1
|
Jeong M, Choi JH, Jang H, Sohn DH, Wang Q, Lee J, Yao L, Lee EJ, Fan J, Pratelli M, Wang EH, Snyder CN, Wang XY, Shin S, Gittis AH, Sung TC, Spitzer NC, Lim BK. Viral vector-mediated transgene delivery with novel recombinase systems for targeting neuronal populations defined by multiple features. Neuron 2024; 112:56-72.e4. [PMID: 37909037 PMCID: PMC10916502 DOI: 10.1016/j.neuron.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/21/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
A comprehensive understanding of neuronal diversity and connectivity is essential for understanding the anatomical and cellular mechanisms that underlie functional contributions. With the advent of single-cell analysis, growing information regarding molecular profiles leads to the identification of more heterogeneous cell types. Therefore, the need for additional orthogonal recombinase systems is increasingly apparent, as heterogeneous tissues can be further partitioned into increasing numbers of specific cell types defined by multiple features. Critically, new recombinase systems should work together with pre-existing systems without cross-reactivity in vivo. Here, we introduce novel site-specific recombinase systems based on ΦC31 bacteriophage recombinase for labeling multiple cell types simultaneously and a novel viral strategy for versatile and robust intersectional expression of any transgene. Together, our system will help researchers specifically target different cell types with multiple features in the same animal.
Collapse
Affiliation(s)
- Minju Jeong
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun-Hyeok Choi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hyeonseok Jang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Qingdi Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joann Lee
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Li Yao
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eun Ji Lee
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiachen Fan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marta Pratelli
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric H Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christen N Snyder
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xiao-Yun Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sora Shin
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Aryn H Gittis
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Georgiou C, Kehayas V, Lee KS, Brandalise F, Sahlender DA, Blanc J, Knott G, Holtmaat A. A subpopulation of cortical VIP-expressing interneurons with highly dynamic spines. Commun Biol 2022; 5:352. [PMID: 35418660 PMCID: PMC9008030 DOI: 10.1038/s42003-022-03278-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Structural synaptic plasticity may underlie experience and learning-dependent changes in cortical circuits. In contrast to excitatory pyramidal neurons, insight into the structural plasticity of inhibitory neurons remains limited. Interneurons are divided into various subclasses, each with specialized functions in cortical circuits. Further knowledge of subclass-specific structural plasticity of interneurons is crucial to gaining a complete mechanistic understanding of their contribution to cortical plasticity overall. Here, we describe a subpopulation of superficial cortical multipolar interneurons expressing vasoactive intestinal peptide (VIP) with high spine densities on their dendrites located in layer (L) 1, and with the electrophysiological characteristics of bursting cells. Using longitudinal imaging in vivo, we found that the majority of the spines are highly dynamic, displaying lifetimes considerably shorter than that of spines on pyramidal neurons. Using correlative light and electron microscopy, we confirmed that these VIP spines are sites of excitatory synaptic contacts, and are morphologically distinct from other spines in L1.
Collapse
Affiliation(s)
- Christina Georgiou
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,The Lemanic Neuroscience Graduate School, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Vassilis Kehayas
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete, Greece
| | - Kok Sin Lee
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,The Lemanic Neuroscience Graduate School, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Federico Brandalise
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Bioscience, University of Milan, Milan, Italy
| | | | - Jerome Blanc
- Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland
| | - Graham Knott
- Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Balachandar L, Borrego D, Diaz JR. Serotype-based evaluation of an optogenetic construct in rat cortical astrocytes. Biochem Biophys Res Commun 2022; 593:35-39. [DOI: 10.1016/j.bbrc.2022.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
|
5
|
Reversing frontal disinhibition rescues behavioural deficits in models of CACNA1A-associated neurodevelopment disorders. Mol Psychiatry 2021; 26:7225-7246. [PMID: 34127816 DOI: 10.1038/s41380-021-01175-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
CACNA1A deletions cause epilepsy, ataxia, and a range of neurocognitive deficits, including inattention, impulsivity, intellectual deficiency and autism. To investigate the underlying mechanisms, we generated mice carrying a targeted Cacna1a deletion restricted to parvalbumin-expressing (PV) neurons (PVCre;Cacna1ac/+) or to cortical pyramidal cells (PC) (Emx1Cre;Cacna1ac/+). GABA release from PV-expressing GABAergic interneurons (PV-INs) is reduced in PVCre;Cacna1ac/+ mutants, resulting in impulsivity, cognitive rigidity and inattention. By contrast, the deletion of Cacna1a in PCs does not impact cortical excitability or behaviour in Emx1Cre;Cacna1ac/+ mutants. A targeted Cacna1a deletion in the orbitofrontal cortex (OFC) results in reversal learning deficits while a medial prefrontal cortex (mPFC) deletion impairs selective attention. These deficits can be rescued by the selective chemogenetic activation of cortical PV-INs in the OFC or mPFC of PVCre;Cacna1ac/+ mutants. Thus, Cacna1a haploinsufficiency disrupts perisomatic inhibition in frontal cortical circuits, leading to a range of potentially reversible neurocognitive deficits.
Collapse
|
6
|
Hongo Y, Matsui T, Nakata T, Furukawa H, Ono T, Kaida K, Suzuki K, Miyahira Y, Kobayashi Y. Morphological characterization of cholinergic partition cells: A transmitter-specific tracing study by Cre/lox-dependent viral gene expression. Ann Anat 2021; 240:151857. [PMID: 34785323 DOI: 10.1016/j.aanat.2021.151857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Partition cells are cholinergic interneurons located in lamina VII of the spinal cord. Some partition cells are the source of the cholinergic boutons, known as C-terminals or C-boutons, that modulate the activity of spinal motor neurons. Therefore, partition cells might play an important role in motor control. Previous studies categorized partition cells into three groups (medial, intermediate, and lateral partition cells) according to their distance from the central canal. However, the morphological characteristics of the three groups remain obscure. METHODS To analyze the morphology of partition cells, we developed an efficient technique for visualization of specific neurons at single-cell level in particular positions using adenovirus vectors and Cre/lox mediated recombination. Cre/lox conditional vectors were injected into the spinal cord of choline acetyltransferase-Cre transgenic mice, and partition cells labeled by green fluorescent protein were reconstructed from histological serial sections at the single-cell level. RESULTS This technique allowed for the visualization of partition cells at high resolution and revealed that partition cells had various patterns of dendrite orientations and fields. Most of the visualized partition cells had more than 60% of their dendrites located in lamina VII of the spinal cord. Partition cells had dendrites extending into various Rexed's laminae (V, VI, VII, VIII, IX, and X), but none of the cells had dendrites extending dorsal to lamina IV. The dendrites of partition cells terminated both ipsilaterally and bilaterally. We also found that C-terminals on motor neurons may be derived from the middle/outer group of partition cells. CONCLUSIONS Our results indicated that partition cells have various morphological features of the dendritic pattern and may receive differential inputs. Our results suggested that C-terminals originate not only from medial but also from intermediate/lateral cholinergic partition cells. The present study suggests that intermediate/lateral partition cells modulate activities of motor neurons through C-terminal synapses.
Collapse
Affiliation(s)
- Yu Hongo
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan; Department of Neurology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshiyasu Matsui
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan; Laboratory of Veterinary Anatomy, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Takahiro Nakata
- Department of Molecular and Cellular Anatomy, Faculty of Health Promotional Sciences, Tokoha University, Shizuoka, Japan; Department of Health Science, Ishikawa Prefectural Nursing University, Ishikawa, Japan.
| | - Hiroyo Furukawa
- Department of Health Science, Ishikawa Prefectural Nursing University, Ishikawa, Japan; Department of Clinical Nutrition, Ageo Central General Hospital, Saitama, Japan
| | - Takeshi Ono
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kenichi Kaida
- Department of Neurology, National Defense Medical College, Tokorozawa, Saitama, Japan; Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Kazushi Suzuki
- Department of Neurology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasushi Miyahira
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| |
Collapse
|
7
|
Yook JS, Kim J, Kim J. Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Front Syst Neurosci 2021; 15:688673. [PMID: 34234652 PMCID: PMC8255632 DOI: 10.3389/fnsys.2021.688673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex neural circuits that underpin brain function and behavior has been a long-standing goal of neuroscience. Yet this is no small feat considering the interconnectedness of neurons and other cell types, both within and across brain regions. In this review, we describe recent advances in mouse molecular genetic engineering that can be used to integrate information on brain activity and structure at regional, cellular, and subcellular levels. The convergence of structural inputs can be mapped throughout the brain in a cell type-specific manner by antero- and retrograde viral systems expressing various fluorescent proteins and genetic switches. Furthermore, neural activity can be manipulated using opto- and chemo-genetic tools to interrogate the functional significance of this input convergence. Monitoring neuronal activity is obtained with precise spatiotemporal resolution using genetically encoded sensors for calcium changes and specific neurotransmitters. Combining these genetically engineered mapping tools is a compelling approach for unraveling the structural and functional brain architecture of complex behaviors and malfunctioned states of neurological disorders.
