1
|
You P, Zhou J, Muhammad Bilal A, Bao M, Yang J, Fang S, Li X, Yi L. Potential habitat suitability of Candidatus Liberibacter asiaticus and genetic diversity of its prophages across China. Microbiol Spectr 2024; 12:e0063324. [PMID: 39315790 PMCID: PMC11537051 DOI: 10.1128/spectrum.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024] Open
Abstract
Huanglongbing (HLB) is a severe citrus disease in China caused by Candidatus Liberibacter asiaticus (CLas). Since its initial identification, the pathogen has spread to 10 mainland provinces in China and caused devastating loss. Three distinct prophage types have been identified in CLas; however, their distribution and diversity in China remain inadequately understood. In this study, we collected 500 CLas samples from 10 provinces in China, employing three specific genomic loci to identify prophage types. Subsequently, Sanger sequencing was employed to analyze the genetic diversity of prophage within populations of CLas in China. In addition, the MaxEnt model optimized by the ENMeval software package, was used to predict the habitat suitability of populations of CLas and assess the potential impact of future climate change on its distribution in China. Our analysis revealed that type 2 prophage is the most prevalent, accounting for 55% in China. Among the 10 provinces tested, CLas populations in Yunnan and Sichuan demonstrated higher genetic diversity. Further analysis reveals that CLas populations harboring type 1 prophage remain relatively stable, whereas those carrying type 2 and type 3 prophages undergo population expansion. Furthermore, our predictive models indicate that the presently suitable habitat for CLas populations is concentrated in the southern and certain central regions of China, with an anticipated expansion under future climate change conditions. Presently, the center of populations of CLas characterized by favorable living conditions is situated in Zunyi City, Guizhou Province. Nevertheless, a projected trend indicates a shift toward the northeast, particularly targeting Tongren City in the foreseeable future. IMPORTANCE This study offers significant insights into the distribution and genetic diversity of three types of prophages associated with Candidatus Liberibacter asiaticus (CLas) in China. Our predictions underscore the implications of climate change on the future distribution of CLas. These findings contribute to a better understanding of Huanglongbing management strategies and can facilitate the development of effective measures to control the spread of this devastating disease within the citrus industry.
Collapse
Affiliation(s)
- Ping You
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jun Zhou
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Amir Muhammad Bilal
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Minli Bao
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Jin Yang
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Shujie Fang
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xiang Li
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Long Yi
- School of Life Science, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Chen Y, Gao Y, Zhang Z, Zhan A. Multi-Omics Inform Invasion Risks Under Global Climate Change. GLOBAL CHANGE BIOLOGY 2024; 30:e17588. [PMID: 39548719 DOI: 10.1111/gcb.17588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Global climate change is exacerbating biological invasions; however, the roles of genomic and epigenomic variations and their interactions in future climate adaptation remain underexplored. Using the model invasive ascidian Botryllus schlosseri across the Northern Hemisphere, we investigated genomic and epigenomic responses to future climates and developed a framework to assess future invasion risks. We employed generalized dissimilarity modeling and gradient forest analyses to assess genomic and epigenomic offsets under climate change. Our results showed that populations with genomic maladaptation did not geographically overlap with those experiencing epigenomic maladaptation, suggesting that genomic and epigenomic variations play complementary roles in adaptation to future climate conditions. By integrating genomic and epigenomic offsets into the genome-epigenomic index, we predicted that populations with lower index values were less maladapted, indicating a higher risk of future invasions. Native populations exhibited lower offsets than invasive populations, suggesting greater adaptive potentials and higher invasion risks under future climate change scenarios. These results highlight the importance of incorporating multi-omics data into predictive models to study future climate (mal)adaptation and assess invasion risks under global climate change.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Chhina AK, Abhari N, Mooers A, Lewthwaite JMM. Linking the spatial and genomic structure of adaptive potential for conservation management: a review. Genome 2024; 67:403-423. [PMID: 39083766 DOI: 10.1139/gen-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.
Collapse
Affiliation(s)
- Avneet K Chhina
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Niloufar Abhari
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Arne Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jayme M M Lewthwaite
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Zhu X, Wang J, Chen H, Kang M. Lineage Differentiation and Genomic Vulnerability in a Relict Tree From Subtropical Forests. Evol Appl 2024; 17:e70033. [PMID: 39494192 PMCID: PMC11530410 DOI: 10.1111/eva.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The subtropical forests of East Asia are renowned for their high plant diversity, particularly the abundance of ancient relict species. However, both the evolutionary history of these relict species and their capacity for resilience in the face of impending climatic changes remain unclear. Using whole-genome resequencing data, we investigated the lineage differentiation and demographic history of the relict and endangered tree, Bretschneidera sinensis (Akaniaceae). We employed a combination of population genomic and landscape genomic approaches to evaluate variation in mutation load and genomic offset, aiming to predict how different populations may respond to climate change. Our analysis revealed a profound genomic divergence between the East and West lineages, likely as the result of recurrent bottlenecks due to climatic fluctuations during the glacial period. Furthermore, we identified several genes potentially linked to growth characteristics and hypoxia response that had been subjected to positive selection during the lineage differentiation. Our assessment of genomic vulnerability uncovered a significantly higher mutation load and genomic offset in the edge populations of B. sinensis compared to their core counterparts. This implies that the edge populations are likely to experience the most significant impact from the predicted climate conditions. Overall, our research sheds light on the historical lineage differentiation and contemporary genomic vulnerability of B. sinensis. Broadening our understanding of the speciation history and future resilience of relict and endangered species such as B. sinensis, is crucial in developing effective conservation strategies in anticipation of future climatic changes.
Collapse
Affiliation(s)
- Xian‐Liang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Hong‐Feng Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
5
|
Muniz AC, de Lemos-Filho JP, Lovato MB. Non-adaptedness and vulnerability to climate change threaten Plathymenia trees (Fabaceae) from the Cerrado and Atlantic Forest. Sci Rep 2024; 14:25611. [PMID: 39465275 PMCID: PMC11514217 DOI: 10.1038/s41598-024-75664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Climate change is increasing species extinction risk. The ability of a species to cope with climate change can be quantified by projecting distribution models and by estimating the risk of non-adaptedness using genomic data. The Cerrado and the Atlantic Forest in Tropical South America are increasingly threatened by habitat loss and anthropogenic climate change. This work aims to evaluate the ecological and genomic vulnerability of Plathymenia taxa and its lineages, P. reticulata, a Cerrado species, and P. foliolosa, an Atlantic Forest species, to determine their current and future habitat suitability and the mismatch between current local adaptation with the expected climate changes. The species distribution models predicted a high range loss for the Plathymenia lineages. The genotype-environment association analyses showed that the Plathymenia lineages have populations adapted to different precipitation and temperature seasonality regimes. The genomic offset analyses predict a mismatch between local adaptations and future climate for the Plathymenia indicating a high risk of non-adaptedness, especially in the pessimistic scenario. Our results show an elevated extinction risk of the species due to climate change. We suggest reevaluating the extinction risk and management of the Plathymenia species separately based on their differences in vulnerability to climate change.
Collapse
Affiliation(s)
- André Carneiro Muniz
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG, 31270-901, Brazil.
| | - José Pires de Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria Bernadete Lovato
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
6
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Han Z, Chen Y, Dai X, Yu C, Cheng J, Li J, Mao K. The revelation of genomic breed composition using target capture sequencing: a case of Taxodium. FORESTRY RESEARCH 2024; 4:e034. [PMID: 39524421 PMCID: PMC11524225 DOI: 10.48130/forres-0024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024]
Abstract
Taxodium plants have good flood tolerance and thus were introduced into China from North America in the early 1900s. The subsequent decades of cross-breeding experiments within Taxodium have produced many new hybrid cultivars in China while also creating confusion in the genetic background of Taxodium plants. In the present study, target capture sequencing-derived SNP markers were used to reveal the genomic composition of different species and cultivars of Taxodium. The results unraveled the phylogenetic relationship within Taxodium and suggested the possibility of recent interspecific natural hybridization events. The introduced (Chinese) population is genetically similar to the native (North American) population, thus providing genetic evidence for historical introductions of Taxodium. Hybrid categories of different cultivars of Taxodium hybrid 'Zhongshanshan' were further identified, and their differences in parentage were revealed. Collectively, the findings provide evidence for understanding the genetics and hybridization of Taxodium and shed light on the future breeding and cultivation of cultivars with great ecological and economic potential.
