1
|
Xie K, Qi J, Deng L, Yu B, Luo Y, Huang Z, Mao X, Yu J, Zheng P, Yan H, Li Y, Li H, He J. Dihydromyricetin improves growth performance, immunity, and intestinal functions in weaned pigs challenged by enterotoxigenic Escherichia coli. Front Vet Sci 2024; 11:1421871. [PMID: 39193366 PMCID: PMC11348495 DOI: 10.3389/fvets.2024.1421871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Enteric infection is a major cause of enteric disorder in neonatal pigs during the weaning transition. Dihydromyricetin (DMY) is a natural flavanonol compound extracted from Ampelopsis grossedentata with numerous biological activities such as antioxidative and immunomodulatory functions. The objective of this study was to investigate the effects of dietary dihydromyricetin supplementation on growth performance, immunity, and intestinal functions in weaned pigs challenged by enterotoxigenic Escherichia coli (ETEC). In total, 24 weaned DLY (Duroc × Landrace × Yorkshire) pigs were allotted to 3 treatments. Pigs fed with basal diet or basal diet containing 300 mg/kg DMY were orally infused with sterilized culture or ETEC (2.5 × 1011 colony-forming units). Dietary DMY supplementation significantly elevated the final weight and average daily gain (ADG) but reduced diarrhea incidence in the weaned pigs of the EDMY group compared to the pigs of the ECON group (p < 0.05). Compared to the ECON group, DMY also improved the digestibility of dry matter (DM), ether extract (EE), gross energy (GE), and ash of the EDMY group (p < 0.05). Moreover, DMY not only significantly decreased the ratio of albumin/globulin but also elevated serum concentrations of immunoglobulins (e.g., IgA and IgG) in the weaned pigs of the EDMY group compared to the pigs of the ECON group (p < 0.05). Interestingly, the villus height, the ratio of villus height to crypt depth (V:C), and the activities of mucosal alkaline phosphatase, sucrase, and maltase in the duodenum and jejunum of the EDMY group were higher than those in the ECON group (p < 0.05). Importantly, DMY significantly elevated the expression levels of jejunal zonula occludens-1 (ZO-1), claudin-1, cationic amino acid transporter-1 (CAT-1), and fatty acid transport protein-1 (FATP-1) in the weaned pigs of the EDMY group compared to the pigs of the ECON group (p < 0.05). Additionally, compared to the ECON group, DMY increased the concentrations of microbial SCFA metabolites (e.g., acetic acid and propanoic acid), but reduced the abundance of Escherichia coli in the cecum of the EDMY group (p < 0.05). Dietary DMY supplementation can attenuate the ETEC-induced growth retardation and intestinal injury, which was attributed to the amelioration of intestinal nutrient digestion and transport functions as well as the improved microbiota.
Collapse
Affiliation(s)
- Kunhong Xie
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Jiawen Qi
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Lili Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Qarri A, Hamar J. Proteome-wide 4-hydroxy-2-nonenal signature of oxidative stress in the marine invasive tunicate Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604351. [PMID: 39211222 PMCID: PMC11360967 DOI: 10.1101/2024.07.19.604351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The colonial ascidian Boytryllus schlosseri is an invasive marine chordate that thrives under conditions of anthropogenic climate change. We show that the B. schlosseri expressed proteome contains unusually high levels of proteins that are adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Although numerous studies have assessed oxidative stress in marine organisms HNE protein modification has not previously been determined in any marine species. LC/MS proteomics was used to identify 1052 HNE adducted proteins in B. schlosseri field and laboratory populations. Adducted amino acid residues were ascertained for 1849 modified sites, of which 1195 had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevelance on most sites was high. These observations suggest that B. schlosseri experiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. Based on these results we propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics during B. schlosseri development and physiology. A DIA assay library was constructed to quantify HNE adduction at 72 sites across 60 proteins that represent a holistic network of functionally discernable oxidative stress bioindicators. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments. NEW & NOTEWORTHY Oxidative stress results from environmental challenges that increase in frequency and severity during the Anthropocene. Oxygen radical attack causes lipid peroxidation leading to HNE production. Proteome-wide HNE adduction is highly prevalent in Botryllus schlosseri , a widely distributed, highly invasive, and economically important biofouling ascidian and the first marine species to be analyzed for proteome HNE modification. HNE adduction of specific proteins physiologically sequesters reactive oxygen species, which enhances fitness and resilience during environmental change.
Collapse
|
3
|
Adla SK, Virtanen H, Thongsodsaeng T, Huttunen KM. Amino acid transporters in neurological disorders and neuroprotective effects of cysteine derivatives. Neurochem Int 2024; 177:105771. [PMID: 38761853 DOI: 10.1016/j.neuint.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
For most diseases and disorders occurring in the brain, the full causes behind them are yet unknown, but many show signs of dysfunction of amino acid transporters or abnormalities in amino acid metabolism. The blood-brain barrier (BBB) plays a key role in supporting the function of the central nervous system (CNS). Because of its unique structure, the BBB can maintain the optimal environment for CNS by controlling the passage of hydrophilic molecules from blood to the brain. Nutrients, such as amino acids, can cross the BBB via specific transporters. Many amino acids are essential for CNS function, and dysfunction of these amino acid transporters can lead to abnormalities in amino acid levels. This has been linked to causes behind certain genetic brain diseases, such as schizophrenia, autism spectrum disorder, and Huntington's disease (HD). One example of crucial amino acids is L-Cys, the rate-limiting factor in the biosynthesis of an important antioxidant, glutathione (GSH). Deficiency of L-Cys and GSH has been linked to oxidative stress and has been shown as a plausible cause behind certain CNS diseases, like schizophrenia and HD. This review presents the current status of potential L-Cys therapies and gives future directions that can be taken to improve amino acid transportation related to distinct CNS diseases.
Collapse
Affiliation(s)
- Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Heinileena Virtanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Thanavit Thongsodsaeng
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
4
|
Kurtyka M, Wessely F, Bau S, Ifie E, He L, de Wit NM, Pedersen ABV, Keller M, Webber C, de Vries HE, Ansorge O, Betsholtz C, De Bock M, Chaves C, Brodin B, Nielsen MS, Neuhaus W, Bell RD, Letoha T, Meyer AH, Leparc G, Lenter M, Lesuisse D, Cader ZM, Buckley ST, Loryan I, Pietrzik CU. The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. Eur J Cell Biol 2024; 103:151406. [PMID: 38547677 DOI: 10.1016/j.ejcb.2024.151406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
Collapse
Affiliation(s)
- Magdalena Kurtyka
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Frank Wessely
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Bau
- Pathology & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Eseoghene Ifie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Maximilian Keller
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Marijke De Bock
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Winfried Neuhaus
- Austrian Institute of Technology GmbH, Vienna, Austria; Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | | | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, Quantitative, Translational & ADME Sciences, Ludwigshafen, Germany
| | - Germán Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Zameel M Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
6
|
Di Giorgio E, Choudhary H, Ferino A, Cortolezzis Y, Dalla E, D’Este F, Comelli M, Rapozzi V, Xodo LE. Suppression of the KRAS- NRF2 axis shifts arginine into the phosphocreatine energy system in pancreatic cancer cells. iScience 2023; 26:108566. [PMID: 38144458 PMCID: PMC10746371 DOI: 10.1016/j.isci.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/21/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In pancreatic ductal adenocarcinomas (PDAC), the KRASG12D-NRF2 axis controls cellular functions such as redox homeostasis and metabolism. Disruption of this axis through suppression of NRF2 leads to profound reprogramming of metabolism. Unbiased transcriptome and metabolome analyses showed that PDAC cells with disrupted KRASG12D-NRF2 signaling (NRF2-/- cells) shift from aerobic glycolysis to metabolic pathways fed by amino acids. Metabolome, RNA-seq and qRT-PCR analyses revealed a blockade of the urea cycle, making NRF2-/- cells dependent on exogenous arginine for survival. Arginine is channeled into anabolic pathways, including the synthesis of phosphocreatine, which generates an energy buffer essential for cell growth. A similar switch was observed in tumor clones that had survived FOLFIRINOX therapy or blockade of KRAS signaling. Inhibition of the creatine pathway with cyclocreatine reduced both ATP and invasion rate in 3D spheroids from NRF2-deficient PDAC cells. Our study provides basis for the rational development of combination therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Himanshi Choudhary
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Annalisa Ferino
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Ylenia Cortolezzis
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Francesca D’Este
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Marina Comelli
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| | - Luigi E. Xodo
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
7
|
Starkutė V, Mockus E, Klupšaitė D, Zokaitytė E, Tušas S, Mišeikienė R, Stankevičius R, Rocha JM, Bartkienė E. Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles. Animals (Basel) 2023; 13:3154. [PMID: 37835761 PMCID: PMC10571792 DOI: 10.3390/ani13193154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 on the changes in bovine colostrum amino (AA), biogenic amine (BA), and fatty acid (FA) profiles. It was established that the source of the bovine colostrum, the used LAB, and their interaction had significant effects (p < 0.05) on AA contents; lactic acid bacteria (LAB) used for fermentation was a significant factor for aspartic acid, threonine, glycine, alanine, methionine, phenylalanine, lysine, histidine, and tyrosine; and these factor's interaction is significant on most of the detected AA concentrations. Total BA content showed significant correlations with glutamic acid, serine, aspartic acid, valine, methionine, phenylalanine, histidine, and gamma amino-butyric acid content in bovine colostrum. Despite the differences in individual FA contents in bovine colostrum, significant differences were not found in total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Finally, the utilization of bovine colostrum proved to be challenging because of the variability on its composition. These results suggest that processing bovine colostrum into value-added formulations for human consumption requires the adjustment of its composition since the primary production stage. Consequently, animal rearing should be considered in the employed bovine colostrum processing technologies.
