1
|
Bai H, Wang L, Lambo MT, Li Y, Zhang Y. Effect of changing the proportion of C16:0 and cis-9 C18:1 in fat supplements on rumen fermentation, glucose and lipid metabolism, antioxidation capacity, and visceral fatty acid profile in finishing Angus bulls. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:39-48. [PMID: 39026601 PMCID: PMC11254535 DOI: 10.1016/j.aninu.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 07/20/2024]
Abstract
This study evaluated the effects of different proportions of palmitic (C16:0) and oleic (cis-9 C18:1) acids in fat supplements on rumen fermentation, glucose (GLU) and lipid metabolism, antioxidant function, and visceral fat fatty acid (FA) composition in Angus bulls. The design of the experiment was a randomized block design with 3 treatments of 10 animals each. A total of 30 finishing Angus bulls (21 ± 0.5 months) with an initial body weight of 626 ± 69 kg were blocked by weight into 10 blocks, with 3 bulls per block. The bulls in each block were randomly assigned to one of three experimental diets: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic calcium salt (PA; 90% C16:0), (3) CON + 2.5% mixed FA calcium salts (MA; 60% C16:0 + 30% cis-9 C18:1). Both fat supplements increased C18:0 and cis-9 C18:1 in visceral fat (P < 0.05) and up-regulated the expression of liver FA transport protein 5 (FATP5; P < 0.001). PA increased the insulin concentration (P < 0.001) and aspartate aminotransferase activity (AST; P = 0.030) in bull's blood while reducing the GLU concentration (P = 0.009). PA increased the content of triglycerides (TG; P = 0.014) in the liver, the content of the C16:0 in visceral fat (P = 0.004), and weight gain (P = 0.032), and up-regulated the expression of liver diacylglycerol acyltransferase 2 (DGAT2; P < 0.001) and stearoyl-CoA desaturase 1 (SCD1; P < 0.05). MA increased plasma superoxide dismutase activity (SOD; P = 0.011), reduced the concentration of acetate and total volatile FA (VFA) in rumen fluid (P < 0.05), and tended to increase plasma non-esterified FA (NEFA; P = 0.069) concentrations. Generally, high C16:0 fat supplementation increased weight gain in Angus bulls and triggered the risk of fatty liver, insulin resistance, and reduced antioxidant function. These adverse effects were alleviated by partially replacing C16:0 with cis-9 C18:1.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Lubo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Cui L, Zhang M, Zheng F, Yuan C, Wang Z, Qiu S, Meng X, Dong J, Liu K, Guo L, Wang H, Li J. Selenium elicited an enhanced anti-inflammatory effect in primary bovine endometrial stromal cells with high cortisol background. BMC Vet Res 2024; 20:383. [PMID: 39192330 DOI: 10.1186/s12917-024-04240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND An elevated endogenous cortisol level due to the peripartum stress is one of the risk factors of postpartum bovine uterine infections. Selenium is a trace element that elicits anti-inflammation and antioxidation properties. This study aimed to reveal the modulatory effect of selenium on the inflammatory response of primary bovine endometrial stromal cells in the presence of high-level cortisol. The cells were subjected to lipopolysaccharide to establish cellular inflammation. The mRNA expression of toll-like receptor 4 (TLR4), proinflammatory factors, and selenoproteins was measured with qPCR. The activation of NF-κB and MAPK signalling pathways was detected with Western blot and immunofluorescence. RESULTS The pretreatment with sodium selenite (2 and 4 µΜ) resulted in a down-regulation of TLR4 and genes encoding proinflammatory factors, including interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor α, cyclooxygenase 2, and inducible nitric oxide synthase. Selenium inhibited the activation of NF-κB and the phosphorylation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38MAPK and c-Jun N-terminal kinase/stress-activated protein kinase. The suppression of those genes and pathways by selenium was more significant in the presence of high cortisol level (30 ng/mL). Meanwhile the gene expression of glutathione peroxidase 1 and 4 was promoted by selenium, and was even higher in the presence of cortisol and selenium. CONCLUSIONS The anti-inflammatory action of selenium is probably mediated through NF-κB and MAPK, and is augmented by cortisol in primary bovine endometrial stromal cells.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Min Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangling Zheng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Changning Yuan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shangfei Qiu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
3
|
El-Sayed A, Ebissy E, Ateya A. Positive impacts of Nannochloropsis oculata supplementation on gene expression of immune and antioxidant markers and metabolic profile of Barki sheep in the transition period and lipogenic effects on progeny. Vet Res Commun 2024; 48:2207-2226. [PMID: 38702499 PMCID: PMC11315803 DOI: 10.1007/s11259-024-10392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nannochloropsis species should be given priority when it comes to microalgae that should be added to feed since they are suitable for intense culture and have a high concentration of PUFAs (especially EPA), antioxidants, and certain vitamins. This study investigated the possible immune and antioxidant impacts of Nannochloropsis supplementation on Barki ewes during transition period and their newly born lambs. Three weeks prior to the expected time of lambing, the researched ewes were divided into two equal groups of thirty ewes each. The second group, on the other hand, was fed the same base diet as the first group plus 10 g of commercially available Nannochloropsis powder per kg of concentrate, given daily to each ewe's concentrate. Findings revealed that supplementation of ewes with Nannochloropsis significantly up-regulated the expression pattern of immune (NFKB, RANTES, HMGB1, TNF-α, IRF4, TLR7, CLA-DRB3.2, IL1B, IL6, CXCL8, S-LZ, and Cathelicidin), and antioxidant (SOD1, CAT, GPX1, GST, ATOX1, Nrf2 and AhpC/TSA) markers in ewes post-lambing and their newly born lambs. Additionally, mRNA levels of lipogenic (ACACA, FASN SCD, LPL, and BTN1A) markers were significantly up-regulated in lambs from supplemented ewes than control ones. There was a significant increase in the WBCs, Hb, RBc count, serum level of glucose, total protein, triacylglycerol and total cholesterol, GPx, catalase, IL1α and IL6 with significantly decreased serum level of TNF-α and MDA in supplemented ewes after lambing as compared with control ones. There was also a significant increase in WBCs, Hb, RBc count, birth weight and body temperature with significantly decreased in the serum levels of TNF-α and stillbirth of newly born lambs from supplemented ewes as compared to other lambs from control ones.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Eman Ebissy
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Yadav DK, Somagond YM, Das P, Lathwal SS, Kamboj A, Alhussien MN, Dang AK. Injection of antioxidant trace minerals/vitamins into peripartum crossbred cows improves the nutritional and immunological properties of colostrum/milk and the health of their calves under heat stress conditions. Trop Anim Health Prod 2024; 56:225. [PMID: 39066797 DOI: 10.1007/s11250-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Multimineral and vitamin injections can provide better nutrient availability at the cellular level, which is essential for mitigating transition period stress and improving the wellbeing and productivity of dairy cows. The present study was conducted to assess the colostrum quality and calf health after intramuscular injection of multi-minerals (MM) and multi-vitamins (MV) to peripartum cows during winter (THI = 58 to 66) and summer (THI = 78 to 82) months. In each season, twenty-four pregnant crossbred Karan Fries cows were grouped into four, each consisting of six cows. Group I, referred to as the Control, received solely the basal diet, without any additional supplements. Groups II, III, and IV were administered additional MM (T1), MV (T2), and a combined MM and MV (T3) along with their basal diet, starting 30 days before calving and continuing for 30 days after calving. Blood samples were collected from the calves, while colostrum/milk samples were obtained from the cows on days 1, 3, 7, and 15 after calving. The somatic cell counts (SCC) in the milk were determined using a cell counter. Cortisol, IgG, IGF1 and total immunoglobulins (TIG) in whey and plasma from cow colostrum/milk or calf blood samples were estimated by ELISA. Cows that calved in the summer exhibited notably reduced levels (P < 0.05) of IgG, milk, and plasma IGF1, along with lower calf body weights, in comparison to those calving in the winter season. Furthermore, the summer months saw significant increases (P < 0.05) in plasma and milk cortisol levels, as well as total somatic cell counts (SCC) in both colostrum and milk samples. Maximum beneficial effect was observed in T3 group. Results indicate that injections to peripartum cows could be an important strategy for improving colostrum quality and calf health during the summer seasons.
Collapse
Affiliation(s)
- Dhawal Kant Yadav
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Yallappa M Somagond
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
- Animal Physiology and Reproduction, ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797106, India
| | - Pravasini Das
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Surender Singh Lathwal
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, 85354, Freising, Germany
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
5
|
Li H, Wang H, Cui L, Liu K, Guo L, Li J, Dong J. The effect of selenium on the proliferation of bovine endometrial epithelial cells in a lipopolysaccharide-induced damage model. BMC Vet Res 2024; 20:109. [PMID: 38500165 PMCID: PMC10946195 DOI: 10.1186/s12917-024-03958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Endometritis is a common bovine postpartum disease. Rapid endometrial repair is beneficial for forming natural defense barriers and lets cows enter the next breeding cycle as soon as possible. Selenium (Se) is an essential trace element closely related to growth and development in animals. This study aims to observe the effect of Se on the proliferation of bovine endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS) and to elucidate the possible underlying mechanism. RESULTS In this study, we developed a BEECs damage model using LPS. Flow cytometry, cell scratch test and EdU proliferation assay were used to evaluate the cell cycle, migration and proliferation. The mRNA transcriptions of growth factors were detected by quantitative reverse transcription-polymerase chain reaction. The activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways were detected by Western blotting and immunofluorescence. The results showed that the cell viability and BCL-2/BAX protein ratio were significantly decreased, and the cell apoptosis rate was significantly increased in the LPS group. Compared with the LPS group, Se promoted cell cycle progression, increased cell migration and proliferation, and significantly increased the gene expressions of TGFB1, TGFB3 and VEGFA. Se decreased the BCL-2/BAX protein ratio, promoted β-catenin translocation from the cytoplasm to the nucleus and activated the Wnt/β-catenin and PI3K/AKT signaling pathways inhibited by LPS. CONCLUSIONS In conclusion, Se can attenuate LPS-induced damage to BEECs and promote cell proliferation and migration in vitro by enhancing growth factors gene expression and activating the PI3K/AKT and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Heng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Luying Cui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Kangjun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Long Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China
| | - Jianji Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China.