Collapse
Affiliation(s)
- Zhitong Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yangkang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xiaogang Dai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, PR China
| | - Jiajin Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| |
Collapse
|
8
|
Peck LD, Sork VL. Can DNA methylation shape climate response in trees? TRENDS IN PLANT SCIENCE 2024; 29:1089-1102. [PMID: 38853096 DOI: 10.1016/j.tplants.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Woody plants create the ecosystems they occupy and shape their biodiversity. Today's rapidly warming climate threatens these long-lived species by creating new environments in which existing populations become maladapted. Plants show enormous phenotypic diversity in response to environmental change, which can be caused by genotype or epigenetic mechanisms that influence the expression of the underlying DNA sequence. Whether epigenetics can affect ecologically important traits in trees is an important and controversial question. We explore the evidence that DNA methylation can affect gene expression, both directly and indirectly via its interaction with transposable elements (TEs), and subsequently shapes phenotypic variation in natural tree populations. Furthermore, we consider the potential of epigenetic approaches to assist in their conservation management strategies.
Collapse
Affiliation(s)
- Lily D Peck
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
9
|
Li H, Peng Y, Wu C, Li Z, Zou L, Mao K, Ping J, Buck R, Monahan S, Sethuraman A, Xiao Y. Assessing genome-wide adaptations associated with range expansion in the pink rice borer, Sesamia inferens. INSECT SCIENCE 2024; 31:1617-1630. [PMID: 38204333 DOI: 10.1111/1744-7917.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Understanding the genetic basis of adaptive evolution following habitat expansion can have important implications for pest management. The pink rice borer (PRB), Sesamia inferens (Walker), is a destructive pest of rice that was historically restricted to regions south of 34° N latitude in China. However, with changes in global climate and farming practices, the distribution of this moth has progressively expanded, encompassing most regions in North China. Here, 3 highly differentiated subpopulations were discovered using high-quality single-nucleotide polymorphism and structural variant datasets across China, corresponding to northern, southern China regions, and the Yunnan-Guizhou Plateau, with significant patterns of isolation by geographic and environmental distances. Our estimates of evolutionary history indicate asymmetric migration with varying population sizes across the 3 subpopulations. Selective sweep analyses estimated strong selection at insect cuticle glycine-rich cuticular protein genes which are associated with enhanced desiccation adaptability in the northern group, and at the histone-lysine-N-methyltransferase gene associated with range expansion and local adaptation in the Shandong population. Our findings have significant implications for the development of effective strategies to control this pest.
Collapse
Affiliation(s)
- Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Zhimin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Luming Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Kaikai Mao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Junfen Ping
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Ryan Buck
- Department of Biology, San Diego State University, CA, USA
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Scott Monahan
- Department of Biology, San Diego State University, CA, USA
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
10
|
Metzger DCH, Earhart ML, Schulte PM. Genomic and Epigenomic Influences on Resilience across Scales: Lessons from the Responses of Fish to Environmental Stressors. Integr Comp Biol 2024; 64:853-866. [PMID: 38632046 PMCID: PMC11445785 DOI: 10.1093/icb/icae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the factors that influence the resilience of biological systems to environmental change is a pressing concern in the face of increasing human impacts on ecosystems and the organisms that inhabit them. However, most considerations of biological resilience have focused at the community and ecosystem levels, whereas here we discuss how including consideration of processes occurring at lower levels of biological organization may provide insights into factors that influence resilience at higher levels. Specifically, we explore how processes at the genomic and epigenomic levels may cascade up to influence resilience at higher levels. We ask how the concepts of "resistance," or the capacity of a system to minimize change in response to a disturbance, and "recovery," or the ability of a system to return to its original state following a disturbance and avoid tipping points and resulting regime shifts, map to these lower levels of biological organization. Overall, we suggest that substantial changes at these lower levels may be required to support resilience at higher levels, using selected examples of genomic and epigenomic responses of fish to climate-change-related stressors such as high temperature and hypoxia at the levels of the genome, epigenome, and organism.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
11
|
Gautier M, Micol T, Camus L, Moazami-Goudarzi K, Naves M, Guéret E, Engelen S, Lemainque A, Colas F, Flori L, Druet T. Genomic Reconstruction of the Successful Establishment of a Feralized Bovine Population on the Subantarctic Island of Amsterdam. Mol Biol Evol 2024; 41:msae121. [PMID: 38889245 PMCID: PMC11339654 DOI: 10.1093/molbev/msae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The feral cattle of the subantarctic island of Amsterdam provide an outstanding case study of a large mammalian population that was established by a handful of founders and thrived within a few generations in a seemingly inhospitable environment. Here, we investigated the genetic history and composition of this population using genotyping and sequencing data. Our inference showed an intense but brief founding bottleneck around the late 19th century and revealed contributions from European taurine and Indian Ocean Zebu in the founder ancestry. Comparative analysis of whole-genome sequences further revealed a moderate reduction in genetic diversity despite high levels of inbreeding. The brief and intense bottleneck was associated with high levels of drift, a flattening of the site frequency spectrum and a slight relaxation of purifying selection on mildly deleterious variants. Unlike some populations that have experienced prolonged reductions in effective population size, we did not observe any significant purging of highly deleterious variants. Interestingly, the population's success in the harsh environment can be attributed to preadaptation from their European taurine ancestry, suggesting no strong bioclimatic challenge, and also contradicting evidence for insular dwarfism. Genome scan for footprints of selection uncovered a majority of candidate genes related to nervous system function, likely reflecting rapid feralization driven by behavioral changes and complex social restructuring. The Amsterdam Island cattle offers valuable insights into rapid population establishment, feralization, and genetic adaptation in challenging environments. It also sheds light on the unique genetic legacies of feral populations, raising ethical questions according to conservation efforts.
Collapse
Affiliation(s)
- Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, L’institut Agro, Université de Montpellier, Montpellier, France
| | | | - Louise Camus
- CBGP, INRAE, CIRAD, IRD, L’institut Agro, Université de Montpellier, Montpellier, France
| | | | | | - Elise Guéret
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Stefan Engelen
- Retired, CEA, Institut de biologie François-Jacob, Genoscope, Université Paris-Saclay, Evry, France
| | - Arnaud Lemainque
- Retired, CEA, Institut de biologie François-Jacob, Genoscope, Université Paris-Saclay, Evry, France
| | - François Colas
- Retired, Saint-Paul and Amsterdam District, Terres Australes et Antarctiques Françaises, France
| | - Laurence Flori
- SELMET, INRAE, CIRAD, L’institut Agro, Université de Montpellier, Montpellier, France
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Aitken SN, Jordan R, Tumas HR. Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:707-736. [PMID: 38594931 DOI: 10.1146/annurev-arplant-070523-044239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
Collapse
Affiliation(s)
- Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| | | | - Hayley R Tumas
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| |
Collapse
|
13
|
Izaguirre-Toriz V, Aguirre-Liguori JA, Latorre-Cárdenas MC, Arima EY, González-Rodríguez A. Local adaptation of Pinus leiophylla under climate and land use change models in the Avocado Belt of Michoacán. Mol Ecol 2024; 33:e17424. [PMID: 38813851 DOI: 10.1111/mec.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Climate change and land use change are two main drivers of global biodiversity decline, decreasing the genetic diversity that populations harbour and altering patterns of local adaptation. Landscape genomics allows measuring the effect of these anthropogenic disturbances on the adaptation of populations. However, both factors have rarely been considered simultaneously. Based on a set of 3660 SNPs from which 130 were identified as outliers by a genome-environment association analysis (LFMM), we modelled the spatial turnover of allele frequencies in 19 localities of Pinus leiophylla across the Avocado Belt in Michoacán state, Mexico. Then, we evaluated the effect of climate change and land use change scenarios, in addition to evaluating assisted gene flow strategies and connectivity metrics across the landscape to identify priority conservation areas for the species. We found that localities in the centre-east of the Avocado Belt would be more vulnerable to climate change, while localities in the western area are more threatened by land conversion to avocado orchards. Assisted gene flow actions could aid in mitigating both threats. Connectivity patterns among forest patches will also be modified by future habitat loss, with central and eastern parts of the Avocado Belt maintaining the highest connectivity. These results suggest that areas with the highest priority for conservation are in the eastern part of the Avocado Belt, including the Monarch Butterfly Biosphere Reserve. This work is useful as a framework that incorporates distinct layers of information to provide a more robust representation of the response of tree populations to anthropogenic disturbances.