Collapse
Affiliation(s)
- Vytautė Starkutė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Dovilė Klupšaitė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Eglė Zokaitytė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Saulius Tušas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Ramutė Mišeikienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Elena Bartkienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
8
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
9
|
Kim DR, Martin S, Desai K. The effects of a comparatively higher dose of 1000 mg/kg/d of oral L- or D-arginine on the L-arginine metabolic pathways in male Sprague-Dawley rats. PLoS One 2023; 18:e0289476. [PMID: 37527267 PMCID: PMC10393177 DOI: 10.1371/journal.pone.0289476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Oral L-arginine supplements are popular mainly for their nitric oxide mediated vasodilation, but their physiological impact is not fully known. L-arginine is a substrate of several enzymes including arginase, nitric oxide synthase, arginine decarboxylase, and arginine: glycine amidinotransferase (AGAT). We have published a study on the physiological impact of oral L- and D-arginine at 500 mg/kg/day for 4 wks in male Sprague-Dawley rats. We investigated the effects of oral L-arginine and D-arginine at a higher dose of 1000 mg/kg/d for a longer treatment duration of 16 wks in 9-week-old male Sprague-Dawley rats. We measured the expression and activity of L-arginine metabolizing enzymes, and levels of their metabolites in the plasma and various organs. L-arginine did not affect the levels of L-arginine and L-lysine in the plasma and various organs. L-arginine decreased arginase protein expression in the upper small intestine, and arginase activity in the plasma. It also decreased AGAT protein expression in the liver, and creatinine levels in the urine. L-arginine altered arginine decarboxylase protein expression in the upper small intestine and liver, with increased total polyamines plasma levels. Endothelial nitric oxide synthase protein was increased with D-arginine, the presumed metabolically inert isomer, but not L-arginine. In conclusion, oral L-arginine and D-arginine at a higher dose and longer treatment duration significantly altered various enzymes and metabolites in the arginine metabolic pathways, which differed from alterations produced by a lower dose shorter duration treatment published earlier. Further studies with differing doses and duration would allow for a better understanding of oral L-arginine uses, and evidence based safe and effective dose range and duration.
Collapse
Affiliation(s)
- Dain Raina Kim
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarah Martin
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaushik Desai
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Watson CP, Sekhar GN, Thomas SA. Identification of transport systems involved in eflornithine delivery across the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1113493. [PMID: 38482132 PMCID: PMC7615738 DOI: 10.3389/fddev.2023.1113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Human African Trypanosomiasis (HAT) is a neglected parasitic disease that continues to persist in sub-Saharan Africa. It is fatal if untreated. The first stage of the disease is associated with the presence of the parasite in the periphery and the second stage with the presence of the parasites in the CNS. The treatment of CNS stage HAT requires the drugs to cross the blood-brain barrier (BBB). Eflornithine is an amino acid analogue that is used to treat second stage HAT gambiense both alone and in combination with nifurtimox. Recent studies have identified that accumulation of eflornithine into the parasites (trypanosomes) involves the amino acid transporter (Trypanosoma brucei AAT6). In this study we tested the hypothesis that eflornithine uses a cationic amino acid transport system to cross the BBB. We particularly focused on system-y+ and system-B0,+. To do this we utilized specialist databases to compare the physicochemical characteristics of relevant molecules and an in vitro model of the BBB to explore the mechanisms of eflornithine delivery into the CNS. Our results confirmed that eflornithine is related to the endogenous amino acid, ornithine. At pH 7.4, eflornithine is predominately (92.39%) a zwitterionic (dipolar) amino acid and ornithine is predominately (99.08%) a cationic (tripolar) amino acid. In addition, the gross charge distribution at pH 7.4 of eflornithine is much smaller (+0.073) than that of ornithine (+0.99). Further results indicated that eflornithine utilized a saturable transport mechanism(s) to cross the hCMEC/D3 cell membranes and that transport was inhibited by the presence of other amino acids including ornithine. Eflornithine transport was also sodium-independent and sensitive to a y+-system inhibitor, but not a B0,+-system inhibitor. Eflornithine transport was also inhibited by pentamidine, suggestive of transport by organic cation transporters (OCT) which are expressed in this cell line. We confirmed expression of the y+-system protein, CAT1, and the B0,+-system protein, ATB0,+, in the hCMEC/D3 cells. We conclude that eflornithine uses the cationic amino acid transporter, system y+, and OCT to cross the BBB. This research highlights the potential of system-y+ to deliver drugs, including eflornithine, across the BBB to treat brain diseases.
Collapse
Affiliation(s)
- Christopher P. Watson
- King’s College London, Institute of Pharmaceutical Science, Franklin-Wilkins Building, Stamford Street, London, UK
| | - Gayathri Nair Sekhar
- King’s College London, Institute of Pharmaceutical Science, Franklin-Wilkins Building, Stamford Street, London, UK
| | - Sarah A Thomas
- King’s College London, Institute of Pharmaceutical Science, Franklin-Wilkins Building, Stamford Street, London, UK
| |
Collapse
|
11
|
Gauthier-Coles G, Fairweather SJ, Bröer A, Bröer S. Do Amino Acid Antiporters Have Asymmetric Substrate Specificity? Biomolecules 2023; 13:biom13020301. [PMID: 36830670 PMCID: PMC9953452 DOI: 10.3390/biom13020301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Amino acid antiporters mediate the 1:1 exchange of groups of amino acids. Whether substrate specificity can be different for the inward and outward facing conformation has not been investigated systematically, although examples of asymmetric transport have been reported. Here we used LC-MS to detect the movement of 12C- and 13C-labelled amino acid mixtures across the plasma membrane of Xenopus laevis oocytes expressing a variety of amino acid antiporters. Differences of substrate specificity between transporter paralogs were readily observed using this method. Our results suggest that antiporters are largely symmetric, equalizing the pools of their substrate amino acids. Exceptions are the antiporters y+LAT1 and y+LAT2 where neutral amino acids are co-transported with Na+ ions, favouring their import. For the antiporters ASCT1 and ASCT2 glycine acted as a selective influx substrate, while proline was a selective influx substrate of ASCT1. These data show that antiporters can display non-canonical modes of transport.
Collapse
|
12
|
North RA. Serendipity in senescence. FUNCTION (OXFORD, ENGLAND) 2022; 4:zqac064. [PMID: 36606243 PMCID: PMC9809900 DOI: 10.1093/function/zqac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Affiliation(s)
- R A North
- Address correspondence to R. A. N. (E-mail: )
| |
Collapse
|
13
|
Iizuka T, Yin P, Zuberi A, Kujawa S, Coon JS, Björvang RD, Damdimopoulou P, Pacyga DC, Strakovsky RS, Flaws JA, Bulun SE. Mono-(2-ethyl-5-hydroxyhexyl) phthalate promotes uterine leiomyoma cell survival through tryptophan-kynurenine-AHR pathway activation. Proc Natl Acad Sci U S A 2022; 119:e2208886119. [PMID: 36375056 PMCID: PMC9704719 DOI: 10.1073/pnas.2208886119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022] Open
Abstract
Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.
Collapse
Affiliation(s)
- Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Stacy Kujawa
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - John S. Coon
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| | - Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Diana C. Pacyga
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Rita S. Strakovsky
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Jodi A. Flaws
- Department of Comparative Bioscience, University of Illinois at Urbana–Champagne, Urbana, IL 61802
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60610
| |
Collapse
|
14
|
Huang X, Song X, Wang X, Zhou H, Liu C, Mai K, He G. Dietary lysine level affects digestive enzyme, amino acid transport and hepatic intermediary metabolism in turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1091-1103. [PMID: 35842553 DOI: 10.1007/s10695-022-01098-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Lysine is one of the most important essential amino acids in fish, especially in the feed formulated with high levels of plant ingredients. Lysine restriction always led to growth inhibition and poor feed utilization. However, little information was available on its effects on digestion, absorption, and metabolism response in fish. In the present study, three experimental diets were formulated with three lysine levels, 1.69% (LL group), 3.32% (ML group), and 4.90% (HL group). A 10-week feeding trial was carried out to explore the effects of dietary lysine levels on the digestive enzymes, amino acid transporters, and hepatic intermediary metabolism in turbot (Scophthalmus maximus). As the results showed, the activities of lipase and trypsin in ML group were higher than in other groups. Lysine restriction inhibited the expression levels of peptides and amino acid transporters such as PpeT1, y+LAT2, b0,+AT, and rBAT but significantly induced the expression of CAT1. Meanwhile, lysine deficiency elevated the content of T-CHO and LDL-C in plasma, while a higher HDL-C/LDL-C ratio was observed in ML group. For hepatic intermediary metabolism, the increase of lysine level induced the mRNA expression of G6Pase1 and FBPase, but no differences were observed in the expression of the key regulators in glycolysis pathway, such as GK and PK. Furthermore, an appropriate increase in the level of lysine promoted the genes involved in lipolysis, including PPARα, ACOX1, CPT1A, and LPL. However, no differences were observed in the expression of PPARγ, FAS, SREBP1, and LXR, which were important genes related to lipid synthesis. These results provide clues on the metabolic responses on dietary lysine in teleost.