| | - Junsheng Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Rd, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Zan L, Zhang W, Shang S, Cui Y, Pei J, Yuan Y, Yue T. Alleviating effect of selenium-enriched Lactobacillus plantarum 6076 on dextran sulfate sodium-induced colitis and liver inflammation in mice. Food Funct 2023; 14:10151-10162. [PMID: 37902068 DOI: 10.1039/d3fo03842d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The aim of this study is to investigate the alleviating effect of selenium-enriched Lactobacillus plantarum (SL) 6076 on colitis and liver inflammation induced by sodium dextran sulfate (DSS) in mice and its potential molecular mechanisms. Lactobacillus plantarum (LA) was cultured for 3 generations on MRS medium containing sodium selenite to generate SL. LA (3.2 × 1011 CFU mL-1), low selenium Lactobacillus plantarum (LS) (3.9 × 1010 CFU mL-1, 0.35 mg mL-1 Se) and high selenium Lactobacillus plantarum (HS) (2.8 × 1010 CFU mL-1, 0.52 mg mL-1 Se) were continuously fed to mice for 21 d to observe their effects on DSS-induced colitis and liver inflammation in mice. The composition of gut microbiota was detected through high-throughput 16S rRNA sequencing, and inflammatory cytokines, oxidative stress parameters, and serum biochemical indicators were measured in the colon and liver using quantitative polymerase chain reaction (qPCR) and biochemical analysis methods. The results showed that SL alleviated inflammation symptoms in the colon and liver, reduced the expression of inflammatory factors in the colon and liver, regulated oxidative stress responses in the colon, downregulated NF-κB-P65 pathway factors, and altered the composition and structure of the gut microbiota. In summary, DSS-induced colitis may cause liver inflammation, and SL had a significant relieving effect on both colon and liver inflammation. The intervention effect of SL was better than that of LA, while HS was better than LS. SL had a significant alleviating effect on DSS-induced colitis, and may exert its therapeutic effect by downregulating NF-κB-P65 signaling pathways and regulating the structure of intestinal microbiota. This study provides a new approach for the treatment of colitis.
Collapse
Affiliation(s)
- Lixia Zan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
- College of Biological Sciences and Engineering, Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723000, China
| | - Wenyi Zhang
- College of Biological Sciences and Engineering, Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723000, China
| | - Shufeng Shang
- College of Biological Sciences and Engineering, Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Jinjin Pei
- College of Biological Sciences and Engineering, Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
Yuan N, Wang Y, Pan Q, Zhao L, Qi X, Sun S, Suolang Q, Ciren L, Danzeng L, Liu Y, Zhang L, Gao T, Basang Z, Lian H, Sun Y. From the perspective of rumen microbiome and host metabolome, revealing the effects of feeding strategies on Jersey Cows on the Tibetan Plateau. PeerJ 2023; 11:e16010. [PMID: 37719116 PMCID: PMC10501371 DOI: 10.7717/peerj.16010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background Previous studies have discussed the effects of grazing and house feeding on yaks during the cold season when forage is in short supply, but there is limited information on the effects of these feeding strategies on Jersey cows introduced to the Tibetan Plateau. The objective of this study was to use genomics and metabolomics analyses to examine changes in rumen microbiology and organism metabolism of Jersey cows with different feeding strategies. Methods We selected 12 Jersey cows with similar body conditions and kept them for 60 days under grazing (n = 6) and house-feeding (n = 6) conditions. At the end of the experiment, samples of rumen fluid and serum were collected from Jersey cows that had been fed using different feeding strategies. The samples were analyzed for rumen fermentation parameters, rumen bacterial communities, serum antioxidant and immunological indices, and serum metabolomics. The results of the study were examined to find appropriate feeding strategies for Jersey cows during the cold season on the Tibetan plateau. Results The results of rumen fermentation parameters showed that concentrations of acetic acid, propionic acid, and ammonia nitrogen in the house-feeding group (Group B) were significantly higher than in the grazing group (Group G) (P < 0.05). In terms of the rumen bacterial community 16S rRNA gene, the Chao1 index was significantly higher in Group G than in Group B (P = 0.038), while observed species, Shannon and Simpson indices were not significantly different from the above-mentioned groups (P > 0.05). Beta diversity analysis revealed no significant differences in the composition of the rumen microbiota between the two groups. Analysis of serum antioxidant and immune indices showed no significant differences in total antioxidant capacity between Group G and Group B (P > 0.05), while IL-6, Ig-M , and TNF-α were significantly higher in Group G than in Group B (P < 0.05). LC-MS metabolomics analysis of serum showed that a total of 149 major serum differential metabolites were found in Group G and Group B. The differential metabolites were enriched in the metabolic pathways of biosynthesis of amino acids, protein digestion and absorption, ABC transporters, aminoacyl-tRNA biosynthesis, mineral absorption, and biosynthesis of unsaturated fatty acids. These data suggest that the house-feeding strategy is more beneficial to improve the physiological state of Jersey cows on the Tibetan Plateau during the cold season when forages are in short supply.
Collapse
Affiliation(s)
- Niuniu Yuan
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Yicui Wang
- Henan University of Traditional Chinese Medicine, College of pharmacy, Zhengzhou, Henan, China
| | - Qihao Pan
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Li Zhao
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Xiao Qi
- National Animal Husbandry Service, Beijing, China
- Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Shihao Sun
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Quji Suolang
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Luobu Ciren
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Luosang Danzeng
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Yanxin Liu
- Henan University of Traditional Chinese Medicine, College of pharmacy, Zhengzhou, Henan, China
| | - Liyang Zhang
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Tengyun Gao
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Zhuza Basang
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Hongxia Lian
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Yu Sun
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| |
Collapse
|
9
|
Abuelo A, Mann S, Contreras GA. Metabolic Factors at the Crossroads of Periparturient Immunity and Inflammation. Vet Clin North Am Food Anim Pract 2023; 39:203-218. [PMID: 37032303 DOI: 10.1016/j.cvfa.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Periparturient cows have the highest risk for disease and culling in the adult dairy herd. This risk is compounded by the multiple physiological changes of metabolism and immune function occurring around calving that alter the cow's inflammatory response. In this article, the authors summarize the current knowledge on immunometabolism in the periparturient cow, discussing major changes in immune and metabolic function around parturition that will facilitate the assessment of periparturient cow management programs.
Collapse
Affiliation(s)
- Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48824, USA
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 240 Farrier Road, Box 47, Ithaca, NY 14853, USA.
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Somagond YM, Alhussien MN, Dang AK. Repeated injection of multivitamins and multiminerals during the transition period enhances immune response by suppressing inflammation and oxidative stress in cows and their calves. Front Immunol 2023; 14:1059956. [PMID: 36845154 PMCID: PMC9950815 DOI: 10.3389/fimmu.2023.1059956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Periparturient dairy cows undergo major physiological and metabolic changes as well as immunosuppression, associated with decrease in plasma concentrations of various minerals and vitamins. The present study was conducted to investigate effects of repeated injections of vitamins and minerals on oxidative stress, innate and adaptive immune response in periparturient dairy cows and their offspring. Experiment was carried out on 24 peripartum Karan-Fries cows, randomly divided into four groups (n=6): control, Multi-mineral (MM), Multi-vitamin (MV) and Multi-minerals and Multi-vitamin (MMMV). Five ml of MM (Zinc 40 mg/ml, Manganese 10 mg/ml, Copper 15 mg/ml, Selenium 5 mg/ml) and five ml of MV (Vitamin E 5 mg/ml, Vitamin A 1000 IU/ml, B-Complex 5 mg/ml, and Vitamin D3 500 IU/ml) were injected intramuscularly (IM) to the MM and MV groups. MMMV group cows were injected with both. In all treatment groups, injections and blood sampling were carried out on 30th, 15th, 7th days before and after expected date of parturition and at calving. In calves, blood was collected at calving and on 1, 2, 3, 4, 7, 8, 15, 30 and 45 days post-calving. Colostrum/milk were collected at calving and at days 2, 4, and 8 post-calving. A lower percentage of total neutrophils and immature neutrophils, higher percentage of lymphocytes together with increased phagocytic activity of neutrophils and proliferative capacity of lymphocytes found in blood of MMMV cows/calves. Lower relative mRNA expression of TLRs and CXCRs and higher mRNA expression of GR-α, CD62L, CD11b, CD25 and CD44 found in blood neutrophils of MMMV groups. Total antioxidant capacity was higher, activity of antioxidant enzymes (SOD and CAT), TBARS levels were lower in the blood plasma of treated cows/calves. In both cows/calves, plasma pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, IL-17A, IFN-γ and TNF-α) increased, whereas anti-inflammatory cytokines (IL-4 and IL-10) decreased in MMMV groups. Total immunoglobulins increased in colostrum/milk of MMMV injected cows and plasma of their calves. Results indicate that repeated injections of multivitamins and multiminerals to peripartum dairy cows could be a major strategy to improve immune response and decrease in inflammation and oxidative stress in transition dairy cows and their calves.
Collapse
Affiliation(s)
- Yallappa M. Somagond
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India,Reproductive Biotechnology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India,*Correspondence: Ajay Kumar Dang, ;
| |
Collapse
|
11
|
Differentially Expressed Genes and Signalling Pathways Regulated by High Selenium Involved in Antioxidant and Immune Functions of Goats Based on Transcriptome Sequencing. Int J Mol Sci 2023; 24:ijms24021124. [PMID: 36674636 PMCID: PMC9864924 DOI: 10.3390/ijms24021124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
The objective of this study is to observe the effect of high selenium on the antioxidant and immune functions of growing goats based on transcriptome sequencing. Eighteen goats were randomly divided into three groups: (1) the control (CON) group was fed a basal diet, and (2) the treatment 1 group (LS) and treatment 2 group (HS) were fed a basal diet with 2.4 and 4.8 mg/kg selenium-yeast (SY), respectively. The results indicate that HS treatment significantly (p < 0.05) increased the apparent digestibility of either extract and significantly increased (p < 0.05) total antioxidant capacity, whereas it significantly (p < 0.05) decreased plasma aspartate aminotransferase and malondialdehyde relative to the control group. The LS treatment had significantly (p < 0.05) increased glutathione S-transferase and catalase compared to CON. A total of 532 differentially expressed genes (DEGs) between the CON and HS were obtained using transcriptome sequencing. Kyoto Encyclopedia of Genes and Genomes analysis identified upregulated (p < 0.05) DEGs mainly related to vascular smooth muscle contraction, alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, the VEGF signalling pathway, and proteoglycans in cancer; downregulated (p < 0.05) DEGs mainly related to the NOD-like receptor signalling pathway, influenza A, cytokine-cytokine receptor interaction, haematopoietic cell lineage, and African trypanosomiasis. Ontology analyses of the top genes show that the identified DEGs are mainly involved in the regulation of granulocyte macrophage colony-stimulating factor production for biological processes, the external side of the plasma membrane for cellular components, and carbohydrate derivative binding for molecular functions. Seven genes are considered potential candidate genes for regulating antioxidant activity, including selenoprotein W, 1, glutathione peroxidase 1, glutathione S-transferase A1, tumour necrosis factor, tumour necrosis factor superfamily member 10, tumour necrosis factor superfamily member 8, and tumour necrosis factor superfamily member 13b. The experimental observations indicate that dietary supplementation with 4.8 mg/kg SY can enhance antioxidant and immune functions by improving muscle immunity, reducing the concentrations of inflammatory molecules, and modulating antioxidant and inflammatory signalling pathways in growing goats.