Collapse
Affiliation(s)
- Vanessa Izaguirre-Toriz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria), Coyoacán, Mexico
| | - Jonás A Aguirre-Liguori
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - María Camila Latorre-Cárdenas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Eugenio Y Arima
- Department of Geography and the Environment, University of Texas at Austin, Austin, Texas, USA
| | - Antonio González-Rodríguez
- Laboratorio Nacional de Innovación Ecotecnológica Para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM Campus Morelia, Morelia, Mexico
| |
Collapse
|
14
|
Heckman RW, Pereira CG, Aspinwall MJ, Juenger TE. Physiological Responses of C 4 Perennial Bioenergy Grasses to Climate Change: Causes, Consequences, and Constraints. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:737-769. [PMID: 38424068 DOI: 10.1146/annurev-arplant-070623-093952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
C4 perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C4 perennial bioenergy grasses are predicted to thrive under climate change-C4 photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO2], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C4 perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C4 physiology with recent advances in crop improvement, especially genomic selection.
Collapse
Affiliation(s)
- Robert W Heckman
- Rocky Mountain Research Station, US Department of Agriculture Forest Service, Cedar City, Utah, USA;
| | - Caio Guilherme Pereira
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
15
|
Sexton JP, Clemens M, Bell N, Hall J, Fyfe V, Hoffmann AA. Patterns and effects of gene flow on adaptation across spatial scales: implications for management. J Evol Biol 2024; 37:732-745. [PMID: 38888218 DOI: 10.1093/jeb/voae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Gene flow can have rapid effects on adaptation and is an important evolutionary tool available when undertaking biological conservation and restoration. This tool is underused partly because of the perceived risk of outbreeding depression and loss of mean fitness when different populations are crossed. In this article, we briefly review some theory and empirical findings on how genetic variation is distributed across species ranges, describe known patterns of gene flow in nature with respect to environmental gradients, and highlight the effects of gene flow on adaptation in small or stressed populations in challenging environments (e.g., at species range limits). We then present a case study involving crosses at varying spatial scales among mountain populations of a trigger plant (Stylidium armeria: Stylidiaceae) in the Australian Alps to highlight how some issues around gene flow effects can be evaluated. We found evidence of outbreeding depression in seed production at greater geographic distances. Nevertheless, we found no evidence of maladaptive gene flow effects in likelihood of germination, plant performance (size), and performance variance, suggesting that gene flow at all spatial scales produces offspring with high adaptive potential. This case study demonstrates a path to evaluating how increasing sources of gene flow in managed wild and restored populations could identify some offspring with high fitness that could bolster the ability of populations to adapt to future environmental changes. We suggest further ways in which managers and researchers can act to understand and consider adaptive gene flow in natural and conservation contexts under rapidly changing conditions.
Collapse
Affiliation(s)
- Jason P Sexton
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Molly Clemens
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph Hall
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Verity Fyfe
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Camus L, Gautier M, Boitard S. Predicting species invasiveness with genomic data: Is genomic offset related to establishment probability? Evol Appl 2024; 17:e13709. [PMID: 38884022 PMCID: PMC11178484 DOI: 10.1111/eva.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/18/2024] Open
Abstract
Predicting the risk of establishment and spread of populations outside their native range represents a major challenge in evolutionary biology. Various methods have recently been developed to estimate population (mal)adaptation to a new environment with genomic data via so-called Genomic Offset (GO) statistics. These approaches are particularly promising for studying invasive species but have still rarely been used in this context. Here, we evaluated the relationship between GO and the establishment probability of a population in a new environment using both in silico and empirical data. First, we designed invasion simulations to evaluate the ability to predict establishment probability of two GO computation methods (Geometric GO and Gradient Forest) under several conditions. Additionally, we aimed to evaluate the interpretability of absolute Geometric GO values, which theoretically represent the adaptive genetic distance between populations from distinct environments. Second, utilizing public empirical data from the crop pest species Bactrocera tryoni, a fruit fly native from Northern Australia, we computed GO between "source" populations and a diverse range of locations within invaded areas. This practical application of GO within the context of a biological invasion underscores its potential in providing insights and guiding recommendations for future invasion risk assessment. Overall, our results suggest that GO statistics represent good predictors of the establishment probability and may thus inform invasion risk, although the influence of several factors on prediction performance (e.g., propagule pressure or admixture) will need further investigation.
Collapse
Affiliation(s)
- Louise Camus
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| | - Simon Boitard
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| |
Collapse
|
17
|
Sopniewski J, Catullo RA. Estimates of heterozygosity from single nucleotide polymorphism markers are context-dependent and often wrong. Mol Ecol Resour 2024; 24:e13947. [PMID: 38433491 DOI: 10.1111/1755-0998.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Genetic diversity is frequently described using heterozygosity, particularly in a conservation context. Often, it is estimated using single nucleotide polymorphisms (SNPs); however, it has been shown that heterozygosity values calculated from SNPs can be biased by both study design and filtering parameters. Though solutions have been proposed to address these issues, our own work has found them to be inadequate in some circumstances. Here, we aimed to improve the reliability and comparability of heterozygosity estimates, specifically by investigating how sample size and missing data thresholds influenced the calculation of autosomal heterozygosity (heterozygosity calculated from across the genome, i.e. fixed and variable sites). We also explored how the standard practice of tri- and tetra-allelic site exclusion could bias heterozygosity estimates and influence eventual conclusions relating to genetic diversity. Across three distinct taxa (a frog, Litoria rubella; a tree, Eucalyptus microcarpa; and a grasshopper, Keyacris scurra), we found heterozygosity estimates to be meaningfully affected by sample size and missing data thresholds, partly due to the exclusion of tri- and tetra-allelic sites. These biases were inconsistent both between species and populations, with more diverse populations tending to have their estimates more severely affected, thus having potential to dramatically alter interpretations of genetic diversity. We propose a modified framework for calculating heterozygosity that reduces bias and improves the utility of heterozygosity as a measure of genetic diversity, whilst also highlighting the need for existing population genetic pipelines to be adjusted such that tri- and tetra-allelic sites be included in calculations.