Collapse
Affiliation(s)
- Jang Soo Yook
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jihyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| |
Collapse
|
8
|
Cassel JC, Pereira de Vasconcelos A. Routes of the thalamus through the history of neuroanatomy. Neurosci Biobehav Rev 2021; 125:442-465. [PMID: 33676963 DOI: 10.1016/j.neubiorev.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
The most distant roots of neuroanatomy trace back to antiquity, with the first human dissections, but no document which would identify the thalamus as a brain structure has reached us. Claudius Galenus (Galen) gave to the thalamus the name 'thalamus nervorum opticorum', but later on, other names were used (e.g., anchae, or buttocks-like). In 1543, Andreas Vesalius provided the first quality illustrations of the thalamus. During the 19th century, tissue staining techniques and ablative studies contributed to the breakdown of the thalamus into subregions and nuclei. The next step was taken using radiomarkers to identify connections in the absence of lesions. Anterograde and retrograde tracing methods arose in the late 1960s, supporting extension, revision, or confirmation of previously established knowledge. The use of the first viral tracers introduced a new methodological breakthrough in the mid-1970s. Another important step was supported by advances in neuroimaging of the thalamus in the 21th century. The current review follows the history of the thalamus through these technical revolutions from Antiquity to the present day.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|
9
|
Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genomics 2021; 48:14-31. [PMID: 33814307 DOI: 10.1016/j.jgg.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications. Conditional expression allows for (ir)reversible switching of genes on or off, with the potential of spatial and/or temporal control. This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis, providing tools to answer a wider array of research questions across biological disciplines. Spatial and/or temporal control are granted primarily by (combinations of) specific promoters, temperature regimens, compound addition, or illumination. The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales, using organisms amenable to easy genetic manipulation. Recent years witnessed an exciting expansion and optimization of such tools, of which we provide a comprehensive overview and discussion regarding their use in invertebrates. The mechanism, applicability, benefits, and drawbacks of each of the systems, as well as further developments to be expected in the foreseeable future, are highlighted.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
10
|
Koshimizu Y, Isa K, Kobayashi K, Isa T. Double viral vector technology for selective manipulation of neural pathways with higher level of efficiency and safety. Gene Ther 2021; 28:339-350. [PMID: 33432122 PMCID: PMC8221994 DOI: 10.1038/s41434-020-00212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Pathway-selective gene delivery would be critical for future gene therapy against neuropsychiatric disorders, traumatic neuronal injuries, or neurodegenerative diseases, because the impaired functions depend on neural circuits affected by the insults. Pathway-selective gene delivery can be achieved by double viral vector techniques, which combine an injection of a retrograde transport viral vector into the projection area of the target neurons and that of an anterograde viral vector into their somas. In this study, we tested the efficiency of gene delivery with different combinations of viral vectors to the pathway extending from the ventral tegmental area (VTA) to the cortical motor regions in rats, considered to be critical in the promotion of motor recovery from neural injuries. It was found that retrograde recombinant adeno-associated virus 2-retro (rAAV2reto) combined with anterograde AAVDJ (type2/type4/type5/type8/type9/avian/bovine/caprine chimera) exhibited the highest transduction efficiency in the short term (3-6 weeks) but high toxicity in the long term (3 months). In contrast, the same rAAV2reto combined with anterograde AAV5 displayed moderate transduction efficiency in the short term but low toxicity in the long term. These data suggest that the combination of anterograde AAV5 and retrograde rAAV2retro is suitable for safe and efficient gene delivery to the VTA-cortical pathway.
Collapse
Affiliation(s)
- Yoshinori Koshimizu
- grid.258799.80000 0004 0372 2033Division of Physiology and Neurobiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.419082.60000 0004 1754 9200Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Kaoru Isa
- grid.258799.80000 0004 0372 2033Division of Physiology and Neurobiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.419082.60000 0004 1754 9200Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Kenta Kobayashi
- grid.419082.60000 0004 1754 9200Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Tokyo, Japan ,grid.467811.d0000 0001 2272 1771Section of Viral Vector Development, National Institute of Physiological Sciences, Okazaki, Japan ,grid.275033.00000 0004 1763 208XSOKENDAI (The Graduate University of Advanced Studies), Hayama, Japan
| | - Tadashi Isa
- grid.258799.80000 0004 0372 2033Division of Physiology and Neurobiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.419082.60000 0004 1754 9200Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Tokyo, Japan ,grid.258799.80000 0004 0372 2033Human Brain Research Center, Graduated School of Medicine, Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Joseph DJ, Von Deimling M, Hasegawa Y, Cristancho AG, Ahrens-Nicklas RC, Rogers SL, Risbud R, McCoy AJ, Marsh ED. Postnatal Arx transcriptional activity regulates functional properties of PV interneurons. iScience 2020; 24:101999. [PMID: 33490907 PMCID: PMC7807163 DOI: 10.1016/j.isci.2020.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
The transcription factor Aristaless-related X-linked gene (Arx) is a monogenic factor in early onset epileptic encephalopathies (EOEEs) and a fundamental regulator of early stages of brain development. However, Arx expression persists in mature GABAergic neurons with an unknown role. To address this issue, we generated a conditional knockout (CKO) mouse in which postnatal Arx was ablated in parvalbumin interneurons (PVIs). Electroencephalogram (EEG) recordings in CKO mice revealed an increase in theta oscillations and the occurrence of occasional seizures. Behavioral analysis uncovered an increase in anxiety. Genome-wide sequencing of fluorescence activated cell sorted (FACS) PVIs revealed that Arx impinged on network excitability via genes primarily associated with synaptic and extracellular matrix pathways. Whole-cell recordings revealed prominent hypoexcitability of various intrinsic and synaptic properties. These results revealed important roles for postnatal Arx expression in PVIs in the control of neural circuits and that dysfunction in those roles alone can cause EOEE-like network abnormalities.
Collapse
Affiliation(s)
- Donald J Joseph
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Markus Von Deimling
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.,Klinik für Urologie, Städtisches Klinikum Lüneburg, Bögelstraße 1, 21339 Lüneburg, Germany
| | - Yuiko Hasegawa
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Ana G Cristancho
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie L Rogers
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rashmi Risbud
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Almedia J McCoy
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Abramson Research Center, Rm. 502, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Tsanov M. Neurons under genetic control: What are the next steps towards the treatment of movement disorders? Comput Struct Biotechnol J 2020; 18:3577-3589. [PMID: 33304456 PMCID: PMC7708864 DOI: 10.1016/j.csbj.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
Since the implementation of deep-brain stimulation as a therapy for movement disorders, there has been little progress in the clinical application of novel alternative treatments. Movement disorders are a group of neurological conditions, which are characterised with impairment of voluntary movement and share similar anatomical loci across the basal ganglia. The focus of the current review is on Parkinson's disease and Huntington's disease as they are the most investigated hypokinetic and hyperkinetic movement disorders, respectively. The last decade has seen enormous advances in the development of laboratory techniques that control neuronal activity. The two major ways to genetically control the neuronal function are: 1) expression of light-sensitive proteins that allow for the optogenetic control of the neuronal spiking and 2) expression or suppression of genes that control the transcription and translation of proteins. However, the translation of these methodologies from the laboratories into the clinics still faces significant challenges. The article summarizes the latest developments in optogenetics and gene therapy. Here, I compare the physiological mechanisms of established electrical deep brain stimulation to the experimental optogenetical deep brain stimulation. I compare also the advantages of DNA- and RNA-based techniques for gene therapy of familial movement disorders. I highlight the benefits and the major issues of each technique and I discuss the translational potential and clinical feasibility of optogenetic stimulation and gene expression control. The review emphasises recent technical breakthroughs that could initiate a notable leap in the treatment of movement disorders.