Collapse
|
12
|
Mudgal V, Garg AK, Dass RS, Rawat M. Interaction of Antioxidant Trace Minerals Affecting Blood Picture Including Antioxidant Profile of Healthy Buffalo (Bubalus bubalis) Calves. Biol Trace Elem Res 2023; 201:156-169. [PMID: 35092580 DOI: 10.1007/s12011-022-03122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023]
Abstract
Copper (Cu) and selenium (Se) are antioxidants and essential trace elements that have mutual interaction and are reported to have beneficial effects at supranutritional levels. The experiment was executed to evaluate the individual impact of supranutritional levels of targeted elements with the effect of their interactions in buffalo calves. Twenty male Murrah buffalo calves of about 8-9 months (bodyweight 112.1 ± 7.69 kg) were distributed into four groups of five calves in each group and fed either a control (C) diet or supplemented with supranutritional levels of Cu (T1), Se (T2), or combination of both (T3) for 120 days. Higher (P = 0.015) values of packed cell volume were observed in group T2 at day 120; otherwise, all other hematological parameters remained comparable among groups. Over the period (day 120 vs. day 0), an enhancement in the percentage of lymphocytes (P = 0.006) with a reduction in neutrophils (P = 0.028) and hemoglobin (P = 0.024) values was observed in the control group. An enhancement in the percentage of monocytes (P = 0.031), with a reduced percentage of neutrophils (P = 0.022), was reported in groups T2 and T3, respectively. Interaction of Cu and Se at supranutritional level (T3) dramatically reduced plasma Cu (P = 0.008) level against the control values, with an improvement in Se markers (i.e., plasma Se, P = 0.041 and enzyme glutathione peroxidase, P = 0.057) over the values in calves fed supplemental Se alone (T2). Additionally, Cu (T1 and T3) was forced to decline (P < 0.05) Zn level in the plasma of buffalo calves. Cu (T1, P < 0.05) and Se (T2 and T3, P ≤ 0.01) supplementation was able to improve their respective plasma levels. The interaction of two trace elements at the supranutritional level further helped in reducing the lipid peroxidation (P = 0.01) values as well. Though antioxidant vitamins and cell-mediated immunity remained unaffected, humoral immunity against antigen P. multocida was high (P = 0.005) in the group T2. The conclusion may be drawn that supranutritional Cu and Se were capable to influence certain blood parameters with an additional interaction effect due to simultaneous supplementation in buffalo calves.
Collapse
Affiliation(s)
- Vishal Mudgal
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India.
- Division of Animal Nutrition and Feed Technology, ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India.
| | - Anil Kumar Garg
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| | - Ram Sharan Dass
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| | - Mayank Rawat
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| |
Collapse
|
13
|
Zalewska M, Kapusta A, Kawecka-Grochocka E, Urbańska DM, Czopowicz M, Kaba J, Brzozowska P, Bagnicka E. Effect of Supplementation with Organic Selenium or Turmeric and Rosemary Mixture on Beta-Defensin Content in Goat Milk. Animals (Basel) 2022; 12:2948. [PMID: 36359072 PMCID: PMC9657958 DOI: 10.3390/ani12212948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 10/29/2023] Open
Abstract
The present study examines the effects of diet supplementation with an organic selenium or herb-spice mixture on beta-defensin1 (GBD-1) and beta-defensin2 (GBD-2) concentrations in goat milk. Herd-I, consisting of Polish White (PWI) and Fawn Improved (PFI) goats, received supplementation with organic or inorganic selenium (controls). All goats were free from parasites, mastitis, and small ruminant lentivirus infection. Herd-II, consisting of PWI goats, either received a turmeric-rosemary mixture (experimental) or not (controls). The Herd I control group demonstrated higher fat, free fatty acid, and somatic cell levels and lower protein and lactose contents than Herd II controls. The GBD-1 concentration was below the detection limit in both herds. Herd I controls demonstrated higher GBD-2 concentrations in milk than Herd II controls. In addition, lower GBD-2 concentrations were noted in PWI goat milk. Organic selenium or rosemary-turmeric mixture supplementation had no effect on the GBD-2 content in the milk of healthy goats. The higher GBD-2 concentration observed in Herd Ic than in Herd IIc may suggest that the type of basal diet affects defensin secretion.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Aleksandra Kapusta
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology PAS, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Ewelina Kawecka-Grochocka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology PAS, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Daria M. Urbańska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology PAS, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Paulina Brzozowska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology PAS, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology PAS, Postępu 36A, 05-552 Jastrzębiec, Poland
| |
Collapse
|
14
|
Jing H, Chen Y, Qiu C, Guo MY. LncRNAs Transcriptome Analysis Revealed Potential Mechanisms of Selenium to Mastitis in Dairy Cows. Biol Trace Elem Res 2022; 200:4316-4324. [PMID: 35013889 DOI: 10.1007/s12011-021-03042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/21/2021] [Indexed: 11/02/2022]
Abstract
The trace element selenium (Se) plays an indispensable role in the growth of humans and animals due to its antioxidant function. Mastitis is one of the most important diseases affecting the dairy industry in the world. In recent years, long non-coding RNAs (lncRNAs) have been implicated in a series of cellular processes and disease development processes. RNA-sequencing technology was used to characterize lncRNA profiles and compared transcriptomic dynamics among the control group, the LPS group, and the Se-treated group to highlight the potential roles and functions of lncRNAs in the mammary epithelial cells of dairy cows. We identified 14 specific lncRNAs related to Se and their predicted target genes. KEGG and GO functional annotation was used to elucidate their biological function and the pathways in which they may be involved. The present study provides novel insights for exploring the molecular markers for the protection of Se against mastitis in dairy cows.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
15
|
Khalid W, Arshad MS, Ranjha MMAN, Różańska MB, Irfan S, Shafique B, Rahim MA, Khalid MZ, Abdi G, Kowalczewski PŁ. Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci 2022; 17:1075-1093. [PMID: 36133422 PMCID: PMC9462539 DOI: 10.1515/biol-2022-0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based foods are becoming an increasingly frequent topic of discussion, both scientific and social, due to the dissemination of information and exchange of experiences in the media. Plant-based diets are considered beneficial for human health due to the supply of many valuable nutrients, including health-promoting compounds. Replacing meat-based foods with plant-based products will provide many valuable compounds, including antioxidants, phenolic compounds, fibers, vitamins, minerals, and some ω3 fatty acids. Due to their high nutritional and functional composition, plant-based foods are beneficial in acute and chronic diseases. This article attempts to review the literature to present the most important data on nutrients of plant-based foods that can then help in the prevention of many diseases, such as different infections, such as coronavirus disease, pneumonia, common cold and flu, asthma, and bacterial diseases, such as bronchitis. A properly structured plant-based diet not only provides the necessary nutrients but also can help in the prevention of many diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Maria Barbara Różańska
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
16
|
Novoselec J, Klir Šalavardić Ž, Đidara M, Novoselec M, Vuković R, Ćavar S, Antunović Z. The Effect of Maternal Dietary Selenium Supplementation on Blood Antioxidant and Metabolic Status of Ewes and Their Lambs. Antioxidants (Basel) 2022; 11:antiox11091664. [PMID: 36139738 PMCID: PMC9495837 DOI: 10.3390/antiox11091664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
This study investigated the effect of dietary selenium supplementation (organic and inorganic) of late-gestation ewes on blood selenium concentrations and metabolic and antioxidant status indicators in ewes and their lambs. In addition, the efficacy of selenium transfer from ewes to lambs during the suckling period was determined. The study was conducted on 30 Merinolandschaf ewes and their lambs and lasted four months. The feed mixture of the control group (group I) contained no added selenium, while the feed mixture of group II was enriched with 0.3 mg/kg of organic selenium sources and the third group with 0.3 mg/kg of inorganic selenium sources. In ewes and their lambs, selenium supplementation significantly (p < 0.01; p < 0.05) increased selenium concentration, glutathione peroxidase, and superoxide dismutase activity and decreased malondialdehyde concentration compared to the control group. Selenium supplementation had a positive effect on metabolism and hematological indicators in lambs. A positive correlation was found between antioxidant indicators in the whole blood of ewes and lambs. The good transfer of selenium from ewes to lambs was complemented by higher correlation coefficients when the feed mixture was supplemented with organic compared to inorganic selenium.
Collapse
Affiliation(s)
- Josip Novoselec
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossamyer in Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-31-554-906
| | - Željka Klir Šalavardić
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossamyer in Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia
| | - Mislav Đidara
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossamyer in Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia
| | - Maja Novoselec
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossamyer in Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia
| | - Rosemary Vuković
- Department of Biology, University of J.J. Strossmayer in Osijek, Cara Hadrijana 8, 31000 Osijek, Croatia
| | - Suzana Ćavar
- Institute of Public Health Osijek-Baranja County, Franje Krežme 1, 31000 Osijek, Croatia
| | - Zvonko Antunović
- Faculty of Agrobiotechnical Sciences Osijek, University of J.J. Strossamyer in Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia
| |
Collapse
|
17
|
Szacawa E, Dudek K, Wasiak M, Bednarek D, Bederska-Łojewska D, Muszyńska B, Pieszka M. Effect of Supplementation with the Combination of Se-Enriched Lentinula edodes Mycelium, Exogenous Enzymes, Acidifiers, Sodium Butyrate and Silicon Dioxide Nanoparticle Feed Additives on Selected Parameters in Calves. Molecules 2022; 27:molecules27165163. [PMID: 36014403 PMCID: PMC9413389 DOI: 10.3390/molecules27165163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
During the initial months of calves’ lives, the young animals are exposed to bacterial and viral infections, and during this period, crucial physiological changes take place in their organisms. Offering calves feed additives that will have a beneficial influence on their organisms and improve their growth while reducing the morbidity rate is the optimal task of feeding. This is the first study to investigate the effect of experimental supplementation for calves with the combination of two feed additives—one containing Lentinula edodes enriched with selenium (Se), and the second containing pancreatic-like enzymes, fat-coated organic acids, sodium butyrate, and silicon dioxide nanoparticles—on the serum Se concentration, selected immune parameters, and the average daily gains in the calves. During the study, the serum Se concentration was examined by means of inductively coupled plasma mass spectrometry, and the immunoglobulin and cytokine concentrations with ELISA assays. The white blood cell (WBC) count with leukocyte differentiation was examined with the use of a hematological analyzer, and the percentages of subpopulations of T lymphocytes and monocytes, phagocytic activity, and oxidative burst of monocytes and granulocytes with the use of a flow cytometer. The average daily gains of the calves were also evaluated. In summary, the supplementation of the experimental calves with the combination of two feed additives resulted in significantly higher serum Se concentrations, and the immune systems of the calves were not suppressed while the examined feed additives were being delivered. Although not statistically significant, some positive effects on the calves were seen: a tendency towards the improvement of some of the immune parameters evaluated, and a tendency for higher average daily gains in the calves.