Collapse
Affiliation(s)
- Jarrod Sopniewski
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Renee A Catullo
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
18
|
Chen Y, Gao Y, Huang X, Li S, Zhang Z, Zhan A. Incorporating adaptive genomic variation into predictive models for invasion risk assessment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100299. [PMID: 37701243 PMCID: PMC10494315 DOI: 10.1016/j.ese.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Global climate change is expected to accelerate biological invasions, necessitating accurate risk forecasting and management strategies. However, current invasion risk assessments often overlook adaptive genomic variation, which plays a significant role in the persistence and expansion of invasive populations. Here we used Molgula manhattensis, a highly invasive ascidian, as a model to assess its invasion risks along Chinese coasts under climate change. Through population genomics analyses, we identified two genetic clusters, the north and south clusters, based on geographic distributions. To predict invasion risks, we employed the gradient forest and species distribution models to calculate genomic offset and species habitat suitability, respectively. These approaches yielded distinct predictions: the gradient forest model suggested a greater genomic offset to future climatic conditions for the north cluster (i.e., lower invasion risks), while the species distribution model indicated higher future habitat suitability for the same cluster (i.e, higher invasion risks). By integrating these models, we found that the south cluster exhibited minor genome-niche disruptions in the future, indicating higher invasion risks. Our study highlights the complementary roles of genomic offset and habitat suitability in assessing invasion risks under climate change. Moreover, incorporating adaptive genomic variation into predictive models can significantly enhance future invasion risk predictions and enable effective management strategies for biological invasions in the future.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yangchun Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
20
|
Abstract
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Joshua A Thia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
21
|
Andersson L, Bekkevold D, Berg F, Farrell ED, Felkel S, Ferreira MS, Fuentes-Pardo AP, Goodall J, Pettersson M. How Fish Population Genomics Can Promote Sustainable Fisheries: A Road Map. Annu Rev Anim Biosci 2024; 12:1-20. [PMID: 37906837 DOI: 10.1146/annurev-animal-021122-102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Edward D Farrell
- Killybegs Fishermen's Organisation, Killybegs, County Donegal, Ireland
| | - Sabine Felkel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Angela P Fuentes-Pardo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
22
|
Terasaki Hart DE, Wang IJ. Genomic architecture controls multivariate adaptation to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17179. [PMID: 38403891 DOI: 10.1111/gcb.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
As climate change advances, environmental gradients may decouple, generating novel multivariate environments that stress wild populations. A commonly invoked mechanism of evolutionary rescue is adaptive gene flow tracking climate shifts, but gene flow from populations inhabiting similar conditions on one environmental axis could cause maladaptive introgression when populations are adapted to different environmental variables that do not shift together. Genomic architecture can play an important role in determining the effectiveness and relative magnitudes of adaptive gene flow and in situ adaptation. This may have direct consequences for how species respond to climate change but is often overlooked. Here, we simulated microevolutionary responses to environmental change under scenarios defined by variation in the polygenicity, linkage, and genetic redundancy of two independent traits, one of which is adapted to a gradient that shifts under climate change. We used these simulations to examine how genomic architecture influences evolutionary outcomes under climate change. We found that climate-tracking (up-gradient) gene flow, though present in all scenarios, was strongly constrained under scenarios of lower linkage and higher polygenicity and redundancy, suggesting in situ adaptation as the predominant mechanism of evolutionary rescue under these conditions. We also found that high polygenicity caused increased maladaptation and demographic decline, a concerning result given that many climate-adapted traits may be polygenic. Finally, in scenarios with high redundancy, we observed increased adaptive capacity. This finding adds to the growing recognition of the importance of redundancy in mediating in situ adaptive capacity and suggests opportunities for better understanding the climatic vulnerability of real populations.
Collapse
Affiliation(s)
- Drew E Terasaki Hart
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- The Nature Conservancy, Arlington, Virginia, USA
- CSIRO Environment, Brisbane, Queensland, Australia
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
23
|
Xiang X, Zhou X, Zi H, Wei H, Cao D, Zhang Y, Zhang L, Hu J. Populus cathayana genome and population resequencing provide insights into its evolution and adaptation. HORTICULTURE RESEARCH 2024; 11:uhad255. [PMID: 38274646 PMCID: PMC10809908 DOI: 10.1093/hr/uhad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Populus cathayana Rehder, an indigenous poplar species of ecological and economic importance, is widely distributed in a high-elevation range from southwest to northeast China. Further development of this species as a sustainable poplar resource has been hindered by a lack of genome information the at the population level. Here, we produced a chromosome-level genome assembly of P. cathayana, covering 406.55 Mb (scaffold N50 = 20.86 Mb) and consisting of 19 chromosomes, with 35 977 protein-coding genes. Subsequently, we made a genomic variation atlas of 438 wild individuals covering 36 representative geographic areas of P. cathayana, which were divided into four geographic groups. It was inferred that the Northwest China regions served as the genetic diversity centers and a population bottleneck happened during the history of P. cathayana. By genotype-environment association analysis, 947 environment-association loci were significantly associated with temperature, solar radiation, precipitation, and altitude variables. We identified local adaptation genes involved in DNA repair and UV radiation response, among which UVR8, HY5, and CUL4 had key roles in high-altitude adaptation of P. cathayana. Predictions of adaptive potential under future climate conditions showed that P. cathayana populations in areas with drastic climate change were anticipated to have greater maladaptation risk. These results provide comprehensive insights for understanding wild poplar evolution and optimizing adaptive potential in molecular breeding.
Collapse
Affiliation(s)
- Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hailing Zi
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Hantian Wei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yahong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
24
|
Hoste A, Capblancq T, Broquet T, Denoyelle L, Perrier C, Buzan E, Šprem N, Corlatti L, Crestanello B, Hauffe HC, Pellissier L, Yannic G. Projection of current and future distribution of adaptive genetic units in an alpine ungulate. Heredity (Edinb) 2024; 132:54-66. [PMID: 38082151 PMCID: PMC10798982 DOI: 10.1038/s41437-023-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 01/21/2024] Open
Abstract
Climate projections predict major changes in alpine environments by the end of the 21st century. To avoid climate-induced maladaptation and extinction, many animal populations will either need to move to more suitable habitats or adapt in situ to novel conditions. Since populations of a species exhibit genetic variation related to local adaptation, it is important to incorporate this variation into predictive models to help assess the ability of the species to survive climate change. Here, we evaluate how the adaptive genetic variation of a mountain ungulate-the Northern chamois (Rupicapra rupicapra)-could be impacted by future global warming. Based on genotype-environment association analyses of 429 chamois using a ddRAD sequencing approach, we identified genetic variation associated with climatic gradients across the European Alps. We then delineated adaptive genetic units and projected the optimal distribution of these adaptive groups in the future. Our results suggest the presence of local adaptation to climate in Northern chamois with similar genetic adaptive responses in geographically distant but climatically similar populations. Furthermore, our results predict that future climatic changes will modify the Northern chamois adaptive landscape considerably, with various degrees of maladaptation risk.
Collapse
Affiliation(s)
- Amélie Hoste
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Thibaut Capblancq
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Thomas Broquet
- CNRS, Sorbonne Université, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Charles Perrier
- UMR CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, Montpellier, France
| | - Elena Buzan
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, 3320, Velenje, Slovenia
| | - Nikica Šprem
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000, Zagreb, Croatia
| | - Luca Corlatti
- Stelvio National Park - ERSAF Lombardia, Via De Simoni 42, 23032, Bormio, Italy
- Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Barbara Crestanello
- Conservation Genomics Unit, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 S, Michele all'Adige, TN, Italy
| | - Heidi Christine Hauffe
- Conservation Genomics Unit, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 S, Michele all'Adige, TN, Italy
| | - Loïc Pellissier
- Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zrich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Glenn Yannic
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
25
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
26
|
Nimbs MJ, Champion C, Lobos SE, Malcolm HA, Miller AD, Seinor K, Smith SD, Knott N, Wheeler D, Coleman MA. Genomic analyses indicate resilience of a commercially and culturally important marine gastropod snail to climate change. PeerJ 2023; 11:e16498. [PMID: 38025735 PMCID: PMC10676721 DOI: 10.7717/peerj.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Genomic vulnerability analyses are being increasingly used to assess the adaptability of species to climate change and provide an opportunity for proactive management of harvested marine species in changing oceans. Southeastern Australia is a climate change hotspot where many marine species are shifting poleward. The turban snail, Turbo militaris is a commercially and culturally harvested marine gastropod snail from eastern Australia. The species has exhibited a climate-driven poleward range shift over the last two decades presenting an ongoing challenge for sustainable fisheries management. We investigate the impact of future climate change on T. militaris using genotype-by-sequencing to project patterns of gene flow and local adaptation across its range under climate change scenarios. A single admixed, and potentially panmictic, demographic unit was revealed with no evidence of genetic subdivision across the species range. Significant genotype associations with heterogeneous habitat features were observed, including associations with sea surface temperature, ocean currents, and nutrients, indicating possible adaptive genetic differentiation. These findings suggest that standing genetic variation may be available for selection to counter future environmental change, assisted by widespread gene flow, high fecundity and short generation time in this species. We discuss the findings of this study in the content of future fisheries management and conservation.
