1
|
Ma J, Wang J, Wan Y, Wang S, Jiang C. Probiotic-fermented traditional Chinese herbal medicine, a promising approach to maintaining the intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118815. [PMID: 39270882 DOI: 10.1016/j.jep.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, PR China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, 611130, PR China
| | - Shihua Wang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| | - Changqing Jiang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| |
Collapse
|
2
|
Ponce-España E, Cruz-Chamorro I, Santos-Sánchez G, Álvarez-López AI, Fernández-Santos JM, Pedroche J, Millán-Linares MC, Bejarano I, Lardone PJ, Carrillo-Vico A. Anti-obesogenic effect of lupin-derived protein hydrolysate through modulation of adiposopathy, insulin resistance and gut dysbiosis in a diet-induced obese mouse. Biomed Pharmacother 2024; 178:117198. [PMID: 39059351 DOI: 10.1016/j.biopha.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The prevalence of obesity is increasingly widespread, resembling a global epidemic. Lifestyle changes, such as consumption of high-energy-dense diets and physical inactivity, are major contributors to obesity. Common features of this metabolic pathology involve an imbalance in lipid and glucose homeostasis including dyslipidemia, insulin resistance and adipose tissue dysfunction. Moreover, the importance of the gut microbiota in the development and susceptibility to obesity has recently been highlighted. In recent years, new strategies based on the use of functional foods, in particular bioactive peptides, have been proposed to counteract obesity outcomes. In this context, the present study examines the effects of a lupin protein hydrolysate (LPH) on obesity, dyslipidemia and gut dysbiosis in mice fed a high-fat diet (HFD). After 12 weeks of LPH treatment, mice gained less weight and showed decreased adipose dysfunction compared to the HFD-fed group. HFD-induced dyslipidemia (increased triglycerides, cholesterol and LDL concentration) and insulin resistance were both counteracted by LPH consumption. Discriminant analysis differentially distributed LPH-treated mice compared to non-treated mice. HFD reduced gut ecological parameters, promoted the blooming of deleterious taxa and reduced the abundance of commensal members. Some of these changes were corrected in the LPH group. Finally, correlation analysis suggested that changes in this microbial population could be responsible for the improvement in obesity outcomes. In conclusion, this is the first study to show the effect of LPH on improving weight gain, adiposopathy and gut dysbiosis in the context of diet-induced obesity, pointing to the therapeutic potential of bioactive peptides in metabolic diseases.
Collapse
Affiliation(s)
- Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - José María Fernández-Santos
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra Utrera Km 1, Seville 41013, Spain
| | | | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.
| |
Collapse
|
3
|
Deng R, Huang Y, Tian Z, Zeng Q. Association between gut microbiota and male infertility: a two-sample Mendelian randomization study. Int Microbiol 2024:10.1007/s10123-024-00512-y. [PMID: 38489097 DOI: 10.1007/s10123-024-00512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Previous research has confirmed the significant association between gut microbiota (GM) and male infertility (MI), but the causality between them remains unclear. This study aims to investigate the causal relationship between GM and MI using Mendelian randomization (MR) and provide supplementary information for the optimization of future randomized controlled trials (RCTs). Instrumental variables for 211 GM taxa were obtained from genome-wide association studies (GWAS), and inverse variance weighted (IVW) method was used as the main analysis method for two-sample MR analysis to assess the impact of GM on the risk of MI. Four methods were used to test for horizontal pleiotropy and heterogeneity of MR results to ensure the reliability of the MR findings. A total of 50 single-nucleotide polymorphisms (SNPs) closely related to GM were included, and ultimately identified 1 family and 4 general are causally associated with MI. Among them, Anaerotruncus (OR = 1.96, 95% CI 1.31-3.40, P = 0.016) is significantly associated with increased MI risk. Furthermore, we used four MR methods to evaluate the causality, and the results supported these findings. The leave-one-out analysis showed stable results with no instrumental variables exerting strong influence on the results. The causal direction indicated a positive effect, and the effects of heterogeneity and horizontal pleiotropy on the estimation of causal effect were minimized. We confirmed a causal relationship between GM taxa and MI, providing new insights into the mechanisms underlying GM-mediated MI.
Collapse
Affiliation(s)
- Runpei Deng
- Nanjing University of Chinese Medicine, Xianlin Road Number 138, Nanjing, Jiangsu Province, China
| | - Yebao Huang
- Liuzhou People's Hospital, Wenchang Road Number 8, Liuzhou Guangxi, Zhuang Autonomous Region, China
| | - Zhaohui Tian
- Nanjing University of Chinese Medicine, Xianlin Road Number 138, Nanjing, Jiangsu Province, China
| | - Qingqi Zeng
- Nanjing University of Chinese Medicine, Xianlin Road Number 138, Nanjing, Jiangsu Province, China.
- Jiangsu Health Vocational College, Huangshanling Road Number 69, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Minagar A, Jabbour R. The Human Gut Microbiota: A Dynamic Biologic Factory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 38337077 DOI: 10.1007/10_2023_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Biotechnology (Bioinformatics), University of Maryland Global Campus, Adelphi, MD, USA
| | - Rabih Jabbour
- University of Maryland Global Campus, Largo, MD, USA
| |
Collapse
|
5
|
Liu Z, Ma C, Gao H, Huang X, Zhang Y, Liu C, Hou R, Zhang Q, Li Q. A polysaccharide from salviae miltiorrhizae radix inhibits weight gain of mice with high-fat diet via modulating intestinal bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:479-487. [PMID: 37647505 DOI: 10.1002/jsfa.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Obesity, a global chronic disease, has been recognized as a severe risk to health. In our study, a novel polysaccharide named ARS was isolated and purified from aerial part of salviae miltiorrhizae radix. Our aim is to investigate the weight-reducing effect of a polysaccharide from salviae miltiorrhizae radix on mice fed a high-fat diet. RESULTS The novel polysaccharide ARS mainly consisted of glucose and galactose with a molar ratio of 0.59:1.00. We found that treatment with ARS could inhibit weight gain of mice fed a high-fat diet via modulating the intestinal bacteria. Moreover, we surveyed its mechanism in mice, and the gut microbiota sequencing results demonstrated that ARS can reverse or resist high-fat-diet-induced significant weight gain or obesity by increasing the diversity of gut microbiota and optimizing the ratio of Firmicutes to Bacteroidetes. Phylum and species analysis of gut microbiota demonstrated that obesity caused by a high-fat diet was accompanied by significant changes in the microbial communities, but ARS could reverse the disturbance of gut microbiota induced by the high-fat diet to maintain homeostasis. CONCLUSION Overall, our findings suggested a new function of ARS in regulating gut microbiota, which provides a theoretical basis for the development of high-quality ARS functional foods and the application of dietary supplements. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences & Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- Department of Microbiology and Immunology, College of Husbandry and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ce Ma
- College of Chemistry and Pharmaceutical Sciences & Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoli Huang
- College of Chemistry and Pharmaceutical Sciences & Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Yaru Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congmin Liu
- College of Chemistry and Pharmaceutical Sciences & Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences & Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Qidi Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences & Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Fujiwara S, Kaino K, Iseya K, Koyamada N, Nakano T. Effect of Preoperative Oral Antibiotics and Mechanical Bowel Preparations on the Intestinal Flora of Patients Undergoing Laparoscopic Colorectal Cancer Surgery: A Single-Center Prospective Pilot Study. Cureus 2024; 16:e52959. [PMID: 38406026 PMCID: PMC10894073 DOI: 10.7759/cureus.52959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION In the last few decades, considerable progress has been made in controlling surgical site infections (SSIs) using a combination of mechanical and oral antibiotic bowel preparation. However, the number of bacteria present after bowel preparation has not been clarified. In this study, we investigated the bacterial cultures of intestinal fluid samples from patients undergoing laparoscopic surgery for colorectal cancer after preoperative bowel preparation. METHODS This prospective observational study was designed as a pilot study at a single center. We enrolled 25 consecutive patients who underwent laparoscopic surgery for colorectal cancer between March 2021 and February 2022 at our institution. RESULTS The rate of bacterial culture positivity was 56.0%. The most abundant bacterium was Escherichia coli (44.0%). The positivity rates for E. coli on the right and left sides were 54.5% and 35.7%, respectively (P = 0.60). Moreover, there was a significant relationship between a low American Society of Anesthesiologists Physical Status score and E. coli positivity on the right side (P = 0.031). In the left-sided group, female sex and large tumor size were significantly associated with E. coli positivity (P = 0.036 and 0.049, respectively). Superficial SSI occurred in the patient in the left-sided group, but E. coli was negative. CONCLUSION This study emphasizes the importance of understanding intestinal fluid contamination and its relationship to infection risk. Future prospective multicenter studies should be conducted to determine the association between intestinal bacteria and different types of preoperative preparation.