Collapse
Affiliation(s)
- Ewelina Szacawa
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
- Correspondence:
| | - Katarzyna Dudek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Magdalena Wasiak
- Department of Pathology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Dariusz Bednarek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Dorota Bederska-Łojewska
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Marek Pieszka
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland
| |
Collapse
|
18
|
Effects of Dietary Lysophospholipid Inclusion on the Growth Performance, Nutrient Digestibility, Nitrogen Utilization, and Blood Metabolites of Finishing Beef Cattle. Antioxidants (Basel) 2022; 11:antiox11081486. [PMID: 36009204 PMCID: PMC9404894 DOI: 10.3390/antiox11081486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
This study was conducted to evaluate the effect of dietary supplementation with lysophospholipids (LPLs) on the growth performance, nutrient digestibility, nitrogen utilization, and blood metabolites of finishing beef cattle. In total, 40 Angus beef bulls were blocked for body weight (447 ± 9.64 kg) and age (420 ± 6.1 days) and randomly assigned to one of four treatments (10 beef cattle per treatment): (1) control (CON; basal diet); (2) LLPL (CON supplemented with 0.012% dietary LPL, dry matter (DM) basis); (3) MLPL (CON supplemented with 0.024% dietary LPL, DM basis); and (4) HLPL (CON supplemented with 0.048% dietary LPLs, DM basis). The results showed that dietary supplementation with LPLs linearly increased the average daily gain (p < 0.01), digestibility of DM (p < 0.01), crude protein (p < 0.01), and ether extract (p < 0.01) and decreased the feed conversion ratio (p < 0.01). A linear increase in N retention (p = 0.01) and a decrease in urinary (p = 0.04) and fecal N (p = 0.02) levels were observed with increasing the supplemental doses of LPLs. Bulls fed LPLs showed a linear increase in glutathione peroxidase (p = 0.04) and hepatic lipase (p < 0.01) activity and a decrease in cholesterol (p < 0.01), triglyceride (p < 0.01), and malondialdehyde (p < 0.01) levels. In conclusion, supplementation with LPLs has the potential to improve the growth performance, nutrient digestibility, and antioxidant status of beef cattle.
Collapse
|
19
|
Lei XG, Combs GF, Sunde RA, Caton JS, Arthington JD, Vatamaniuk MZ. Dietary Selenium Across Species. Annu Rev Nutr 2022; 42:337-375. [PMID: 35679623 DOI: 10.1146/annurev-nutr-062320-121834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review traces the discoveries that led to the recognition of selenium (Se) as an essential nutrient and discusses Se-responsive diseases in animals and humans in the context of current understanding of the molecular mechanisms of their pathogeneses. The article includes a comprehensive analysis of dietary sources, nutritional utilization, metabolic functions, and dietary requirements of Se across various species. We also compare the function and regulation of selenogenomes and selenoproteomes among rodents, food animals, and humans. The review addresses the metabolic impacts of high dietary Se intakes in different species and recent revelations of Se-metabolites, means of increasing Se status, and the recycling of Se in food systems and ecosystems. Finally, research needs are identified for supporting basic science and practical applications of dietary Se in food, nutrition, and health across species. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York, USA;
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Roger A Sunde
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S Caton
- Department of Animal Science, North Dakota State University, Fargo, North Dakota, USA
| | - John D Arthington
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Marko Z Vatamaniuk
- Department of Animal Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
20
|
Zhang M, Jiao P, Wang X, Sun Y, Liang G, Xie X, Zhang Y. Evaluation of Growth Performance, Nitrogen Balance and Blood Metabolites of Mutton Sheep Fed an Ammonia-Treated Aflatoxin B1-Contaminated Diet. Toxins (Basel) 2022; 14:toxins14050361. [PMID: 35622607 PMCID: PMC9144722 DOI: 10.3390/toxins14050361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Experiments were conducted to evaluate the effects of an aflatoxin B1 (AFB1)-contaminated diet treated with ammonia on the diet detoxification and growth performance, nutrient digestibility, nitrogen utilization, and blood metabolites in sheep. Twenty-four female mutton sheep with an initial body weight of 50 ± 2.5 kg were randomly assigned to one of three groups: (1) control diet (C); (2) aflatoxin diet (T; control diet supplemented with 75 μg of AFB1/kg of dry matter); and (3) ammoniated diet (AT; ammoniated aflatoxin diet). The results showed decreases (p < 0.05) in average daily feed intake, nutrient digestibility of dry matter, crude protein and ether extract, and retained nitrogen, and an increase (p < 0.05) in urine nitrogen excretion in sheep fed diet T compared with those fed the other diets. In comparison to C and AT, feeding T decreased (p < 0.05) the concentrations of total protein, immunoglobulin A, immunoglobulin G, immunoglobulin M, superoxide dismutase, and total antioxidants and increased (p < 0.05) the concentrations of alanine amino transferase, malondialdehyde, and interleukin-6. In summary, ammonia treatment has the potential to decrease the concentration of AFB1 and alleviate the adverse effects of AFB1.
Collapse
|
21
|
Putman AK, Sordillo LM, Contreras GA. The Link Between 15-F2t-Isoprostane Activity and Acute Bovine Endothelial Inflammation Remains Elusive. Front Vet Sci 2022; 9:873544. [PMID: 35573419 PMCID: PMC9100427 DOI: 10.3389/fvets.2022.873544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023] Open
Abstract
Modern dairy cattle suffer from increased incidence and severity of mastitis during major physiological transitions of the lactation cycle. Oxidative stress, a condition resulting from inadequate antioxidant defense against reactive oxygen and nitrogen species, is a major underlying component of mastitis pathophysiology. Isoprostanes (IsoP) are molecules derived from cellular lipid membranes upon non-enzymatic interaction with reactive species during inflammation, and are regarded as highly sensitive and specific biomarkers of oxidative stress. Changes in IsoP concentrations have been noted during major physiological transitions and diseases such as coliform mastitis in dairy cattle. However, the biological role of IsoP during oxidative stress in dairy cows has not been well-elucidated. Therefore, this study aimed to characterize the impacts of IsoP on oxidative stress outcomes in a bovine model of acute endothelial inflammation. Bovine aortic endothelial cells (BAEC; n = 4) were stimulated with 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) or lipopolysaccharide (LPS) with or without 15-F2t-IsoP to determine how IsoP influence oxidative stress outcomes. Our endothelial inflammation model showed relatively decreased reactive metabolites and increased barrier integrity in cells treated with both the agonist and IsoP compared to agonist treatment alone. However, IsoP do not appear to affect oxidative stress outcomes during acute inflammation. Understanding the effect of IsoP on BAEC is an early step in elucidating how IsoP impact dairy cows during times of oxidative stress in the context of acute clinical mastitis. Future studies should define the optimal dosing and treatment timing of IsoP to maximize their cytoprotective potential during acute inflammation.
Collapse
|
22
|
Mudgal V, Garg AK, Dass RS, Rawat M. Nutraceutical role of supra-nutritional selenium in healthy buffalo ( Bubalus bubalis) calves. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2052878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vishal Mudgal
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Anil Kumar Garg
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ram Sharan Dass
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mayank Rawat
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
23
|
15-F 2t-Isoprostane Favors an Anti-Inflammatory Phenotype in RAW 264.7 Macrophages during Endotoxin Challenge. Antioxidants (Basel) 2022; 11:antiox11030586. [PMID: 35326236 PMCID: PMC8945100 DOI: 10.3390/antiox11030586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/25/2022] Open
Abstract
Dysregulated inflammation and oxidative stress are major underlying components of several diseases. Macrophages are critical effector cells in immune responses, functioning to progress and resolve inflammation during such diseases. These mononuclear cells regulate inflammatory responses by exhibiting a range of phenotypes that evolve with the process, first promoting inflammation but then switching to a proresolving subtype to restore tissue homeostasis. Furthermore, macrophages are a primary source of isoprostanes (IsoPs), a nonenzymatic byproduct of lipid peroxidation during inflammation. As highly sensitive and specific indicators of lipid damage, IsoPs are the gold standard biomarker of oxidative stress. However, the physiological role of IsoPs during inflammation is currently not well-established. This study determined how IsoPs affect macrophage phenotype during lipopolysaccharide (LPS) challenge. RAW 264.7 macrophages (n = 7) were challenged with 5 ng/mL LPS for 8 h, followed with or without 500 nM 15-F2t-IsoP for 1 h. Macrophage phenotype was determined using metabolic, transcriptomic, and proteomic markers. Phenotypic markers assessed included ATP production; transcription of proinflammatory Nos2, Il1β, and anti-inflammatory Il10; and translation markers IL1α and IL6 (proinflammatory) with G-CSF and IL17 (anti-inflammatory). Statistical analyses included one-way ANOVA followed by Tukey’s posthoc test. Significance was set at p < 0.05. In combination with LPS, 15-F2t-IsoP increased ATP production relative to LPS-only treated cells. Additionally, gene expression of Nos2 and Il1β were decreased while Il10 was increased. Cytokine production of IL6 was decreased while IL10, G-CSF, and IL17 were increased. Collectively, these results provide evidence that 15-F2t-IsoP promotes an anti-inflammatory macrophage phenotype during LPS challenge. These data support a novel physiological role of IsoPs, where these lipid mediators may participate in healing pathways during late-stage inflammation when they are elevated. Additionally, the promotion of an anti-inflammatory macrophage phenotype may contribute to preventing or mitigating inflammation during disease. Future studies should be directed towards defining the mechanisms in which IsoPs influence macrophage phenotype, such as receptor interactions and downstream signaling pathways.