Collapse
Affiliation(s)
- Xinrui Huang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Xinxin Song
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China.
- Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China.
| | - Huihui Zhou
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Chengdong Liu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
| | - Gen He
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
15
|
Glycaemia dynamics concepts before and after insulin. Biochem Pharmacol 2022; 201:115092. [PMID: 35588854 DOI: 10.1016/j.bcp.2022.115092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
|
16
|
Paulusma CC, Lamers W, Broer S, van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol 2022; 201:115074. [PMID: 35568239 DOI: 10.1016/j.bcp.2022.115074] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
Collapse
Affiliation(s)
- Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Wouter Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Stefan Broer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Research School of Biology, Australian National University, Canberra, Australia
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Kamkin AG, Kamkina OV, Shim AL, Bilichenko A, Mitrokhin VM, Kazansky VE, Filatova TS, Abramochkin D, Mladenov MI. The role of activation of two different sGC binding sites by NO-dependent and NO-independent mechanisms in the regulation of SACs in rat ventricular cardiomyocytes. Physiol Rep 2022; 10:e15246. [PMID: 35384354 PMCID: PMC8981922 DOI: 10.14814/phy2.15246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 04/18/2023] Open
Abstract
The mechanoelectrical feedback (MEF) mechanism in the heart that plays a significant role in the occurrence of arrhythmias, involves cation flux through cation nonselective stretch-activated channels (SACs). It is well known that nitric oxide (NO) can act as a regulator of MEF. Here we addressed the possibility of SAC's regulation along NO-dependent and NO-independent pathways, as well as the possibility of S-nitrosylation of SACs. In freshly isolated rat ventricular cardiomyocytes, using the patch-clamp method in whole-cell configuration, inward nonselective stretch-activated cation current ISAC was recorded through SACs, which occurs during dosed cell stretching. NO donor SNAP, α1-subunit of sGC activator BAY41-2272, sGC blocker ODQ, PKG blocker KT5823, PKG activator 8Br-cGMP, and S-nitrosylation blocker ascorbic acid, were employed. We concluded that the physiological concentration of NO in the cell is a necessary condition for the functioning of SACs. An increase in NO due to SNAP in an unstretched cell causes the appearance of a Gd3+ -sensitive nonselective cation current, an analog of ISAC , while in a stretched cell it eliminates ISAC . The NO-independent pathway of sGC activation of α subunit, triggered by BAY41-2272, is also important for the regulation of SACs. Since S-nitrosylation inhibitor completely abolishes ISAC , this mechanism occurs. The application of BAY41-2272 cannot induce ISAC in a nonstretched cell; however, the addition of SNAP on its background activates SACs, rather due to S-nitrosylation. ODQ eliminates ISAC , but SNAP added on the background of stretch increases ISAC in addition to ODQ. This may be a result of the lack of NO as a result of inhibition of NOS by metabolically modified ODQ. KT5823 reduces PKG activity and reduces SACs phosphorylation, leading to an increase in ISAC . 8Br-cGMP reduces ISAC by activating PKG and its phosphorylation. These results demonstrate a significant contribution of S-nitrosylation to the regulation of SACs.
Collapse
Affiliation(s)
- Andre G. Kamkin
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Olga V. Kamkina
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Andrey L. Shim
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Andrey Bilichenko
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Vadim M. Mitrokhin
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Viktor E. Kazansky
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
| | - Tatiana S. Filatova
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
- Department of Human and Animal PhysiologyLomonosov Moscow State UniversityMoscowRussia
| | - Denis V. Abramochkin
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
- Department of Human and Animal PhysiologyLomonosov Moscow State UniversityMoscowRussia
| | - Mitko I. Mladenov
- Department of PhysiologyPirogov Russian National Research Medical UniversityMoscowRussia
- Faculty of Natural Sciences and MathematicsInstitute of Biology, “Ss. Cyril and Methodius” UniversitySkopjeMacedonia
| |
Collapse
|
18
|
The Potential of L-Arginine in Prevention and Treatment of Disturbed Carbohydrate and Lipid Metabolism—A Review. Nutrients 2022; 14:nu14050961. [PMID: 35267936 PMCID: PMC8912821 DOI: 10.3390/nu14050961] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
L-arginine, an endogenous amino acid, is a safe substance that can be found in food. The compound is involved in synthesis of various products responsible for regulatory functions in the body. Particularly noteworthy is, among others, nitric oxide, a signaling molecule regulating carbohydrate and lipid metabolism. The increasing experimental and clinical data indicate that L-arginine supplementation may be helpful in managing disturbed metabolism in obesity, regulate arterial blood pressure or alleviate type 2 diabetes symptoms, but the mechanisms underlying these effects have not been sufficiently elucidated. This review aims to present the up-to-date information regarding the current uses and health-promoting potential of L-arginine, its effects on nitric oxide, carbohydrate and lipid metabolisms, based on the results of in vivo, in vitro studies, and clinical human trials. Available literature suggests that L-arginine may have beneficial effects on human health. However, some studies found that higher dietary L-arginine is associated with worsening of an existing disease or may be potential risk factor for development of some diseases. The mechanisms of regulatory effects of L-arginine on carbohydrate and lipid metabolism have not been fully understood and are currently under investigation.
Collapse
|
19
|
Peluffo RD. Cationic amino acid transporters and their modulation by nitric oxide in cardiac muscle cells. Biophys Rev 2022; 13:1071-1079. [PMID: 35059028 DOI: 10.1007/s12551-021-00870-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
Cationic amino acid transporters (CATs) play a central role in the supply of the substrate L-arginine to intracellular nitric oxide synthases (NOS), the enzymes responsible for the synthesis of nitric oxide (NO). In heart, NO produced by cardiac myocytes has diverse and even opposite effects on myocardial contractility depending on the subcellular location of its production. Approximately a decade ago, using a combination of biophysical and biochemical approaches, we discovered and characterized high- and low-affinity CATs that function simultaneously in the cardiac myocyte plasma membrane. Later on, we reported a negative feedback regulation of NO on the activity of cardiac CATs. In this way, NO was found to modulate its own biosynthesis by regulating the amount of L-arginine that becomes available as NOS substrate. We have recently solved the molecular determinants for this NO regulation on the low-affinity high-capacity CAT-2A. This review highlights some biophysical and biochemical features of L-arginine transporters and their potential relation to cardiac muscle physiology and pathology.
Collapse
Affiliation(s)
- R Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de La República, Rivera 1350, CP: 50000 Salto, Uruguay.,Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103 USA
| |
Collapse
|
20
|
Latif S, Kang YS. Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines. Cells 2021; 10:cells10123554. [PMID: 34944061 PMCID: PMC8700480 DOI: 10.3390/cells10123554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
L-Arginine, a semi-essential amino acid, was shown to delay dysfunction of motor neurons and to prolong the lifespan, upon analysis of transgenic mouse models of amyotrophic lateral sclerosis (ALS). We investigated the transport function of arginine and neuronal nitric oxide synthase (nNOS) expression after pretreatment with L-arginine in NSC-34 hSOD1WT (wild-type, WT) and hSOD1G93A (mutant-type, MT) cell lines. [3H]L-Arginine uptake was concentration-dependent, voltage-sensitive, and sodium-independent in both cell lines. Among the cationic amino acid transporters family, including system y+, b0,+, B0,+, and y+L, system y+ is mainly involved in [3H]L-arginine transport in ALS cell lines. System b0,+ accounted for 23% of the transport in both cell lines. System B0,+ was found only in MT, and whereas, system y+L was found only in WT. Lysine competitively inhibited [3H]L-arginine uptake in both cell lines. The nNOS mRNA expression was significantly lower in MT than in WT. Pretreatment with arginine elevated nNOS mRNA levels in MT. Oxidizing stressor, H2O2, significantly decreased their uptake; however, pretreatment with arginine restored the transport activity in both cell lines. In conclusion, arginine transport is associated with system y+, and neuroprotection by L-arginine may provide an edge as a possible therapeutic target in the treatment of ALS.