Collapse
Affiliation(s)
- Sho Fujiwara
- Department of Surgery, Iwate Prefectural Chubu Hospital, Kitakami, JPN
- Department of Surgery, Columbia University Irving Medical Center, New York, USA
| | - Kenji Kaino
- Department of Surgery, Iwate Prefectural Chubu Hospital, Kitakami, JPN
| | - Kazuki Iseya
- Department of Surgery, Iwate Prefectural Chubu Hospital, Kitakami, JPN
- Department of Surgery, Mito Medical Center, Ibaraki, JPN
| | - Nozomi Koyamada
- Department of Surgery, Iwate Prefectural Chubu Hospital, Kitakami, JPN
| | - Tatsuya Nakano
- Department of Surgery, Iwate Prefectural Chubu Hospital, Kitakami, JPN
- Department of Surgery, Iwate Prefectural Ofunato Hospital, Ofunato, JPN
| |
Collapse
|
7
|
Mutengo KH, Masenga SK, Mweemba A, Mutale W, Kirabo A. Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol 2023; 14:1075641. [PMID: 37089429 PMCID: PMC10118022 DOI: 10.3389/fphys.2023.1075641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The human gut microbiota environment is constantly changing and some specific changes influence the host's metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota's role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Aggrey Mweemba
- Department of Medicine, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Wilbroad Mutale
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
8
|
Ortiz Y, Heredia N, García S. Boundaries That Prevent or May Lead Animals to be Reservoirs of Escherichia coli O104:H4. J Food Prot 2023; 86:100053. [PMID: 36916560 DOI: 10.1016/j.jfp.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
Escherichia coli O104:H4, a hybrid serotype carrying virulence factors from enteroaggregative (EAEC) and Shiga toxin-producing (STEC) pathotypes, is the reported cause of a multicountry outbreak in 2011. Evaluation of potential routes of human contamination revealed that this strain is a foodborne pathogen. In contrast to STEC strains, whose main reservoir is cattle, serotype O104:H4 has not been commonly isolated from animals or related environments, suggesting an inability to naturally colonize the gut in hosts other than humans. However, contrary to this view, this strain has been shown to colonize the intestines of experimental animals in infectious studies. In this minireview, we provide a systematic summary of reports highlighting potential evolutionary changes that could facilitate the colonization of new reservoirs by these bacteria.
Collapse
Affiliation(s)
- Yaraymi Ortiz
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Norma Heredia
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Santos García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico.
| |
Collapse
|
9
|
Malard F, Gaugler B, Mohty M. Faecal microbiota transplantation in patients with haematological malignancies undergoing cellular therapies: from translational research to routine clinical practice. Lancet Haematol 2022; 9:e776-e785. [PMID: 36174640 DOI: 10.1016/s2352-3026(22)00223-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
The effect of the gut microbiota on patients' outcomes after allogeneic haematopoietic cell transplantation (HCT) is now well established. In particular, gut microbiota dysbiosis has been associated with acute graft-versus-host disease (GVHD). Furthermore, increasing data also suggest an effect of the gut microbiota on outcome after autologous HCT and CAR T cells. In fact, the bacterial gut microbiota interplays with the immune system and contributes to immunological complication and antitumour response to treatment. Therefore, faecal microbiota transplantation has been evaluated in patients with haematological malignancies for various indications, including Clostridioides difficile infection, eradication of multidrug-resistant bacteria, and steroid refractory acute GVHD. In addition, use of prophylactic faecal microbiota transplantation to restore the gut microbiota and improve patients' outcomes is being developed in the setting of allogeneic HCT, but also probably very soon in patients receiving autologous HCT or CAR T cells.
Collapse
Affiliation(s)
- Florent Malard
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Béatrice Gaugler
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Mohamad Mohty
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| |
Collapse
|
10
|
Keystone taxa: an emerging area of microbiome research for future disease diagnosis and health safety in human. Microbiol Res 2022. [DOI: 10.1016/j.micres.2022.127203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Helicobacter bilis Contributes to the Occurrence of Inflammatory Bowel Disease by Inducing Host Immune Disorders. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1837850. [PMID: 35983246 PMCID: PMC9381287 DOI: 10.1155/2022/1837850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Gut microbiota coevolve with humans to achieve a symbiotic relationship, which ultimately leads to physiological homeostasis. A variety of diseases can occur once this balance is disrupted. Helicobacter bilis (H. bilis) is an opportunistic pathogen in humans, triggering multiple diseases, including inflammatory bowel disease (IBD). IBD is a chronic immunologically mediated inflammation of the human gastrointestinal tract, and its occurrence is closely related to the gut microbiota. Several studies have demonstrated that H. bilis colonization is associated with IBD, and its mechanism is related to host immunity. However, few studies have investigated these mechanisms of action. Therefore, this article is aimed at reviewing these studies and summarizing the mechanisms of H. bilis-induced IBD from two perspectives: adaptive immunity and innate immunity. Furthermore, this study provides a preliminary discussion on treating H. bilis-related IBD. In addition, we also demonstrated that H. bilis played an important role in promoting the carcinogenesis of IBD and discussed its mechanism.
Collapse
|
12
|
Kwek E, Zhu H, Ding H, He Z, Hao W, Liu J, Ma KY, Chen ZY. Peony seed oil decreases plasma cholesterol and favorably modulates gut microbiota in hypercholesterolemic hamsters. Eur J Nutr 2022; 61:2341-2356. [PMID: 35107625 DOI: 10.1007/s00394-021-02785-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Peony (Paeonia spp.) seed oil (PSO) contains a high amount of α-linolenic acid. The effects of PSO on hypercholesterolemia and gut microbiota remains unclear. The present study was to investigate effects of PSO supplementation on cholesterol metabolism and modulation of the gut microbiota. METHODS Male Golden Syrian hamsters (n = 40) were randomly divided into five groups (n = 8, each) fed one of the following diets namely low-cholesterol diet (LCD); high cholesterol diet (HCD); HCD with PSO substituting 50% lard (LPSO), PSO substituting 100% lard (HPSO) and HCD with addition of 0.5% cholestyramine (PCD), respectively, for 6 weeks. RESULTS PSO supplementation dose-dependently reduced plasma total cholesterol (TC) by 9-14%, non-high-density lipoprotein cholesterol (non-HDL-C) by 7-18% and triacylglycerols (TG) by 14-34% (p < 0.05). In addition, feeding PSO diets reduced the formation of plaque lesions by 49-61% and hepatic lipids by 9-19% compared with feeding HCD diet (p < 0.01). PSO also altered relative genus abundance of unclassified_f__Coriobacteriaceae, unclassified_f__Erysipelotrichaceae, Peptococcus, unclassified_f__Ruminococcaceae, norank_o__Mollicutes_RF9 and Christensenellaceae_R-7_group. CONCLUSIONS It was concluded that PSO was effective in reducing plasma cholesterol and hepatic lipids and favorably modulating gut microbiota associated with cholesterol metabolism.