Collapse
|
24
|
Ojeda ML, Carreras O, Nogales F. The Role of Selenoprotein Tissue Homeostasis in MetS Programming: Energy Balance and Cardiometabolic Implications. Antioxidants (Basel) 2022; 11:antiox11020394. [PMID: 35204276 PMCID: PMC8869711 DOI: 10.3390/antiox11020394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins’ implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’ growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.
Collapse
|
25
|
Gastrointestinal nematodes and mineral deficiencies in yearling cattle in Santiago del Estero, northern Argentina. Trop Anim Health Prod 2022; 54:94. [PMID: 35137322 DOI: 10.1007/s11250-022-03094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
The aims were to study the epidemiology and the effect of gastrointestinal nematodes (GINs) on yearling cattle in a semiarid region in Argentina and to evaluate the mineral serum levels. Ten- to twelve-month-old calves were monitored between November and April 2019. Animals were divided into three groups: untreated control (CONG; n = 20); group treated with moxidectin (MXD, 200 µg/kg) every 30-40 days (MXDG; n = 20); group equally MXD treated and mineral supplementation administered in November and January (MMG; n = 20). Individual GIN egg counts (epg) and fecal cultures were made every 30-40 days. Animal live weight gain was determined. On 7-11-18, 25-1-19, and 3-4-19, serum levels of Se, Cu, Zn, Mg, and Ca were determined by atom absorption spectrophotometry. At the start of the trial, epg values were low (x̄ = 5.5), which increased only in CONG towards the end of the assay (x̄ = 229). In both GMXD and MMG, epg remained very low (x̄ = 4.1). Cooperia spp. (81%) prevailed over Haemonchus spp. (9%) and Oesophagostomum spp. (9%). Deficiency of Se ranged between marginal and important, except for MMG, although mean values were always below normal. Cu was marginally deficient in CONG and MXDG on the first two sampling dates, whereas MMG had normal values after treatment. Mg had low values in the three groups (x̄ = 1.5 mg/dl), whereas Ca and Zn exhibited normal values. Live weight gain (LWG) was higher in MMG than in MXDG, with significant differences (p < 0.05) by mid-January and then, when epg increased, dewormed groups showed higher LWG (p < 0.034) than CONG. A negative effect of GINs on LWG was observed, as well as low to marginal levels of Se, Cu, and Mg.
Collapse
|
26
|
Climate Resilience in Small Ruminant and Immune system: an old alliance in the new sustainability context. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Zheng Y, Xie T, Li S, Wang W, Wang Y, Cao Z, Yang H. Effects of Selenium as a Dietary Source on Performance, Inflammation, Cell Damage, and Reproduction of Livestock Induced by Heat Stress: A Review. Front Immunol 2022; 12:820853. [PMID: 35116042 PMCID: PMC8803637 DOI: 10.3389/fimmu.2021.820853] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Heat stress as a result of global warming has harmful consequences for livestock and is thus becoming an urgent issue for animal husbandry worldwide. Ruminants, growing pigs, and poultry are very susceptible to heat stress because of their fast growth, rapid metabolism, high production levels, and sensitivity to temperature. Heat stress compromises the efficiency of animal husbandry by affecting performance, gastrointestinal health, reproductive physiology, and causing cell damage. Selenium (Se) is an essential nutritional trace element for livestock production, which acts as a structural component in at least 25 selenoproteins (SELs); it is involved in thyroid hormone synthesis, and plays a key role in the antioxidant defense system. Dietary Se supplementation has been confirmed to support gastrointestinal health, production performance, and reproductive physiology under conditions of heat stress. The underlying mechanisms include the regulation of nutrient digestibility influenced by gastrointestinal microorganisms, antioxidant status, and immunocompetence. Moreover, heat stress damage to the gastrointestinal and mammary barrier is closely related to cell physiological functions, such as the fluidity and stability of cellular membranes, and the inhibition of receptors as well as transmembrane transport protein function. Se also plays an important role in inhibiting cell apoptosis and reducing cell inflammatory response induced by heat stress. This review highlights the progress of research regarding the dietary supplementation of Se in the mitigation of heat stress, addressing its mechanism and explaining the effect of Se on cell damage caused by heat stress, in order to provide a theoretical reference for the use of Se to mitigate heat stress in livestock.
Collapse
Affiliation(s)
| | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
28
|
Silva TH, Guimaraes I, Menta PR, Fernandes L, Paiva D, Ribeiro TL, Celestino ML, Netto AS, Ballou MA, Machado VS. Effect of injectable trace mineral supplementation on peripheral polymorphonuclear leukocyte function, antioxidant enzymes, health, and performance in dairy cows in semi-arid conditions. J Dairy Sci 2021; 105:1649-1660. [PMID: 34799106 DOI: 10.3168/jds.2021-20624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022]
Abstract
The objective of this study was to evaluate the effect of subcutaneous injections of 15 mg/mL Cu, 5 mg/mL Se, 60 mg/mL Zn, and 10 mg/mL Mn on health, performance, polymorphonuclear leukocyte (PMNL) function, circulating glutathione peroxidase (GPx) and superoxide dismutase (SOD) concentrations, and inflammation of dairy cows undergoing the transition period in high temperature-humidity index. A total of 923 multiparous cows from 2 commercial dairy farms were randomly allocated into 1 of 2 treatment groups as follows: control and injectable trace mineral supplementation (ITMS). Cows in the ITMS group received 7 mL of subcutaneous injections at dry-off (208 ± 3 d of gestation), 260 ± 3 d of gestation, and at 35 ± 3 d in milk (DIM). Data regarding health traits, reproductive performance, milk yield, and survivability were extracted from farm database software, and animals were followed-up until 300 DIM. For a subset of 142 cows from one herd, blood samples were collected at enrollment, and at 3 ± 1, 7 ± 1, 10 ± 1, and 35 ± 3 DIM to evaluate hematology, PMNL function, GPx and SOD concentrations, and circulating haptoglobin. Logistic regression was used to assess health and pregnancy per artificial insemination at first service. Cox proportional hazards models were used to evaluate hazard of pregnancy and culling. Mixed linear regression models accounting for repeated measures were used to assess all continuous variables collected over time. Parity, twinning, and previous gestation length were considered as potential confounders. Farm was included as a random effect. The ITMS cows tended to have lower incidence of metritis and stillbirth compared with control group. However, ITMS treatment did not influence the incidence of other diseases (e.g., mastitis, retained placenta), milk yield, reproductive performance, culling, and leukocyte count. Neutrophil-to-lymphocyte ratio, PMNL phagocytosis, and oxidative burst as well as intensity of the oxidative burst were greater for ITMS-treated cows in comparison to control cows. The ITMS cows had decreased expression of the adhesion molecule L-selectin on PMNL surface. The serum concentration of GPx and SOD were not affected by ITMS treatment. In conclusion, ITMS tended to reduce the incidence of metritis and stillbirth parturition, improved PMNL function, and improved the inflammatory status of dairy cows undergoing the transition period in high temperature-humidity index conditions. However, these findings did not translate into improved milk yield, reproductive performance, and survivability.
Collapse
Affiliation(s)
- T H Silva
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415; Department of Animal Science, School of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP 13635-900 Brazil
| | - I Guimaraes
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - P R Menta
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - L Fernandes
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - D Paiva
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - T L Ribeiro
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - M L Celestino
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - A Saran Netto
- Department of Animal Science, School of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, SP 13635-900 Brazil
| | - M A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415
| | - V S Machado
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79415.
| |
Collapse
|
29
|
In Vitro and In Vivo Evaluation of the Effects of a Compound Based on Plants, Yeast and Trace Elements on the Ruminal Function of Dairy Cows. DAIRY 2021. [DOI: 10.3390/dairy2040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The high production levels reached by the dairy sector need adjustment in nutritional inputs and efficient feed conversion. In this context, we evaluated a compound (QY—Qualix Yellow) combining optimized inputs in trace elements and 20% MIX 3.0. In a first step, the effects of MIX 3.0 on ruminal function were assessed in vitro by incubating ruminal fluid with the mixture at a ratio of 20:1. The results obtained encouraged us to test QY in vivo, on a herd of dairy cows. The herd was divided into one group of 19 dairy cows receiving the compound and a control group of 20 animals conducted in the same conditions, but which did not received the compound; the production performance and feed efficiency of the two groups were compared. In vitro experiments showed improved digestion of acid and neutral detergent fibres by 10%. The propionate production was enhanced by 14.5% after 6 h incubation with MIX 3.0. The plant mixture decreased the production of methane and ammonia by 37% and 52%, respectively, and reduced the number of protozoa by 50%. An increase in milk yield by 2.4 kg/cow/d (p < 0.1), combined with a decrease in concentrate consumption of 0.27 kg DM/cow/d (p < 0.001), was observed in vivo after consumption of the compound. Sixty-six days after the beginning of the trial, methane emissions per kg of milk were significantly lower in the group receiving QY. In conclusion, MIX 3.0 induced change in ruminal function in vitro and, when it entered into the composition of the QY, it appeared to improve feed efficiency and production performance in vivo.
Collapse
|
30
|
Strickland JM, Wisnieski L, Mavangira V, Sordillo LM. Serum Vitamin D Is Associated with Antioxidant Potential in Peri-Parturient Cows. Antioxidants (Basel) 2021; 10:1420. [PMID: 34573052 PMCID: PMC8471689 DOI: 10.3390/antiox10091420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/24/2022] Open
Abstract
Dairy cows experience increased oxidative stress during periods of transition such as at the cessation of lactation and around the periparturient period, thus increasing disease risk. Despite routine supplementation of transition cow diets with certain vitamins in an attempt to mitigate oxidative stress, there is no currently available data directly linking vitamin supplementation with antioxidant potential (AOP) in transition cows. The objective of this study was to determine the association between serum vitamins and biomarkers of oxidative stress in healthy cows. Blood samples were collected from 240 cows at dry off (DO), close up (CU), and 2-10 days post-calving (DIM2-10). Blood samples were analyzed for vitamins (A, D, E), β-carotene, reactive oxygen species (ROS), and AOP. Spearman correlations and mixed linear regression models were used to assess associations between vitamins and measures of oxidant status. Vitamin D concentrations were positively associated with AOP at the CU and DIM2-10. Based on the positive association with AOP, additional in-vitro studies were conducted that showed vitamin D mitigated barrier integrity loss in endothelial cells during oxidative stress. These results indicate for the first time that vitamin D may have a role in promoting antioxidant potential in transition dairy cows.