Collapse
Affiliation(s)
- Marian Tsanov
- School of Medicine, University College Dublin, Ireland
| |
Collapse
|
13
|
Anastasiades PG, Boada C, Carter AG. Cell-Type-Specific D1 Dopamine Receptor Modulation of Projection Neurons and Interneurons in the Prefrontal Cortex. Cereb Cortex 2020; 29:3224-3242. [PMID: 30566584 DOI: 10.1093/cercor/bhy299] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 11/14/2022] Open
Abstract
Dopamine modulation in the prefrontal cortex (PFC) mediates diverse effects on neuronal physiology and function, but the expression of dopamine receptors at subpopulations of projection neurons and interneurons remains unresolved. Here, we examine D1 receptor expression and modulation at specific cell types and layers in the mouse prelimbic PFC. We first show that D1 receptors are enriched in pyramidal cells in both layers 5 and 6, and that these cells project to intratelencephalic targets including contralateral cortex, striatum, and claustrum rather than to extratelencephalic structures. We then find that D1 receptors are also present in interneurons and enriched in superficial layer VIP-positive (VIP+) interneurons that coexpresses calretinin but absent from parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons. Finally, we determine that D1 receptors strongly and selectively enhance action potential firing in only a subset of these corticocortical neurons and VIP+ interneurons. Our findings define several novel subpopulations of D1+ neurons, highlighting how modulation via D1 receptors can influence both excitatory and disinhibitory microcircuits in the PFC.
Collapse
Affiliation(s)
- Paul G Anastasiades
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Christina Boada
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Adam G Carter
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| |
Collapse
|
14
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
15
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
16
|
Lanciego JL, Wouterlood FG. Neuroanatomical tract-tracing techniques that did go viral. Brain Struct Funct 2020; 225:1193-1224. [PMID: 32062721 PMCID: PMC7271020 DOI: 10.1007/s00429-020-02041-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing methods remain fundamental for elucidating the complexity of brain circuits. During the past decades, the technical arsenal at our disposal has been greatly enriched, with a steady supply of fresh arrivals. This paper provides a landscape view of classical and modern tools for tract-tracing purposes. Focus is placed on methods that have gone viral, i.e., became most widespread used and fully reliable. To keep an historical perspective, we start by reviewing one-dimensional, standalone transport-tracing tools; these including today's two most favorite anterograde neuroanatomical tracers such as Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine. Next, emphasis is placed on several classical tools widely used for retrograde neuroanatomical tracing purposes, where Fluoro-Gold in our opinion represents the best example. Furthermore, it is worth noting that multi-dimensional paradigms can be designed by combining different tracers or by applying a given tracer together with detecting one or more neurochemical substances, as illustrated here with several examples. Finally, it is without any doubt that we are currently witnessing the unstoppable and spectacular rise of modern molecular-genetic techniques based on the use of modified viruses as delivery vehicles for genetic material, therefore, pushing the tract-tracing field forward into a new era. In summary, here, we aim to provide neuroscientists with the advice and background required when facing a choice on which neuroanatomical tracer-or combination thereof-might be best suited for addressing a given experimental design.
Collapse
Affiliation(s)
- Jose L Lanciego
- Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Floris G Wouterlood
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Location VUmc, Neuroscience Campus Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Geramita MA, Wen JA, Rannals MD, Urban NN. Decreased amplitude and reliability of odor-evoked responses in two mouse models of autism. J Neurophysiol 2019; 123:1283-1294. [PMID: 31891524 DOI: 10.1152/jn.00277.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensory processing deficits are increasingly recognized as core symptoms of autism spectrum disorders (ASDs). However the molecular and circuit mechanisms that lead to sensory deficits are unknown. We show that two molecularly disparate mouse models of autism display similar deficits in sensory-evoked responses in the mouse olfactory system. We find that both Cntnap2- and Shank3-deficient mice of both sexes exhibit reduced response amplitude and trial-to-trial reliability during repeated odor presentation. Mechanistically, we show that both mouse models have weaker and fewer synapses between olfactory sensory nerve (OSN) terminals and olfactory bulb tufted cells and weaker synapses between OSN terminals and inhibitory periglomerular cells. Consequently, deficits in sensory processing provide an excellent candidate phenotype for analysis in ASDs.NEW & NOTEWORTHY The genetics of autism spectrum disorder (ASD) are complex. How the many risk genes generate the similar sets of symptoms that define the disorder is unknown. In particular, little is understood about the functional consequences of these genetic alterations. Sensory processing deficits are important aspects of the ASD diagnosis and may be due to unreliable neural circuits. We show that two mouse models of autism, Cntnap2- and Shank3-deficient mice, display reduced odor-evoked response amplitudes and reliability. These data suggest that altered sensory-evoked responses may constitute a circuit phenotype in ASDs.
Collapse
Affiliation(s)
- Matthew A Geramita
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jing A Wen
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Matthew D Rannals
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nathan N Urban
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Sources of off-target expression from recombinase-dependent AAV vectors and mitigation with cross-over insensitive ATG-out vectors. Proc Natl Acad Sci U S A 2019; 116:27001-27010. [PMID: 31843925 DOI: 10.1073/pnas.1915974116] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In combination with transgenic mouse lines expressing Cre or Flp recombinases in defined cell types, recombinase-dependent adeno-associated viruses (AAVs) have become the tool of choice for localized cell-type-targeted gene expression. Unfortunately, applications of this technique when expressing highly sensitive transgenes are impeded by off-target, or "leak" expression, from recombinase-dependent AAVs. We investigated this phenomenon and find that leak expression is mediated by both infrequent transcription from the inverted transgene in recombinant-dependent AAV designs and recombination events during bacterial AAV plasmid production. Recombination in bacteria is mediated by homology across the antiparallel recombinase-specific recognition sites present in recombinase-dependent designs. To address both of these issues we designed an AAV vector that uses mutant "cross-over insensitive" recognition sites combined with an "ATG-out" design. We show that these CIAO (cross-over insensitive ATG-out) vectors virtually eliminate leak expression. CIAO vectors provide reliable and targeted transgene expression and are extremely useful for recombinase-dependent expression of highly sensitive transgenes.