Collapse
Affiliation(s)
- Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Food Science and Engineering/South China Food Safety Research Center, Foshan University, Foshan, Guangdong, China
| | - Huafang Ding
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhui Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
13
|
Probiotics and Phytochemicals: Role on Gut Microbiota and Efficacy on Irritable Bowel Syndrome, Functional Dyspepsia, and Functional Constipation. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs), such as irritable bowel syndrome, functional constipation, and functional dyspepsia, have had a high prevalence over the past few years. Recent evidence suggests that functional foods and bioactive compounds, such as probiotics and phytochemicals, may have a positive effect in treating the symptoms of the above diseases. In this systematic review study, 32 published studies were selected with the use of comprehensive scientific databases, according to PRISMA guidelines, with emphasis on recent interventional studies that reflect the effect of probiotics and selected phytochemicals on the improvement of FGID symptoms. The bioactive compounds in the selected studies were administered to patients either in capsule form or in enriched food products (yogurt, juice, etc.). According to the results, there is a correlation between the consumption of probiotics and phytochemicals, such as polyphenols, and the relief of symptoms in selected gastrointestinal disorders. Enriching foods that are regularly consumed by the population, such as fruit juices, yogurt, and cheese, with ingredients that may have a positive effect on gastrointestinal disorders, could be a possible novel goal for the management of these diseases. However, further evidence is required for the role of probiotics and phytochemicals in FGIDs to be fully understood.
Collapse
|
14
|
Yoshino A, Nakamura Y, Hashiguchi S, Ishida S, Mano R, Nakamura S, Kita R, Seto M, Takata T, Ishikura H, Kondo S. The Association between the Oral-Gut Axis and the Outcomes of Severe COVID-19 Patients Receiving Extracorporeal Membrane Oxygenation: A Case-Control Study. J Clin Med 2022; 11:jcm11051167. [PMID: 35268256 PMCID: PMC8911112 DOI: 10.3390/jcm11051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
The novel conceptual disease model, the oral–gut axis, which represents the immunomodulatory mutual relationship between oral and gut microbial compartments, has been attracting attention in relation to systemic health issues. We investigated whether this unique crosstalk influences the systemic condition of patients with COVID-19 infections who received extracorporeal membrane oxygenation (ECMO) in the intensive care unit (ICU) during April and December 2020. In this case-control study, patients were divided into two groups according to their survival (total entry size, n = 21; survivors, n = 13; non-survivors, n = 8). Patients were evaluated using the oral assessment guide from Fukuoka University (OAG-F) and the Bristol Stool Form Scale (BSFS) to examine the oral and fecal conditions. A blood-based inflammatory factor, the neutrophil-to-lymphocyte ratio (NLR), was used as an indicator of systemic immunity. The high total OAG-F scores were associated with both elevated BSFS and NLR values, and a mutually positive correlation between BSFS and NLR was observed. This indicated an interplay between oral deterioration, gut dysbiosis, and the impairment of immunity. Furthermore, oral deterioration was more frequently observed in non-survivors on day 14 of ICU admission. In addition, on days 7 and 21 of ICU admission, impaired immunity, reflected by an elevated NLR, was observed in non-survivors. However, the distribution of the gut microbiome—reflected by increased BSFS values—with the time it was examined was not directly observed in non-survivors. Taken together, these findings suggested that oral–gut health may be specifically associated with mortality in COVID-19 patients receiving ECMO in the ICU.
Collapse
Affiliation(s)
- Aya Yoshino
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.H.); (S.I.); (R.M.); (S.N.); (R.K.); (M.S.); (S.K.)
- Correspondence: ; Tel.: +81-928-011-011
| | - Yoshihiko Nakamura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (Y.N.); (H.I.)
| | - Shiho Hashiguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.H.); (S.I.); (R.M.); (S.N.); (R.K.); (M.S.); (S.K.)
| | - Shintaro Ishida
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.H.); (S.I.); (R.M.); (S.N.); (R.K.); (M.S.); (S.K.)
| | - Ryosuke Mano
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.H.); (S.I.); (R.M.); (S.N.); (R.K.); (M.S.); (S.K.)
| | - Shinsuke Nakamura
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.H.); (S.I.); (R.M.); (S.N.); (R.K.); (M.S.); (S.K.)
| | - Ryosuke Kita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.H.); (S.I.); (R.M.); (S.N.); (R.K.); (M.S.); (S.K.)
| | - Mika Seto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.H.); (S.I.); (R.M.); (S.N.); (R.K.); (M.S.); (S.K.)
| | - Tohru Takata
- Department of Oncology, Hematology, and Infectious Disease, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (Y.N.); (H.I.)
| | - Seiji Kondo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.H.); (S.I.); (R.M.); (S.N.); (R.K.); (M.S.); (S.K.)
| |
Collapse
|
15
|
Yang X, Zhu Q, Zhang L, Pei Y, Xu X, Liu X, Lu G, Pan J, Wang Y. Causal relationship between gut microbiota and serum vitamin D: evidence from genetic correlation and Mendelian randomization study. Eur J Clin Nutr 2022; 76:1017-1023. [DOI: 10.1038/s41430-021-01065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
|
16
|
Kaur S, Thukral SK, Kaur P, Samota MK. Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Lu SY, Hua J, Xu J, Wei MY, Liang C, Meng QC, Liu J, Zhang B, Wang W, Yu XJ, Shi S. Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. Int J Biol Sci 2021; 17:2666-2682. [PMID: 34326701 PMCID: PMC8315022 DOI: 10.7150/ijbs.59117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system with a very high mortality rate. While gemcitabine-based chemotherapy is the predominant treatment for terminal pancreatic cancer, its therapeutic effect is not satisfactory. Recently, many studies have found that microorganisms not only play a consequential role in the occurrence and progression of pancreatic cancer but also modulate the effect of chemotherapy to some extent. Moreover, microorganisms may become an important biomarker for predicting pancreatic carcinogenesis and detecting the prognosis of pancreatic cancer. However, the existing experimental literature is not sufficient or convincing. Therefore, further exploration and experiments are imperative to understanding the mechanism underlying the interaction between microorganisms and pancreatic cancer. In this review, we primarily summarize and discuss the influences of oncolytic viruses and bacteria on pancreatic cancer chemotherapy because these are the two types of microorganisms that are most often studied. We focus on some potential methods specific to these two types of microorganisms that can be used to improve the efficacy of chemotherapy in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Stalla FM, Astegiano M, Ribaldone DG, Saracco GM, Pellicano R. The small intestine: barrier, permeability and microbiota. Minerva Gastroenterol (Torino) 2020; 68:98-110. [PMID: 33267569 DOI: 10.23736/s2724-5985.20.02808-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, there has been growing interest in the comprehension of the physiology of intestinal permeability and microbiota; and how these elements could influence the pathogenesis of diseases. The term intestinal permeability describes all the processes that allow the passage of molecules as water, electrolytes and nutrients through the intestinal barrier by the paracellular or the transcellular transport systems with several implications for self-tolerance and not-self immunity. An increased permeability might induce a more significant interaction of the immune system with unknown external antigens. This might favor the onset of several immune-related extra-intestinal diseases including coeliac disease, diabetes mellitus type 1, bronchial asthma and inflammatory bowel diseases. Furthermore, the intestinal permeability interacts every day with microbiota, the complex system of mutualistic inhabitants and commensal microorganisms living in the healthy gut. Microbiota is implicated in physiological functions by actively participating in digestion, absorption, synthesis of vitamins and protection from external aggressions. The critical site where these processes occur is the small intestine to which this updated review is dedicated. Understanding its anatomy, its barrier structure and permeability modulation and its microbiota composition is the essential skill to comprehend the complex pathogenesis of several - not only gastroenterological - diseases.