Collapse
Affiliation(s)
- Jaimie M. Strickland
- Large Animal Clinal Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (J.M.S.); (V.M.)
| | - Lauren Wisnieski
- Center for Animal and Human Health in Appalachia, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA;
| | - Vengai Mavangira
- Large Animal Clinal Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (J.M.S.); (V.M.)
| | - Lorraine M. Sordillo
- Large Animal Clinal Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (J.M.S.); (V.M.)
| |
Collapse
|
31
|
Jing H, Chen Y, Liang W, Chen M, Qiu C, Guo MY. Effects of Selenium on MAC-T Cells in Bovine Mastitis: Transcriptome Analysis of Exosomal mRNA Interactions. Biol Trace Elem Res 2021; 199:2904-2912. [PMID: 33098075 DOI: 10.1007/s12011-020-02439-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022]
Abstract
Selenium, a micronutrient, is indispensable for maintaining normal metabolic functions in animals and plants. Selenium has shown promise in terms of its effect on the immune function, ability to control inflammation, and ability to improve bovine mammary gland health. Bovine mastitis remains a major threat to dairy herds globally and has economically significant impacts. The exosomes are a new mode of intercellular communication. Exosomal transfer of mRNAs, microRNAs, and proteins between cells affects the protein production of recipient cells. The development of novel high-throughput omics approaches and bioinformatics tools will help us understand the effects of selenium on immunobiology. However, the differential expression of mRNAs in bovine mammary epithelial cell-derived exosomes has rarely been studied. In the present study, differences in the exosomal transcriptome between control and selenium-treated MAC-T cells were identified by RNA sequencing and transcriptome analysis. The results of mRNA profiling revealed 1978 genes in exosomes that were differentially expressed between the selenium-treated and control cells. We selected and analyzed 91 genes that are involved in inflammation, redox reactions, and immune cell function related to mastitis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed enrichment pathways involved in selenoproteins and the Ras/PI3K/AKT, MAPK, and FOXO signaling pathways. Our results revealed that selenium may play a crucial role in immune and inflammatory regulation by influencing the differential expression of exosomal mRNAs of key genes in bovine mastitis.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wan Liang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Miaoyu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
32
|
Ojeda ML, Nogales F, Romero-Herrera I, Carreras O. Fetal Programming Is Deeply Related to Maternal Selenium Status and Oxidative Balance; Experimental Offspring Health Repercussions. Nutrients 2021; 13:nu13062085. [PMID: 34207090 PMCID: PMC8233903 DOI: 10.3390/nu13062085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nutrients consumed by mothers during pregnancy and lactation can exert permanent effects upon infant developing tissues, which could represent an important risk factor for diseases during adulthood. One of the important nutrients that contributes to regulating the cell cycle and tissue development and functionality is the trace element selenium (Se). Maternal Se requirements increase during gestation and lactation. Se performs its biological action by forming part of 25 selenoproteins, most of which have antioxidant properties, such as glutathione peroxidases (GPxs) and selenoprotein P (SELENOP). These are also related to endocrine regulation, appetite, growth and energy homeostasis. In experimental studies, it has been found that low dietary maternal Se supply leads to an important oxidative disruption in dams and in their progeny. This oxidative stress deeply affects gestational parameters, and leads to intrauterine growth retardation and abnormal development of tissues, which is related to endocrine metabolic imbalance. Childhood pathologies related to oxidative stress during pregnancy and/or lactation, leading to metabolic programing disorders like fetal alcohol spectrum disorders (FASD), have been associated with a low maternal Se status and intrauterine growth retardation. In this context, Se supplementation therapy to alcoholic dams avoids growth retardation, hepatic oxidation and improves gestational and breastfeeding parameters in FASD pups. This review is focused on the important role that Se plays during intrauterine and breastfeeding development, in order to highlight it as a marker and/or a nutritional strategy to avoid diverse fetal programming disorders related to oxidative stress.
Collapse
|
33
|
Abstract
Selenium (Se) is an element commonly found in the environment at different levels. Its compounds are found in soil, water, and air. This element is also present in raw materials of plant and animal origin, so it can be introduced into human organisms through food. Selenium is a cofactor of enzymes responsible for the antioxidant protection of the body and plays an important role in regulating inflammatory processes in the body. A deficiency in selenium is associated with a number of viral diseases, including COVID-19. This element, taken in excess, may have a toxic effect in the form of joint diseases and diseases of the blood system. Persistent selenium deficiency in the body may also impact infertility, and in such cases supplementation is needed.
Collapse
|
34
|
Kra G, Daddam JR, Gabay H, Yosefi S, Zachut M. Antioxidant Resveratrol Increases Lipolytic and Reduces Lipogenic Gene Expression under In Vitro Heat Stress Conditions in Dedifferentiated Adipocyte-Derived Progeny Cells from Dairy Cows. Antioxidants (Basel) 2021; 10:905. [PMID: 34205039 PMCID: PMC8230285 DOI: 10.3390/antiox10060905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Heat stress (HS) induces oxidative stress by increasing reactive oxygen species (ROS), and the polyphenol resveratrol (RSV) has been shown to have antioxidant properties by reducing ROS. Hence, we aimed to examine the effects of RSV, HS and their interaction on bovine adipocytes. We generated bovine dedifferentiated adipocyte-derived progeny (DFAT) cells from subcutaneous adipose tissue and examined the effects of RSV (100 µM), heat conditions: isothermal (ISO-37 °C), short heat (SH-41.2 °C for 1 h) and long HS (LH-41.2 °C for 16 h), and their interaction on gene expression in DFAT-cells. In medium of DFAT-cells treated with RSV, malondialdehyde levels were reduced and oxygen-radical absorbance-capacity levels were increased compared to control. Treating DFAT-cells with RSV increased the relative mRNA expression of stress-induced-phosphoprotein-1 (STIP1) and the expression of hormone-sensitive-lipase (LIPE) and perilipin-1 (PLIN1), whereas it reduced the expressions of fatty-acid-synthase (FASN) and of pro-inflammatory chemotactic-C-C-motif-chemokine-ligand-2 (CCL2) also under HS. Moreover, reduced protein abundance of FASN was found in RSV-treated DFAT-cells compared to controls. Molecular docking of RSV with FASN confirmed its possible binding to FASN active site. This work demonstrates that RSV has an antioxidant effect on bovine DFAT cells and may induce adipose lipolysis and reduce lipogenesis also under in vitro HS conditions.
Collapse
Affiliation(s)
- Gitit Kra
- Volcani Center, Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (H.G.)
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jayasimha Rayalu Daddam
- Volcani Center, Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (H.G.)
| | - Hadar Gabay
- Volcani Center, Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (H.G.)
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sara Yosefi
- Volcani Center, Department of Poultry Science, Institute of Animal Sciences, Agriculture Research Organization, Rishon Lezion 7505101, Israel;
| | - Maya Zachut
- Volcani Center, Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Rishon Lezion 7505101, Israel; (G.K.); (J.R.D.); (H.G.)
| |
Collapse
|
35
|
The impact of the oxidative status on the reproduction of cows and the calves’ health – a review. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The profitability of cattle farming is largely determined by ensuring high-quality breeding animals for replacement and longevity in production. The provision of breeding animals requires adequate fertility of the cowherd and then intensive weight gain in the calf rearing period. For ensuring these demands, many management aspects must be considered. Continuous monitoring of the herd’s health status, including redox status, is essential. This review aims to provide a summary of relevant scientific data published in the last few decades regarding the role of oxidative stress (OS) in infertility of dairy cows and developmental diseases in calves, the major predisposing factors, and possible prevention.
Collapse
|
36
|
Chalmeh A, Pourjafar M, Badiei K, Mirzaei A, Jalali M, Mazrouei Sebdani M. Effects of dietary antioxidants on glucose and insulin responses to glucose tolerance test in transition dairy cows. Domest Anim Endocrinol 2021; 75:106602. [PMID: 33385859 DOI: 10.1016/j.domaniend.2020.106602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Oxidative stress occurs during the transition period and causes insulin resistance, which may be reduced by the use of antioxidants in this period. Twenty-four multiparous Holstein dairy cows, at 8 wk before parturition, were divided into 4 equal groups, namely control (Ctrl), vitamin E (VE), selenium (Se), and vitamin E plus selenium (VE + Se) groups. On a daily basis, VE and Se cows received dietary 1.5 IU vitamin E/kg BW and 0.3 mg/kg DM selenium, respectively, from 8 wk before to 3 wk after parturition. Vitamin E plus selenium group received doses similar to VE and Se groups. Insulin sensitivity was evaluated through intravenous glucose tolerance test (ivGTT) at weekly intervals from 3 wk before to 3 wk after parturition. Serum concentrations of total antioxidant status (TAS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), nonesterified fatty acid (NEFA), and beta-hydroxybutyric acid (BHBA) were assayed weekly before the commencement of ivGTT. Based on the results of ivGTT, the lowest and the highest degrees of insulin sensitivity were detected in Ctrl and VE + Se groups, respectively. The highest and the lowest concentrations of NEFA and BHBA were observed in Ctrl and VE + Se groups, respectively. Total antioxidant status, SOD, and GPx values were significantly lower in Ctrl cows and significantly higher in VE + Se-received cows compared with other groups. However, MDA values in Ctrl and VE + Se cows were significantly higher and lower than the other groups, respectively. Collectively, our results show that dietary administration of vitamin E and selenium ameliorates oxidative stress and lipid mobilization and increases insulin sensitivity in transition cows.
Collapse
Affiliation(s)
- A Chalmeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - M Pourjafar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - K Badiei
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A Mirzaei
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Jalali
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Mazrouei Sebdani
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
37
|
Putman AK, Contreras GA, Sordillo LM. Isoprostanes in Veterinary Medicine: Beyond a Biomarker. Antioxidants (Basel) 2021; 10:antiox10020145. [PMID: 33498324 PMCID: PMC7909258 DOI: 10.3390/antiox10020145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress has been associated with many pathologies, in both human and animal medicine. Damage to tissue components such as lipids is a defining feature of oxidative stress and can lead to the generation of many oxidized products, including isoprostanes (IsoP). First recognized in the early 1990s, IsoP are formed in numerous biological fluids and tissues, chemically stable, and easily measured by noninvasive means. Additionally, IsoP are highly specific indicators of lipid peroxidation and thereby are regarded as excellent biomarkers of oxidative stress. Although there have been many advancements in the detection and use of IsoP as a biomarker, there is still a paucity of knowledge regarding the biological activity of these molecules and their potential roles in pathology of oxidative stress. Furthermore, the use of IsoP has been limited in veterinary species thus far and represents an avenue of opportunity for clinical applications in veterinary practice. Examples of clinical applications of IsoP in veterinary medicine include use as a novel biomarker to guide treatment recommendations or as a target to mitigate inflammatory processes. This review will discuss the history, biosynthesis, measurement, use as a biomarker, and biological action of IsoP, particularly in the context of veterinary medicine.