Collapse
|
21
|
Wang X, Wang X, Zhu Y, Chen X. ADME/T-based strategies for paraquat detoxification: Transporters and enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118137. [PMID: 34536650 DOI: 10.1016/j.envpol.2021.118137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a toxic, organic herbicide for which there is no specific antidote. Although banned in some countries, it is still used as an irreplaceable weed killer in others. The lack of understanding of the precise mechanism of its toxicity has hindered the development of treatments for PQ exposure. While toxicity is thought to be related to PQ-induced oxidative stress, antioxidants are limited in their ability to ameliorate the untoward biological responses to this agent. Summarized in this review are data on the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of PQ, focusing on the essential roles of individual transporters and enzymes in these processes. Based on these findings, strategies are proposed to design and test specific and effective antidotes for the clinical management of PQ poisoning.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
22
|
Latif S, Kang YS. Change in Cationic Amino Acid Transport System and Effect of Lysine Pretreatment on Inflammatory State in Amyotrophic Lateral Sclerosis Cell Model. Biomol Ther (Seoul) 2021; 29:498-505. [PMID: 33935047 PMCID: PMC8411026 DOI: 10.4062/biomolther.2021.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurological disorder characterized by the deterioration of motor neurons. The aim of this study was to investigate alteration of cationic amino acid transporter (CAT-1) activity in the transport of lysine and the pretreatment effect of lysine on pro-inflammatory states in an amyotrophic lateral sclerosis cell line. The mRNA expression of cationic amino acid transporter 1 was lower in NSC-34/hSOD1G93A (MT) than the control cell line (WT), lysine transport is mediated by CAT-1 in NSC-34 cell lines. The uptake of [3H]L-lysine was Na+-independent, voltage-sensitive, and strongly inhibited by inhibitors and substrates of cationic amino acid transporter 1 (system y+). The transport process involved two saturable processes in both cell lines. In the MT cell line, at a high-affinity site, the affinity was 9.4-fold higher and capacity 24-fold lower than that in the WT; at a low-affinity site, the capacity was 2.3-fold lower than that in the WT cell line. Donepezil and verapamil competitively inhibited [3H]L-lysine uptake in the NSC-34 cell lines. Pretreatment with pro-inflammatory cytokines decreased the uptake of [3H]L-lysine and mRNA expression levels in both cell lines; however, the addition of L-lysine restored the transport activity in the MT cell lines. L-Lysine exhibited neuroprotective effects against pro-inflammatory states in the ALS disease model cell lines. In conclusion, studying the alteration in the expression of transporters and characteristics of lysine transport in ALS can lead to the development of new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sana Latif
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young-Sook Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
23
|
Miska KB, Schreier LL, Kahl S, Russell B, Proszkowiec-Weglarz M. Expression of genes associated with nutrient uptake in intestines of chickens with different growth potentials show temporal changes but are not correlated with growth. Br Poult Sci 2021; 63:179-193. [PMID: 34378478 DOI: 10.1080/00071668.2021.1966753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The study was designed to compare the expression of genes that encode proteins located at either the brush border (BB) or basolateral (BL) of the gut epithelium among fast and slow-growing broilers.Six lines of chicks with different growth capacities were used: Ross 708, Hubbard H1 (HH1), Cobb 500, Longnecker's Heritage (LHR), Red-Bro, and the Athens Canadian Randombred Control (ACRB). Birds were sampled between embryonic day (ED) 19 and day 35 post-hatch (PH).Performance parameters indicated that Ross 708, HH1, and Cobb 500 had the highest body weights (BW) while ACRBs had the lowest.Quantitative RT-PCR was performed on 13 genes encoding proteins associated with nutrient processing and uptake. Statistical analysis was carried out (ANOVA) for eight BB genes: Aminopeptidase N (APN), four amino acid transporters, (ATBo,+, BoAT, bo,+AT, EAAT3) a di- and tri- peptide transporter (PepT1), and two sugar transporters (GLUT5 and SGLT1). Analysis of four amino acid transporters (CAT1, CAT2, LAT1, and γ+LAT1), and a single sugar transporter (GLUT2) associated with BL was carried out.Four BB associated genes (APN, EAAT3, BoAT, and b0,+AT) in the small intestine were negatively correlated with growth.In most cases, genes encoding BB proteins increased in expression over time (P<0.05) in the small intestine, while, in the caeca, the expression decreased (P<0.05). The mRNA of BL-associated proteins showed decreased (P<0.05) expression over time in all gut segments, with exception of GLUT2, which increased in expression in the small intestine.The temporal changes in gene expression were consistent among bird lines and BB associated genes tended to increase over time, while BL associated genes tended to decrease over time. Correlation analysis indicated that mRNA expression of nutrient transporter genes may not be a good predictor of growth potential.
Collapse
Affiliation(s)
- Katarzyna B Miska
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| | - Lori L Schreier
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| | - Stanislaw Kahl
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| | - Beverly Russell
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| | - Monika Proszkowiec-Weglarz
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| |
Collapse
|
24
|
Contreras-Duarte S, Claudette C, Farias M, Leiva A. High total cholesterol and triglycerides levels increase arginases metabolism, impairing nitric oxide signaling and worsening fetoplacental endothelial dysfunction in gestational diabetes mellitus pregnancies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166216. [PMID: 34314821 DOI: 10.1016/j.bbadis.2021.166216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
During human pregnancy, maternal physiological dyslipidemia (MPD) supports fetal development. However, some women develop maternal supraphysiological dyslipidemia (MSPD: increased total cholesterol (TC) and triglycerides (TG) levels). MSPD is present in normal and pregnancies with gestational diabetes mellitus (GDM). Both pathologies associate with fetoplacental endothelial dysfunction, producing alterations in nitric oxide (NO)-L-arginine/arginase metabolism. Nevertheless, the effect of MSPD on GDM, and how this synergy alters fetoplacental endothelial function is unknown, which is the aim of this study. 123 women at term of pregnancy were classified as MPD (n=40), MSPD (n=35), GDM with normal lipids (GDM- MPD, n=23) and with increased lipids (GDM-MSPD, n=25). TC ≥291 mg/dL and TG ≥275 mg/dL were considered as MSPD. Endothelial NO synthase (eNOS), human cationic amino acid transporter 1 (hCat1), and arginase II protein abundance and activity, were assayed in umbilical vein endothelial cells. In MSPD and MSPD-GDM, TC and TG increased respect to MPD and MPD-GDM. eNOS activity was reduced in MSPD and MSPD-GDM, but increased in MPD-GDM compared with MPD. No changes were observed in eNOS protein. However, decreased tetrahydrobiopterin levels were observed in all groups compared with MPD. Increased hCat1 protein and L-arginine transport were observed in both GDM groups compared with MPD. However, the transport was higher in GDM-MSPD compared to GDM-MPD. Higher Arginase II protein and activity were observed in MSPD-GDM compared with MPD. Thus, MSPD in GDM pregnancies alters fetal endothelial function associated with NO metabolism.
Collapse
Affiliation(s)
- S Contreras-Duarte
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile.
| | - C Claudette
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile
| | - M Farias
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile
| | - A Leiva
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
25
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
27
|
Barilli A, Visigalli R, Ferrari F, Borsani G, Dall'Asta V, Rotoli BM. Flagellin From Pseudomonas Aeruginosa Stimulates ATB 0,+ Transporter for Arginine and Neutral Amino Acids in Human Airway Epithelial Cells. Front Immunol 2021; 12:641563. [PMID: 33841424 PMCID: PMC8029981 DOI: 10.3389/fimmu.2021.641563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
At present, the central role played by arginine in the modulation of the inflammatory cellular responses is well-recognized, and many pro-inflammatory stimuli are known to modulate the expression and activity of its transmembrane transporters. In this regard, we have addressed the effects of bacterial flagellin from Pseudomonas aeruginosa (FLA-PA) on the uptake of the amino acid in human epithelial respiratory cells. Among the arginine transporters, only ATB0,+, y+L, and y+ were operative in bronchial epithelial Calu-3 cells under control conditions; however, only the expression and activity of ATB0,+ were stimulated upon incubation with flagellin, whereas those of systems y+L and y+ were not stimulated. As a result, this induction, in turn, led to an increase in the intracellular content of arginine without making any change to its metabolic pathway. In addition, flagellin upregulated the amount of other amino acids substrates of ATB0,+, in particular, all the essential amino acids, such as valine, isoleucine, and leucine, along with the non-essential glutamine. At the molecular level, these effects were directly referable to the stimulation of a toll-like receptor-5 (TLR5) signaling pathway and to the induction of nuclear factor-κB (NF-κB) transcription factor. An induction of ATB0,+ expression has been observed also in EpiAirway™, a model of primary human normal tracheal-bronchial epithelial cells that mimics the in vitro pseudostratified columnar epithelium of the airways. In this tissue model, the incubation with flagellin is associated with the upregulation of messenger RNAs (mRNAs) for the chemokine IL-8 and for the cytokines IL-6 and interleukin-1β (IL-1β); as for the latter, a marked secretion in the extracellular medium was also observed due to the concomitant activation of caspase-1. The overall findings indicate that, in human respiratory epithelium, flagellin promotes cellular responses associating the increase of intracellular amino acids through ATB0,+ with the activation of the inflammasome. Given the role of the ATB0,+ transporter as a delivery system for bronchodilators in human airway epithelial cells, its induction under inflammatory conditions gains particular relevance in the field of respiratory pharmacology.