Collapse
Affiliation(s)
| | | | | | - Giorgio M Saracco
- Department of Medical Sciences, University of Turin, Turin, Italy.,Unit of Gastroenterology, Molinette Hospital, Turin, Italy
| | | |
Collapse
|
19
|
Martins Lopes MS, Machado LM, Ismael Amaral Silva PA, Tome Uchiyama AA, Yen CT, Ricardo ED, Mutao TS, Pimenta JR, Shimba DS, Hanriot RM, Peixoto RD. Antibiotics, cancer risk and oncologic treatment efficacy: a practical review of the literature. Ecancermedicalscience 2020; 14:1106. [PMID: 33144874 PMCID: PMC7581329 DOI: 10.3332/ecancer.2020.1106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotics have been extensively used to treat infectious diseases over the past century and have largely contributed to increased life expectancy over time. However, antibiotic use can impose profound and protracted changes to the diversity of the microbial ecosystem, affecting the composition of up to 30% of the bacterial species in the gut microbiome. By modifying human microbiota composition, antibiotics alter the action of several oncologic drugs, potentially leading to decreased efficacy and increased toxicities. Whether antibiotics interfere with cancer therapies or even increase the risk of cancer development has been under investigation, and no randomised trials have been conducted so far. The aim of the current review is to describe the possible effects of antibiotic therapies on different oncologic treatments, especially immunotherapies, and to explore the link between previous antibiotics use and the development of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Cheng T Yen
- Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | | | - Renata D Peixoto
- Centro Paulista de Oncologia (Grupo Oncoclínicas), São Paulo, Brazil
| |
Collapse
|
20
|
Velikova T, Tumangelova-Yuzeir K, Georgieva R, Ivanova-Todorova E, Karaivanova E, Nakov V, Nakov R, Kyurkchiev D. Lactobacilli Supplemented with Larch Arabinogalactan and Colostrum Stimulates an Immune Response towards Peripheral NK Activation and Gut Tolerance. Nutrients 2020; 12:nu12061706. [PMID: 32517330 PMCID: PMC7352398 DOI: 10.3390/nu12061706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Probiotics possibly affect local and systemic immune reactions and maintain the intestinal immune homeostasis in healthy individuals and patients with diseases such as irritable bowel syndrome (IBS). In this single-center, blinded trial, we enrolled 40 individuals (20 patients with IBS and 20 healthy individuals) whose blood and fecal samples were collected before and after a 21-day administration of a product comprising Lactobacillus spp., larch arabinogalactan, and colostrum. The percentage of HLA-DR+ natural killer (NK) cells was higher in healthy individuals (p = 0.03) than in patients with IBS after product supplementation. In the fecal samples of patients with IBS, we observed a decline in IL-6, IFN-γ, TNF-α, and secretory IgA levels and, simultaneously, an increase in IL-10 and IL-17A levels after supplementation, although non-significant, whereas, in healthy individuals, we observed a significant decline in IL-6 and IFN-γ levels after supplementation (p < 0.001). Nevertheless, we observed a clinical improvement of symptoms in 65–75% of patients with IBS and the complete resolution of the initial symptoms in five of the 20 patients. We also observed a possible prophylactic effect by the inducing system antiviral impact accompanied by a trend for local immune tolerance in the gut in healthy individuals, where it is the desirable state.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Clinical Immunology, University Hospital “Lozenetz,” Kozyak 1 Str., 1407 Sofia, Medical Faculty, Sofia University St. Kliment Ohridski, 1504 Sofia, Bulgaria
- Correspondence:
| | - Kalina Tumangelova-Yuzeir
- Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 15 “Acad. Iv. Evst. Geshov” Blvd, 1431 Sofia, Bulgaria; (K.T.-Y.); (E.I.-T.); (D.K.)
| | | | - Ekaterina Ivanova-Todorova
- Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 15 “Acad. Iv. Evst. Geshov” Blvd, 1431 Sofia, Bulgaria; (K.T.-Y.); (E.I.-T.); (D.K.)
| | | | - Ventsislav Nakov
- Clinic of Gastroenterology, University Hospital “Tsaritsa Ioanna–ISUL,” 8 Byalo more Str., 1527 Sofia, Bulgaria; (V.N.); (R.N.)
| | - Radislav Nakov
- Clinic of Gastroenterology, University Hospital “Tsaritsa Ioanna–ISUL,” 8 Byalo more Str., 1527 Sofia, Bulgaria; (V.N.); (R.N.)
| | - Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 15 “Acad. Iv. Evst. Geshov” Blvd, 1431 Sofia, Bulgaria; (K.T.-Y.); (E.I.-T.); (D.K.)
| |
Collapse
|
21
|
Connection between gut microbiome and the development of obesity. Eur J Clin Microbiol Infect Dis 2019; 38:1987-1998. [PMID: 31367997 DOI: 10.1007/s10096-019-03623-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023]
Abstract
The potential role of the gut microbiota in various human diseases has attracted considerable attention worldwide. Here, we discuss the vital role of the intestinal microbiota in the development of obesity. First, we describe how the gut microbiota promotes fat accumulation. Additionally, a high-fat diet leads to structural instability among in the gut microbiota, further leading to an increase in endotoxins, which aggravates obesity. We then discuss how gut microbiota metabolites, including short-chain fatty acids and lipopolysaccharides, affect the host. Finally, we review several strategies for regulating the intestinal flora.
Collapse
|
22
|
The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. Int J Mol Sci 2019; 20:ijms20030501. [PMID: 30682772 PMCID: PMC6387318 DOI: 10.3390/ijms20030501] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune diseases. While multiple mechanisms are involved, the immune system clearly plays a special role. Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis, which is then able to enhance inflammation and to influence gene expression. At the same time, there is an intense cross-talk between the microbiota and the immunological niche in the intestinal mucosa. These interactions may pave the way to the development, growth and spreading of cancer, especially in the gastro-intestinal system. Here, we review the changes in microbiota composition, how they relate to the immunological imbalance, influencing the onset of different types of cancer and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.
Collapse
|
23
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
24
|
Desselberger U. The Mammalian Intestinal Microbiome: Composition, Interaction with the Immune System, Significance for Vaccine Efficacy, and Potential for Disease Therapy. Pathogens 2018; 7:E57. [PMID: 29933546 PMCID: PMC6161280 DOI: 10.3390/pathogens7030057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian gut is colonized by a large variety of microbes, collectively termed ‘the microbiome’. The gut microbiome undergoes rapid changes during the first few years of life and is highly variable in adulthood depending on various factors. With the gut being the largest organ of immune responses, the composition of the microbiome of the gut has been found to be correlated with qualitative and quantitative differences of mucosal and systemic immune responses. Animal models have been very useful to unravel the relationship between gut microbiome and immune responses and for the understanding of variations of immune responses to vaccination in different childhood populations. However, the molecular mechanisms underlying optimal immune responses to infection or vaccination are not fully understood. The gut virome and gut bacteria can interact, with bacteria facilitating viral infectivity by different mechanisms. Some gut bacteria, which have a beneficial effect on increasing immune responses or by overgrowing intestinal pathogens, are considered to act as probiotics and can be used for therapeutic purposes (as in the case of fecal microbiome transplantation).
Collapse
|
25
|
Malard F, Gasc C, Plantamura E, Doré J. High gastrointestinal microbial diversity and clinical outcome in graft-versus-host disease patients. Bone Marrow Transplant 2018; 53:1493-1497. [PMID: 29904128 PMCID: PMC6281565 DOI: 10.1038/s41409-018-0254-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Florent Malard
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, APHP, Paris, 75012, France
| | | | | | - Joël Doré
- MaaT Pharma, Lyon, 69007, France. .,MetaGenoPolis, INRA, Université Paris-Saclay, 78350, Jouy en Josas, France.
| |
Collapse
|
26
|
Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 2018; 50:421-428. [PMID: 29567414 DOI: 10.1016/j.dld.2018.02.012] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
Actinobacteria are one the four major phyla of the gut microbiota and, although they represent only a small percentage, are pivotal in the maintenance of gut homeostasis. During the last decade many studies focused the attention on Actinobacteria, especially on their role both in gastrointestinal and systemic diseases and on their possible therapeutic use. In fact, classes of this phylum, especially Bifidobacteria, are widely used as probiotic demonstrating beneficial effects in many pathological conditions, even if larger in vivo studies are needed to confirm such encouraging results. This review aims to explore the current knowledge on their physiological functions and to speculate on their possible therapeutic role(s) in gastrointestinal and systemic diseases.
Collapse
Affiliation(s)
- Cecilia Binda
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Loris Riccardo Lopetuso
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Gianenrico Rizzatti
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Giulia Gibiino
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Bologna, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy.
| |
Collapse
|
27
|
Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M, Daniel C, Matos R, Leulier F. Drosophila Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus plantarum. Cell Metab 2018; 27:362-377.e8. [PMID: 29290388 PMCID: PMC5807057 DOI: 10.1016/j.cmet.2017.11.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 10/09/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Facultative animal-bacteria symbioses, which are critical determinants of animal fitness, are largely assumed to be mutualistic. However, whether commensal bacteria benefit from the association has not been rigorously assessed. Using a simple and tractable gnotobiotic model- Drosophila mono-associated with one of its dominant commensals, Lactobacillus plantarum-we reveal that in addition to benefiting animal growth, this facultative symbiosis has a positive impact on commensal bacteria fitness. We find that bacteria encounter a strong cost during gut transit, yet larvae-derived maintenance factors override this cost and increase bacterial population fitness, thus perpetuating symbiosis. In addition, we demonstrate that the maintenance of the association is required for achieving maximum animal growth benefits upon chronic undernutrition. Taken together, our study establishes a prototypical case of facultative nutritional mutualism, whereby a farming mechanism perpetuates animal-bacteria symbiosis, which bolsters fitness gains for both partners upon poor nutritional conditions.
