1
|
Park TK, Lee SH, Kim SH, Ko YW, Oh E, Kim YJ, Kim TW. Dual regulation of stomatal development by brassinosteroid in Arabidopsis hypocotyls. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39714086 DOI: 10.1111/jipb.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
Stomata are epidermal pores that are essential for water evaporation and gas exchange in plants. Stomatal development is orchestrated by intrinsic developmental programs, hormonal controls, and environmental cues. The steroid hormone brassinosteroid (BR) inhibits stomatal lineage progression by regulating BIN2 and BSL proteins in leaves. Notably, BR is known to promote stomatal development in hypocotyls as opposed to leaves; however, its molecular mechanism remains elusive. Here, we show that BR signaling has a dual regulatory role in controlling stomatal development in Arabidopsis hypocotyls. We found that brassinolide (BL; the most active BR) regulates stomatal development differently in a concentration-dependent manner. At low and moderate concentrations, BL promoted stomatal formation by upregulating the expression of SPEECHLESS (SPCH) and its target genes independently of BIN2 regulation. In contrast, high concentrations of BL and bikinin, which is a specific inhibitor of BIN2 and its homologs, significantly reduced stomatal formation. Genetic analyses revealed that BIN2 regulates stomatal development in hypocotyls through molecular mechanisms distinct from the regulatory mechanism of the cotyledons. In hypocotyls, BIN2 promoted stomatal development by inactivating BZR1, which suppresses the expression of SPCH and its target genes. Taken together, our results suggest that BR precisely coordinates the stomatal development of hypocotyls using an antagonistic control of SPCH expression via BZR1-dependent and BZR1-independent transcriptional regulation.
Collapse
Affiliation(s)
- Tae-Ki Park
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
| | - Se-Hwa Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - So-Hee Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeong-Woo Ko
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Wen D, Tian X, Wu C, Zhang C. Comparative Analysis of Mesocotyl Elongation Ability among Maize Inbred Lines. Int J Mol Sci 2024; 25:12437. [PMID: 39596500 PMCID: PMC11595070 DOI: 10.3390/ijms252212437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Mesocotyl plays a key role in the seedling emergence of maize; however, the mechanism of mesocotyl elongation is still unclear. Moreover, different maize inbred lines and cultivars have varied mesocotyl lengths positively correlated with deep sowing tolerance. In this study, we selected one inbred line with long mesocotyl (LM) and two maize inbred lines with short mesocotyl (SM1 and SM2) from more than 400 maize inbred lines. The mesocotyl length of the LM line was about three-fold longer than those of the SM1 and SM2 lines. Microstructure observation showed that the reason for short mesocotyl in the SM1 and SM2 lines was few cell numbers and short cell length, respectively. Subsequently, we used RNA-seq to investigate the mechanism of mesocotyl elongation by regulating cell number and cell length at the transcriptome level. Compared with the LM line, the SM1 line displayed stronger downregulation of Cytochrome P450 and peroxidase genes than the SM2 line. Moreover, plant hormone signal transduction plays a vital role in mesocotyl elongation. Taken together, we propose a model for mesocotyl elongation of maize inbred lines with different cell lengths and cell numbers, which provide new insights into mesocotyl elongation in maize.
Collapse
Affiliation(s)
| | | | | | - Chunqing Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (X.T.); (C.W.)
| |
Collapse
|
3
|
Zhu T, Wei C, Yu Y, Zhang Z, Zhu J, Liang Z, Song X, Fu W, Cui Y, Wang ZY, Li C. The BAS chromatin remodeler determines brassinosteroid-induced transcriptional activation and plant growth in Arabidopsis. Dev Cell 2024; 59:924-939.e6. [PMID: 38359831 PMCID: PMC11003849 DOI: 10.1016/j.devcel.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Brassinosteroid (BR) signaling leads to the nuclear accumulation of the BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factor, which plays dual roles in activating or repressing the expression of thousands of genes. BZR1 represses gene expression by recruiting histone deacetylases, but how it activates transcription of BR-induced genes remains unclear. Here, we show that BR reshapes the genome-wide chromatin accessibility landscape, increasing the accessibility of BR-induced genes and reducing the accessibility of BR-repressed genes in Arabidopsis. BZR1 physically interacts with the BRAHMA-associated SWI/SNF (BAS)-chromatin-remodeling complex on the genome and selectively recruits the BAS complex to BR-activated genes. Depletion of BAS abrogates the capacities of BZR1 to increase chromatin accessibility, activate gene expression, and promote cell elongation without affecting BZR1's ability to reduce chromatin accessibility and expression of BR-repressed genes. Together, these data identify that BZR1 recruits the BAS complex to open chromatin and to mediate BR-induced transcriptional activation of growth-promoting genes.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chuangqi Wei
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiameng Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-food Canada, London, ON N5V 4T3, Canada
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Hansson M, Youssef HM, Zakhrabekova S, Stuart D, Svensson JT, Dockter C, Stein N, Waugh R, Lundqvist U, Franckowiak J. A guide to barley mutants. Hereditas 2024; 161:11. [PMID: 38454479 PMCID: PMC10921644 DOI: 10.1186/s41065-023-00304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments. RESULTS Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. CONCLUSION Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.