Collapse
|
19
|
Ferri SL, Pallathra AA, Kim H, Dow HC, Raje P, McMullen M, Bilker WB, Siegel SJ, Abel T, Brodkin ES. Sociability development in mice with cell-specific deletion of the NMDA receptor NR1 subunit gene. GENES BRAIN AND BEHAVIOR 2019; 19:e12624. [PMID: 31721416 DOI: 10.1111/gbb.12624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Social affiliative behavior is an important component of everyday life in many species and is likely to be disrupted in disabling ways in various neurodevelopmental and neuropsychiatric disorders. Therefore, determining the mechanisms involved in these processes is crucial. A link between N-methyl-d-aspartate (NMDA) receptor function and social behaviors has been clearly established. The cell types in which NMDA receptors are critical for social affiliative behavior, however, remain unclear. Here, we use mice carrying a conditional allele of the NMDA R1 subunit to address this question. Mice bearing a floxed NMDAR1 (NR1) allele were crossed with transgenic calcium/calmodulin-dependent kinase IIα (CaMKIIα)-Cre mice or parvalbumin (PV)-Cre mice targeting postnatal excitatory forebrain or PV-expressing interneurons, respectively, and assessed using the three-chambered Social Approach Test. We found that deletion of NR1 in PV-positive interneurons had no effect on social sniffing, but deletion of NR1 in glutamatergic pyramidal cells resulted in a significant increase in social approach behavior, regardless of age or sex. Therefore, forebrain excitatory neurons expressing NR1 play an important role in regulating social affiliative behavior.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ashley A Pallathra
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyong Kim
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Holly C Dow
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Praachi Raje
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary McMullen
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Warren B Bilker
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven J Siegel
- Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Edward S Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Picot A, Dominguez S, Liu C, Chen IW, Tanese D, Ronzitti E, Berto P, Papagiakoumou E, Oron D, Tessier G, Forget BC, Emiliani V. Temperature Rise under Two-Photon Optogenetic Brain Stimulation. Cell Rep 2019; 24:1243-1253.e5. [PMID: 30067979 DOI: 10.1016/j.celrep.2018.06.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022] Open
Abstract
In recent decades, optogenetics has been transforming neuroscience research, enabling neuroscientists to drive and read neural circuits. The recent development in illumination approaches combined with two-photon (2P) excitation, either sequential or parallel, has opened the route for brain circuit manipulation with single-cell resolution and millisecond temporal precision. Yet, the high excitation power required for multi-target photostimulation, especially under 2P illumination, raises questions about the induced local heating inside samples. Here, we present and experimentally validate a theoretical model that makes it possible to simulate 3D light propagation and heat diffusion in optically scattering samples at high spatial and temporal resolution under the illumination configurations most commonly used to perform 2P optogenetics: single- and multi-spot holographic illumination and spiral laser scanning. By investigating the effects of photostimulation repetition rate, spot spacing, and illumination dependence of heat diffusion, we found conditions that make it possible to design a multi-target 2P optogenetics experiment with minimal sample heating.
Collapse
Affiliation(s)
- Alexis Picot
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Soledad Dominguez
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Chang Liu
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - I-Wen Chen
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Dimitrii Tanese
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - Pascal Berto
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilles Tessier
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - Benoît C Forget
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| |
Collapse
|
21
|
Jiang X, Lupien-Meilleur A, Tazerart S, Lachance M, Samarova E, Araya R, Lacaille JC, Rossignol E. Remodeled cortical inhibition prevents motor seizures in generalized epilepsy. Ann Neurol 2019; 84:436-451. [PMID: 30048010 DOI: 10.1002/ana.25301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/12/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Deletions of CACNA1A, encoding the α1 subunit of CaV 2.1 channels, cause epilepsy with ataxia in humans. Whereas the deletion of Cacna1a in γ-aminobutyric acidergic (GABAergic) interneurons (INs) derived from the medial ganglionic eminence (MGE) impairs cortical inhibition and causes generalized seizures in Nkx2.1Cre ;Cacna1ac/c mice, the targeted deletion of Cacna1a in somatostatin-expressing INs (SOM-INs), a subset of MGE-derived INs, does not result in seizures, indicating a crucial role of parvalbumin-expressing (PV) INs. Here we identify the cellular and network consequences of Cacna1a deletion specifically in PV-INs. METHODS We generated PVCre ;Cacna1ac/c mutant mice carrying a conditional Cacna1a deletion in PV neurons and evaluated the cortical cellular and network outcomes of this mutation by combining immunohistochemical assays, in vitro electrophysiology, 2-photon imaging, and in vivo video-electroencephalographic recordings. RESULTS PVCre ;Cacna1ac/c mice display reduced cortical perisomatic inhibition and frequent absences but only rare motor seizures. Compared to Nkx2.1Cre ;Cacna1ac/c mice, PVCre ;Cacna1ac/c mice have a net increase in cortical inhibition, with a gain of dendritic inhibition through sprouting of SOM-IN axons, largely preventing motor seizures. This beneficial compensatory remodeling of cortical GABAergic innervation is mTORC1-dependent and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures. INTERPRETATION Our findings provide novel evidence suggesting that the remodeling of cortical inhibition, with an mTOR-dependent gain of dendritic inhibition, determines the seizure phenotype in generalized epilepsy and that mTOR inhibition can be detrimental in epilepsies not primarily due to mTOR hyperactivation. Ann Neurol 2018;84:436-451.
Collapse
Affiliation(s)
- Xiao Jiang
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | | | - Sabrina Tazerart
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | | | - Elena Samarova
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Roberto Araya
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Elsa Rossignol
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Zheng T, Feng Z, Wang X, Jiang T, Jin R, Zhao P, Luo T, Gong H, Luo Q, Yuan J. Review of micro-optical sectioning tomography (MOST): technology and applications for whole-brain optical imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:4075-4096. [PMID: 31452996 PMCID: PMC6701528 DOI: 10.1364/boe.10.004075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/14/2023]
Abstract
Elucidating connectivity and functionality at the whole-brain level is one of the most challenging research goals in neuroscience. Various whole-brain optical imaging technologies with submicron lateral resolution have been developed to reveal the fine structures of brain-wide neural and vascular networks at the mesoscopic level. Among them, micro-optical sectioning tomography (MOST) is attracting increasing attention, as a variety of technological variations and solutions tailored toward different biological applications have been optimized. Here, we summarize the recent development of MOST technology in whole-brain imaging and anticipate future improvements.
Collapse
Affiliation(s)
- Ting Zheng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Equal contribution
| | - Zhao Feng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Equal contribution
| | - Xiaojun Wang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Jiang
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Rui Jin
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peilin Zhao
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ting Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Qingming Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| | - Jing Yuan
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST–Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu 215000, China
| |
Collapse
|
23
|
Fan X, Markram H. A Brief History of Simulation Neuroscience. Front Neuroinform 2019; 13:32. [PMID: 31133838 PMCID: PMC6513977 DOI: 10.3389/fninf.2019.00032] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of the brain has evolved over millennia in philosophical, experimental and theoretical phases. We suggest that the next phase is simulation neuroscience. The main drivers of simulation neuroscience are big data generated at multiple levels of brain organization and the need to integrate these data to trace the causal chain of interactions within and across all these levels. Simulation neuroscience is currently the only methodology for systematically approaching the multiscale brain. In this review, we attempt to reconstruct the deep historical paths leading to simulation neuroscience, from the first observations of the nerve cell to modern efforts to digitally reconstruct and simulate the brain. Neuroscience began with the identification of the neuron as the fundamental unit of brain structure and function and has evolved towards understanding the role of each cell type in the brain, how brain cells are connected to each other, and how the seemingly infinite networks they form give rise to the vast diversity of brain functions. Neuronal mapping is evolving from subjective descriptions of cell types towards objective classes, subclasses and types. Connectivity mapping is evolving from loose topographic maps between brain regions towards dense anatomical and physiological maps of connections between individual genetically distinct neurons. Functional mapping is evolving from psychological and behavioral stereotypes towards a map of behaviors emerging from structural and functional connectomes. We show how industrialization of neuroscience and the resulting large disconnected datasets are generating demand for integrative neuroscience, how the scale of neuronal and connectivity maps is driving digital atlasing and digital reconstruction to piece together the multiple levels of brain organization, and how the complexity of the interactions between molecules, neurons, microcircuits and brain regions is driving brain simulation to understand the interactions in the multiscale brain.
Collapse
Affiliation(s)
- Xue Fan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | |
Collapse
|
24
|
Chen ZK, Yuan XS, Dong H, Wu YF, Chen GH, He M, Qu WM, Huang ZL. Whole-Brain Neural Connectivity to Lateral Pontine Tegmentum GABAergic Neurons in Mice. Front Neurosci 2019; 13:375. [PMID: 31068780 PMCID: PMC6491572 DOI: 10.3389/fnins.2019.00375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
The GABAergic neurons in the lateral pontine tegmentum (LPT) play key roles in the regulation of sleep and locomotion. The dysfunction of the LPT is related to neurological disorders such as rapid eye movement sleep behavior disorder and ocular flutter. However, the whole-brain neural connectivity to LPT GABAergic neurons remains poorly understood. Using virus-based, cell-type-specific, retrograde and anterograde tracing systems, we mapped the monosynaptic inputs and axonal projections of LPT GABAergic neurons in mice. We found that LPT GABAergic neurons received inputs mainly from the superior colliculus, substantia nigra pars reticulata, dorsal raphe nucleus (DR), lateral hypothalamic area (LHA), parasubthalamic nucleus, and periaqueductal gray (PAG), as well as the limbic system (e.g., central nucleus of the amygdala). Further immunofluorescence assays revealed that the inputs to LPT GABAergic neurons were colocalized with several markers associated with important neural functions, especially the sleep-wake cycle. Moreover, numerous LPT GABAergic neuronal varicosities were observed in the medial and midline part of the thalamus, the LHA, PAG, DR, and parabrachial nuclei. Interestingly, LPT GABAergic neurons formed reciprocal connections with areas related to sleep-wake and motor control, including the LHA, PAG, DR, parabrachial nuclei, and superior colliculus, only the LPT-DR connections were in an equally bidirectional manner. These results provide a structural framework to understand the underlying neural mechanisms of rapid eye movement sleep behavior disorder and disorders of saccades.
