in prevalence of bacterial species in CONT and MALT animals noted in the RNA signatures of the circulating EVs. Our findings provide evidence that immune function, cellular energetics and the microbiome may be important conduits via which infant maltreatment exerts effects on physiology and behavior in adolescence and adulthood. As a corollary, perturbations of RNA profiles related to immune function, cellular energetics and the microbiome may serve as biomarkers of responsiveness to ELA. Our results demonstrate that RNA profiles in EVs can serve as a powerful proxy to identify biological processes that might be perturbed by ELA and that may contribute to the etiology of neuropsychiatric disorders in the aftermath of ELA.
Collapse
|
50
|
Intersectional vulnerability in the relationship between discrimination and inflammatory gene expression. Brain Behav Immun Health 2023; 27:100580. [PMID: 36632340 PMCID: PMC9826875 DOI: 10.1016/j.bbih.2022.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Addressing social disparities in health and well-being requires understanding how the effects of discrimination become biologically embedded, and how embedding processes might vary across different demographic contexts. Emerging research suggests that a threat-related gene expression response may contribute to social disparities in health. We tested a contextual vulnerability model of discrimination embedding using an empirical intersectionality (interaction discovery) analysis of pro-inflammatory gene expression in a national sample of non-institutionalized, English-speaking adults with RNA biomarker data (n = 543). At the time of data collection, the average age of participants was 55 years (SD = 13.26) and approximately half identified as female (50.46%). Most participants identified as White (∼73%) and had some college experience (∼60%). Results showed significant variation in the strength of association between daily discrimination and inflammatory gene expression by race and sex (b = -0.022; 95% CI:-0.038,-0.005, p = .009) with the estimated marginal association larger for racially-minoritized males (b = 0.007; 95% CI:-0.003,0.017, p = .163), compared to White males (b = -0.006; 95% CI:-0.013,0.001, p = .076). This study indicates that the link between daily discrimination and inflammatory gene expression may vary by sociodemographic characteristics. To improve initiatives and policies aimed at ameliorating disparities within populations, greater attention is needed to understand how interlocking systems of inequalities contribute to physiological health.
Collapse
|