Collapse
Affiliation(s)
- Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| | - Helmy M Youssef
- Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, 06120, Germany
| | | | - David Stuart
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Jan T Svensson
- Nordic Genetic Resource Center (NordGen), Växthusvägen 12, 23456, Alnarp, Sweden
| | - Christoph Dockter
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Stadt Seeland, E06466, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Agriculture Food and Wine, Waite Campus, The University of Adelaide, Urrbrae, 5064, Australia
| | - Udda Lundqvist
- Nordic Genetic Resource Center (NordGen), Växthusvägen 12, 23456, Alnarp, Sweden
| | - Jerome Franckowiak
- Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities, 411 Borlaug Hall, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| |
Collapse
|
5
|
Hartwig T, Banf M, Prietsch GP, Zhu JY, Mora-Ramírez I, Schippers JHM, Snodgrass SJ, Seetharam AS, Huettel B, Kolkman JM, Yang J, Engelhorn J, Wang ZY. Hybrid allele-specific ChIP-seq analysis identifies variation in brassinosteroid-responsive transcription factor binding linked to traits in maize. Genome Biol 2023; 24:108. [PMID: 37158941 PMCID: PMC10165856 DOI: 10.1186/s13059-023-02909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches. RESULTS Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits. CONCLUSION Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.
Collapse
Affiliation(s)
- Thomas Hartwig
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
- Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, NRW, 40225, Germany.
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany.
| | - Michael Banf
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Gisele Passaia Prietsch
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Jia-Ying Zhu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Isabel Mora-Ramírez
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Jos H M Schippers
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Samantha J Snodgrass
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 339A Bessey Hall, Ames, IA, 50011, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 339A Bessey Hall, Ames, IA, 50011, USA
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany
| | - Judith M Kolkman
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, 413 Bradfield Hall, Ithaca, NY, 14853, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 363 Keim Hall, Lincoln, NE, 68583, USA
| | - Julia Engelhorn
- Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, NRW, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Ishii H, Ishikawa A, Yumoto E, Kurokura T, Asahina M, Shimada Y, Nakamura A. Propiconazole-induced brassinosteroid deficiency reduces female fertility by inhibiting female gametophyte development in woodland strawberry. PLANT CELL REPORTS 2023; 42:587-598. [PMID: 36629883 DOI: 10.1007/s00299-023-02981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In woodland strawberry, a brassinosteroid biosynthesis inhibitor propiconazole induced typical brassinosteroid-deficient phenotypes and decreased female fertility due to attenuated female gametophyte development. Brassinosteroids (BRs) play roles in various aspects of plant development. We investigated the physiological roles of BRs in the woodland strawberry, Fragaria vesca. BR-level-dependent phenotypes were observed using a BR biosynthetic inhibitor, propiconazole (PCZ), and the most active natural BR, brassinolide (BL). Endogenous BL and castasterone, the active BRs, were below detectable levels in PCZ-treated woodland strawberry. The plants were typical BR-deficient phenotypes, and all phenotypes were restored by treatment with BL. These observations indicate that PCZ is an effective inhibitor of BR in woodland strawberry. Only one gene for each major step of BR biosynthesis in Arabidopsis is encoded in the woodland strawberry genome. BR biosynthetic genes are highly expressed during the early stage of fruit development. Emasculated flowers treated with BL failed to develop fruit, implying that BR is not involved in parthenocarpic fruit development. Similar to BR-deficient and BR-insensitive Arabidopsis mutants, female fertility was lower in PCZ-treated plants than in mock-treated plants due to failed attraction of the pollen tube to the ovule. In PCZ-treated plants, expression of FveMYB98, the homologous gene for Arabidopsis MYB98 (a marker for synergid cells), was downregulated. Ovules were smaller in PCZ-treated plants than in mock-treated plants, and histological analysis implied that the development of more than half of female gametophytes was arrested at the early stage in PCZ-treated plants. Our findings explain how BRs function during female gametophyte development in woodland strawberry.
Collapse
Affiliation(s)
- Hikari Ishii
- Yokohama City University, Kihara Institute for Biological Research, Maioka 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Ami Ishikawa
- Yokohama City University, Kihara Institute for Biological Research, Maioka 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 321-8505, Japan
| | - Takeshi Kurokura
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi, 321-8505, Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 321-8505, Japan
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Yukihisa Shimada
- Yokohama City University, Kihara Institute for Biological Research, Maioka 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Ayako Nakamura
- Yokohama City University, Kihara Institute for Biological Research, Maioka 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
7
|
Yu Z, Ma J, Zhang M, Li X, Sun Y, Zhang M, Ding Z. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis. SCIENCE ADVANCES 2023; 9:eade2493. [PMID: 36598987 PMCID: PMC9812374 DOI: 10.1126/sciadv.ade2493] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Auxin and brassinosteroids (BRs) are two major growth-promoting phytohormones that shape hypocotyl elongation; however, the cross-talk between auxin and BR in this process is not fully understood. In this study, we found that auxin-induced hypocotyl elongation is dependent on brassinazole-resistant 1 (BZR1), a core BR signaling component. Auxin promotes BZR1 nuclear accumulation in hypocotyl cells, a process dependent on mitogen-activated protein kinase 3 (MPK3) and MPK6, which are both activated by auxin and whose encoding genes are highly expressed in hypocotyls. We determined that MPK3/MPK6 phosphorylate and reduce the protein stability of general regulatory factor 4 (GRF4), a member of the 14-3-3 family of proteins that retain BZR1 in the cytoplasm. In summary, this study reveals the molecular mechanism by which auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation via MPK3/MPK6-regulated GRF4 protein stability.