Collapse
Affiliation(s)
- Gilles Storelli
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France.
| | - Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - Loan Bozonnet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - Martin Schwarzer
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - Catherine Daniel
- Lactic Acid Bacteria and Mucosal Immunity Team, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, CNRS UMR 8204, Université de Lille, 59019 Lille, France
| | - Renata Matos
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France.
| |
Collapse
|
28
|
Tetel MJ, de Vries GJ, Melcangi RC, Panzica G, O'Mahony SM. Steroids, stress and the gut microbiome-brain axis. J Neuroendocrinol 2018; 30:10.1111/jne.12548. [PMID: 29024170 PMCID: PMC6314837 DOI: 10.1111/jne.12548] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
It is becoming well established that the gut microbiome has a profound impact on human health and disease. In this review, we explore how steroids can influence the gut microbiota and, in turn, how the gut microbiota can influence hormone levels. Within the context of the gut microbiome-brain axis, we discuss how perturbations in the gut microbiota can alter the stress axis and behaviour. In addition, human studies on the possible role of gut microbiota in depression and anxiety are examined. Finally, we present some of the challenges and important questions that need to be addressed by future research in this exciting new area at the intersection of steroids, stress, gut-brain axis and human health.
Collapse
Affiliation(s)
- M J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | - G J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - G Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), Università degli Studi di Torino, Orbassano, Italy
| | - S M O'Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Abstract
This narrative review summarises the benefits, risks and appropriate use of acid-suppressing drugs (ASDs), proton pump inhibitors and histamine-2 receptor antagonists, advocating a rationale balanced and individualised approach aimed to minimise any serious adverse consequences. It focuses on current controversies on the potential of ASDs to contribute to infections-bacterial, parasitic, fungal, protozoan and viral, particularly in the elderly, comprehensively and critically discusses the growing body of observational literature linking ASD use to a variety of enteric, respiratory, skin and systemic infectious diseases and complications (Clostridium difficile diarrhoea, pneumonia, spontaneous bacterial peritonitis, septicaemia and other). The proposed pathogenic mechanisms of ASD-associated infections (related and unrelated to the inhibition of gastric acid secretion, alterations of the gut microbiome and immunity), and drug-drug interactions are also described. Both probiotics use and correcting vitamin D status may have a significant protective effect decreasing the incidence of ASD-associated infections, especially in the elderly. Despite the limitations of the existing data, the importance of individualised therapy and caution in long-term ASD use considering the balance of benefits and potential harms, factors that may predispose to and actions that may prevent/attenuate adverse effects is evident. A six-step practical algorithm for ASD therapy based on the best available evidence is presented.
Collapse
|
30
|
Abstract
Dysbiosis is a key term in human microbiome research, especially when microbiome patterns are associated with disease states. Although some questions have been raised about how this term is applied, its use continues undiminished in the literature. We investigate the ways in which microbiome researchers discuss dysbiosis and then assess the impact of different concepts of dysbiosis on microbiome research. After an overview of the term's historical roots, we conduct quantitative and qualitative analyses of a large selection of contemporary dysbiosis statements. We categorize both short definitions and longer conceptual statements about dysbiosis. Further analysis allows us to identify the problematic implications of how dysbiosis is used, particularly with regard to causal hypotheses and normal-abnormal distinctions. We suggest that researchers should reflect carefully on the ways in which they discuss dysbiosis, in order for the field to continue to develop greater predictive scope and explanatory depth.
Collapse
Affiliation(s)
- Katarzyna B Hooks
- Centre de Bioinformatique de Bordeaux, Centre de Génomique Fonctionnelle de Bordeaux, University of Bordeaux, Bordeaux, France
- Immunoconcept, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | - Maureen A O'Malley
- Centre de Bioinformatique de Bordeaux, Centre de Génomique Fonctionnelle de Bordeaux, University of Bordeaux, Bordeaux, France
| |
Collapse
|
31
|
Zeng Q, Wu S, Sukumaran J, Rodrigo A. Models of microbiome evolution incorporating host and microbial selection. MICROBIOME 2017; 5:127. [PMID: 28946894 PMCID: PMC5613328 DOI: 10.1186/s40168-017-0343-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/15/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. METHODS In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. RESULTS We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong parental contribution, when host-mediated selection acts on microbes concomitantly. CONCLUSIONS We present a computational framework that integrates different selective processes acting on the evolution of microbiomes. Our framework demonstrates that selection acting on microbes can have a strong effect on microbial diversities and fitnesses, whereas selection on hosts can have weaker outcomes.
Collapse
Affiliation(s)
- Qinglong Zeng
- Department of Biology, Duke University, Durham, NC USA
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territories Australia
| | - Steven Wu
- Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Jeet Sukumaran
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI USA
| | - Allen Rodrigo
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territories Australia
| |
Collapse
|
32
|
Passos MDCF, Moraes-Filho JP. INTESTINAL MICROBIOTA IN DIGESTIVE DISEASES. ARQUIVOS DE GASTROENTEROLOGIA 2017; 54:255-262. [PMID: 28723981 DOI: 10.1590/s0004-2803.201700000-31] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND In recent years, especially after the development of sophisticated metagenomic studies, research on the intestinal microbiota has increased, radically transforming our knowledge about the microbiome and its association with health maintenance and disease development in humans. Increasing evidence has shown that a permanent alteration in microbiota composition or function (dysbiosis) can alter immune responses, metabolism, intestinal permeability, and digestive motility, thereby promoting a proinflammatory state. Such alterations can mainly impair the host's immune and metabolic functions, thus favoring the onset of diseases such as diabetes, obesity, digestive, neurological, autoimmune, and neoplastic diseases. This comprehensive review is a compilation of the available literature on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, non-alcoholic steatohepatitis, irritable bowel syndrome, inflammatory bowel disease, celiac disease, and digestive neoplasms. CONCLUSION: Alterations in the composition and function of the gastrointestinal microbiota (dysbiosis) have a direct impact on human health and seem to have an important role in the pathogenesis of several gastrointestinal diseases, whether inflammatory, metabolic, or neoplastic ones.
Collapse
Affiliation(s)
- Maria do Carmo Friche Passos
- Faculdade de Medicina da Universidade Federal de Minas Gerais; Instituto Alfa de Gastroenterologia, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
33
|
Liang C, Tseng HC, Chen HM, Wang WC, Chiu CM, Chang JY, Lu KY, Weng SL, Chang TH, Chang CH, Weng CT, Wang HM, Huang HD. Diversity and enterotype in gut bacterial community of adults in Taiwan. BMC Genomics 2017; 18:932. [PMID: 28198673 PMCID: PMC5310273 DOI: 10.1186/s12864-016-3261-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Gastrointestinal microbiota, particularly gut microbiota, is associated with human health. The biodiversity of gut microbiota is affected by ethnicities and environmental factors such as dietary habits or medicine intake, and three enterotypes of the human gut microbiome were announced in 2011. These enterotypes are not significantly correlated with gender, age, or body weight but are influenced by long-term dietary habits. However, to date, only two enterotypes (predominantly consisting of Bacteroides and Prevotella) have shown these characteristics in previous research; the third enterotype remains ambiguous. Understanding the enterotypes can improve the knowledge of the relationship between microbiota and human health. Results We obtained 181 human fecal samples from adults in Taiwan. Microbiota compositions were analyzed using next-generation sequencing (NGS) technology, which is a culture-independent method of constructing microbial community profiles by sequencing 16S ribosomal DNA (rDNA). In these samples, 17,675,898 sequencing reads were sequenced, and on average, 215 operational taxonomic units (OTUs) were identified for each sample. In this study, the major bacteria in the enterotypes identified from the fecal samples were Bacteroides, Prevotella, and Enterobacteriaceae, and their correlation with dietary habits was confirmed. A microbial interaction network in the gut was observed on the basis of the amount of short-chain fatty acids, pH value of the intestine, and composition of the bacterial community (enterotypes). Finally, a decision tree was derived to provide a predictive model for the three enterotypes. The accuracies of this model in training and independent testing sets were 97.2 and 84.0%, respectively. Conclusions We used NGS technology to characterize the microbiota and constructed a predictive model. The most significant finding was that Enterobacteriaceae, the predominant subtype, could be a new subtype of enterotypes in the Asian population. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3261-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Liang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan
| | | | - Hui-Mei Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan
| | | | | | | | - Kuan-Yi Lu
- Health GeneTech Corporation, Taoyuan, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan.,Mackay Medicine, Nursing and Management College, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Chao-Hsiang Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Perbal B. To flush or not to flush … that is a question. J Cell Commun Signal 2016; 10:337-340. [PMID: 27822878 DOI: 10.1007/s12079-016-0361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022] Open
Abstract
The human gut microflora has drawn a lot of attention as a potent therapeutic tool for many decades. More recently, efforts have been developed to devise efficient ways of complementing or replacing deficient intestinal microflora associated with intestinal diseases that are resistant to conventional medical treatments. Aside from the medical and industrial applications that emerged from the use of gut microbiota, the complex constitution of this ecosystem raises fascinating questions regarding host-cell communication and host response mechanisms to the ever changing environment. This brief comment also points to questions raised by some unexpected applications that have recently emerged from this field.