Collapse
Affiliation(s)
- Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Borsani
- Section of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Dall'Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
28
|
To VPTH, Masagounder K, Loewen ME. Critical transporters of methionine and methionine hydroxyl analogue supplements across the intestine: What we know so far and what can be learned to advance animal nutrition. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110908. [PMID: 33482339 DOI: 10.1016/j.cbpa.2021.110908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
DL-methionine (DL-Met) and its analogue DL-2-hydroxy-4-(methylthio) butanoic acid (DL-methionine hydroxyl analogue or DL-MHA) have been used as nutritional supplements in the diets of farmed raised animals. Knowledge of the intestinal transport mechanisms involved in these products is important for developing dietary strategies. This review provides updated information of the expression, function, and transport kinetics in the intestine of known Met-linked transporters along with putative MHA-linked transporters. As a neutral amino acid (AA), the transport of DL-Met is facilitated by multiple apical sodium-dependent/-independent high-/low-affinity transporters such as ASCT2, B0AT1 and rBAT/b0,+AT. The basolateral transport largely relies on the rate-limiting uniporter LAT4, while the presence of the basolateral antiporter y+LAT1 is probably necessary for exchanging intracellular cationic AAs and Met in the blood. In contrast, the intestinal transport kinetics of DL-MHA have been scarcely studied. DL-MHA transport is generally accepted to be mediated simply by the proton-dependent monocarboxylate transporter MCT1. However, in-depth mechanistic studies have indicated that DL-MHA transport is also achieved through apical sodium monocarboxylate transporters (SMCTs). In any case, reliance on either a proton or sodium gradient would thus require energy input for both Met and MHA transport. This expanding knowledge of the specific transporters involved now allows us to assess the effect of dietary ingredients on the expression and function of these transporters. Potentially, the resulting information could be furthered with selective breeding to reduce overall feed costs.
Collapse
Affiliation(s)
- Van Pham Thi Ha To
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Matthew E Loewen
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
29
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
30
|
Wang J, Clark DL, Jacobi SK, Velleman SG. Supplementation of vitamin E and omega-3 fatty acids during the early posthatch period on intestinal morphology and gene expression differentiation in broilers. Poult Sci 2020; 100:100954. [PMID: 33518304 PMCID: PMC7936210 DOI: 10.1016/j.psj.2020.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early posthatch nutrition is important for gut health. Vitamin E (VE) and omega-3 (n-3) fatty acids can improve gut health through antioxidative and anti-inflammatory effects. The objective of this study was to identify the effects of VE, n-3 fatty acids, and combination of both during the starter phase (0–10 d) or grower phase (11–24 d) on intestinal morphology and expression of genes associated with gut health. A total of 210 Ross 708 broilers were randomly assigned into 7 treatments with 10 replicates of 3 birds each. The control group was fed a corn–soybean meal–basal diet during the entire study (0–58 d). Supplementation of VE (200 IU/kg), n-3 fatty acids (n-6/n-3 ratio of 3.2:1), and combination of both were fed during the starter phase (0–10 d) or grower phase (11–24 d). All of the broilers were harvested at 58 d of age. Villus height, crypt depth, villus width, distance between villi, and number of intraepithelial lymphocytes were obtained. Expression of 21 genes was measured using NanoString analysis. Expression of solute carrier family 15 member 1 (P = 0.01) associated with peptide transport and mucin 2 (P = 0.03) related with intestinal mucus barrier was increased in the broilers supplemented with n-3 fatty acids in the grower diet compared with the control. Expression of solute carrier family 7 member 1 associated with amino acid transport was decreased in the group supplemented with n-3 fatty acids during the starter phase compared with the group supplemented with n-3 fatty acids (P = 0.01) or VE and n-3 fatty acids during the grower phase (P = 0.03). These data suggest that VE and n-3 fatty acids supplemented during the grower phase have a positive effect on improving nutrient transport with n-3 fatty acids supplementation in the grower diet showing the most beneficial effect. These findings can be used in the development of nutritional management strategies to improve broiler growth performance and meat quality.
Collapse
Affiliation(s)
- Ji Wang
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Daniel L Clark
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Sheila K Jacobi
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA.
| |
Collapse
|
31
|
Transport of L-Arginine Related Cardiovascular Risk Markers. J Clin Med 2020; 9:jcm9123975. [PMID: 33302555 PMCID: PMC7764698 DOI: 10.3390/jcm9123975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
L-arginine and its derivatives, asymmetric and symmetric dimethylarginine (ADMA and SDMA) and L-homoarginine, have emerged as cardiovascular biomarkers linked to cardiovascular outcomes and various metabolic and functional pathways such as NO-mediated endothelial function. Cellular uptake and efflux of L-arginine and its derivatives are facilitated by transport proteins. In this respect the cationic amino acid transporters CAT1 and CAT2 (SLC7A1 and SLC7A2) and the system y+L amino acid transporters (SLC7A6 and SLC7A7) have been most extensively investigated, so far, but the number of transporters shown to mediate the transport of L-arginine and its derivatives is constantly increasing. In the present review we assess the growing body of evidence regarding the function, expression, and clinical relevance of these transporters and their possible relation to cardiovascular diseases.
Collapse
|
32
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. Sequence analysis and spatiotemporal developmental distribution of the Cat-1-type transporter slc7a1a in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2281-2298. [PMID: 32980952 PMCID: PMC7584565 DOI: 10.1007/s10695-020-00873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney. Graphical abstract.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, I-73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway.
| |
Collapse
|
33
|
Zheng R, da Rosa G, Dans PD, Peluffo RD. Molecular Determinants for Nitric Oxide Regulation of the Murine Cationic Amino Acid Transporter CAT-2A. Biochemistry 2020; 59:4225-4237. [PMID: 33135877 DOI: 10.1021/acs.biochem.0c00729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cationic amino acid transporters (CATs) supply cells with essential and semiessential dibasic amino acids. Among them, l-arginine is the substrate for nitric oxide synthases (NOS) to produce nitric oxide (NO), a key signaling molecule and second messenger. In cardiac preparations, we showed that NO acutely and directly modulates transport activity by noncompetitively inhibiting these CATs. We hypothesize that this NO regulation occurs through modification of cysteine residues in CAT proteins. Homology modeling and a computational chemistry approach identified Cys347 as one of two putative targets for NO binding, of 15 Cys residues present in the low-affinity mouse CAT-2A (mCAT-2A). To test this prediction, mammalian cell lines overexpressing mCAT-2A were used for site-directed mutagenesis and uptake studies. When Cys347 was replaced with alanine (Cys347Ala), mCAT-2A became insensitive to inhibition by NO donors. In addition, the transport capacity of this variant decreased by >50% compared to that of the control, without affecting membrane expression levels or apparent affinities for the transported amino acids. Interestingly, replacing Cys347 with serine (Cys347Ser) restored uptake levels to those of the control while retaining NO insensitivity. Other Cys residues, when replaced with Ala, still produced a NO-sensitive CAT-2A. In cells co-expressing NOS and mCAT-2A, exposure to extracellular l-arginine inhibited the uptake activity of control mCAT-2A, via NO production, but not that of the Cys347Ser variant. Thus, the -SH moiety of Cys347 is largely responsible for mCAT-2A inhibition by NO. Because of the endogenous NO effect, this modulation is likely to be physiologically relevant and a potential intervention point for therapeutics.