Collapse
Affiliation(s)
- Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jinxin Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Mengyue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiaoxuan Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Mengxin Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Transcriptome Analysis Reveals an Essential Role of Exogenous Brassinolide on the Alkaloid Biosynthesis Pathway in Pinellia Ternata. Int J Mol Sci 2022; 23:ijms231810898. [PMID: 36142812 PMCID: PMC9501358 DOI: 10.3390/ijms231810898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Pinellia ternata (Thunb.) Druce is a traditional medicinal plant containing a variety of alkaloids, which are important active ingredients. Brassinolide (BR) is a plant hormone that regulates plant response to environmental stress and promotes the accumulation of secondary metabolites in plants. However, the regulatory mechanism of BR-induced alkaloid accumulation in P. ternata is not clear. In this study, we investigated the effects of BR and BR biosynthesis inhibitor (propiconazole, Pcz) treatments on alkaloid biosynthesis in the bulbil of P. ternata. The results showed that total alkaloid content and bulbil yield was enhanced by 90.87% and 29.67% under BR treatment, respectively, compared to the control. We identified 818 (476 up-regulated and 342 down-regulated) and 697 (389 up-regulated and 308 down-regulated) DEGs in the BR-treated and Pcz-treated groups, respectively. Through this annotated data and the Kyoto encyclopedia of genes and genomes (KEGG), the expression patterns of unigenes involved in the ephedrine alkaloid, tropane, piperidine, pyridine alkaloid, indole alkaloid, and isoquinoline alkaloid biosynthesis were observed under BR and Pcz treatments. We identified 11, 8, 2, and 13 unigenes in the ephedrine alkaloid, tropane, piperidine, and pyridine alkaloid, indole alkaloid, and isoquinoline alkaloid biosynthesis, respectively. The expression levels of these unigenes were increased by BR treatment and were decreased by Pcz treatment, compared to the control. The results provided molecular insight into the study of the molecular mechanism of BR-promoted alkaloid biosynthesis.
Collapse
|
9
|
OCTOPUS regulates BIN2 to control leaf curvature in Chinese cabbage. Proc Natl Acad Sci U S A 2022; 119:e2208978119. [PMID: 35969746 PMCID: PMC9407555 DOI: 10.1073/pnas.2208978119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heading is one of the most important agronomic traits for Chinese cabbage crops. During the heading stage, leaf axial growth is an essential process. In the past, most genes predicted to be involved in the heading process have been based on leaf development studies in Arabidopsis. No genes that control leaf axial growth have been mapped and cloned via forward genetics in Chinese cabbage. In this study, we characterize the inward curling mutant ic1 in Brassica rapa ssp. pekinensis and identify a mutation in the OCTOPUS (BrOPS) gene by map-based cloning. OPS is involved in phloem differentiation in Arabidopsis, a functionalization of regulating leaf curvature that is differentiated in Chinese cabbage. In the presence of brassinosteroid (BR) at the early heading stage in ic1, the mutation of BrOPS fails to sequester brassinosteroid insensitive 2 (BrBIN2) from the nucleus, allowing BrBIN2 to phosphorylate and inactivate BrBES1, which in turn relieves the repression of BrAS1 and results in leaf inward curving. Taken together, the results of our findings indicate that BrOPS positively regulates BR signaling by antagonizing BrBIN2 to promote leaf epinastic growth at the early heading stage in Chinese cabbage.
Collapse
|
10
|
Guo C, Chen Y, Wang M, Du Y, Wu D, Chu J, Yao X. Exogenous brassinolide improves the antioxidant capacity of Pinellia ternata by enhancing the enzymatic and nonenzymatic defense systems under non-stress conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:917301. [PMID: 35958199 PMCID: PMC9358693 DOI: 10.3389/fpls.2022.917301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Brassinolide (BR) improves the antioxidant capacity of plants under various abiotic stresses. However, it is not clear about the effect of BR on the antioxidant capacity in plants under non-stress conditions. In the present study, the antioxidant defense response of Pinellia ternata was to be assessed by applying BR and propiconazole (Pcz) under non-stress conditions. BR treatment enhanced the flavonoid content, peroxidase, and ascorbate peroxidase (APX) activity by 12.31, 30.62, and 25.08% and led to an increase in 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity by 4.31% and a decrease in malondialdehyde content by 1.04%. Exogenous application of BR improved the expression levels of PAL, CHS, CHI, and DFR genes by 3. 18-, 3. 39-, 2. 21-, and 0.87-fold in flavonoid biosynthesis, PGI, PMI, and GME genes by 6. 60-, 1437. 79-, and 3.11-fold in ascorbic acid (ASA), biosynthesis, and γECs and GSHS genes by 6.08- and 2.61-fold in glutathione (GSH) biosynthesis pathway, and the expression of these genes were inhibited by Pcz treatment. In addition, BR treatment promoted the ASA-GSH cycle by enhancing the expression of APX, DHAR, and MDHAR genes, which were enhanced by 3. 33-, 157. 85-, and 154.91-fold, respectively. These results provided novel insights into the effect of BR on the antioxidant capacity in bulbil of P. ternata under non-stress conditions and useful knowledge of applying BR to enhance the antioxidant capacity of plants.
Collapse
Affiliation(s)
- Chenchen Guo
- School of Life Sciences, Hebei University, Baoding, China
| | - Ying Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Mengyue Wang
- School of Life Sciences, Hebei University, Baoding, China
| | - Yu Du
- School of Life Sciences, Hebei University, Baoding, China
| | - Dengyun Wu
- School of Life Sciences, Hebei University, Baoding, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
11
|
Park CH, Bi Y, Youn JH, Kim SH, Kim JG, Xu NY, Shrestha R, Burlingame AL, Xu SL, Mudgett MB, Kim SK, Kim TW, Wang ZY. Deconvoluting signals downstream of growth and immune receptor kinases by phosphocodes of the BSU1 family phosphatases. NATURE PLANTS 2022; 8:646-655. [PMID: 35697730 PMCID: PMC9663168 DOI: 10.1038/s41477-022-01167-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/05/2022] [Indexed: 05/29/2023]
Abstract
Hundreds of leucine-rich repeat receptor kinases (LRR-RKs) have evolved to control diverse processes of growth, development and immunity in plants, but the mechanisms that link LRR-RKs to distinct cellular responses are not understood. Here we show that two LRR-RKs, the brassinosteroid hormone receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and the flagellin receptor FLAGELLIN SENSING 2 (FLS2), regulate downstream glycogen synthase kinase 3 (GSK3) and mitogen-activated protein (MAP) kinases, respectively, through phosphocoding of the BRI1-SUPPRESSOR1 (BSU1) phosphatase. BSU1 was previously identified as a component that inactivates GSK3s in the BRI1 pathway. We surprisingly found that the loss of the BSU1 family phosphatases activates effector-triggered immunity and impairs flagellin-triggered MAP kinase activation and immunity. The flagellin-activated BOTRYTIS-INDUCED KINASE 1 (BIK1) phosphorylates BSU1 at serine 251. Mutation of serine 251 reduces BSU1's ability to mediate flagellin-induced MAP kinase activation and immunity, but not its abilities to suppress effector-triggered immunity and interact with GSK3, which is enhanced through the phosphorylation of BSU1 at serine 764 upon brassinosteroid signalling. These results demonstrate that BSU1 plays an essential role in immunity and transduces brassinosteroid-BRI1 and flagellin-FLS2 signals using different phosphorylation sites. Our study illustrates that phosphocoding in shared downstream components provides signalling specificities for diverse plant receptor kinases.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Yang Bi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ji-Hyun Youn
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - So-Hee Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nicole Y Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | | | - Seong-Ki Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea.