Collapse
Affiliation(s)
- Bernard Perbal
- Université Côte d'Azur, CNRS, GREDEG, Nice, France. .,International CCN Society, Paris, France.
| |
Collapse
|
35
|
Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P, Naqib A, Vitaterna MH, Turek FW, Keshavarzian A. The Circadian Clock Mutation Promotes Intestinal Dysbiosis. Alcohol Clin Exp Res 2016; 40:335-47. [PMID: 26842252 DOI: 10.1111/acer.12943] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/24/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circadian rhythm disruption is a prevalent feature of modern day society that is associated with an increase in pro-inflammatory diseases, and there is a clear need for a better understanding of the mechanism(s) underlying this phenomenon. We have previously demonstrated that both environmental and genetic circadian rhythm disruption causes intestinal hyperpermeability and exacerbates alcohol-induced intestinal hyperpermeability and liver pathology. The intestinal microbiota can influence intestinal barrier integrity and impact immune system function; thus, in this study, we sought to determine whether genetic alteration of the core circadian clock gene, Clock, altered the intestinal microbiota community. METHODS Male Clock(Δ19) -mutant mice (mice homozygous for a dominant-negative-mutant allele) or littermate wild-type mice were fed 1 of 3 experimental diets: (i) a standard chow diet, (ii) an alcohol-containing diet, or (iii) an alcohol-control diet in which the alcohol calories were replaced with dextrose. Stool microbiota was assessed with 16S ribosomal RNA gene amplicon sequencing. RESULTS The fecal microbial community of Clock-mutant mice had lower taxonomic diversity, relative to wild-type mice, and the Clock(Δ19) mutation was associated with intestinal dysbiosis when mice were fed either the alcohol-containing or the control diet. We found that alcohol consumption significantly altered the intestinal microbiota in both wild-type and Clock-mutant mice. CONCLUSIONS Our data support a model by which circadian rhythm disruption by the Clock(Δ19) mutation perturbs normal intestinal microbial communities, and this trend was exacerbated in the context of a secondary dietary intestinal stressor.
Collapse
Affiliation(s)
- Robin M Voigt
- Department of Internal Medicine , Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Keith C Summa
- Center for Sleep and Circadian Biology , Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Christopher B Forsyth
- Department of Internal Medicine , Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois.,Department of Biochemistry , Rush University Medical Center, Chicago, Illinois
| | - Stefan J Green
- DNA Services Facility , Research Resources Center, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences , University of Illinois at Chicago, Chicago, Illinois
| | - Phillip Engen
- Department of Internal Medicine , Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Ankur Naqib
- DNA Services Facility , Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Martha H Vitaterna
- Center for Sleep and Circadian Biology , Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Fred W Turek
- Center for Sleep and Circadian Biology , Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Ali Keshavarzian
- Department of Internal Medicine , Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois.,Department of Pharmacology , Rush University Medical Center, Chicago, Illinois.,Division of Pharmacology , Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
36
|
Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World J Gastroenterol 2016; 22:7186-202. [PMID: 27621567 PMCID: PMC4997632 DOI: 10.3748/wjg.v22.i32.7186] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/23/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Alterations of intestinal microflora may significantly contribute to the pathogenesis of different inflammatory and autoimmune disorders. There is emerging interest on the role of selective modulation of microflora in inducing benefits in inflammatory intestinal disorders, by as probiotics, prebiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). To summarize recent evidences on microflora modulation in main intestinal inflammatory disorders, PubMed was searched using terms microbiota, intestinal flora, probiotics, prebiotics, fecal transplantation. More than three hundred articles published up to 2015 were selected and reviewed. Randomized placebo-controlled trials and meta-analysis were firstly included, mainly for probiotics. A meta-analysis was not performed because of the heterogeneity of these studies. Most of relevant data derived from studies on probiotics, reporting some efficacy in ulcerative colitis and in pouchitis, while disappointing results are available for Crohn's disease. Probiotic supplementation may significantly reduce rates of rotavirus diarrhea. Efficacy of probiotics in NSAID enteropathy and irritable bowel syndrome is still controversial. Finally, FMT has been recently recognized as an efficacious treatment for recurrent Clostridium difficile infection. Modulation of intestinal flora represents a very interesting therapeutic target, although it still deserves some doubts and limitations. Future studies should be encouraged to provide new understanding about its therapeutical role.
Collapse
|
37
|
Forbes JD, Van Domselaar G, Bernstein CN. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol 2016; 7:1081. [PMID: 27462309 PMCID: PMC4939298 DOI: 10.3389/fmicb.2016.01081] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022] Open
Abstract
The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine and the IBD Clinical and Research Centre, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
38
|
Goulet O. Potential role of the intestinal microbiota in programming health and disease. Nutr Rev 2016; 73 Suppl 1:32-40. [PMID: 26175488 DOI: 10.1093/nutrit/nuv039] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The composition of the microbiota varies according to prenatal events, delivery methods, infant feeding, infant care environment, and antibiotic use. Postnatal gut function and immune development are largely influenced by the intestinal microbiota. Emerging evidence has shown that early microbiota colonization may influence the occurrence of later diseases (microbial programming). The vast majority of microbial species (commensals) give rise to symbiotic host-bacterial interactions that are fundamental for human health. However, changes in the composition of the gut microbiota (dysbiosis) may be associated with several clinical conditions, including obesity and metabolic diseases, autoimmune diseases and allergy, acute and chronic intestinal inflammation, irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and necrotizing enterocolitis. Based on recent advances, modulation of gut microbiota with probiotics, prebiotics, or fermented dairy products has been suggested as a treatment of, or prevention for, different disorders such as IBS, infectious diarrhea, allergic disease, and necrotizing enterocolitis.
Collapse
Affiliation(s)
- Olivier Goulet
- O. Goulet is with the Department of Pediatric Gastroenterology-Hepatology-Nutrition, National Reference Center for Rare Digestive Disease, Hôpital Necker-EnfantsMalades, University of Paris Descartes, Paris, France.
| |
Collapse
|
39
|
Gérard P. Gut microbiota and obesity. Cell Mol Life Sci 2016; 73:147-62. [PMID: 26459447 PMCID: PMC11108539 DOI: 10.1007/s00018-015-2061-5] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.
Collapse
Affiliation(s)
- Philippe Gérard
- INRA, UMR1319 MICALIS, Equipe AMIPEM, Building 442, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
- AgroParisTech, UMR MICALIS, 78350, Jouy-en-Josas, France.
| |
Collapse
|
40
|
Abstract
The human gut harbours a dense and highly diverse microbial ecosystem-the microbiota-that plays an important role in the maintenance of health. Modern lifestyle practices, including widespread antibiotic use, have degraded microbiota diversity, compromising the integrity of this vital ecosystem and creating susceptibility to diseases such as Clostridium difficile infection. Treatment of patients to restore the diversity of the gut microbiota offers a logical solution to disease. Although fecal microbial therapy (FMT) has started to gain traction as an effective method to effect this restoration, it is not without risks and there are significant barriers to its implementation in the clinic. Some of the risks and challenges with FMT are addressed by microbial ecosystem therapeutics (MET), an alternative approach to FMT that uses selected, defined microbial ecosystems to redress microbiota balance and functionality. The time has come for the use of bugs as drugs.