Collapse
Affiliation(s)
- Matt J. Nimbs
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Simon E. Lobos
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Hamish A. Malcolm
- NSW Department of Primary Industries, Fisheries Research, Coffs Harbour, NSW, Australia
| | - Adam D. Miller
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Kate Seinor
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Stephen D.A. Smith
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Aquamarine Australia, Mullaway, NSW, Australia
| | - Nathan Knott
- NSW Department of Primary Industries, Fisheries Research, Huskisson, NSW, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Melinda A. Coleman
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| |
Collapse
|
27
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Feng S, Xi E, Wan W, Ru D. Genomic signals of local adaptation in Picea crassifolia. BMC PLANT BIOLOGY 2023; 23:534. [PMID: 37919677 PMCID: PMC10623705 DOI: 10.1186/s12870-023-04539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Global climate change poses a grave threat to biodiversity and underscores the importance of identifying the genes and corresponding environmental factors involved in the adaptation of tree species for the purposes of conservation and forestry. This holds particularly true for spruce species, given their pivotal role as key constituents of the montane, boreal, and sub-alpine forests in the Northern Hemisphere. RESULTS Here, we used transcriptomes, species occurrence records, and environmental data to investigate the spatial genetic distribution of and the climate-associated genetic variation in Picea crassifolia. Our comprehensive analysis employing ADMIXTURE, principal component analysis (PCA) and phylogenetic methodologies showed that the species has a complex population structure with obvious differentiation among populations in different regions. Concurrently, our investigations into isolation by distance (IBD), isolation by environment (IBE), and niche differentiation among populations collectively suggests that local adaptations are driven by environmental heterogeneity. By integrating population genomics and environmental data using redundancy analysis (RDA), we identified a set of climate-associated single-nucleotide polymorphisms (SNPs) and showed that environmental isolation had a more significant impact than geographic isolation in promoting genetic differentiation. We also found that the candidate genes associated with altitude, temperature seasonality (Bio4) and precipitation in the wettest month (Bio13) may be useful for forest tree breeding. CONCLUSIONS Our findings deepen our understanding of how species respond to climate change and highlight the importance of integrating genomic and environmental data in untangling local adaptations.
Collapse
Affiliation(s)
- Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, People's Republic of China.
| | - Erning Xi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, People's Republic of China
| | - Wei Wan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, People's Republic of China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
29
|
Chambers EA, Bishop AP, Wang IJ. Individual-based landscape genomics for conservation: An analysis pipeline. Mol Ecol Resour 2023. [PMID: 37883295 DOI: 10.1111/1755-0998.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Landscape genomics can harness environmental and genetic data to inform conservation decisions by providing essential insights into how landscapes shape biodiversity. The massive increase in genetic data afforded by the genomic era provides exceptional resolution for answering critical conservation genetics questions. The accessibility of genomic data for non-model systems has also enabled a shift away from population-based sampling to individual-based sampling, which now provides accurate and robust estimates of genetic variation that can be used to examine the spatial structure of genomic diversity, population connectivity and the nature of environmental adaptation. Nevertheless, the adoption of individual-based sampling in conservation genetics has been slowed due, in large part, to concerns over how to apply methods developed for population-based sampling to individual-based sampling schemes. Here, we discuss the benefits of individual-based sampling for conservation and describe how landscape genomic methods, paired with individual-based sampling, can answer fundamental conservation questions. We have curated key landscape genomic methods into a user-friendly, open-source workflow, which we provide as a new R package, A Landscape Genomics Analysis Toolkit in R (algatr). The algatr package includes novel added functionality for all of the included methods and extensive vignettes designed with the primary goal of making landscape genomic approaches more accessible and explicitly applicable to conservation biology.
Collapse
Affiliation(s)
- E Anne Chambers
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Anusha P Bishop
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
30
|
Wang TR, Meng HH, Wang N, Zheng SS, Jiang Y, Lin DQ, Song YG, Kozlowski G. Adaptive divergence and genetic vulnerability of relict species under climate change: a case study of Pterocarya macroptera. ANNALS OF BOTANY 2023; 132:241-254. [PMID: 37409981 PMCID: PMC10583204 DOI: 10.1093/aob/mcad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS Understanding adaptive genetic variation and whether it can keep pace with predicted future climate change is critical in assessing the genetic vulnerability of species and developing conservation management strategies. The lack of information on adaptive genetic variation in relict species carrying abundant genetic resources hinders the assessment of genetic vulnerability. Using a landscape genomics approach, this study aimed to determine how adaptive genetic variation shapes population divergence and to predict the adaptive potential of Pterocarya macroptera (a vulnerable relict species in China) under future climate scenarios. METHODS We applied restriction site-associated DNA sequencing (RAD-seq) to obtain 8244 single-nucleotide polymorphisms (SNPs) from 160 individuals across 28 populations. We examined the pattern of genetic diversity and divergence, and then identified outliers by genetic differentiation (FST) and genotype-environment association (GEA) methods. We further dissected the effect of geographical/environmental gradients on genetic variation. Finally, we predicted genetic vulnerability and adaptive risk under future climate scenarios. KEY RESULTS We identified three genetic lineages within P. macroptera: the Qinling-Daba-Tianmu Mountains (QDT), Western Sichuan (WS) and Northwest Yunnan (NWY) lineages, which showed significant signals of isolation by distance (IBD) and isolation by environment (IBE). IBD and IBE explained 3.7-5.7 and 8.6-12.8 % of the genetic structure, respectively. The identified GEA SNP-related genes were involved in chemical defence and gene regulation and may exhibit higher genetic variation to adapt to the environment. Gradient forest analysis revealed that the genetic variation was mainly shaped by temperature-related variables, indicating its adaptation to local thermal environments. A limited adaptive potential was suggested by the high levels of genetic vulnerability in marginal populations. CONCLUSIONS Environmental gradient mainly shaped the population differentiation of P. macroptera. Marginal populations may be at high risk of extinction, and thus proactive management measures, such as assisted gene flow, are required to ensure the survival of these populations.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Nian Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, 271018, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yun Jiang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Duo-Qing Lin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, CH-1700, Switzerland
- Natural History Museum Fribourg, Fribourg, CH-1700, Switzerland
| |
Collapse
|
31
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
32
|
Lake TA, Briscoe Runquist RD, Flagel LE, Moeller DA. Chronosequence of invasion reveals minimal losses of population genomic diversity, niche expansion, and trait divergence in the polyploid, leafy spurge. Evol Appl 2023; 16:1680-1696. [PMID: 38020872 PMCID: PMC10660801 DOI: 10.1111/eva.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 08/25/2023] [Indexed: 12/01/2023] Open
Abstract
Rapid evolution may play an important role in the range expansion of invasive species and modify forecasts of invasion, which are the backbone of land management strategies. However, losses of genetic variation associated with colonization bottlenecks may constrain trait and niche divergence at leading range edges, thereby impacting management decisions that anticipate future range expansion. The spatial and temporal scales over which adaptation contributes to invasion dynamics remain unresolved. We leveraged detailed records of the ~130-year invasion history of the invasive polyploid plant, leafy spurge (Euphorbia virgata), across ~500 km in Minnesota, U.S.A. We examined the consequences of range expansion for population genomic diversity, niche breadth, and the evolution of germination behavior. Using genotyping-by-sequencing, we found some population structure in the range core, where introduction occurred, but panmixia among all other populations. Range expansion was accompanied by only modest losses in sequence diversity, with small, isolated populations at the leading edge harboring similar levels of diversity to those in the range core. The climatic niche expanded during most of the range expansion, and the niche of the range core was largely non-overlapping with the invasion front. Ecological niche models indicated that mean temperature of the warmest quarter was the strongest determinant of habitat suitability and that populations at the leading edge had the lowest habitat suitability. Guided by these findings, we tested for rapid evolution in germination behavior over the time course of range expansion using a common garden experiment and temperature manipulations. Germination behavior diverged from the early to late phases of the invasion, with populations from later phases having higher dormancy at lower temperatures. Our results suggest that trait evolution may have contributed to niche expansion during invasion and that distribution models, which inform future management planning, may underestimate invasion potential without accounting for evolution.