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea.
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| |
Collapse
|
12
|
Chai G, Qi G, Wang D, Zhuang Y, Xu H, Bai Z, Bai MY, Hu R, Wang ZY, Zhou G, Kong Y. The CCCH zinc finger protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid signaling. PLANT PHYSIOLOGY 2022; 189:285-300. [PMID: 35139225 PMCID: PMC9070797 DOI: 10.1093/plphys/kiac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/10/2022] [Indexed: 05/20/2023]
Abstract
Plant CCCH proteins participate in the control of multiple developmental and adaptive processes, but the regulatory mechanisms underlying these processes are not well known. In this study, we showed that the Arabidopsis (Arabidopsis thaliana) CCCH protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid (BR) signaling. Genetic and biochemical evidence showed that C3H15 functions downstream of the receptor BR INSENSITIVE 1 (BRI1) as a negative regulator in the BR pathway. C3H15 is phosphorylated by the GLYCOGEN SYNTHASE KINASE 3 -like kinase BR-INSENSITIVE 2 (BIN2) at Ser111 in the cytoplasm in the absence of BRs. Upon BR perception, C3H15 transcription is enhanced, and the phosphorylation of C3H15 by BIN2 is reduced. The dephosphorylated C3H15 protein accumulates in the nucleus, where C3H15 regulates transcription via G-rich elements (typically GGGAGA). C3H15 and BRASSINAZOLE RESISTANT 1 (BZR1)/BRI1-EMS-SUPPRESSOR 1 (BES1), two central transcriptional regulators of BR signaling, directly suppress each other and share a number of BR-responsive target genes. Moreover, C3H15 antagonizes BZR1 and BES1 to regulate the expression of their shared cell elongation-associated target gene, SMALL AUXIN-UP RNA 15 (SAUR15). This study demonstrates that C3H15-mediated BR signaling may be parallel to, or even attenuate, the dominant BZR1 and BES1 signaling pathways to control cell elongation. This finding expands our understanding of the regulatory mechanisms underlying BR-induced cell elongation in plants.
Collapse
Affiliation(s)
| | | | | | | | - Hua Xu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Ruibo Hu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zeng-yu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | | | | |
Collapse
|
13
|
Park TK, Kang IA, Park CH, Roh J, Lee SH, Kim M, Jin E, Kim SK, Kim TW. Inhibition of 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE expression by brassinosteroid reduces carotenoid accumulation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1415-1428. [PMID: 34718527 DOI: 10.1093/jxb/erab475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Unlike the indispensable function of the steroid hormone brassinosteroid (BR) in regulating plant growth and development, the metabolism of secondary metabolites regulated by BR is not well known. Here we show that BR reduces carotenoid accumulation in Arabidopsis seedlings. BR-deficient or BR-insensitive mutants accumulated higher content of carotenoids than wild-type plants, whereas BR treatment reduced carotenoid content. We demonstrated that BR transcriptionally suppresses 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE (HPPD) expression involved in carotenogenesis via plastoquinone production. We found that the expression of HPPD displays an oscillation pattern that is expressed more strongly in dark than in light conditions. Moreover, BR appeared to inhibit HPPD expression more strongly in darkness than in light, leading to suppression of a diurnal oscillation of HPPD expression. BR-responsive transcription factor BRASSINAZOLE RESISTANT 1 (BZR1) directly bound to the promoter of HPPD, and HPPD suppression by BR was increased in the bzr1-1D gain-of-function mutation. Interestingly, dark-induced HPPD expression did not cause carotenoid accumulation, due to down-regulation of other carotenoid biosynthetic genes in the dark. Our results suggest that BR regulates different physiological responses in dark and light through inhibition of HPPD expression.