Collapse
Affiliation(s)
- Ruifang Zheng
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Gabriela da Rosa
- Laboratory of Molecular Microbiology, DEPBIO, School of Sciences-School of Chemistry, Universidad de la República, 11400 Montevideo, Uruguay.,Functional Genomics Laboratory, Institut Pasteur of Montevideo, Mataojo 2020, CP, 11400 Montevideo, Uruguay.,Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Rivera 1350, CP, 50000 Salto, Uruguay
| | - Pablo D Dans
- Functional Genomics Laboratory, Institut Pasteur of Montevideo, Mataojo 2020, CP, 11400 Montevideo, Uruguay.,Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Rivera 1350, CP, 50000 Salto, Uruguay
| | - R Daniel Peluffo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, New Jersey 07103, United States.,Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Rivera 1350, CP, 50000 Salto, Uruguay
| |
Collapse
|
34
|
Salsoso R, Mate A, Toledo F, Vázquez CM, Sobrevia L. Insulin requires A 2B adenosine receptors to modulate the L-arginine/nitric oxide signalling in the human fetoplacental vascular endothelium from late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165993. [PMID: 33096224 DOI: 10.1016/j.bbadis.2020.165993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Late-onset preeclampsia (LOPE) associates with reduced umbilical vein reactivity and endothelial nitric oxide synthase (eNOS) activity but increased human cationic amino acid (hCAT-1)-mediated L-arginine transport involving A2A adenosine receptor in the fetoplacental unit. This study addresses the A2B adenosine receptor (A2BAR)-mediated response to insulin in the fetoplacental vasculature from LOPE. Umbilical veins and HUVECs were obtained from women with normal (n = 37) or LOPE (n = 35) pregnancies. Umbilical vein rings reactivity to insulin was assayed in the absence or presence of adenosine and MRS-1754 (A2BAR antagonist) in a wire myograph. HUVECs were exposed to insulin, MRS-1754, BAY60-6583 (A2BAR agonist), NECA (general adenosine receptors agonist) or NG-nitro-L-arginine methyl ester (NOS inhibitor). A2BAR, hCAT-1, total and phosphorylated eNOS, Akt and p44/42mapk protein abundance were determined by Western blotting. Insulin receptors A (IR-A) and B (IR-B), eNOS and hCAT-1 mRNA were determined by qPCR. Firefly/Renilla luciferase assay was used to determine -1606 bp SLC7A1 (hCAT-1) promoter activity. L-Citrulline content was measured by HPLC, L-[3H]citrulline formation from L-[3H]arginine by the Citrulline assay, and intracellular cGMP by radioimmunoassay. LOPE-reduced dilation of vein rings to insulin was restored by MRS-1754. HUVECs from LOPE showed higher A2BAR, hCAT-1, and IR-A expression, Akt and p44/42mapk activation, and lower NOS activity. MRS-1754 reversed the LOPE effect on A2BAR, hCAT-1, Akt, and eNOS inhibitory phosphorylation. Insulin reversed the LOPE effect on A2BAR, IR-A and eNOS, but increased hCAT-1-mediated transport. Thus, LOPE alters endothelial function, causing an imbalance in the L-arginine/NO signalling pathway to reduce the umbilical vein dilation to insulin requiring A2BAR activation in HUVECs.
Collapse
Affiliation(s)
- Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, Herston, QLD, 4029, Australia.
| |
Collapse
|
35
|
Gyawali A, Gautam S, Hyeon SJ, Ryu H, Kang YS. L-Citrulline Level and Transporter Activity Are Altered in Experimental Models of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2020; 58:647-657. [PMID: 33000451 DOI: 10.1007/s12035-020-02143-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease caused by the death of the neurons regulating the voluntary muscles which leads to the progressive paralysis. We investigated the difference of transport function of L-citrulline in ALS disease model (NSC-34/hSOD1G93A, MT) and a control model (NSC-34/hSOD1wt, WT). The [14C]L-citrulline uptake was significantly reduced in MT cells as compared with that of control. The Michaelis-Menten constant (Km) for MT cells was 0.67 ± 0.05 mM, whereas it was 1.48 ± 0.21 mM for control. On the other hand, the Vmax values for MT and control were 10.9 ± 0.8 nmol/mg protein/min and 18.3 ± 2.9 nmol/mg protein/min, respectively. The Km and Vmax values showed the high affinity and low capacity for MT as compared with control. Moreover, the uptake of [14C]L-citrulline was significantly inhibited by 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) and harmaline which is the inhibitor of the large neutral amino acid transporter1 (LAT1) in NSC-34 cell lines. Furthermore, [14C]L-citrulline uptakes took place in Na+-independent manner. It was also inhibited by the neutral amino acids such as citrulline and phenylalanine. Likewise, L-dopa, gabapentin, and riluzole significantly inhibited the [14C]L-citrulline uptake. It shows the competitive inhibition for L-dopa in ALS cell lines. On the other hand, [14C]L-citrulline uptake in the presence of riluzole showed competitive inhibition in WT cells, whereas it was uncompetitive for MT cells. The small interfering RNA experiments showed that LAT1 is involved in the [14C]L-citrulline uptake in NSC-34 cell lines. On the other hand, in the examination of the alteration in the expression level of LAT1, it was significantly lower in MT cells as compared with that of control. Similarly, in the spinal cord of ALS, transgenic mice revealed a slight but significant decrease in LAT1 immunoreactivity in motor neurons of ALS mice compared with control. However, the LAT1 immunoreactivity in non-motor neurons and in astrocytes was relatively increased in the spinal cord gray matter of ALS mice. The experimental evidences of our results suggest that the change of transport activity of [14C]L-citrulline may be partially responsible for the pathological alteration in ALS.
Collapse
Affiliation(s)
- Asmita Gyawali
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| | - Shashi Gautam
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| | - Seung Jae Hyeon
- Laboratory for Brain Gene Regulation and Epigenetics, Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Laboratory for Brain Gene Regulation and Epigenetics, Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Boston University Alzheimer's Disease Center Department of Neurology, Boston University School of Medicine, Boston, MA, 02183, USA
| | - Young-Sook Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Zaragozá R. Transport of Amino Acids Across the Blood-Brain Barrier. Front Physiol 2020; 11:973. [PMID: 33071801 PMCID: PMC7538855 DOI: 10.3389/fphys.2020.00973] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023] Open
Abstract
The blood-brain-barrier (BBB), present in brain capillaries, constitutes an essential barrier mechanism for normal functioning and development of the brain. The presence of tight junctions between adjacent endothelial cells restricts permeability and movement of molecules between extracellular fluid and plasma. The protein complexes that control cell-cell attachment also polarize cellular membrane, so that it can be divided into luminal (blood-facing) and abluminal (brain) sides, and each solute that enters/leaves the brain must cross both membranes. Several amino acid (AA) transport systems with different distributions on both sides of the BBB have been described. In a broad sense, there are at least five different systems of facilitative transporters and all of them are found in the luminal membrane. Some of these transporters are very specific for a small group of substrates and are located exclusively on the luminal side of the BBB. However, the two major facilitative carriers, system L and system y+, are located in both membranes, although asymmetrically. The position of these Na+-independent transporters ensures AA availability in the brain and also its bidirectional transport across the endothelial cells. On the other hand, there are several Na+-dependent transport systems that transport AAs against its concentration gradient together with the movement of Na+ ions. The majority of these active transporters are present exclusively at the abluminal membrane and are responsible for AA efflux from the brain into the endothelial cells. Since they are Na+-coupled, the sodium pump Na+/K+-ATPase is also highly expressed on this abluminal side of the BBB. Once inside the cell, the facilitative transporters located in the luminal membranes mediate export from the endothelial cell to the blood. In summary, the polarized distribution of these transport systems between the luminal and abluminal membranes, and the fact that more than one transporter may carry the same substrate, ensures supply and excretion of AAs in and out of the brain, thereby controlling its homeostasis and proper function.
Collapse
Affiliation(s)
- Rosa Zaragozá
- Department of Human Anatomy and Embriology, School of Medicine, IIS INCLIVA, University of Valencia, Valencia, Spain
| |
Collapse
|
37
|
Sanaei M, Salimzadeh L, Bagheri N. Crosstalk between myeloid‐derived suppressor cells and the immune system in prostate cancer. J Leukoc Biol 2019; 107:43-56. [DOI: 10.1002/jlb.4ru0819-150rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mohammad‐Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical Sciences Shahrekord Iran
| | - Loghman Salimzadeh
- Department of MedicineNational University of Singapore Singapore Singapore
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
38
|
Rotoli BM, Barilli A, Visigalli R, Ferrari F, Dall'Asta V. y+LAT1 and y+LAT2 contribution to arginine uptake in different human cell models: Implications in the pathophysiology of Lysinuric Protein Intolerance. J Cell Mol Med 2019; 24:921-929. [PMID: 31705628 PMCID: PMC6933409 DOI: 10.1111/jcmm.14801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 12/27/2022] Open
Abstract
y+LAT1 (encoded by SLC7A7), together with y+LAT2 (encoded by SLC7A6), is the alternative light subunits composing the heterodimeric transport system y+L for cationic and neutral amino acids. SLC7A7 mutations cause lysinuric protein intolerance (LPI), an inherited multisystem disease characterized by low plasma levels of arginine and lysine, protein-rich food intolerance, failure to thrive, hepatosplenomegaly, osteoporosis, lung involvement, kidney failure, haematologic and immunological disorders. The reason for the heterogeneity of LPI symptoms is thus far only poorly understood. Here, we aimed to quantitatively compare the expression of SLC7A7 and SLC7A6 among different human cell types and evaluate y+LAT1 and y+LAT2 contribution to arginine transport. We demonstrate that system y+L-mediated arginine transport is mainly accounted for by y+LAT1 in monocyte-derived macrophages (MDM) and y+LAT2 in fibroblasts. The kinetic analysis of arginine transport indicates that y+LAT1 and y+LAT2 share a comparable affinity for the substrate. Differences have been highlighted in the expression of SLC7A6 and SLC7A7 mRNA among different cell models: while SLC7A6 is almost equally expressed, SLC7A7 is particularly abundant in MDM, intestinal Caco-2 cells and human renal proximal tubular epithelial cells (HRPTEpC). The characterization of arginine uptake demonstrates that system y+L is operative in renal cells and in Caco-2 where, at the basolateral side, it mediates arginine efflux in exchange with leucine plus sodium. These findings explain the defective absorption/reabsorption of arginine in LPI. Moreover, y+LAT1 is the prevailing transporter in MDM sustaining a pivotal role in the pathogenesis of immunological complications associated with the disease.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| | - Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| | - Valeria Dall'Asta
- Laboratory of General Pathology, Department of Medicine and Surgery (DiMec), University of Parma, Parma, Italy
| |
Collapse
|
39
|
Giblin L, Yalçın AS, Biçim G, Krämer AC, Chen Z, Callanan MJ, Arranz E, Davies MJ. Whey proteins: targets of oxidation, or mediators of redox protection. Free Radic Res 2019; 53:1136-1152. [PMID: 31510814 DOI: 10.1080/10715762.2019.1632445] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bovine whey proteins are highly valued dairy ingredients. This is primarily due to their amino acid content, digestibility, bioactivities and their processing characteristics. One of the reported bioactivities of whey proteins is antioxidant activity. Numerous dietary intervention trials with humans and animals indicate that consumption of whey products can modulate redox biomarkers to reduce oxidative stress. This bioactivity has in part been assigned to whey peptides using a range of biochemical or cellular assays in vitro. Superimposing whey peptide sequences from gastrointestinal samples, with whey peptides proven to be antioxidant in vitro, allows us to propose peptides from whey likely to exhibit antioxidant activity in the diet. However, whey proteins themselves are targets of oxidation during processing particularly when exposed to high thermal loads and/or extensive processing (e.g. infant formula manufacture). Oxidative damage of whey proteins can be selective with regard to the residues that are modified and are associated with the degree of protein unfolding, with α-Lactalbumin more susceptible than β-Lactoglobulin. Such oxidative damage may have adverse effects on human health. This review summarises how whey proteins can modulate cellular redox pathways and conversely how whey proteins can be oxidised during processing. Given the extensive processing steps that whey proteins are often subjected to, we conclude that oxidation during processing is likely to compromise the positive health attributes associated with whey proteins.