Collapse
|
41
|
Abstract
There are microbes in and on many parts of the human body and all of the microbes that inhabit an ecosystem are the microbiota, which can be commensal, symbiotic, and pathogenic. Alterations in the homeostasis of the microbiota are considered dysbiosis. To determine how changes to the normal flora are associated with disease, we first need to identify normal gut flora. The gold standard for microbiota analysis is currently by 16S rRNA gene amplification techniques. The human diseases, obesity and inflammatory bowel disease, are prime examples of dysbiosis. Both diseases exhibit a decreased diversity of microorganisms and characteristic changes in bacterial phyla as well as evidence of abnormal gut bacterial translocation and inflammation. As standardization of techniques and longitudinal studies come together in multicenter observations of the gut microbiota, a blossoming understanding will inevitably allow us to better diagnose, treat, and possibly even prevent disease.
Collapse
Affiliation(s)
- Adam Kim
- Minnesota Gastroenterology, PA, Minneapolis, MN
| |
Collapse
|
42
|
Sehgal V, Bajwa SJS, Consalvo JA, Bajaj A. Clinical conundrums in management of sepsis in the elderly. J Transl Int Med 2015; 3:106-112. [PMID: 27847897 PMCID: PMC4936459 DOI: 10.1515/jtim-2015-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 2012, surviving sepsis campaign came out with updated international guidelines for management of severe sepsis and septic shock. Paradoxically, there are no specific guidelines for management of sepsis in the elderly, although the elderly are more predisposed to sepsis, and morbidity and mortality related to sepsis. Sepsis in the elderly is, more often than not, complicated by clinical conundrums such as congestive heart failure (CHF), atrial fibrillation (AF), chronic kidney disease (CKD), acute kidney injury (AKI), delirium, dementia, ambulatory dysfunction, polypharmacy, malglycemia, nutritional deficiencies, and antibiotic resistance. Also, with recurrent admissions to the hospital and widespread use of antibiotics, the elderly are more susceptible to Clostridium difficile colitis.
Collapse
Affiliation(s)
- Vishal Sehgal
- Department of Internal Medicine, The Common Wealth Medical College, Scranton, PA 18510, USA
| | - Sukhminder Jit Singh Bajwa
- Department of Anaesthesiology and Intensive Care Medicine, Gian Sagar Medical College, Banur, Patiala, Punjab, India
| | - John A Consalvo
- Chairman Emergency Medicine, Regional hospital of Scranton, PA, USA
| | - Anurag Bajaj
- Department of Internal Medicine, WCGME, SCRANTON, PA, USA
| |
Collapse
|
43
|
Del Chierico F, Vernocchi P, Petrucca A, Paci P, Fuentes S, Praticò G, Capuani G, Masotti A, Reddel S, Russo A, Vallone C, Salvatori G, Buffone E, Signore F, Rigon G, Dotta A, Miccheli A, de Vos WM, Dallapiccola B, Putignani L. Phylogenetic and Metabolic Tracking of Gut Microbiota during Perinatal Development. PLoS One 2015; 10:e0137347. [PMID: 26332837 PMCID: PMC4557834 DOI: 10.1371/journal.pone.0137347] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022] Open
Abstract
The colonization and development of gut microbiota immediately after birth is highly variable and depends on several factors, such as delivery mode and modality of feeding during the first months of life. A cohort of 31 mother and neonate pairs, including 25 at-term caesarean (CS) and 6 vaginally (V) delivered neonates (DNs), were included in this study and 121 meconium/faecal samples were collected at days 1 through 30 following birth. Operational taxonomic units (OTUs) were assessed in 69 stool samples by phylogenetic microarray HITChip and inter- and intra-individual distributions were established by inter-OTUs correlation matrices and OTUs co-occurrence or co-exclusion networks. 1H-NMR metabolites were determined in 70 stool samples, PCA analysis was performed on 55 CS DNs samples, and metabolome/OTUs co-correlations were assessed in 45 CS samples, providing an integrated map of the early microbiota OTUs-metabolome. A microbiota "core" of OTUs was identified that was independent of delivery mode and lactation stage, suggesting highly specialized communities that act as seminal colonizers of microbial networks. Correlations among OTUs, metabolites, and OTUs-metabolites revealed metabolic profiles associated with early microbial ecological dynamics, maturation of milk components, and host physiology.
Collapse
Affiliation(s)
| | - Pamela Vernocchi
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Petrucca
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Diagnostic Science, Sant’Andrea Hospital, Rome, Italy
| | - Paola Paci
- CNR, Institute of Systems Analysis and Informatics Antonio Ruberti, Rome, Italy
| | - Susana Fuentes
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Giulia Praticò
- Department of Chemistry, Sapienza University, Rome, Italy
| | | | | | - Sofia Reddel
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Alessandra Russo
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristina Vallone
- Department of Obstetrics and Gyneacology, San Camillo Hospital, Rome, Italy
| | - Guglielmo Salvatori
- Department of Neonatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elsa Buffone
- Department of Neonatology, San Camillo Hospital, Rome, Italy
| | - Fabrizio Signore
- Department of Obstetrics and Gyneacology, San Camillo Hospital, Rome, Italy
| | - Giuliano Rigon
- Department of Obstetrics and Gyneacology, San Camillo Hospital, Rome, Italy
| | - Andrea Dotta
- Department of Neonatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Departments of Veterinary Biosciences and Bacteriology & Immunology, Helsinki University, Helsinki, Finland
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Unit of Parasitology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
44
|
Ipar N, Aydogdu SD, Yildirim GK, Inal M, Gies I, Vandenplas Y, Dinleyici EC. Effects of synbiotic on anthropometry, lipid profile and oxidative stress in obese children. Benef Microbes 2015; 6:775-82. [PMID: 26259892 DOI: 10.3920/bm2015.0011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies have suggested some beneficial effects of probiotics and/or prebiotics on obesity in adults; such experience is limited in children and adolescents. This study was an open-label, randomised, controlled study including children with primary obesity. The first group was treated with a standard method with a reduced calorie intake and increased physical activity. The second group received add-on daily synbiotic supplementation during one month. The aim of this study was to evaluate potential effects of a synbiotic on anthropometric measurements, lipid profile and oxidative stress parameters. One month of supplementation of the synbiotic resulted in a significant reduction of weight (P<0.001) and body mass index (P<0.01). Changes (% reduction comparing to baseline) in anthropometric measurements, were significantly higher in the children receiving the additional synbiotic supplement (P<0.05). The percentage of children with weight loss was higher in the synbiotic group, but not statistically significant (71.4 vs 64.2%, P>0.05). At the 30(th) day of synbiotic intervention, serum total cholesterol, low density lipoprotein cholesterol and total oxidative stress levels significantly declined (P<0.05). Changes in serum lipid levels were significantly higher in the synbiotic group (P<0.05). Changes in serum total oxidative stress levels before and after the intervention period, were significant in synbiotic group (P<0.01). In our study, changes in weight, body mass index, and triceps skinfold thickness were higher in the group receiving the one month synbiotic supplement thin in the standard method group. The supplement tested also had a beneficial effect on lipid profile and total oxidative stress. To the best of our knowledge, this is the first study showing the effects of synbiotics on oxidative stress in obese patients with an additional effect on weight loss regarding to previous studies.