Collapse
|
38
|
Santos DSD, Klauck V, Souza CF, Baldissera MD, Theisen C, Bordignon B, Alba DF, Reis JH, Gebert RR, Vedovatto M, Silva ASDA. Effects of the inclusion of açai oil in diet of prepartum Holstein cows on milk production, somatic cell counts and future lactation. AN ACAD BRAS CIENC 2020; 92:e20200149. [PMID: 33237142 DOI: 10.1590/0001-3765202020200149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
We measured the effects of açai oil in the diets of prepartum cows to evaluate health, milk production and quality. Sixteen Holstein cows were divided into two groups: SOY used as control, and AÇAI, test group. Occurred inclusion of 4% soybean or açai oils was provided in the concentrate starting at 20 days prepartum [d -20 to d 0 (partum-day)]. The AÇAI diet increased (P=0.01) milk production (d 10 and 20) and reduced somatic cell count (d 20). In milk, no effects were detected (P≥0.10) for concentration of fat, lactose or protein as well as in terms of serum concentration of calcium, albumin or triglycerides. AÇAI diet tended to increase (P=0.09) serum concentrations of total protein, glutathione transferase (d 4), and total antioxidant capacity (d 4 and 10) and increased (P≤0.05) globulin, gamma-glutamyl transferase, superoxide dismutase and glutathione peroxidase (d 4). Further, AÇAI diet reduced the serum concentration of creatine kinase (P≤0.05) (d 0, 4 and 10), reactive oxygen species (d 0 and 4) and lipoperoxidation (d 0) and tended to reduce aspartate transaminase activity (P=0.07; d 0 and 4). Açai oil in the diets in prepartum cows improved their health as well as milk production and quality.
Collapse
Affiliation(s)
- Daiane S Dos Santos
- Universidade do Estado de Santa Catarina/UDESC, Departamento de Zootecnia, Rua Beloni Trombeta Zanin, 680E, 89815-630 Chapecó, SC, Brazil
| | - Vanderlei Klauck
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina/UDESC, Rua Beloni Trombeta Zanin, 680E, 89815-630 Chapecó, SC, Brazil
| | - Carine F Souza
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Matheus D Baldissera
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Cleiton Theisen
- Programa de Graduação em Gestão de Fazendas de Leite, Universidade do Oeste de Santa Catarina/UNOESC, Rua Dirceu Giordani, 696, Jardim Taruma, 89820-000 Xanxerê, SC, Brazil
| | - Bruna Bordignon
- Técnico Agrícola, Padre Vendelino Seidel Primary School, Rua Primeiro de Maio, 257, Centro, 89899-000 Iporã do Oeste, SC, Brazil
| | - Davi F Alba
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina/UDESC, Rua Beloni Trombeta Zanin, 680E, 89815-630 Chapecó, SC, Brazil
| | - JoÃo H Reis
- Universidade do Estado de Santa Catarina/UDESC, Departamento de Zootecnia, Rua Beloni Trombeta Zanin, 680E, 89815-630 Chapecó, SC, Brazil
| | - Roger R Gebert
- Universidade do Estado de Santa Catarina/UDESC, Departamento de Zootecnia, Rua Beloni Trombeta Zanin, 680E, 89815-630 Chapecó, SC, Brazil
| | - Marcelo Vedovatto
- Universidade Estadual do Mato Grosso do Sul, Departamento de Ciência Animal, Rodovia Aquidauana, Km 12, Zona Rural, 79200-000 Aquidauana, MS, Brazil
| | - Aleksandro S DA Silva
- Universidade do Estado de Santa Catarina/UDESC, Departamento de Zootecnia, Rua Beloni Trombeta Zanin, 680E, 89815-630 Chapecó, SC, Brazil.,Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina/UDESC, Rua Beloni Trombeta Zanin, 680E, 89815-630 Chapecó, SC, Brazil
| |
Collapse
|
39
|
Ren ZH, Bai LP, Shen LH, Luo ZZ, Zhou ZH, Zuo ZC, Ma XP, Deng JL, Wang Y, Xu SY, Luo YH, Cao SZ, Yu SM. Comparative iTRAQ Proteomics Reveals Multiple Effects of Selenium Yeast on Dairy Cows in Parturition. Biol Trace Elem Res 2020; 197:464-474. [PMID: 31858401 DOI: 10.1007/s12011-019-01999-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/03/2019] [Indexed: 01/13/2023]
Abstract
The effects of prepartum dietary supplementation with selenium yeast on low abundant plasma proteins in postpartum dairy cows are not known. In this study, 24 healthy parturient dairy cows were divided into two groups (group C, a control group, and group T, a selenium treatment group). Low abundance proteins were extracted from plasma samples of calving cows, and 542 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis. Dietary supplementation with selenium yeast caused differential abundance of 48 proteins with a fold change of more than 1.2 or less than 0.83 (p < 0.05); 14 proteins were upregulated and 34 were downregulated. The top five gene ontology (GO) enrichment terms for the differentially expressed proteins were protein homotetramerization (or tetramerization), defense response to bacteria or fungus, acute-phase reactions, nucleotide catabolic process, and positive regulation of lipid metabolic process. All proteins involved in acute-phase reactions were downregulated, indicating that selenium ameliorates systemic inflammation. The vast majority of proteins involved in the defense response to microorganisms were downregulated, thereby affecting innate immunity. The decreased abundance of apolipoprotein A-I and apolipoprotein C-II, critical proteins for positive regulation of lipid metabolism, indicated that selenium may optimize lipid metabolism. The iTRAQ results showed that prenatal supplementation with yeast selenium can relieve systemic inflammation after parturition. Moreover, selenium may reduce the effects of metabolic diseases, which can improve glyconeogenesis and prevent ketosis and fatty liver.
Collapse
Affiliation(s)
- Zhi-Hua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Li-Peng Bai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Liu-Hong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Zheng-Zhong Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Zi-Han Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Zhi-Cai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Xiao-Ping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Jun-Liang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Sheng-Yu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Yu-Heng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs; Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Sui-Zhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Shu-Min Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
40
|
KALMATH GP, SWAMY MNARAYANA. Effect of summer stress and supplementation of vitamin E and selenium on heat shock protein 70 and anti-oxidant status in Hallikar cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i4.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Present study was conducted to ascertain the influence of supplementation of vitamin E and selenium on heat shock protein 70 (HSP70) and anti-oxidant status in Hallikar cattle during different seasons. Female Hallikar cattle (12) aged 4 to 6 years selected from Ramanagara, Karnataka, India, were divided into control and supplemented groups with 6 animals in each group. Selected animals were exposed to environmental stressors during 3 different seasons (winter, summer and rainy) by allowing them for free grazing. Animals of supplemented group received oral supplementation of vitamin E and selenium, and control group animals did not receive any supplementation. Blood samples collected from each animal at monthly interval were utilized to determine plasma levels of HSP70 and erythrocyte activities of catalase, superoxide dismutase and glutathione peroxidase in hemolysates (10%). Present study showed significant increase in plasma HSP70 levels during summer compared to winter in control and supplemented groups. However, plasma HSP70 levels did not vary significantly between control and supplemented group during different seasons. Activities of catalase, superoxide dismutase and glutathione peroxidase enzymes were also significantly higher during summer compared to other seasons in both control and supplemented group. However, activities of these enzymes reduced significantly in supplemented group compared to control group animals. From the study, it was concluded that significantly lowered antioxidant enzyme activities in supplemented group indicate beneficial effects of supplementation of vitamin E and selenium during summer.
Collapse
|
41
|
Lizarraga RM, Anchordoquy JM, Galarza EM, Farnetano NA, Carranza-Martin A, Furnus CC, Mattioli GA, Anchordoquy JP. Sodium Selenite Improves In Vitro Maturation of Bos primigenius taurus Oocytes. Biol Trace Elem Res 2020; 197:149-158. [PMID: 31705431 DOI: 10.1007/s12011-019-01966-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
Selenium (Se) is an essential trace element with important functions in animals and whose deficiency is associated with reproductive failures. The aim of this study was to investigate the effect of Se concentrations during in vitro maturation (IVM) of Bos taurus oocyte within the reference ranges for Se status in cattle. For this purpose, Aberdeen Angus cumulus-oocyte complexes (COCs) were matured in IVM medium supplemented with 0, 10, 50, and 100 ng/mL Se (control, deficient, marginal, and adequate, respectively). The results demonstrated that marginal and adequate Se concentrations added during IVM increased viability and non-apoptotic cumulus cells (CC). Moreover, the addition of Se to culture media decreased malondialdehyde level in COC with all studied concentrations and increased total glutathione content in CC and oocytes with 10 ng/mL Se. On the other hand, total antioxidant capacity of COC, nuclear maturation, and the developmental capacity of oocytes were not modified by Se supplementation. However, 10 ng/mL Se increased hatching rate. In conclusion, supplementation with 10 ng/mL Se during in vitro maturation of Bos primigenius taurus oocytes should be considered to improve embryo quality.
Collapse
Affiliation(s)
- Raúl Martín Lizarraga
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA) Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA) Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - Esteban Martín Galarza
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA) Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - Nicolás Agustín Farnetano
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA) Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - Ana Carranza-Martin
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA) Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - Cecilia Cristina Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA) Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Citología, Histología y Embriología "A" Facultad de Ciencias Médicas Médicas, Universidad Nacional de La Plata, calle 60 y 120s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - Guillermo Alberto Mattioli
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA) Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
- Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | - Juan Patricio Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA) Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina.
- Cátedra de Fisiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118s/n, CP 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Shen J, Sun B, Yu C, Cao Y, Cai C, Yao J. Choline and methionine regulate lipid metabolism via the AMPK signaling pathway in hepatocytes exposed to high concentrations of nonesterified fatty acids. J Cell Biochem 2020; 121:3667-3678. [PMID: 31680310 DOI: 10.1002/jcb.29494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 01/24/2023]
Abstract
High concentrations of nonesterified fatty acids (NEFAs) and β-hydroxybutyric acid (BHBA) induce lipid peroxidation, resulting in liver damage. Choline and methionine (Met) can promote energy balance and benefit liver health in transition dairy cows; however, the regulating mechanism remains unclear. In the present study, we established the hepatocyte damage model by 1.5 mM NEFAs or BHBA treatment, and examined lipid metabolism in hepatocytes. The results showed that 1.5 mM NEFAs and 1.5 mM BHBA significantly decreased the messenger RNA (mRNA) expression of AMP-activated protein kinase (AMPK)-α as well as its target genes carnitine palmitoyltransferase-1α (CPT-1α), acetyl-CoA carboxylase, fatty acid synthetase, and Apolipoprotein B100 (ApoB100). Choline and Met upregulated the phosphorylation level of AMPK-α, which was blocked by BML (an AMPK-α inhibitor). The mRNA expression level of peroxisome proliferator-activated receptor-α (PPAR-α), CPT-1α, and ApoB100 showed a similar trend. The expressions of liver X recptoer α (LXR-α) and sterol regulatory element-binding protein 1c (SREBP-1c) were decreased by choline and Met, while only the decrease of LXR-α was blocked by BML. These findings indicate that the high-level NEFAs and BHBA weaken the lipid metabolism by impairing the fatty acid oxidation, synthesis, and transport proteins. Choline and Met regulate PPAR-α and LXR-α transcriptional activity through AMPK-α phosphorylation and regulate SREBP-1c independently of AMPK-α to promote lipid oxidation and transport in NEFAs-treated hepatocytes.