Collapse
Affiliation(s)
- Ze-Ka Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiang-Shan Yuan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Dong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yong-Fang Wu
- Department of Neurology (Sleep Disorders), Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Abdeladim L, Matho KS, Clavreul S, Mahou P, Sintes JM, Solinas X, Arganda-Carreras I, Turney SG, Lichtman JW, Chessel A, Bemelmans AP, Loulier K, Supatto W, Livet J, Beaurepaire E. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat Commun 2019; 10:1662. [PMID: 30971684 PMCID: PMC6458155 DOI: 10.1038/s41467-019-09552-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/12/2019] [Indexed: 11/20/2022] Open
Abstract
Large-scale microscopy approaches are transforming brain imaging, but currently lack efficient multicolor contrast modalities. We introduce chromatic multiphoton serial (ChroMS) microscopy, a method integrating one-shot multicolor multiphoton excitation through wavelength mixing and serial block-face image acquisition. This approach provides organ-scale micrometric imaging of spectrally distinct fluorescent proteins and label-free nonlinear signals with constant micrometer-scale resolution and sub-micron channel registration over the entire imaged volume. We demonstrate tridimensional (3D) multicolor imaging over several cubic millimeters as well as brain-wide serial 2D multichannel imaging. We illustrate the strengths of this method through color-based 3D analysis of astrocyte morphology and contacts in the mouse cerebral cortex, tracing of individual pyramidal neurons within densely Brainbow-labeled tissue, and multiplexed whole-brain mapping of axonal projections labeled with spectrally distinct tracers. ChroMS will be an asset for multiscale and system-level studies in neuroscience and beyond.
Collapse
Affiliation(s)
- Lamiae Abdeladim
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Katherine S Matho
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Solène Clavreul
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Jean-Marc Sintes
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Xavier Solinas
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country, San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
- Donostia International Physics Center (DIPC), San Sebastian, 20018, Spain
| | - Stephen G Turney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Jeff W Lichtman
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Anatole Chessel
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Alexis-Pierre Bemelmans
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Institut de Biologie François Jacob, CEA, CNRS, Université Paris-Sud, Fontenay-aux-Roses, 92265, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, 75012, France.
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, IP Paris, Palaiseau, 91128, France.
| |
Collapse
|
26
|
Prabhakar A, Vujovic D, Cui L, Olson W, Luo W. Leaky expression of channelrhodopsin-2 (ChR2) in Ai32 mouse lines. PLoS One 2019; 14:e0213326. [PMID: 30913225 PMCID: PMC6435231 DOI: 10.1371/journal.pone.0213326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
Optogenetics enables the selective activation of genetically-targeted neuronal populations using light-sensitive ion channels. Genetic strategies using Cre-dependent mouse strains, especially the Ai32 line expressing Channelrhodopsin (ChR2)-EYFP fusion protein, have been a popular means to drive opsin expression in a cell-type specific manner. Here we report a low level of leaky ‘off-target’ (Cre-independent) ChR2-EYFP expression in Ai32/Ai32 homozygous mice throughout the nervous system. This leaky off-target expression was characterized in multiple prevalent nervous system regions using anti-EYFP immunostaining. Expression of full-length ChR2-EYFP protein was confirmed using immunoprecipitation followed by Western blotting. Notably, light stimulation of these ChR2-EYFP expressing neurons in the spinal cord dorsal horn did not induce detectable photocurrents in juvenile 4-week old mice. Given the wide use of the Ai32 line by many labs, our results suggest researchers should be vigilant of possible off-target ChR2-EYFP expression in their region of interest, especially when generating Ai32/Ai32 homozygotes to drive high levels of ChR2-EYFP expression in adult mice.
Collapse
Affiliation(s)
- Arthi Prabhakar
- University of Texas at Dallas, Dallas, TX, United States of America
| | - Dragan Vujovic
- Williams College, Williamstown, MA, United States of America
| | - Lian Cui
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States of America
| | - William Olson
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (WO); (WL)
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (WO); (WL)
| |
Collapse
|
27
|
Ferrer C, Hsieh H, Wollmuth LP. Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. J Neurophysiol 2018; 120:3063-3076. [PMID: 30303753 DOI: 10.1152/jn.00495.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit dynamics. In terms of the excitation driving PV interneuron activity, the N-methyl-d-aspartate receptor (NMDAR)-mediated component onto PV interneurons tends to be smaller than that onto pyramidal neurons but makes a significant contribution to their physiology and development. In the visual cortex, PV interneurons mature during the critical period. We hypothesize that during the critical period, the NMDAR-mediated signaling and functional properties of glutamatergic synapses onto PV interneurons are developmentally regulated. We therefore compared the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and NMDAR-mediated synaptic responses before (postnatal days 15-20, P15-P20), during (P25-P40), and after (P50-P60) the visual critical period. AMPAR miniature excitatory postsynaptic currents (mEPSCs) showed a developmental decrease in frequency, whereas NMDAR mEPSCs were absent or showed extremely low frequencies throughout development. For evoked responses, we consistently saw a NMDAR-mediated component, suggesting pre- or postsynaptic differences between evoked and spontaneous neurotransmission. Evoked responses showed input-specific developmental changes. For intralaminar inputs, the NMDAR-mediated component significantly decreased with development. This resulted in adult intralaminar inputs almost exclusively mediated by AMPARs, suited for the computation of synaptic inputs with precise timing, and likely having NMDAR-independent forms of plasticity. In contrast, interlaminar inputs maintained a stable NMDAR-mediated component throughout development but had a shift in the AMPAR paired-pulse ratio from depression to facilitation. Adult interlaminar inputs with facilitating AMPAR responses and a substantial NMDAR component would favor temporal integration of synaptic responses and could be modulated by NMDAR-dependent forms of plasticity. NEW & NOTEWORTHY We show for the first time input-specific developmental changes in the N-methyl-d-aspartate receptor component and short-term plasticity of the excitatory drive onto layers 2/3 parvalbumin-expressing (PV) interneurons in the visual cortex during the critical period. These developmental changes would lead to functionally distinct adult intralaminar and interlaminar glutamatergic inputs that would engage PV interneuron-mediated inhibition differently.
Collapse
Affiliation(s)
- Camilo Ferrer
- Graduate Program in Neuroscience, Stony Brook University , Stony Brook, New York.,Department of Neurobiology & Behavior, Stony Brook University , Stony Brook, New York
| | - Helen Hsieh
- Department of Surgery, Stony Brook University , Stony Brook, New York
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University , Stony Brook, New York.,Department of Biochemistry & Cell Biology, Stony Brook University , Stony Brook, New York.,Center for Nervous System Disorders, Stony Brook University , Stony Brook, New York
| |
Collapse
|
28
|
Moore AK, Weible AP, Balmer TS, Trussell LO, Wehr M. Rapid Rebalancing of Excitation and Inhibition by Cortical Circuitry. Neuron 2018; 97:1341-1355.e6. [PMID: 29503186 PMCID: PMC5875716 DOI: 10.1016/j.neuron.2018.01.045] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 07/29/2017] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Abstract
Excitation is balanced by inhibition to cortical neurons across a wide range of conditions. To understand how this relationship is maintained, we broadly suppressed the activity of parvalbumin-expressing (PV+) inhibitory neurons and asked how this affected the balance of excitation and inhibition throughout auditory cortex. Activating archaerhodopsin in PV+ neurons effectively suppressed them in layer 4. However, the resulting increase in excitation outweighed Arch suppression and produced a net increase in PV+ activity in downstream layers. Consequently, suppressing PV+ neurons did not reduce inhibition to principal neurons (PNs) but instead resulted in a tightly coordinated increase in both excitation and inhibition. The increase in inhibition constrained the magnitude of PN spiking responses to the increase in excitation and produced nonlinear changes in spike tuning. Excitatory-inhibitory rebalancing is mediated by strong PN-PV+ connectivity within and between layers and is likely engaged during normal cortical operation to ensure balance in downstream neurons.