Collapse
Affiliation(s)
- Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - A Süha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | - Gökhan Biçim
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | - Anna C Krämer
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Zhifei Chen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Callanan
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Elena Arranz
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Bai S, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Bai J, Xuan Y, Su Z, Wu B. Uptake of Manganese from the Manganese-Lysine Complex in Primary Chicken Intestinal Epithelial Cells. Animals (Basel) 2019; 9:ani9080559. [PMID: 31443255 PMCID: PMC6720897 DOI: 10.3390/ani9080559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Manganese (Mn) supplementation is especially necessary to avian species because the absorption of dietary Mn is relatively inefficient in birds. Recently, there has been increasing interest in the use of organic Mn to replace inorganic Mn as dietary Mn supplements in poultry. This study compared the uptake of Mn from Mn-lysine complex (MnLys) and MnSO4 in the primary chicken intestinal epithelial cells when the Fe, N-ethylmaleimide (a transport system y+ inhibitor), or cycloheximide (a transport system b0,+ activator) added in the culture medium. The results revealed that the uptake of Mn from the MnLys complex not only might be transported through the ionized Mn2+ pathway, but also appeared to be transported through the transport systems y+ and b0,+ in the intestine of chickens. Abstract Organic manganese (Mn) sources can replace inorganic Mn as dietary Mn supplements in poultry. To compare the uptake of Mn from the Mn-lysine complex (MnLys) and MnSO4, we first established the primary chicken intestinal epithelial cells (IECs) model and used it to determine Mn uptake. The MnLys increased the uptake of Mn compared to MnSO4. The uptake of Mn decreased in the IECs with Fe addition in the medium regardless of the Mn sources. The MnLys decreased the Mn2+ efflux transporter ferroportin 1 (FPN1) mRNA level but did not influence the Mn2+ influx transporter divalent metal transporter 1 (DMT1) mRNA expression when compared to MnSO4. The results above indicated that the increase of Mn accumulation for MnLys at least partly was due to the decrease of Mn efflux by reduced FPN1 expression. The addition of N-ethylmaleimide, an L-lysine transport system y+ inhibitor, decreased the uptake of Mn from MnLys but did not affect the uptake of Mn from MnSO4. The cycloheximide, as an L-lysine transport system b0,+ activator, increased the uptake of Mn from MnLys, whereas they did not influence the uptake of Mn from MnSO4. The MnLys increased the system y+ members cationic amino acid transporter (CAT) 1 and CAT2, and system b0,+ components rBAT and b0,+AT mRNA expression when compared to MnSO4. These results suggested that the uptake of MnLys complex might be transported by CAT1/2 and system b0,+, which was different from the ionized Mn2+ uptake pathway. In conclusion, the uptake of Mn from MnLys complex not only might be uptake through the ionized Mn2+ pathway, but also appeared to be transported through the CAT1/2 and system b0,+ in primary chicken IECs.
Collapse
Affiliation(s)
- Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Keying Zhang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Jie Bai
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Zuowei Su
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Bin Wu
- Chinese Chelota Group, Liangshui Industrial Estate, Jinyu District, Guanghan 618300, Sichuan, China
| |
Collapse
|
41
|
Chen Z, Kondrashina A, Greco I, Gamon LF, Lund MN, Giblin L, Davies MJ. Effects of Protein-Derived Amino Acid Modification Products Present in Infant Formula on Metabolic Function, Oxidative Stress, and Intestinal Permeability in Cell Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5634-5646. [PMID: 31017422 DOI: 10.1021/acs.jafc.9b01324] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Proteins present in infant formulas are modified by oxidation and glycation during processing. Modified amino acid residues released from proteins may be absorbed in the gastrointestinal tract, and pose a health risk to infants. In this study, the markers of glycation furosine (1.7-3.5 μg per milligram of protein) and Nε-(carboxymethyl)lysine (28-81 ng per milligram of protein) were quantitated in infant formulas. The effects of these species, and other amino acid modifications, at the levels detected in infant formulas, on 3T3-L1 (murine preadipocyte) and Caco-2 (human intestinal epithelial) cells were assessed. Incubation of 3T3-L1 cells for 48 h with amino acid side chain oxidation and glycation products (1 and 10 μM) resulted in a loss (up to 40%, p < 0.05) of cell thiols and decreased metabolic activity compared with those of the controls. In contrast, Caco-2 cells showed a stimulation (10-50%, p < 0.05) of cellular metabolism on exposure to these products for 24 or 48 h. A 28% ( p < 0.05) increase in protein carbonyls was detected upon incubation with 200 μM modified amino acids for 48 h, although no alteration in transepithelial electrical resistance was detected. Oxidation products were detected in the basolateral compartments of Caco-2 monolayers when modified amino acids were applied to the apical side, consistent with limited permeability (up to 3.4%) across the monolayer. These data indicate that modified amino acids present in infant formulas can induce effects on different cell types, with evidence of bioavailability and induction of cellular stress. This may lead to potential health risks for infants consistently exposed to high levels of infant formulas.
Collapse
Affiliation(s)
- Zhifei Chen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Alina Kondrashina
- Teagasc Food Research Centre , Moorepark, Fermoy , County Cork , Ireland
| | - Ines Greco
- Department of Food Science, Faculty of Science , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Marianne N Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen 2200 , Denmark
- Department of Food Science, Faculty of Science , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Linda Giblin
- Teagasc Food Research Centre , Moorepark, Fermoy , County Cork , Ireland
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen 2200 , Denmark
| |
Collapse
|
42
|
Miska KB, Fetterer RH. Expression of amino acid and sugar transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1; differences between modern fast growing broilers and broilers not selected for rapid growth. Poult Sci 2019; 98:2272-2280. [DOI: 10.3382/ps/pey583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
|
43
|
Yahyaoui R, Blasco-Alonso J, Benito C, Rodríguez-García E, Andrade F, Aldámiz-Echevarría L, Muñoz-Hernández MC, Vega AI, Pérez-Cerdá C, García-Martín ML, Pérez B. A new metabolic disorder in human cationic amino acid transporter-2 that mimics arginase 1 deficiency in newborn screening. J Inherit Metab Dis 2019; 42:407-413. [PMID: 30671984 DOI: 10.1002/jimd.12063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/30/2018] [Indexed: 11/06/2022]
Abstract
PURPOSE We report a patient with a human cationic amino acid transporter 2 (CAT-2) defect discovered due to a suspected arginase 1 deficiency observed in newborn screening (NBS). METHODS A NBS sample was analyzed using tandem mass spectrometry. Screen results were confirmed by plasma and urine amino acid quantification. Molecular diagnosis was done using clinical exome sequencing. Dimethylated arginines were determined by HPLC and nitrate/nitrite levels by a colorimetric assay. The metabolomic profile was analyzed using 1D nuclear magnetic resonance spectroscopy. RESULTS A Spanish boy of nonconsanguineous parents had high arginine levels in a NBS blood sample. Plasma and urinary cationic amino acids were high. Arginase enzyme activity in erythrocytes was normal and no pathogenic mutations were identified in the ARG1 gene. Massive parallel sequencing detected two loss-of-function mutations in the SLC7A2 gene. Currently, the child receives a protein-controlled diet of 1.2 g/kg/day with protein-and amino-acid free infant formula, 30 g/day, and is asymptomatic. CONCLUSION We identified a novel defect in human CAT-2 due to biallelic pathogenic variants in the SLC7A2 gene. The characteristic biochemical profile includes high plasma and urine arginine, ornithine, and lysine levels. NBS centers should know of this disorder since it can be detected in arginase 1 deficiency screening.