Collapse
Affiliation(s)
- Tae-Ki Park
- Department of Life Science, Hanyang University, Seoul, 04763South Korea
| | - In-A Kang
- Department of Life Science, Hanyang University, Seoul, 04763South Korea
| | - Chan-Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, 06974South Korea
| | - Se-Hwa Lee
- Department of Life Science, Hanyang University, Seoul, 04763South Korea
| | - Minjae Kim
- Department of Life Science, Hanyang University, Seoul, 04763South Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, 04763South Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974South Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, 04763South Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
14
|
Hickerson NM, Samuel MA. Stylar steroids: Brassinosteroids regulate pistil development and self-incompatibility in Primula. Curr Biol 2022; 32:R135-R137. [DOI: 10.1016/j.cub.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Groszyk J, Szechyńska-Hebda M. Brassinazole Resistant 1 Activity Is Organ-Specific and Genotype-Dependent in Barley Seedlings. Int J Mol Sci 2021; 22:ijms222413572. [PMID: 34948366 PMCID: PMC8706524 DOI: 10.3390/ijms222413572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Brassinosteroids (BRs) control many plant developmental processes by regulating different groups of transcription factors, and consequently gene expressions. The most known is BZR1, the main member of the BES1 family. However, to date, it is poorly characterized in crop species. The main goal of the presented study was to identify HvBZR1 and determine its activity in 5-day-old barley (the stage is related to one leaf on the main shoot and a few seminal roots) using two cultivars with different sensitivities to BRs. Using the anti-OsBZR1 antibody, we identified the forms of HvBZR1 transcription factor with different molecular weights, which can be related to different phosphorylated forms of serine/threonine residues. Two phosphorylated forms in the shoots and one dephosphorylated form in the roots were determined. A minor amount of the dephosphorylated form of the HvBZR1 in the Haruna Nijo shoots was also found. The phosphorylated forms gave a higher band intensity for Golden Promise than Haruna Nijo. The bands were similar in their intensity, when two different phosphorylated forms were compared in Golden Promise, while a reduced intensity was detected for the phosphorylated form with a lower molecular weight for Haruna Nijo. Degradation of the phosphorylated forms in the shoots (complete degradation in Golden Promise and significant but not complete in Haruna Nijo) and the presence of the dephosphorylated form in the roots were proven for the etiolated barley. In the case of Haruna Nijo, a wider range of the regulators of the BR biosynthesis and signaling pathways induced the expected effects, 24-EBL (0.001 µM) and bikinin (10 and 50 µM) caused low amount of the phosphorylated forms, and at the same time, a tiny band of dephosphorylated form was detected. However, the expression of genes related to the BR biosynthesis and signaling pathways was not a determinant for the protein amount.
Collapse
|
16
|
Huu CN, Plaschil S, Himmelbach A, Kappel C, Lenhard M. Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid-inactivating cytochrome P450 CYP734A50. Curr Biol 2021; 32:671-676.e5. [PMID: 34906354 DOI: 10.1016/j.cub.2021.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Most flowering plants are hermaphrodites, with flowers having both male and female reproductive organs. One widespread adaptation to limit self-fertilization is self-incompatibility (SI), where self-pollen fails to fertilize ovules.1,2 In homomorphic SI, many morphologically indistinguishable mating types are found, although in heteromorphic SI, the two or three mating types are associated with different floral morphologies.3-6 In heterostylous Primula, a hemizygous supergene determines a short-styled S-morph and a long-styled L-morph, corresponding to two different mating types, and full seed set only results from intermorph crosses.7-9 Style length is controlled by the brassinosteroid (BR)-inactivating cytochrome P450 CYP734A50,10 yet it remains unclear what defines the male and female incompatibility types. Here, we show that CYP734A50 also determines the female incompatibility type. Inactivating CYP734A50 converts short S-morph styles into long styles with the same incompatibility behavior as L-morph styles, and this effect can be mimicked by exogenous BR treatment. In vitro responses of S- and L-morph pollen grains and pollen tubes to increasing BR levels could only partly explain their different in vivo behavior, suggesting both direct and indirect effects of the different BR levels in S- versus L-morph stigmas and styles in controlling pollen performance. This BR-mediated SI provides a novel mechanism for preventing self-fertilization. The joint control of morphology and SI by CYP734A50 has important implications for the evolutionary buildup of the heterostylous syndrome and provides a straightforward explanation for why essentially all of the derived self-compatible homostylous Primula species are long homostyles.11.
Collapse
Affiliation(s)
- Cuong Nguyen Huu
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Sylvia Plaschil
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Christian Kappel
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
17
|
Chen F, Ji X, Bai M, Zhuang Z, Peng Y. Network Analysis of Different Exogenous Hormones on the Regulation of Deep Sowing Tolerance in Maize Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:739101. [PMID: 34925395 PMCID: PMC8674439 DOI: 10.3389/fpls.2021.739101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
The planting method of deep sowing can make the seeds make full use of water in deep soil, which is considered to be an effective way to respond to drought stress. However, deep sowing will affect the growth and development of maize (Zea mays L.) at seedling stage. To better understand the response of maize to deep sowing stress and the mechanism of exogenous hormones [Gibberellin (GA3), Brassinolide (BR), Strigolactone (SL)] alleviates the damaging effects of deep-sowing stress, the physiological and transcriptome expression profiles of seedlings of deep sowing sensitive inbred line Zi330 and the deep-tolerant inbred line Qi319 were compared under deep sowing stress and the conditions of exogenous hormones alleviates stress. The results showed that mesocotyl elongated significantly after both deep sowing stress and application of exogenous hormones, and its elongation was mainly through elongation and expansion of cell volume. Hormone assays revealed no significant changes in zeatin (ZT) content of the mesocotyl after deep sowing and exogenous hormone application. The endogenous GA3 and auxin (IAA) contents in the mesocotyl of the two inbred lines increased significantly after the addition of exogenous GA3, BR, and SL under deep sowing stress compared to deep sowing stress, while BR and SL decreased significantly. Transcriptome analysis showed that the deep seeding stress was alleviated by GA3, BR, and SLs, the differentially expressed genes (DEGs) mainly included cellulose synthase, expansin and glucanase, oxidase, lignin biosynthesis genes and so on. We also found that protein phosphatase 2C and GA receptor GID1 enhanced the ability of resist deep seeding stress in maize by participating in the abscisic acid (ABA) and the GA signaling pathway, respectively. In addition, we identified two gene modules that were significantly related to mesocotyl elongation, and identified some hub genes that were significantly related to mesocotyl elongation by WGCNA analysis. These genes were mainly involved in transcription regulation, hydrolase activity, protein binding and plasma membrane. Our results from this study may provide theoretical basis for determining the maize deep seeding tolerance and the mechanism by which exogenous hormones regulates deep seeding tolerance.