Collapse
Affiliation(s)
- Alexandra K Moore
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Aldis P Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Timothy S Balmer
- Vollum Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Laurence O Trussell
- Vollum Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Michael Wehr
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
29
|
Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018; 15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Pathology, Maastricht University Medical Center, P. Debeijelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marlene M Hao
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium
| |
Collapse
|
30
|
Activation of Parvalbumin Neurons in the Rostro-Dorsal Sector of the Thalamic Reticular Nucleus Promotes Sensitivity to Pain in Mice. Neuroscience 2017; 366:113-123. [DOI: 10.1016/j.neuroscience.2017.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
|
31
|
Berry KP, Nedivi E. Spine Dynamics: Are They All the Same? Neuron 2017; 96:43-55. [PMID: 28957675 DOI: 10.1016/j.neuron.2017.08.008] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/03/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022]
Abstract
Since Cajal's first drawings of Golgi stained neurons, generations of researchers have been fascinated by the small protrusions, termed spines, studding many neuronal dendrites. Most excitatory synapses in the mammalian CNS are located on dendritic spines, making spines convenient proxies for excitatory synaptic presence. When in vivo imaging revealed that dendritic spines are dynamic structures, their addition and elimination were interpreted as excitatory synapse gain and loss, respectively. Spine imaging has since become a popular assay for excitatory circuit remodeling. In this review, we re-evaluate the validity of using spine dynamics as a straightforward reflection of circuit rewiring. Recent studies tracking both spines and synaptic markers in vivo reveal that 20% of spines lack PSD-95 and are short lived. Although they account for most spine dynamics, their remodeling is unlikely to impact long-term network structure. We discuss distinct roles that spine dynamics can play in circuit remodeling depending on synaptic content.
Collapse
Affiliation(s)
- Kalen P Berry
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elly Nedivi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Ben-Shaanan T, Schiller M, Rolls A. Studying brain-regulation of immunity with optogenetics and chemogenetics; A new experimental platform. Brain Behav Immun 2017; 65:1-8. [PMID: 27890661 DOI: 10.1016/j.bbi.2016.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023] Open
Abstract
The interactions between the brain and the immune system are bidirectional. Nevertheless, we have far greater understanding of how the immune system affects the brain than how the brain affects immunity. New technological developments such as optogenetics and chemogenetics (using DREADDs; Designer Receptors Exclusively Activated by Designer Drugs) can bridge this gap in our understanding, as they enable an unprecedented mechanistic and systemic analysis of the communication between the brain and the immune system. In this review, we discuss new experimental approaches for revealing neuronal circuits that can participate in regulation of immunity. In addition, we discuss methods, specifically optogenetics and chemogenetics, that enable targeted neuronal manipulation to reveal how different brain regions affect immunity. We describe how these techniques can be used as an experimental platform to address fundamental questions in psychoneuroimmunology and to understand how neuronal circuits associate with different psychological states can affect physiology.
Collapse
Affiliation(s)
- Tamar Ben-Shaanan
- Department of Immunology, Department of Neuroscience, Rappaport Medical School, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maya Schiller
- Department of Immunology, Department of Neuroscience, Rappaport Medical School, Technion - Israel Institute of Technology, Haifa, Israel
| | - Asya Rolls
- Department of Immunology, Department of Neuroscience, Rappaport Medical School, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
33
|
Lu J, Tucciarone J, Padilla-Coreano N, He M, Gordon JA, Huang ZJ. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat Neurosci 2017; 20:1377-1383. [PMID: 28825718 PMCID: PMC5614838 DOI: 10.1038/nn.4624] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
Abstract
The neocortex comprises multiple information processing streams mediated by subsets of glutamatergic pyramidal cells (PCs) that receive diverse inputs and project to distinct targets. How GABAergic interneurons regulate the segregation and communication among intermingled PC subsets that contribute to separate brain networks remains unclear. Here we demonstrate that a subset of GABAergic chandelier cells (ChCs) in the prelimbic cortex, which innervate PCs at spike initiation site, selectively control PCs projecting to the basolateral amygdala (BLAPC) compared to those projecting to contralateral cortex (CCPC). These ChCs in turn receive preferential input from local and contralateral CCPCs as opposed to BLAPCs and BLA neurons (the prelimbic cortex-BLA network). Accordingly, optogenetic activation of ChCs rapidly suppresses BLAPCs and BLA activity in freely behaving mice. Thus, the exquisite connectivity of ChCs not only mediates directional inhibition between local PC ensembles but may also shape communication hierarchies between global networks.
Collapse
Affiliation(s)
- Jiangteng Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jason Tucciarone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, New York 11790, USA
| | - Nancy Padilla-Coreano
- Departments of Neuroscience and Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joshua A. Gordon
- Departments of Neuroscience and Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Z. Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
34
|
Tan TL, Cheong SA. Statistical complexity is maximized in a small-world brain. PLoS One 2017; 12:e0183918. [PMID: 28850587 PMCID: PMC5574548 DOI: 10.1371/journal.pone.0183918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/14/2017] [Indexed: 01/03/2023] Open
Abstract
In this paper, we study a network of Izhikevich neurons to explore what it means for a brain to be at the edge of chaos. To do so, we first constructed the phase diagram of a single Izhikevich excitatory neuron, and identified a small region of the parameter space where we find a large number of phase boundaries to serve as our edge of chaos. We then couple the outputs of these neurons directly to the parameters of other neurons, so that the neuron dynamics can drive transitions from one phase to another on an artificial energy landscape. Finally, we measure the statistical complexity of the parameter time series, while the network is tuned from a regular network to a random network using the Watts-Strogatz rewiring algorithm. We find that the statistical complexity of the parameter dynamics is maximized when the neuron network is most small-world-like. Our results suggest that the small-world architecture of neuron connections in brains is not accidental, but may be related to the information processing that they do.
Collapse
Affiliation(s)
- Teck Liang Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
- Complexity Institute, Nanyang Technological University, Block 2 Innovation Centre, Level 2 Unit 245, 18 Nanyang Drive, Singapore 637723, Republic of Singapore
- * E-mail:
| | - Siew Ann Cheong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
- Complexity Institute, Nanyang Technological University, Block 2 Innovation Centre, Level 2 Unit 245, 18 Nanyang Drive, Singapore 637723, Republic of Singapore
| |
Collapse
|
35
|
Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat Neurosci 2017. [PMID: 28825718 DOI: 10.1038/nn.4624.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neocortex comprises multiple information processing streams mediated by subsets of glutamatergic pyramidal cells (PCs) that receive diverse inputs and project to distinct targets. How GABAergic interneurons regulate the segregation and communication among intermingled PC subsets that contribute to separate brain networks remains unclear. Here we demonstrate that a subset of GABAergic chandelier cells (ChCs) in the prelimbic cortex, which innervate PCs at spike initiation site, selectively control PCs projecting to the basolateral amygdala (BLAPC) compared to those projecting to contralateral cortex (CCPC). These ChCs in turn receive preferential input from local and contralateral CCPCs as opposed to BLAPCs and BLA neurons (the prelimbic cortex-BLA network). Accordingly, optogenetic activation of ChCs rapidly suppresses BLAPCs and BLA activity in freely behaving mice. Thus, the exquisite connectivity of ChCs not only mediates directional inhibition between local PC ensembles but may also shape communication hierarchies between global networks.