Collapse
Affiliation(s)
- Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, Málaga, Spain
- Grupo Endocrinología y Nutrición, Diabetes y Obesidad, Instituto de Investigación Biomédica de Málaga-IBIMA
| | | | - Carmen Benito
- Department of Genetics, Málaga Regional University Hospital, Málaga, Spain
| | - Enrique Rodríguez-García
- Grupo Endocrinología y Nutrición, Diabetes y Obesidad, Instituto de Investigación Biomédica de Málaga-IBIMA
- Laboratorios Vircell, SL, Granada, Spain
| | - Fernando Andrade
- Metabolomics Platform, Metabolism Group, BioCruces Health Research Institute, CIBERER, Barakaldo, Spain
| | - Luis Aldámiz-Echevarría
- Metabolomics Platform, Metabolism Group, BioCruces Health Research Institute, CIBERER, Barakaldo, Spain
| | - María C Muñoz-Hernández
- BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Ana I Vega
- Centro Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, idiPAZ, Madrid, Spain
| | - Celia Pérez-Cerdá
- Centro Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, idiPAZ, Madrid, Spain
| | - María L García-Martín
- BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Belén Pérez
- Centro Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, idiPAZ, Madrid, Spain
| |
Collapse
|
44
|
Exchange-mode glutamine transport across CNS cell membranes. Neuropharmacology 2019; 161:107560. [PMID: 30853601 DOI: 10.1016/j.neuropharm.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
CNS cell membranes possess four transporters capable of exchanging Lglutamine (Gln) for other amino acids: the large neutral amino acid (LNAA) transporters LAT1 and LAT2, the hybrid basic amino acid (L-arginine (Arg), L-leucine (Leu)/LNAA transporter y+LAT2, and the L-alanine/L-serine/L-cysteine transporter 2 (ASCT2). LAT1/LAT2 and y+LAT2 are present in astrocytes, neurons and the blood brain barrier (BBB) - forming cerebral vascular endothelial cells (CVEC), while the location of ASCT2 in the individual cell types is a matter of debate. In the healthy brain, contribution of the exchangers to Gln shuttling from astrocytes to neurons and thus their role in controlling the conversion of Gln to the amino acid neurotransmitters l-glutamate (Glu) and γ-aminobutyric acid (GABA) and Gln flux across the BBB appears negligible as compared to the system A and system N uniporters. Insofar, except for the contribution of LAT1 to the maintenance of Gln homeostasis in the interstitial fluid (ISF), no well-defined CNS-specific function has been established for either of the three transporters in the healthy brain. The Gln-accepting amino acid exchangers appear to gain significance under conditions of excessive brain Gln load (glutaminosis). Excess Gln efflux across the BBB enhances influx into the brain of L-tryptophan (Trp). Excess of Trp is responsible for overloading the brain with neuroactive compounds: serotonin, kynurenic acid, quinolinic acid and/or oxindole, which contribute to neurotransmission imbalance accompanying hyperammonemia. In turn, alterations of y+LAT2-mediated Gln/Arg exchange and Arg uptake in astrocyte, modulate astrocytic nitric oxide synthesis and oxidative/nitrosative stress in ammonia-overexposed brain. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
45
|
Analysis of LPI-causing mutations on y+LAT1 function and localization. Orphanet J Rare Dis 2019; 14:63. [PMID: 30832686 PMCID: PMC6399926 DOI: 10.1186/s13023-019-1028-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/07/2019] [Indexed: 11/13/2022] Open
Abstract
Background y+LAT1, encoded by SCL7A7, is the protein mutated in Lysinuric Protein Intolerance (LPI), a rare metabolic disease caused by a defective cationic amino acid (CAA, arginine, lysine, ornithine) transport at the basolateral membrane of intestinal and renal tubular cells. The disease is characterized by protein-rich food intolerance with secondary urea cycle disorder, but symptoms are heterogeneous with lung and immunological complications that are not explainable by the CAA transport defect. With the exception of the Finnish founder mutation (c.895-2A > T, LPIFin), LPI-causative mutations are heterogeneous and genotype-phenotype correlations have not been found. Here we addressed system y+L-mediated arginine uptake in monocytes from three LPI Italian patients and in lymphoblasts carrying the same mutations; in parallel, the genetic defects carried by the patients were reproduced as eGFP-tagged y+LAT1 mutants in transfected CHO cells to define the function and localization protein. Results System y+L activity is impaired in monocytes isolated from all LPI patients, and in CHO cells transfected with the three eGFP-y+LAT1 mutants, but not in lymphoblasts bearing the same mutations. The analysis of protein localization with confocal microscopy revealed that the eGFP-tagged mutants were retained inside the cytosol, with a pattern of expression quite heterogeneous among the mutants. Conclusions The three mutations studied of y+LAT1 transporter result in a defective arginine transport both in ex vivo (monocytes) and in vitro (CHO transfected cells) models, likely caused by the retention of the mutated proteins in the cytosol. The different effect of y+LAT1 mutation on arginine transport in monocytes and lymphoblasts is supposed to be due to the different expression of SLC7A7 mRNA in the two models, supporting the hypothesis that the impact of LPI defect largely depends on the relative abundance of LPI target gene in each cell type. Electronic supplementary material The online version of this article (10.1186/s13023-019-1028-2) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Silva L, Plösch T, Toledo F, Faas MM, Sobrevia L. Adenosine kinase and cardiovascular fetal programming in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165397. [PMID: 30699363 DOI: 10.1016/j.bbadis.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a detrimental condition for human pregnancy associated with endothelial dysfunction and endothelial inflammation in the fetoplacental vasculature and leads to increased cardio-metabolic risk in the offspring. In the fetoplacental vasculature, GDM is associated with altered adenosine metabolism. Adenosine is an important vasoactive molecule and is an intermediary and final product of transmethylation reactions in the cell. Adenosine kinase is the major regulator of adenosine levels. Disruption of this enzyme is associated with alterations in methylation-dependent gene expression regulation mechanisms, which are associated with the fetal programming phenomenon. Here we propose that cellular and molecular alterations associated with GDM can dysregulate adenosine kinase leading to fetal programming in the fetoplacental vasculature. This can contribute to the cardio-metabolic long-term consequences observed in offspring after exposure to GDM.
Collapse
Affiliation(s)
- Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700 RB, the Netherlands.
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700 RB, the Netherlands; Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia.
| |
Collapse
|
47
|
Subiabre M, Villalobos-Labra R, Silva L, Fuentes G, Toledo F, Sobrevia L. Role of insulin, adenosine, and adipokine receptors in the foetoplacental vascular dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165370. [PMID: 30660686 DOI: 10.1016/j.bbadis.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
Affiliation(s)
- Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen 9700 RB, the Netherlands
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cell Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío Bío, Chillán 3780000, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston 4029, Queensland, Australia.
| |
Collapse
|
48
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
49
|
Kurosawa T, Tega Y, Higuchi K, Yamaguchi T, Nakakura T, Mochizuki T, Kusuhara H, Kawabata K, Deguchi Y. Expression and Functional Characterization of Drug Transporters in Brain Microvascular Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Mol Pharm 2018; 15:5546-5555. [DOI: 10.1021/acs.molpharmaceut.8b00697] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | | | - Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | | |
Collapse
|
50
|
Abstract
Arginine is derived from dietary intake, body protein breakdown, or endogenous de novo arginine production. Arginine methylation of non-histone proteins is used in transcriptional regulation. Protein-arginine methylation is used for regulation of transcriptional and various physiological pathological processes. Protein methylation may affect protein-protein, protein-DNA, or protein-RNA interaction. Arginine has an effect on the DNA-binding activity of NF-κB, a dominant transcriptional factor in inflammation. Adduct formation results in increased secretion of messenger molecules such as cytokines and chemokines that mediate communication among cells and promote inflammation. Arginine and lysine amino acid-rich histones in nucleosomes on modification by environmental agents form histone-DNA adducts, making it immunogenic. Alteration of DNA resulting from photomodification could lead to the development of antibodies or mutations to modified DNA. Lysine and arginine-rich histones in nucleosomes on modification by environmental agents form histone-DNA adducts, making it immunogenic. Alteration of DNA resulting from photomodification could lead to the development of antibodies or mutations to modified DNA. Therefore, the DNA-arginine photoadduct and modified photoadduct could have important implications in various pathophysiological conditions such as toxicology, carcinogenesis, and autoimmune phenomena. Abbreviations: Arg: Arginine; SLE: systemic lupus erythematosus; UV: ultraviolet; Tm: thermal melting temperature; NO: nitric oxide; O2.-: superoxide anion.
Collapse
Affiliation(s)
- Haseeb Ahsan
- a Department of Biochemistry, Faculty of Dentistry , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|