Collapse
Affiliation(s)
- Thomas A. Lake
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Lex E. Flagel
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- GencoveLong Island CityNew YorkUSA
| | - David A. Moeller
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
33
|
Jones D, Fornarelli R, Derbyshire M, Gibberd M, Barker K, Hane J. The pursuit of genetic gain in agricultural crops through the application of machine-learning to genomic prediction. Front Genet 2023; 14:1186782. [PMID: 37614817 PMCID: PMC10443705 DOI: 10.3389/fgene.2023.1186782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Current practice in agriculture applies genomic prediction to assist crop breeding in the analysis of genetic marker data. Genomic selection methods typically use linear mixed models, but using machine-learning may provide further potential for improved selection accuracy, or may provide additional information. Here we describe SelectML, an automated pipeline for testing and comparing the performance of a range of linear mixed model and machine-learning-based genomic selection methods. We demonstrate the use of SelectML on an in silico-generated marker dataset which simulated a randomly-sampled (mixed) and an unevenly-sampled (unbalanced) population, comparing the relative performance of various methods included in SelectML on the two datasets. Although machine-learning based methods performed similarly overall to linear mixed models, they performed worse on the mixed dataset and marginally better on the unbalanced dataset, being more affected than linear mixed models by the imposed sampling bias. SelectML can assist in the training, comparison, and selection of genomic selection models, and is available from https://github.com/darcyabjones/selectml.
Collapse
Affiliation(s)
- Darcy Jones
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Roberta Fornarelli
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
- Curtin Institute for Computation, Curtin University, Perth, WA, Australia
| | - Mark Derbyshire
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Mark Gibberd
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Kathryn Barker
- Curtin Institute for Computation, Curtin University, Perth, WA, Australia
| | - James Hane
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| |
Collapse
|
34
|
Forester BR, Day CC, Ruegg K, Landguth EL. Evolutionary potential mitigates extinction risk under climate change in the endangered southwestern willow flycatcher. J Hered 2023; 114:341-353. [PMID: 36738446 PMCID: PMC10287148 DOI: 10.1093/jhered/esac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/09/2022] [Indexed: 02/05/2023] Open
Abstract
The complexity of global anthropogenic change makes forecasting species responses and planning effective conservation actions challenging. Additionally, important components of a species' adaptive capacity, such as evolutionary potential, are often not included in quantitative risk assessments due to lack of data. While genomic proxies for evolutionary potential in at-risk species are increasingly available, they have not yet been included in extinction risk assessments at a species-wide scale. In this study, we used an individual-based, spatially explicit, dynamic eco-evolutionary simulation model to evaluate the extinction risk of an endangered desert songbird, the southwestern willow flycatcher (Empidonax traillii extimus), in response to climate change. Using data from long-term demographic and habitat studies in conjunction with genome-wide ecological genomics research, we parameterized simulations that include 418 sites across the breeding range, genomic data from 225 individuals, and climate change forecasts spanning 3 generalized circulation models and 3 emissions scenarios. We evaluated how evolutionary potential, and the lack of it, impacted population trajectories in response to climate change. We then investigated the compounding impact of drought and warming temperatures on extinction risk through the mechanism of increased nest failure. Finally, we evaluated how rapid action to reverse greenhouse gas emissions would influence population responses and species extinction risk. Our results illustrate the value of incorporating evolutionary, demographic, and dispersal processes in a spatially explicit framework to more comprehensively evaluate the extinction risk of threatened and endangered species and conservation actions to promote their recovery.
Collapse
Affiliation(s)
- Brenna R Forester
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Casey C Day
- Computational Ecology Lab, School of Public and Community Health Sciences, University of Montana, Missoula, MT, United States
| | - Kristen Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Erin L Landguth
- Computational Ecology Lab, School of Public and Community Health Sciences, University of Montana, Missoula, MT, United States
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
35
|
Turbek SP, Funk WC, Ruegg KC. Where to draw the line? Expanding the delineation of conservation units to highly mobile taxa. J Hered 2023; 114:300-311. [PMID: 36815497 DOI: 10.1093/jhered/esad011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Conservation units (CUs) are an essential tool for maximizing evolutionary potential and prioritizing areas across a species' range for protection when implementing conservation and management measures. However, current workflows for identifying CUs on the basis of neutral and adaptive genomic variation largely ignore information contained in patterns of isolation by distance (IBD), frequently the primary signal of population structure in highly mobile taxa, such as birds, bats, and marine organisms with pelagic larval stages. While individuals located on either end of a species' distribution may exhibit clear genetic, phenotypic, and ecological differences, IBD produces subtle changes in allele frequencies across space, making it difficult to draw clear boundaries for conservation purposes in the absence of discrete population structure. Here, we highlight potential pitfalls that arise when applying common methods for delineating CUs to continuously distributed organisms and review existing methods for detecting subtle breakpoints in patterns of IBD that can indicate barriers to gene flow in highly mobile taxa. In addition, we propose a new framework for identifying CUs in all organisms, including those characterized by continuous genomic differentiation, and suggest several possible ways to harness the information contained in patterns of IBD to guide conservation and management decisions.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
36
|
Zhang X, Guo R, Shen R, Landis JB, Jiang Q, Liu F, Wang H, Yao X. The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhad031. [PMID: 37799629 PMCID: PMC10548413 DOI: 10.1093/hr/uhad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates. Actinidia eriantha is a shade-tolerant species, widely distributed in the southern tropical region of China, occurring in spatially heterogeneous environments. In the present study we combined population genomic, epigenomic, and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient, and to assess genomic offset to climatic change for A. eriantha. The population structure is strongly shaped by geography and influenced by restricted gene flow resulting from isolation by distance due to habitat fragmentation. In total, we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation, which were enriched in functional categories related to development processes and stress response; both temperature and precipitation are important factors driving adaptive variation. In addition to single-nucleotide polymorphisms (SNPs), a total of 27 single-methylation variants (SMVs) had significant correlation with at least one of four climatic variables and 16 SMVs were located in or adjacent to genes, several of which were predicted to be involved in plant response to abiotic or biotic stress. Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change. Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation. Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruinan Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853 USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
37
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
38
|
Cooke SJ, Madliger CL, Lennox RJ, Olden JD, Eliason EJ, Cramp RL, Fuller A, Franklin CE, Seebacher F. Biological mechanisms matter in contemporary wildlife conservation. iScience 2023; 26:106192. [PMID: 36895647 PMCID: PMC9988666 DOI: 10.1016/j.isci.2023.106192] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Given limited resources for wildlife conservation paired with an urgency to halt declines and rebuild populations, it is imperative that management actions are tactical and effective. Mechanisms are about how a system works and can inform threat identification and mitigation such that conservation actions that work can be identified. Here, we call for a more mechanistic approach to wildlife conservation and management where behavioral and physiological tools and knowledge are used to characterize drivers of decline, identify environmental thresholds, reveal strategies that would restore populations, and prioritize conservation actions. With a growing toolbox for doing mechanistic conservation research as well as a suite of decision-support tools (e.g., mechanistic models), the time is now to fully embrace the concept that mechanisms matter in conservation ensuring that management actions are tactical and focus on actions that have the potential to directly benefit and restore wildlife populations.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Corresponding author
| | - Christine L. Madliger
- Department of Biology, Algoma University, 1520 Queen St. East, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Robert J. Lennox
- Norwegian Research Centre (NORCE), Laboratory for Freshwater Ecology and Inland Fisheries, 5008 Bergen, Norway
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA
| | - Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rebecca L. Cramp
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Craig E. Franklin
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
39
|
Dauphin B, Rellstab C, Wüest RO, Karger DN, Holderegger R, Gugerli F, Manel S. Re-thinking the environment in landscape genomics. Trends Ecol Evol 2023; 38:261-274. [PMID: 36402651 DOI: 10.1016/j.tree.2022.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Detecting the extrinsic selective pressures shaping genomic variation is critical for a better understanding of adaptation and for forecasting evolutionary responses of natural populations to changing environmental conditions. With increasing availability of geo-referenced environmental data, landscape genomics provides unprecedented insights into how genomic variation and underlying gene functions affect traits potentially under selection. Yet, the robustness of genotype-environment associations used in landscape genomics remains tempered due to various limitations, including the characteristics of environmental data used, sampling designs employed, and statistical frameworks applied. Here, we argue that using complementary or new environmental data sources and well-informed sampling designs may help improve the detection of selective pressures underlying patterns of local adaptation in various organisms and environments.