Collapse
|
36
|
Ordaz JD, Wu W, Xu XM. Optogenetics and its application in neural degeneration and regeneration. Neural Regen Res 2017; 12:1197-1209. [PMID: 28966628 PMCID: PMC5607808 DOI: 10.4103/1673-5374.213532] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/30/2022] Open
Abstract
Neural degeneration and regeneration are important topics in neurological diseases. There are limited options for therapeutic interventions in neurological diseases that provide simultaneous spatial and temporal control of neurons. This drawback increases side effects due to non-specific targeting. Optogenetics is a technology that allows precise spatial and temporal control of cells. Therefore, this technique has high potential as a therapeutic strategy for neurological diseases. Even though the application of optogenetics in understanding brain functional organization and complex behaviour states have been elaborated, reviews of its therapeutic potential especially in neurodegeneration and regeneration are still limited. This short review presents representative work in optogenetics in disease models such as spinal cord injury, multiple sclerosis, epilepsy, Alzheimer's disease and Parkinson's disease. It is aimed to provide a broader perspective on optogenetic therapeutic potential in neurodegeneration and neural regeneration.
Collapse
Affiliation(s)
- Josue D. Ordaz
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Goodman Campbell Brain and Spine, Indianapolis, Indiana, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
37
|
Epilepsy and optogenetics: can seizures be controlled by light? Clin Sci (Lond) 2017; 131:1605-1616. [DOI: 10.1042/cs20160492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/30/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023]
Abstract
Over the past decade, ‘optogenetics’ has been consolidated as a game-changing tool in the neuroscience field, by allowing optical control of neuronal activity with high cell-type specificity. The ability to activate or inhibit targeted neurons at millisecond resolution not only offers an investigative tool, but potentially also provides a therapeutic intervention strategy for acute correction of aberrant neuronal activity. As efficient therapeutic tools are in short supply for neurological disorders, optogenetic technology has therefore spurred considerable enthusiasm and fostered a new wave of translational studies in neuroscience. Epilepsy is among the disorders that have been widely explored. Partial epilepsies are characterized by seizures arising from excessive excitatory neuronal activity that emerges from a focal area. Based on the constricted seizure focus, it appears feasible to intercept partial seizures by acutely shutting down excitatory neurons by means of optogenetics. The availability of both inhibitory and excitatory optogenetic probes, along with the available targeting strategies for respective excitatory or inhibitory neurons, allows multiple conceivable scenarios for controlling abnormal circuit activity. Several such scenarios have been explored in the settings of experimental epilepsy and have provided encouraging translational findings and revealed interesting and unexpected new aspects of epileptogenesis. However, it has also emerged that considerable challenges persist before clinical translation becomes feasible. This review provides a general introduction to optogenetics, and an overview of findings that are relevant for understanding how optogenetics may be utilized therapeutically as a highly innovative treatment for epilepsy.
Collapse
|
38
|
Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat Commun 2016; 7:13340. [PMID: 27827368 PMCID: PMC5105197 DOI: 10.1038/ncomms13340] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/23/2016] [Indexed: 01/10/2023] Open
Abstract
Haploinsufficiency of the SYNGAP1 gene, which codes for a Ras GTPase-activating protein, impairs cognition both in humans and in mice. Decrease of Syngap1 in mice has been previously shown to cause cognitive deficits at least in part by inducing alterations in glutamatergic neurotransmission and premature maturation of excitatory connections. Whether Syngap1 plays a role in the development of cortical GABAergic connectivity and function remains unclear. Here, we show that Syngap1 haploinsufficiency significantly reduces the formation of perisomatic innervations by parvalbumin-positive basket cells, a major population of GABAergic neurons, in a cell-autonomous manner. We further show that Syngap1 haploinsufficiency in GABAergic cells derived from the medial ganglionic eminence impairs their connectivity, reduces inhibitory synaptic activity and cortical gamma oscillation power, and causes cognitive deficits. Our results indicate that Syngap1 plays a critical role in GABAergic circuit function and further suggest that Syngap1 haploinsufficiency in GABAergic circuits may contribute to cognitive deficits.
Collapse
|
39
|
Luo W, Mizuno H, Iwata R, Nakazawa S, Yasuda K, Itohara S, Iwasato T. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo. Sci Rep 2016; 6:35747. [PMID: 27775045 PMCID: PMC5075795 DOI: 10.1038/srep35747] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
Here we describe “Supernova” series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain.
Collapse
Affiliation(s)
- Wenshu Luo
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Hidenobu Mizuno
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Ryohei Iwata
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Shingo Nakazawa
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Kosuke Yasuda
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| |
Collapse
|
40
|
Sjulson L, Cassataro D, DasGupta S, Miesenböck G. Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. Annu Rev Genet 2016; 50:571-594. [PMID: 27732792 DOI: 10.1146/annurev-genet-120215-035011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.
Collapse
Affiliation(s)
- Lucas Sjulson
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016; .,Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Daniela Cassataro
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Shamik DasGupta
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom; .,Present address: Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom;
| |
Collapse
|
41
|
Large AM, Kunz NA, Mielo SL, Oswald AMM. Inhibition by Somatostatin Interneurons in Olfactory Cortex. Front Neural Circuits 2016; 10:62. [PMID: 27582691 PMCID: PMC4987344 DOI: 10.3389/fncir.2016.00062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023] Open
Abstract
Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing.
Collapse
Affiliation(s)
- Adam M Large
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| | - Nicholas A Kunz
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| | - Samantha L Mielo
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| | - Anne-Marie M Oswald
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
42
|
Top-Down-Mediated Facilitation in the Visual Cortex Is Gated by Subcortical Neuromodulation. J Neurosci 2016; 36:2904-14. [PMID: 26961946 DOI: 10.1523/jneurosci.2909-15.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Response properties in primary sensory cortices are highly dependent on behavioral state. For example, the nucleus basalis of the forebrain plays a critical role in enhancing response properties of excitatory neurons in primary visual cortex (V1) during active exploration and learning. Given the strong reciprocal connections between hierarchically arranged cortical regions, how are increases in sensory response gain constrained to prevent runaway excitation? To explore this, we used in vivo two-photon guided cell-attached recording in conjunction with spatially restricted optogenetic photo-inhibition of higher-order visual cortex in mice. We found that the principle feedback projection to V1 originating from the lateral medial area (LM) facilitated visual responses in layer 2/3 excitatory neurons by ∼20%. This facilitation was reduced by half during basal forebrain activation due to differential response properties between LM and V1. Our results demonstrate that basal-forebrain-mediated increases in response gain are localized to V1 and are not propagated to LM and establish that subcortical modulation of visual cortex is regionally distinct.
Collapse
|
43
|
Georgiev D, Yoshihara T, Kawabata R, Matsubara T, Tsubomoto M, Minabe Y, Lewis DA, Hashimoto T. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons. Schizophr Bull 2016; 42:992-1002. [PMID: 26980143 PMCID: PMC4903066 DOI: 10.1093/schbul/sbw022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis.
Collapse
Affiliation(s)
- Danko Georgiev
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Toru Yoshihara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Rika Kawabata
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takurou Matsubara
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Makoto Tsubomoto
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Minabe
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan;,Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA;,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | - Takanori Hashimoto
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA;
| |
Collapse
|
44
|
LoVerso PR, Cui F. Cell type-specific transcriptome profiling in mammalian brains. Front Biosci (Landmark Ed) 2016; 21:973-85. [PMID: 27100485 DOI: 10.2741/4434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed.
Collapse
Affiliation(s)
- Peter R LoVerso
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, One Lomb Memorial Dr., Rochester, NY 14623
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, One Lomb Memorial Dr., Rochester, NY 14623,
| |
Collapse
|
45
|
Abstract
Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.