Collapse
|
18
|
Zhao N, Zhao M, Tian Y, Wang Y, Han C, Fan M, Guo H, Bai MY. Interaction between BZR1 and EIN3 mediates signalling crosstalk between brassinosteroids and ethylene. THE NEW PHYTOLOGIST 2021; 232:2308-2323. [PMID: 34449890 DOI: 10.1111/nph.17694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Plant growth and development are coordinated by multiple environmental and endogenous signals. Brassinosteroid (BR) and ethylene (ET) have overlapping functions in a wide range of developmental processes. However, the relationship between the BR and ET signalling pathways has remained unclear. Here, we show that BR and ET interdependently promote apical hook development and cell elongation through a direct interaction between BR-activated BRASSINOZALE-RESISTANT1 (BZR1) and ET-activated ETHYLENE INSENSITIVE3 (EIN3). Genetic analysis showed that BR signalling is required for ET promotion of apical hook development in the dark and cell elongation under light, and ET quantitatively enhances BR-potentiated growth. BZR1 interacts with EIN3 to co-operatively increase the expression of HOOKLESS1 and PACLOBUTRAZOL RESISTANCE FACTORs (PREs). Furthermore, we found that BR promotion of hook development requires gibberellin (GA), and GA restores the hookless phenotype of BR-deficient materials by activating EIN3/EIL1. Our findings shed light on the molecular mechanism underlying the regulation of plant development by BR, ET and GA signals through the direct interaction of master transcriptional regulators.
Collapse
Affiliation(s)
- Na Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yanchen Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yichuan Wang
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
19
|
Supraoptimal Brassinosteroid Levels Inhibit Root Growth by Reducing Root Meristem and Cell Elongation in Rice. PLANTS 2021; 10:plants10091962. [PMID: 34579493 PMCID: PMC8469756 DOI: 10.3390/plants10091962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
Root growth depends on cell proliferation and cell elongation at the root meristem, which are controlled by plant hormones and nutrient availability. As a foraging strategy, rice (Oryza sativa L.) grows longer roots when nitrogen (N) is scarce. However, how the plant steroid hormone brassinosteroid (BR) regulates rice root meristem development and responses to N deficiency remains unclear. Here, we show that BR has a negative effect on meristem size and a dose-dependent effect on cell elongation in roots of rice seedlings treated with exogenous BR (24-epicastasterone, ECS) and the BR biosynthesis inhibitor propiconazole (PPZ). A genome-wide transcriptome analysis identified 4110 and 3076 differentially expressed genes in response to ECS and PPZ treatments, respectively. The gene ontology (GO) analysis shows that terms related to cell proliferation and cell elongation were enriched among the ECS-repressed genes. Furthermore, microscopic analysis of ECS- and PPZ-treated roots grown under N-sufficient and N-deficient conditions demonstrates that exogenous BR or PPZ application could not enhance N deficiency-mediated root elongation promotion as the treatments could not promote root meristem size and cell elongation simultaneously. Our study demonstrates that optimal levels of BR in the rice root meristem are crucial for optimal root growth and the foraging response to N deficiency.
Collapse
|
20
|
Xiang L, Nolan TM, Bao Y, Elmore M, Tuel T, Gai J, Shah D, Wang P, Huser NM, Hurd AM, McLaughlin SA, Howell SH, Walley JW, Yin Y, Tang L. Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1837-1853. [PMID: 34216161 DOI: 10.1111/tpj.15401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Brassinosteroids (BRs) are a group of plant steroid hormones involved in regulating growth, development, and stress responses. Many components of the BR pathway have previously been identified and characterized. However, BR phenotyping experiments are typically performed in a low-throughput manner, such as on Petri plates. Additionally, the BR pathway affects drought responses, but drought experiments are time consuming and difficult to control. To mitigate these issues and increase throughput, we developed the Robotic Assay for Drought (RoAD) system to perform BR and drought response experiments in soil-grown Arabidopsis plants. RoAD is equipped with a robotic arm, a rover, a bench scale, a precisely controlled watering system, an RGB camera, and a laser profilometer. It performs daily weighing, watering, and imaging tasks and is capable of administering BR response assays by watering plants with Propiconazole (PCZ), a BR biosynthesis inhibitor. We developed image processing algorithms for both plant segmentation and phenotypic trait extraction to accurately measure traits including plant area, plant volume, leaf length, and leaf width. We then applied machine learning algorithms that utilize the extracted phenotypic parameters to identify image-derived traits that can distinguish control, drought-treated, and PCZ-treated plants. We carried out PCZ and drought experiments on a set of BR mutants and Arabidopsis accessions with altered BR responses. Finally, we extended the RoAD assays to perform BR response assays using PCZ in Zea mays (maize) plants. This study establishes an automated and non-invasive robotic imaging system as a tool to accurately measure morphological and growth-related traits of Arabidopsis and maize plants in 3D, providing insights into the BR-mediated control of plant growth and stress responses.