Collapse
Affiliation(s)
- Benjamin Dauphin
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.
| | | | - Rafael O Wüest
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Dirk N Karger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Rolf Holderegger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; Institute of Integrative Biology (IBZ), ETH, Zurich, 8092 Zurich, Switzerland
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Stéphanie Manel
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, 34000 Montpellier, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
40
|
Hansen MM. Prepping for climate change by introgressive hybridization. Trends Genet 2023:S0168-9525(23)00083-5. [PMID: 37005189 DOI: 10.1016/j.tig.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Species and populations may adapt to climate change by microevolutionary processes. However, standing genetic variation can be insufficient for this to occur. An interesting new study of a system of rainbowfish species shows that intraspecific hybridization enriches gene pools with adaptive variation that may allow persistence in a changing climate.
Collapse
|
41
|
Exposito-Alonso M. Understanding local plant extinctions before it is too late: bridging evolutionary genomics with global ecology. THE NEW PHYTOLOGIST 2023; 237:2005-2011. [PMID: 36604850 DOI: 10.1111/nph.18718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Understanding evolutionary genomic and population processes within a species range is key to anticipating the extinction of plant species before it is too late. However, most models of biodiversity risk under global change do not account for the genetic variation and local adaptation of different populations. Population diversity is critical to understanding extinction because different populations may be more or less susceptible to global change and, if lost, would reduce the total diversity within a species. Two new modeling frameworks advance our understanding of extinction from a population and evolutionary angle: Rapid climate change-driven disruptions in population adaptation are predicted from associations between genomes and local climates. Furthermore, losses of population diversity from global land-use transformations are estimated by scaling relationships of species' genomic diversity with habitat area. Overall, these global eco-evolutionary methods advance the predictability - and possibly the preventability - of the ongoing extinction of plant species.
Collapse
Affiliation(s)
- Moi Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
42
|
Vanhove M, Launey S. Estimating resistance surfaces using gradient forest and allelic frequencies. Mol Ecol Resour 2023. [PMID: 36847356 DOI: 10.1111/1755-0998.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Understanding landscape connectivity has become a global priority for mitigating the impact of landscape fragmentation on biodiversity. Connectivity methods that use link-based methods traditionally rely on relating pairwise genetic distance between individuals or demes to their landscape distance (e.g., geographic distance, cost distance). In this study, we present an alternative to conventional statistical approaches to refine cost surfaces by adapting the gradient forest approach to produce a resistance surface. Used in community ecology, gradient forest is an extension of random forest, and has been implemented in genomic studies to model species genetic offset under future climatic scenarios. By design, this adapted method, resGF, has the ability to handle multiple environmental predicators and is not subjected to traditional assumptions of linear models such as independence, normality and linearity. Using genetic simulations, resistance Gradient Forest (resGF) performance was compared to other published methods (maximum likelihood population effects model, random forest-based least-cost transect analysis and species distribution model). In univariate scenarios, resGF was able to distinguish the true surface contributing to genetic diversity among competing surfaces better than the compared methods. In multivariate scenarios, the gradient forest approach performed similarly to the other random forest-based approach using least-cost transect analysis but outperformed MLPE-based methods. Additionally, two worked examples are provided using two previously published data sets. This machine learning algorithm has the potential to improve our understanding of landscape connectivity and inform long-term biodiversity conservation strategies.
Collapse
Affiliation(s)
- Mathieu Vanhove
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Sophie Launey
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| |
Collapse
|
43
|
Luqman H, Wegmann D, Fior S, Widmer A. Climate-induced range shifts drive adaptive response via spatio-temporal sieving of alleles. Nat Commun 2023; 14:1080. [PMID: 36841810 PMCID: PMC9968346 DOI: 10.1038/s41467-023-36631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Quaternary climate fluctuations drove many species to shift their geographic ranges, in turn shaping their genetic structures. Recently, it has been argued that adaptation may have accompanied species range shifts via the "sieving" of genotypes during colonisation and establishment. However, this has not been directly demonstrated, and knowledge remains limited on how different evolutionary forces, which are typically investigated separately, interacted to jointly mediate species responses to past climatic change. Here, through whole-genome re-sequencing of over 1200 individuals of the carnation Dianthus sylvestris coupled with integrated population genomic and gene-environment models, we reconstruct the past neutral and adaptive landscape of this species as it was shaped by the Quaternary glacial cycles. We show that adaptive responses emerged concomitantly with the post-glacial range shifts and expansions of this species in the last 20 thousand years. This was due to the heterogenous sieving of adaptive alleles across space and time, as populations expanded out of restrictive glacial refugia into the broader and more heterogeneous range of habitats available in the present-day inter-glacial. Our findings reveal a tightly-linked interplay of migration and adaptation under past climate-induced range shifts, which we show is key to understanding the spatial patterns of adaptive variation we see in species today.
Collapse
Affiliation(s)
- Hirzi Luqman
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland. .,McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK.
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Simone Fior
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Chung MY, Merilä J, Li J, Mao K, López-Pujol J, Tsumura Y, Chung MG. Neutral and adaptive genetic diversity in plants: An overview. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Genetic diversity is a prerequisite for evolutionary change in all kinds of organisms. It is generally acknowledged that populations lacking genetic variation are unable to evolve in response to new environmental conditions (e.g., climate change) and thus may face an increased risk of extinction. Although the importance of incorporating genetic diversity into the design of conservation measures is now well understood, less attention has been paid to the distinction between neutral (NGV) and adaptive (AGV) genetic variation. In this review, we first focus on the utility of NGV by examining the ways to quantify it, reviewing applications of NGV to infer ecological and evolutionary processes, and by exploring its utility in designing conservation measures for plant populations and species. Against this background, we then summarize the ways to identify and estimate AGV and discuss its potential use in plant conservation. After comparing NGV and AGV and considering their pros and cons in a conservation context, we conclude that there is an urgent need for a better understanding of AGV and its role in climate change adaptation. To date, however, there are only a few AGV studies on non-model plant species aimed at deciphering the genetic and genomic basis of complex trait variation. Therefore, conservation researchers and practitioners should keep utilizing NGV to develop relevant strategies for rare and endangered plant species until more estimates of AGV are available.