Collapse
Affiliation(s)
- Hong Geun Park
- Burke Medical Research Institute, White Plains, NY, USA.
| | - Jason B Carmel
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute and Departments of Neurology and Pediatrics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
46
|
Pineda R, Sabatier N, Ludwig M, Millar RP, Leng G. A Direct Neurokinin B Projection from the Arcuate Nucleus Regulates Magnocellular Vasopressin Cells of the Supraoptic Nucleus. J Neuroendocrinol 2016; 28. [PMID: 26610724 DOI: 10.1111/jne.12342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/02/2015] [Accepted: 11/22/2015] [Indexed: 01/11/2023]
Abstract
Central administration of neurokinin B (NKB) agonists stimulates immediate early gene expression in the hypothalamus and increases the secretion of vasopressin from the posterior pituitary through a mechanism that depends on the activation of neurokinin receptor 3 receptors (NK3R). The present study reports that, in the rat, immunoreactivity for NK3R is expressed in magnocellular vasopressin and oxytocin neurones in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus, and that NKB immunoreactivity is expressed in fibres in close juxtaposition with vasopressin neurones at both of these sites. Retrograde tracing in the rat shows that some NKB-expressing neurones in the arcuate nucleus project to the SON and, in mice, using an anterograde tracing approach, it is found that kisspeptin-expressing neurones of the arcuate nucleus, which are known to co-express NKB, project to the SON and PVN. Finally, i.c.v. injection of the NK3R agonist senktide is shown to potently increase the electrical activity of vasopressin neurones in the SON in vivo with no significant effect detected on oxytocin neurones. The results suggest that NKB-containing neurones in the arcuate nucleus regulate the secretion of vasopressin from magnocellular neurones in rodents, and the possible significance of this is discussed.
Collapse
Affiliation(s)
- R Pineda
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - N Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - M Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - R P Millar
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- MRC Receptor Biology Unit, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Interneuronal DISC1 regulates NRG1-ErbB4 signalling and excitatory-inhibitory synapse formation in the mature cortex. Nat Commun 2015; 6:10118. [PMID: 26656849 PMCID: PMC4682104 DOI: 10.1038/ncomms10118] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neuregulin-1 (NRG1) and its receptor ErbB4 influence several processes of neurodevelopment, but the mechanisms regulating this signalling in the mature brain are not well known. DISC1 is a multifunctional scaffold protein that mediates many cellular processes. Here we present a functional relationship between DISC1 and NRG1-ErbB4 signalling in mature cortical interneurons. By cell type-specific gene modulation in vitro and in vivo including in a mutant DISC1 mouse model, we demonstrate that DISC1 inhibits NRG1-induced ErbB4 activation and signalling. This effect is likely mediated by competitive inhibition of binding of ErbB4 to PSD95. Finally, we show that interneuronal DISC1 affects NRG1-ErbB4-mediated phenotypes in the fast spiking interneuron-pyramidal neuron circuit. Post-mortem brain analyses and some genetic studies have reported interneuronal deficits and involvement of the DISC1, NRG1 and ErbB4 genes in schizophrenia, respectively. Our results suggest a mechanism by which cross-talk between DISC1 and NRG1-ErbB4 signalling may contribute to these deficits. Neuregulin-1 and DISC1 signalling pathways have both been linked to neurodevelopment and schizophrenia. Here, Seshadri et al. demonstrate that DISC1 negatively regulates NRG1-induced ErbB4 signalling in adult cortical interneurons both in vitro and in vivo, possibly via competitive binding to PSD95.
Collapse
|
48
|
Cheetham CEJ, Grier BD, Belluscio L. Bulk regional viral injection in neonatal mice enables structural and functional interrogation of defined neuronal populations throughout targeted brain areas. Front Neural Circuits 2015; 9:72. [PMID: 26594154 PMCID: PMC4633521 DOI: 10.3389/fncir.2015.00072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/23/2015] [Indexed: 11/15/2022] Open
Abstract
The ability to label and manipulate specific cell types is central to understanding the structure and function of neuronal circuits. Here, we have developed a simple, affordable strategy for labeling of genetically defined populations of neurons throughout a targeted brain region: Bulk Regional Viral Injection (BReVI). Our strategy involves a large volume adeno-associated virus (AAV) injection in the targeted brain region of neonatal Cre driver mice. Using the mouse olfactory bulb (OB) as a model system, we tested the ability of BReVI to broadly and selectively label tufted cells, one of the two principal neuron populations of the OB, in CCK-IRES-Cre mice. BReVI resulted in labeling of neurons throughout the injected OB, with no spatial bias toward the injection site and no evidence of damage. The specificity of BReVI labeling was strikingly similar to that seen previously using immunohistochemical staining for cholecystokinin (CCK), an established tufted cell marker. Hence, the CCK-IRES-Cre line in combination with BReVI can provide an important tool for targeting and manipulation of OB tufted cells. We also found robust Cre-dependent reporter expression within three days of BReVI, which enabled us to assess developmental changes in the number and laminar distribution of OB tufted cells during the first three postnatal weeks. Furthermore, we demonstrate that BReVI permits structural and functional imaging in vivo, and can be combined with transgenic strategies to facilitate multi-color labeling of neuronal circuit components. BReVI is broadly applicable to different Cre driver lines and can be used to regionally manipulate genetically defined populations of neurons in any accessible brain region.
Collapse
Affiliation(s)
- Claire E. J. Cheetham
- National Institute of Neurological Disorders and StrokeBethesda, MD, USA
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburgh, PA, USA
| | - Bryce D. Grier
- National Institute of Neurological Disorders and StrokeBethesda, MD, USA
| | - Leonardo Belluscio
- National Institute of Neurological Disorders and StrokeBethesda, MD, USA
| |
Collapse
|
49
|
Zhao M, Alleva R, Ma H, Daniel AGS, Schwartz TH. Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res 2015; 116:15-26. [PMID: 26354163 PMCID: PMC4567692 DOI: 10.1016/j.eplepsyres.2015.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/14/2015] [Indexed: 12/01/2022]
Abstract
Epilepsy affects roughly 1% of the population worldwide. Although effective treatments with antiepileptic drugs are available, more than 20% of patients have seizures that are refractory to medical therapy and many patients experience adverse effects. Hence, there is a continued need for novel therapies for those patients. A new technique called "optogenetics" may offer a new hope for these refractory patients. Optogenetics is a technology based on the combination of optics and genetics, which can control or record neural activity with light. Following delivery of light-sensitive opsin genes such as channelrhodopsin-2 (ChR2), halorhodopsin (NpHR), and others into brain, excitation or inhibition of specific neurons in precise brain areas can be controlled by illumination at different wavelengths with very high temporal and spatial resolution. Neuromodulation with the optogenetics toolbox have already been shown to be effective at treating seizures in animal models of epilepsy. This review will outline the most recent advances in epilepsy research with optogenetic techniques and discuss how this technology can contribute to our understanding and treatment of epilepsy in the future.
Collapse
Affiliation(s)
- Mingrui Zhao
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Rose Alleva
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Andy G S Daniel
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Otolaryngology, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
50
|
Kaiser T, Ting JT, Monteiro P, Feng G. Transgenic labeling of parvalbumin-expressing neurons with tdTomato. Neuroscience 2015; 321:236-245. [PMID: 26318335 DOI: 10.1016/j.neuroscience.2015.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 08/08/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
Abstract
Parvalbumin (PVALB)-expressing fast-spiking interneurons subserve important roles in many brain regions by modulating circuit function and dysfunction of these neurons is strongly implicated in neuropsychiatric disorders including schizophrenia and autism. To facilitate the study of PVALB neuron function we need to be able to identify PVALB neurons in vivo. We have generated a bacterial artificial chromosome (BAC) transgenic mouse line expressing the red fluorophore tdTomato under the control of endogenous regulatory elements of the Pvalb gene locus (JAX # 027395). We show that the tdTomato transgene is faithfully expressed relative to endogenous PVALB expression throughout the brain. Furthermore, targeted patch clamp recordings confirm that the labeled populations in neocortex, striatum, and hippocampus are fast-spiking interneurons based on intrinsic properties. This new transgenic mouse line provides a useful tool to study PVALB neuron function in the normal brain as well as in mouse models of psychiatric disease.
Collapse
Affiliation(s)
- T Kaiser
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J T Ting
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Human Cell Types Department, Allen Institute for Brain Science, 551 North 34th Street, Seattle, WA 98103, USA
| | - P Monteiro
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - G Feng
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|