Collapse
Affiliation(s)
- N Ipar
- 1 Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, 26480 Eskisehir, Turkey
| | - S Durmus Aydogdu
- 2 Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Nutrition and Metabolism Unit, 26480 Eskisehir, Turkey
| | - G Kilic Yildirim
- 2 Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Nutrition and Metabolism Unit, 26480 Eskisehir, Turkey
| | - M Inal
- 3 Eskisehir Osmangazi University Faculty of Medicine, Department of Biochemistry, 26480 Eskisehir, Turkey
| | - I Gies
- 4 Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Y Vandenplas
- 4 Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - E C Dinleyici
- 1 Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, 26480 Eskisehir, Turkey
| |
Collapse
|
45
|
Zeng Q, Sukumaran J, Wu S, Rodrigo A. Neutral Models of Microbiome Evolution. PLoS Comput Biol 2015; 11:e1004365. [PMID: 26200800 PMCID: PMC4511668 DOI: 10.1371/journal.pcbi.1004365] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022] Open
Abstract
There has been an explosion of research on host-associated microbial communities (i.e.,microbiomes). Much of this research has focused on surveys of microbial diversities across a variety of host species, including humans, with a view to understanding how these microbiomes are distributed across space and time, and how they correlate with host health, disease, phenotype, physiology and ecology. Fewer studies have focused on how these microbiomes may have evolved. In this paper, we develop an agent-based framework to study the dynamics of microbiome evolution. Our framework incorporates neutral models of how hosts acquire their microbiomes, and how the environmental microbial community that is available to the hosts is assembled. Most importantly, our framework also incorporates a Wright-Fisher genealogical model of hosts, so that the dynamics of microbiome evolution is studied on an evolutionary timescale. Our results indicate that the extent of parental contribution to microbial availability from one generation to the next significantly impacts the diversity of microbiomes: the greater the parental contribution, the less diverse the microbiomes. In contrast, even when there is only a very small contribution from a constant environmental pool, microbial communities can remain highly diverse. Finally, we show that our models may be used to construct hypotheses about the types of processes that operate to assemble microbiomes over evolutionary time.
Collapse
Affiliation(s)
- Qinglong Zeng
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Jeet Sukumaran
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Steven Wu
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Allen Rodrigo
- Biology Department, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
46
|
Apples and cardiovascular health--is the gut microbiota a core consideration? Nutrients 2015; 7:3959-98. [PMID: 26016654 PMCID: PMC4488768 DOI: 10.3390/nu7063959] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022] Open
Abstract
There is now considerable scientific evidence that a diet rich in fruits and vegetables can improve human health and protect against chronic diseases. However, it is not clear whether different fruits and vegetables have distinct beneficial effects. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fiber. A major proportion of the bioactive components in apples, including the high molecular weight polyphenols, escape absorption in the upper gastrointestinal tract and reach the large intestine relatively intact. There, they can be converted by the colonic microbiota to bioavailable and biologically active compounds with systemic effects, in addition to modulating microbial composition. Epidemiological studies have identified associations between frequent apple consumption and reduced risk of chronic diseases such as cardiovascular disease. Human and animal intervention studies demonstrate beneficial effects on lipid metabolism, vascular function and inflammation but only a few studies have attempted to link these mechanistically with the gut microbiota. This review will focus on the reciprocal interaction between apple components and the gut microbiota, the potential link to cardiovascular health and the possible mechanisms of action.
Collapse
|
47
|
Grąt M, Hołówko W, Wronka KM, Grąt K, Lewandowski Z, Kosińska I, Krasnodębski M, Wasilewicz M, Gałęcka M, Szachta P, Zborowska H, Patkowski W, Krawczyk M. The relevance of intestinal dysbiosis in liver transplant candidates. Transpl Infect Dis 2015; 17:174-84. [PMID: 25728703 DOI: 10.1111/tid.12352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/18/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gut microbial ecosystem plays an important role in the pathogenesis of liver diseases. However, the association of microbial community structure with the severity of liver dysfunction is not completely understood. METHODS Fecal microflora was assessed in 40 patients with liver cirrhosis listed for primary liver transplantation (LT). Independent associations between fecal microbial counts and serum bilirubin, serum creatinine, international normalized ratio (INR), and the Model for End-stage Liver Disease (MELD) score were established in multiple linear regression models. RESULTS Bifidobacterium (standardized regression coefficient [sβ] = -0.549; P < 0.001), Enterococcus (sβ = 0.369; P = 0.004), and yeast (sβ = 0.315; P = 0.018) numbers were independently associated with serum bilirubin, while Escherichia coli counts (sβ = 0.318; P = 0.046) correlated with INR, and Bifidobacterium counts (sβ = 0.410; P = 0.009) with serum creatinine. Only Bifidobacterium (sβ = -0.468; P = 0.003) and Enterococcus (sβ = 0.331; P = 0.029) counts were independent predictors of the MELD score. Bifidobacterium/Enterococcus ratio, proposed as a measure of pre-LT gut dysbiosis, was significantly related to the MELD score following the adjustment for the absolute Bifidobacterium (sβ = -0.333; P = 0.029) and Enterococcus (sβ = -0.966; P = 0.003) numbers. This pre-transplant dysbiosis ratio (PTDR) was significantly correlated with Enterococcus (R = -0.897; P < 0.001) but not with Bifidobacterium (R = 0.098; P = 0.546) counts. Among the other components of gut microflora, only hydrogen peroxide (H2 O2 )-producing Lactobacillus strains significantly influenced Enterococcus counts (sβ = 0.349; P = 0.028) and PTDR (sβ = -0.318; P = 0.046). CONCLUSION While the abundance of both Bifidobacterium and Enterococcus is related to liver dysfunction, the size of the Enterococcus population seems to be the most important determinant of pre-LT gut dysbiosis in cirrhotic patients. The H2 O2 -producing Lactobacillus strains potentially ameliorate this dysbiotic state.
Collapse
Affiliation(s)
- M Grąt
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Biedermann L, Rogler G. The intestinal microbiota: its role in health and disease. Eur J Pediatr 2015; 174:151-67. [PMID: 25563215 DOI: 10.1007/s00431-014-2476-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED The intestinal microbiota (previously referred to as "intestinal flora") has entered the focus of research interest not only in microbiology but also in medicine. Huge progress has been made with respect to the analysis of composition and functions of the human microbiota. An "imbalance" of the microbiota, frequently also called a "dysbiosis," has been associated with different diseases in recent years. Crohn's disease and ulcerative colitis as two major forms of inflammatory bowel disease, irritable bowel syndrome (IBS) and some infectious intestinal diseases such as Clostridium difficile colitis feature a dysbiosis of the intestinal flora. Whereas this is somehow expected or less surprising, an imbalance of the microbiota or an enrichment of specific bacterial strains in the flora has been associated with an increasing number of other diseases such as diabetes, metabolic syndrome, non-alcoholic fatty liver disease or steatohepatitis and even psychiatric disorders such as depression or multiple sclerosis. It is important to understand the different aspects of potential contributions of the microbiota to pathophysiology of the mentioned diseases. CONCLUSION With the present manuscript, we aim to summarize the current knowledge and provide an overview of the different concepts on how bacteria contribute to health and disease in animal models and-more importantly-humans. In addition, it has to be borne in mind that we are only at the very beginning to understand the complex mechanisms of host-microbial interactions.
Collapse
Affiliation(s)
- Luc Biedermann
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland,
| | | |
Collapse
|
49
|
Toh MC, Allen-Vercoe E. The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26309. [PMID: 25634609 PMCID: PMC4310852 DOI: 10.3402/mehd.v26.26309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/30/2014] [Accepted: 11/30/2014] [Indexed: 02/06/2023]
Abstract
The human gut microbiota is a complex microbial ecosystem that contributes an important component towards the health of its host. This highly complex ecosystem has been underestimated in its importance until recently, when a realization of the enormous scope of gut microbiota function has been (and continues to be) revealed. One of the more striking of these discoveries is the finding that the gut microbiota and the brain are connected, and thus there is potential for the microbiota in the gut to influence behavior and mental health. In this short review, we outline the link between brain and gut microbiota and urge the reader to consider the gut microbiota as an ecosystem ‘organ’ rather than just as a collection of microbes filling a niche, using the hypothesized role of the gut microbiota in autism spectrum disorder to illustrate the concept.
Collapse
Affiliation(s)
- Michael C Toh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada;
| |
Collapse
|
50
|
Abstract
The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.
Collapse
Affiliation(s)
- Rasmus Goll
- Medical Clinic, Section of Gastroenterology, University Hospital of North Norway , Tromsø , Norway
| | | |
Collapse
|