Collapse
|
45
|
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, Bombarely A, Crottini A, Gallo GR, Godoy JA, Jentoft S, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsbøll PJ, Pampoulie C, Ruiz-López MJ, Secomandi S, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang G, Jarvis ED, Bálint M, Ciofi C, Waterhouse RM, Mazzoni CJ, Höglund J. How genomics can help biodiversity conservation. Trends Genet 2023:S0168-9525(23)00020-3. [PMID: 36801111 DOI: 10.1016/j.tig.2023.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Collapse
Affiliation(s)
- Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Carlos Fernandes
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Giulio Formenti
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Iliana Bista
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, The Netherlands; Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul R Berg
- NIVA - Norwegian Institute for Water Research, Økernveien, 94, 0579 Oslo, Norway; Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Christoph Bleidorn
- University of Göttingen, Department of Animal Evolution and Biodiversity, Untere Karspüle, 2, 37073, Göttingen, Germany
| | | | - Angelica Crottini
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Rua Padre Armando Quintas, 7, 4485-661, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | - José A Godoy
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Joanna Malukiewicz
- Primate Genetics Laborator, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Alice Mouton
- InBios - Conservation Genetics Lab, University of Liege, Chemin de la Vallée 4, 4000, Liege, Belgium
| | - Rebekah A Oomen
- Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Sadye Paez
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Per J Palsbøll
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, 9747, AG, Groningen, The Netherlands; Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Christophe Pampoulie
- Marine and Freshwater Research Institute, Fornubúðir, 5,220, Hanafjörður, Iceland
| | - María J Ruiz-López
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Hannes Svardal
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Constantina Theofanopoulou
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Hunter College, City University of New York, NY, USA
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Ann-Marie Waldvogel
- Institute of Zoology, University of Cologne, Zülpicherstrasse 47b, D-50674, Cologne, Germany
| | - Guojie Zhang
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Erich D Jarvis
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Claudio Ciofi
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, (FI) 50019, Italy
| | - Robert M Waterhouse
- University of Lausanne, Department of Ecology and Evolution, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str 17, 10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Koenigin-Luise-Str 6-8, 14195 Berlin, Germany
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75246, Uppsala, Sweden.
| | | |
Collapse
|
46
|
Abstract
Insects constitute vital components of ecosystems. There is alarming evidence for global declines in insect species diversity, abundance, and biomass caused by anthropogenic drivers such as habitat degradation or loss, agricultural practices, climate change, and environmental pollution. This raises important concerns about human food security and ecosystem functionality and calls for more research to assess insect population trends and identify threatened species and the causes of declines to inform conservation strategies. Analysis of genetic diversity is a powerful tool to address these goals, but so far animal conservation genetics research has focused strongly on endangered vertebrates, devoting less attention to invertebrates, such as insects, that constitute most biodiversity. Insects' shorter generation times and larger population sizes likely necessitate different analytical methods and management strategies. The availability of high-quality reference genome assemblies enables population genomics to address several key issues. These include precise inference of past demographic fluctuations and recent declines, measurement of genetic load levels, delineation of evolutionarily significant units and cryptic species, and analysis of genetic adaptation to stressors. This enables identification of populations that are particularly vulnerable to future threats, considering their potential to adapt and evolve. We review the application of population genomics to insect conservation and the outlook for averting insect declines.
Collapse
Affiliation(s)
- Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Eckart Stolle
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
47
|
Molecular ecology meets systematic conservation planning. Trends Ecol Evol 2023; 38:143-155. [PMID: 36210287 DOI: 10.1016/j.tree.2022.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023]
Abstract
Integrative and proactive conservation approaches are critical to the long-term persistence of biodiversity. Molecular data can provide important information on evolutionary processes necessary for conserving multiple levels of biodiversity (genes, populations, species, and ecosystems). However, molecular data are rarely used to guide spatial conservation decision-making. Here, we bridge the fields of molecular ecology (ME) and systematic conservation planning (SCP) (the 'why') to build a foundation for the inclusion of molecular data into spatial conservation planning tools (the 'how'), and provide a practical guide for implementing this integrative approach for both conservation planners and molecular ecologists. The proposed framework enhances interdisciplinary capacity, which is crucial to achieving the ambitious global conservation goals envisioned for the next decade.
Collapse
|
48
|
Broccanello C, Bellin D, DalCorso G, Furini A, Taranto F. Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1101271. [PMID: 36778704 PMCID: PMC9911883 DOI: 10.3389/fpls.2023.1101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment.
Collapse
Affiliation(s)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
49
|
Wang Y, Zhang L, Zhou Y, Ma W, Li M, Guo P, Feng L, Fu C. Using landscape genomics to assess local adaptation and genomic vulnerability of a perennial herb Tetrastigma hemsleyanum (Vitaceae) in subtropical China. Front Genet 2023; 14:1150704. [PMID: 37144128 PMCID: PMC10151583 DOI: 10.3389/fgene.2023.1150704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding adaptive genetic variation of plant populations and their vulnerabilities to climate change are critical to preserve biodiversity and subsequent management interventions. To this end, landscape genomics may represent a cost-efficient approach for investigating molecular signatures underlying local adaptation. Tetrastigma hemsleyanum is, in its native habitat, a widespread perennial herb of warm-temperate evergreen forest in subtropical China. Its ecological and medicinal values constitute a significant revenue for local human populations and ecosystem. Using 30,252 single nucleotide polymorphisms (SNPs) derived from reduced-representation genome sequencing in 156 samples from 24 sites, we conducted a landscape genomics study of the T. hemsleyanum to elucidate its genomic variation across multiple climate gradients and genomic vulnerability to future climate change. Multivariate methods identified that climatic variation explained more genomic variation than that of geographical distance, which implied that local adaptation to heterogeneous environment might represent an important source of genomic variation. Among these climate variables, winter precipitation was the strongest predictor of the contemporary genetic structure. F ST outlier tests and environment association analysis totally identified 275 candidate adaptive SNPs along the genetic and environmental gradients. SNP annotations of these putatively adaptive loci uncovered gene functions associated with modulating flowering time and regulating plant response to abiotic stresses, which have implications for breeding and other special agricultural aims on the basis of these selection signatures. Critically, modelling revealed that the high genomic vulnerability of our focal species via a mismatch between current and future genotype-environment relationships located in central-northern region of the T. hemsleyanum's range, where populations require proactive management efforts such as assistant adaptation to cope with ongoing climate change. Taken together, our results provide robust evidence of local climate adaption for T. hemsleyanum and further deepen our understanding of adaptation basis of herbs in subtropical China.
Collapse
Affiliation(s)
- Yihan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Yuchao Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Wenxin Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Manyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Peng Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Stefanini C, Csilléry K, Ulaszewski B, Burczyk J, Schaepman ME, Schuman MC. A novel synthesis of two decades of microsatellite studies on European beech reveals decreasing genetic diversity from glacial refugia. TREE GENETICS & GENOMES 2022; 19:3. [PMID: 36532711 PMCID: PMC9744708 DOI: 10.1007/s11295-022-01577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Genetic diversity influences the evolutionary potential of forest trees under changing environmental conditions, thus indirectly the ecosystem services that forests provide. European beech (Fagus sylvatica L.) is a dominant European forest tree species that increasingly suffers from climate change-related die-back. Here, we conducted a systematic literature review of neutral genetic diversity in European beech and created a meta-data set of expected heterozygosity (He) from all past studies providing nuclear microsatellite data. We propose a novel approach, based on population genetic theory and a min-max scaling to make past studies comparable. Using a new microsatellite data set with unprecedented geographic coverage and various re-sampling schemes to mimic common sampling biases, we show the potential and limitations of the scaling approach. The scaled meta-dataset reveals the expected trend of decreasing genetic diversity from glacial refugia across the species range and also supports the hypothesis that different lineages met and admixed north of the European mountain ranges. As a result, we present a map of genetic diversity across the range of European beech which could help to identify seed source populations harboring greater diversity and guide sampling strategies for future genome-wide and functional investigations of genetic variation. Our approach illustrates how to combine information from several nuclear microsatellite data sets to describe patterns of genetic diversity extending beyond the geographic scale or mean number of loci used in each individual study, and thus is a proof-of-concept for synthesizing knowledge from existing studies also in other species. Supplementary Information The online version contains supplementary material available at 10.1007/s11295-022-01577-4.
Collapse
Affiliation(s)
- Camilla Stefanini
- Biodiversity and Conservation Biology Unit, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Dietikon, Switzerland
| | - Katalin Csilléry
- Biodiversity and Conservation Biology Unit, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Dietikon, Switzerland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Michael E Schaepman
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meredith C Schuman
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|