Collapse
Affiliation(s)
- Lirong Xiang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
| | - Yin Bao
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Mitch Elmore
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Taylor Tuel
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jingyao Gai
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Dylan Shah
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Nicole M Huser
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ashley M Hurd
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sean A McLaughlin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stephen H Howell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
| | - Justin W Walley
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
| | - Lie Tang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
21
|
Liu H, Liu L, Liang D, Zhang M, Jia C, Qi M, Liu Y, Shao Z, Meng F, Hu S, Yin Y, Li C, Wang Q. SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. iScience 2021; 24:102926. [PMID: 34430815 PMCID: PMC8374504 DOI: 10.1016/j.isci.2021.102926] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Fruit softening indicated by firmness determines the texture, transportability, and shelf life of tomato products. However, the regulatory mechanism underlying firmness formation in tomato fruit is poorly understood. Here, we report the regulatory role of SlBES1, an essential component of brassinosteroid hormone signaling, in tomato fruit softening. We found that SlBES1 promotes fruit softening during tomato fruit ripening and postharvest storage. RNA-seq analysis suggested that PMEU1, which encodes a pectin methylesterase, might participate in SlBES1-mediated softening. Biochemical and immunofluorescence assays indicated that SlBES1 inhibited PMEU1-related pectin de-methylesterification. Further molecular and genetic evidence verified that SlBES1 directly binds to the E-box of PMEU1 to repress its expression, leading to fruits softening. Loss-of-function SlBES1 mutant generated by CRISPR-Cas9 showed firmer fruits and longer shelf life during postharvest storage without other quality alteration. Collectively, our results indicated the potential of manipulating SlBES1 to regulate firmness without negative consequence on visual and nutrition quality. SlBES1 promotes tomato fruit softening without affecting nutritional quality SlBES1 inhibits PMEU1-related fruit pectin de-methylesterification SlBES1 represses PMEU1 expression through directly binding to the E-box Knockout of SlBES1 by CRISPR-Cas9 enhances fruit firmness and extends shelf life
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Dongyi Liang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Mingfang Qi
- Key Laboratory of Protected Horticulture of Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yuanyuan Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Songshen Hu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100097, PR China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
22
|
Cheng L, Li M, Min W, Wang M, Chen R, Wang W. Optimal Brassinosteroid Levels Are Required for Soybean Growth and Mineral Nutrient Homeostasis. Int J Mol Sci 2021; 22:8400. [PMID: 34445112 PMCID: PMC8395106 DOI: 10.3390/ijms22168400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Brassinosteroids (BRs) are steroid phytohormones that are known to regulate plant growth and nutrient uptake and distribution. However, how BRs regulate nutrient uptake and balance in legume species is not fully understood. Here, we show that optimal BR levels are required for soybean (Glycine max L.) seedling growth, as treatments with both 24-epicastasterone (24-epiCS) and the BR biosynthesis inhibitor propiconazole (PPZ) inhibit root growth, including primary root elongation and lateral root formation and elongation. Specifically, 24-epiCS and PPZ reduced the total phosphorus and potassium levels in the shoot and affected several minor nutrients, such as magnesium, iron, manganese, and molybdenum. A genome-wide transcriptome analysis identified 3774 and 4273 differentially expressed genes in the root tip after brassinolide and PPZ treatments, respectively. The gene ontology (GO) analysis suggested that genes related to "DNA-replication", "microtubule-based movement", and "plant-type cell wall organization" were highly responsive to the brassinolide and PPZ treatments. Furthermore, consistent with the effects on the nutrient concentrations, corresponding mineral transporters were found to be regulated by BR levels, including the GmPHT1s, GmKTs, GmVIT2, GmZIPs, and GmMOT1 genes. Our study demonstrates that optimal BR levels are important for growth and mineral nutrient homeostasis in soybean seedlings.
Collapse
Affiliation(s)
- Ling Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (M.W.); (R.C.)
| | - Man Li
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (W.M.)
| | - Wanling Min
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (W.M.)
| | - Mengke Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (M.W.); (R.C.)
| | - Rongqing Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (M.W.); (R.C.)
| | - Wenfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (M.W.); (R.C.)
| |
Collapse
|
23
|
Zhao Z, Tang S, Zhang Y, Yue J, Xu J, Tang W, Sun Y, Wang R, Diao X, Zhang B. Evolutionary analysis and functional characterization of SiBRI1 as a Brassinosteroid receptor gene in foxtail millet. BMC PLANT BIOLOGY 2021; 21:291. [PMID: 34167462 PMCID: PMC8223282 DOI: 10.1186/s12870-021-03081-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, those in foxtail millet remain largely unknown. Here, we show that the BR signaling function of BRASSINOSTEROID INSENSITIVE 1 (BRI1) is conserved between Arabidopsis and foxtail millet, a new model species for C4 and Panicoideae grasses. We identified four putative BR receptor genes in the foxtail millet genome: SiBRI1, SiBRI1-LIKE RECEPTOR KINASE 1 (SiBRL1), SiBRL2 and SiBRL3. Phylogenetic analysis was used to classify the BR receptors in dicots and monocots into three branches. Analysis of their expression patterns by quantitative real-time PCR (qRT-PCR) showed that these receptors were ubiquitously expressed in leaves, stems, dark-grown seedlings, roots and non-flowering spikelets. GFP fusion experiments verified that SiBRI1 localized to the cell membrane. We also explored the SiBRI1 function in Arabidopsis through complementation experiments. Ectopic overexpression of SiBRI1 in an Arabidopsis BR receptor loss-of-function mutant, bri1-116, mostly reversed the developmental defects of the mutant. When SiBRI1 was overexpressed in foxtail millet, the plants showed a drooping leaf phenotype and root development inhibition, lateral root initiation inhibition, and the expression of BR synthesis genes was inhibited. We further identified BRI1-interacting proteins by immunoprecipitation (IP)-mass spectrometry (MS). Our results not only demonstrate that SiBRI1 plays a conserved role in BR signaling in foxtail millet but also provide insight into the molecular mechanism of SiBRI1.
Collapse
Affiliation(s)
- Zhiying Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yiming Zhang
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Jingjing Yue
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Jiaqi Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yanxiang Sun
- College of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Ruiju Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Foxtail Millet Improvement Center of China, Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang, 050031, China.
| | - Baowen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
24
|
Ruan J, Chen H, Zhu T, Yu Y, Lei Y, Yuan L, Liu J, Wang ZY, Kuang JF, Lu WJ, Huang S, Li C. Brassinosteroids repress the seed maturation program during the seed-to-seedling transition. PLANT PHYSIOLOGY 2021; 186:534-548. [PMID: 33620498 PMCID: PMC8154094 DOI: 10.1093/plphys/kiab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 05/27/2023]
Abstract
In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.