Collapse
Affiliation(s)
- Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bofei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,The Development Centre of Animal Husbandry, Shangluo, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
43
|
Mandour AS, Samir H, El-Beltagy MA, Abdel-Daim MM, Izumi W, Ma D, Matsuura K, Tanaka R, Watanabe G. Effect of supra-nutritional selenium-enriched probiotics on hematobiochemical, hormonal, and Doppler hemodynamic changes in male goats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19447-19460. [PMID: 32215792 DOI: 10.1007/s11356-020-08294-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, the influence of supra-nutritional organic selenium (Se) supplement on hematology and plasma biochemicals, including antioxidant parameters and plasma reproductive hormones, as well as blood flow characteristics in the supratesticular and common carotid arteries (STA and CCA, respectively) were investigated. For this purpose, 15 male goats were used and classified into three equal groups according to the supplementation of the basal diet (BD): negative control (NC), probiotic (Pro), and Se-probiotic (Se-Pro) groups. Blood perfusion in the STA and CCA was assessed by Doppler ultrasonography at three different time intervals: at the experimental onset (T0), 3 weeks of dietary supplement (T3), and after 6 weeks of observation (T6). Concomitantly, blood samples were withdrawn for hematobiochemical and hormonal changes. Results revealed no evidence of clinical abnormality, with some enhanced hematological parameters and antioxidant (SOD and GPX) levels in goats of the Se-Pro and Pro groups. High concentrations of FSH were found in the Se-Pro at T6 compared to its values in other groups. Similarly, testosterone levels were elevated in the Pro and Se-Pro groups at T3 compared to other time points. There were significant increases in levels of IGF-1 in the Pro and Se-Pro groups compared to the NC group. Significant (P < 0.05) increases in the values of the blood volume within the CCA and the STA were noted in the Se-Pro group, and the highest values were observed at T6 (CCA, 427.4 ± 33 ml/min; STA, 49.9 ± 5.0 ml/min). In conclusion, supra-nutritional organic selenium improves some hematobiochemical parameters, reproductive hormones, and the blood perfusion within the CCA and STA in goats.
Collapse
Affiliation(s)
- Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Marwa A El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Watanabe Izumi
- Laboratory of Environmental Toxicology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Danfu Ma
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| |
Collapse
|
44
|
Muszyńska B, Szacawa E, Bederska-Łojewska D, Dudek K, Pomierny B, Włodarczyk A, Kała K, Lazur J, Suchocki P, Budziszewska B, Bednarek D, Pieszka M. Preliminary study on Se-enriched Lentinula edodes mycelium as a proposal of new feed additive in selenium deficiency. PLoS One 2020; 15:e0233456. [PMID: 32437465 PMCID: PMC7241721 DOI: 10.1371/journal.pone.0233456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
The presence of selenium in European soil is low and this causes its deficiency in livestock and, in consequence, in humans. This study aimed to obtain Lentinula (L.) edodes mycelium with the maximum content of selenium. This species was used for experiment based on its documented medicinal properties. Calves were fed with selenium-enriched L. edodes mycelium, and serum selenium concentration, average daily weight gains and selected immune parameters were estimated. The selenium-enriched mushroom was found to be safe based on cytotoxicity tests (MTT and LDH tests) and for this reason it was used for further experiments. The mean quantity of selenium in the serum of calves fed with selenium-enriched L. edodes mycelium was significantly higher than that of control calves. Additionally, the calves fed with selenium-enriched L. edodes mycelium had higher body weight gains than those of control calves. White blood cell counts and subpopulations of lymphocytes in the experimental and control calves were within the reference range. The administration of L. edodes enriched with selenium had a beneficial effect on state of health of the calves.
Collapse
Affiliation(s)
- Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Szacawa
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Dorota Bederska-Łojewska
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Dudek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Włodarczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jan Lazur
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Suchocki
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Warsaw Medical University, Warszawa, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Dariusz Bednarek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Marek Pieszka
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
45
|
Selenium biofortified alfalfa hay fed in low quantities improves selenium status and glutathione peroxidase activity in transition dairy cows and their calves. J DAIRY RES 2020; 87:184-190. [PMID: 32295653 DOI: 10.1017/s002202992000028x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hypothesis of the study was that feeding a relatively low amount of Se biofortified alfalfa hay during the dry period and early lactation would improve selenium status and glutathione peroxidase activity in dairy cows and their calves. Ten Jersey and 8 Holstein primiparous dairy cows were supplemented with Se biofortified (TRT; n = 9) or non-biofortified (CTR; n = 9) alfalfa hay at a rate of 1 kg/100 kg of BW mixed with the TMR from 40 d prior parturition to 2 weeks post-partum. Se concentration in whole blood, liver, milk, and colostrum, the transfer of Se to calves, and the glutathione peroxidase (GPx) activity were assessed. TRT had 2-fold larger (P < 0.05) Se in blood v. CTR that resulted in larger Se in liver and colostrum but not milk and larger GPx activity in plasma and erythrocytes but not in milk. Compared to CTR, calves from TRT had larger Se in blood but only a numerical (P = 0.09) larger GPx activity in plasma. A positive correlation was detected between Se in the blood and GPx activity in erythrocytes and plasma in cows. Our results demonstrated that feeding pregnant primiparous dairy cows with a relatively low amount of Se-biofortified alfalfa hay is an effective way to increase Se in the blood and liver, leading to greater antioxidant activity via GPx. The same treatment was effective in improving Se concentration in calves but had a modest effect on their GPx activity. Feeding Se biofortified hay increased Se concentration in colostrum but not in milk.
Collapse
|
46
|
Buffa G, Tsiplakou E, Mitsiopoulou C, Pulina G, Nudda A. Supplementation of by-products from grape, tomato and myrtle affects antioxidant status of dairy ewes and milk fatty acid profile. J Anim Physiol Anim Nutr (Berl) 2020; 104:493-506. [PMID: 31989701 DOI: 10.1111/jpn.13315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the effect of diets containing different dried by-products on milk and blood plasma antioxidant capacity of dairy ewes. Thirty-six Sarda ewes were assigned to four treatments: control (CON; no by-product), 100 g/day of grape marc (GM), 100 g/day tomato pomace (TP) and 75 g/day of exhausted myrtle berries (EMBs). The superoxide dismutase (SOD), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GSH-Px) in blood, and SOD, GR and lactoperoxidase (LPO) in milk were determined. Total antioxidant capacity (FRAP and ABTS assays), malondialdehyde (MDA) and protein carbonyls (PCs) were also measured. Milk fatty acid profile was investigated by gas chromatography. The results showed higher antioxidant capacity measured by FRAP or ABTS assays and a reduction in MDA in GM plasma than CON. All by-products enhanced the protection of milk proteins by oxidation, as evidenced by lower values of PCs compared with CON. GM supplementation increased PUFAn-6, due to increase in C18:2n-6, the main component of GM compared with CON. All by-products did not modify the nutritional indexes of milk fat. In conclusion, dietary GM may enhance protection against oxidative condition of dairy ewes, whereas TP and EMB need further research to define the optimum inclusion level in sheep diet.
Collapse
Affiliation(s)
- Giovanna Buffa
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, Sassari, Italy
| | - Eleni Tsiplakou
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| | - Christina Mitsiopoulou
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| | - Giuseppe Pulina
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, Sassari, Italy
| | - Anna Nudda
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, Sassari, Italy
| |
Collapse
|
47
|
Alhussien MN, Dang AK. Potential roles of neutrophils in maintaining the health and productivity of dairy cows during various physiological and physiopathological conditions: a review. Immunol Res 2019; 67:21-38. [PMID: 30644032 DOI: 10.1007/s12026-019-9064-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neutrophils represent the first line of innate immunity and are the most prominent line of cellular defence against invading microorganisms. On stimulation, they can quickly move through the walls of veins and into the tissues of the body to immediately attack or monitor the foreign antigens. Neutrophils are highly versatile and sophisticated cells which are endowed with highly sensitive receptor-based perception systems. They were traditionally classified as short-lived phagocytes actively involved during infection and inflammation, but recently, it has been seen that neutrophils are capable of detecting the presence of sperms during insemination as well as an implanting embryo in the female reproductive tract. These specialised phagocytes play a major role in tissue remodelling and wound healing, and maintain homeostasis during parturition, expulsion of placenta, folliculogenesis, corpus luteum formation and luteolysis. Here, we review the role played by neutrophils in maintaining homeostasis during normal and inflammatory conditions of dairy cattle. We have summarised the alteration in the expression of some cell adhesion molecules and cytokines on bovine neutrophils during different physiological and physiopathological conditions. Some emerging issues in the field of neutrophil biology and the possible strategies to strengthen their activity during the period of immunosuppression have also been discussed.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Animal Production Division, Agricultural College, Aleppo University, Aleppo, Syrian Arab Republic. .,Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India.
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
48
|
Rusetskaya NY, Fedotov IV, Koftina VA, Borodulin VB. Selenium Compounds in Redox Regulation of Inflammation and Apoptosis. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819040085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Ullah H, Khan RU, Mobashar M, Ahmad S, Sajid A, Khan NU, Usman T, Khattak I, Khan H. Effect of yeast-based selenium on blood progesterone, metabolites and milk yield in Achai dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1683475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hammad Ullah
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Rifat Ullah Khan
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Mobashar
- Department of Animal Nutrition, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Shakoor Ahmad
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Abdul Sajid
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Naimat Ullah Khan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Tahir Usman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Irfan Khattak
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Hamayun Khan
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
50
|
Effect of different levels of selenium yeast on the antioxidant status, nutrient digestibility, selenium balances and nitrogen metabolism of Tibetan sheep in the Qinghai-Tibetan Plateau. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|