Collapse
Affiliation(s)
- Jiuxiao Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Huhui Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Ibrahim M, Devi K, Sharma N, Ohri P, Skalicky M, Brestic M, Bhardwaj R, Landi M, Sharma A. Brassinosteroid Signaling, Crosstalk and, Physiological Functions in Plants Under Heavy Metal Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:608061. [PMID: 33841453 PMCID: PMC8024700 DOI: 10.3389/fpls.2021.608061] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) are group of plant steroidal hormones that modulate developmental processes and also have pivotal role in stress management. Biosynthesis of BRs takes place through established early C-6 and late C-6 oxidation pathways and the C-22 hydroxylation pathway triggered by activation of the DWF4 gene that acts on multiple intermediates. BRs are recognized at the cell surface by the receptor kinases, BRI1 and BAK1, which relay signals to the nucleus through a phosphorylation cascade involving phosphorylation of BSU1 protein and proteasomal degradation of BIN2 proteins. Inactivation of BIN2 allows BES1/BZR1 to enter the nucleus and regulate the expression of target genes. In the whole cascade of signal recognition, transduction and regulation of target genes, BRs crosstalk with other phytohormones that play significant roles. In the current era, plants are continuously exposed to abiotic stresses and heavy metal stress is one of the major stresses. The present study reveals the mechanism of these events from biosynthesis, transport and crosstalk through receptor kinases and transcriptional networks under heavy metal stress.
Collapse
Affiliation(s)
- Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Mohd Ibrahim
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
26
|
Cuadrado-Pedetti MB, Rauschert I, Sainz MM, Amorim-Silva V, Botella MA, Borsani O, Sotelo-Silveira M. The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 Gene Is Involved in Anisotropic Root Growth during Osmotic Stress Adaptation. Genes (Basel) 2021; 12:236. [PMID: 33562207 PMCID: PMC7915054 DOI: 10.3390/genes12020236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in the Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 (TTL1) gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of ttl1 mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for ttl1 (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and ttl1, respectively. These findings suggest that TTL1 may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.
Collapse
Affiliation(s)
- María Belén Cuadrado-Pedetti
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Inés Rauschert
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay;
| | - María Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Vítor Amorim-Silva
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S); (M.A.B.)
| | - Miguel Angel Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S); (M.A.B.)
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Mariana Sotelo-Silveira
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| |
Collapse
|
27
|
Zhang Z, Yang X, Cheng L, Guo Z, Wang H, Wu W, Shin K, Zhu J, Zheng X, Bian J, Li Y, Gu L, Zhu Q, Wang ZY, Wang W. Physiological and transcriptomic analyses of brassinosteroid function in moso bamboo (Phyllostachys edulis) seedlings. PLANTA 2020; 252:27. [PMID: 32712728 DOI: 10.1007/s00425-020-03432-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrates that brassinosteroid is essential for seedling and shoot growth in moso bamboo. The shoot of moso bamboo is known to grow extremely fast. The roles of phytohormones in such fast growth of bamboo shoot remain unclear. Here we reported that endogenous brassinosteroid (BR) is a major factor promoting bamboo shoot internode elongation. Reducing endogenous brassinosteroid level by its biosynthesis inhibitor propiconazole stunted shoot growth in seedling stage, whereas exogenous BR application promoted scale leaf elongation and the inclination of lamina joint of leaves and scale leaves. Genome-wide transcriptome analysis identified hundreds of genes whose expression levels are altered by BR and propiconazole in shoots and roots of bamboo seedling. The data show that BR regulates cell wall-related genes, hydrogen peroxide catabolic genes, and auxin-related genes. Our study demonstrates an essential role of BR in fast growth bamboo shoots and identifies a large number of BR-responsive genes in bamboo seedlings.
Collapse
Affiliation(s)
- Zhe Zhang
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuelian Yang
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Ling Cheng
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zejun Guo
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weihuang Wu
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kihye Shin
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinyao Zhu
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoli Zheng
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianghu Bian
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangchen Li
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
28
|
Guo Z, Zhang Z, Yang X, Yin K, Chen Y, Zhang Z, Shin K, Zhu Q, Wang ZY, Wang W. PSBR1, encoding a mitochondrial protein, is regulated by brassinosteroid in moso bamboo (Phyllostachys edulis). PLANT MOLECULAR BIOLOGY 2020; 103:63-74. [PMID: 32040757 DOI: 10.1007/s11103-020-00975-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
PSBR1 is a moso bamboo gene negatively regulated by brassinosteroid, which encodes a mitochondrial localized protein. Overexpression of PSBR1 leads to growth inhibition in various growth progresses in Arabidopsis. The young shoot of moso bamboo (Phyllostachys edulis) is known as one of the fastest growing plant organs. The roles of phytohormones in the fast-growth of bamboo shoot are not fully understood. Brassinosteroids (BRs) are a group of growth-promoting steroid hormones that play important roles in cell elongation and division. While BR related genes are highly enriched in fast-growing internodes in moso bamboo, the functions of BR in the fast-growth process is not understood at the molecular level. Here, we identified a poaceae specific gene, PSBR1 (Poaceae specific and BR responsive gene 1) from the moso bamboo genome. PSBR1 was highly expressed in the stem and leaves of bamboo seedling, and the elongating nodes of fast-growing bamboo shoot. PSBR1's expression is increased by BR biosynthesis inhibitor propiconazole but decreased by BR treatment. PSBR1 encodes a novel protein that is localized to the mitochondria in tobacco and bamboo protoplast. The Arabidopsis transgenic plants overexpressing PSBR1 show growth inhibition in both vegetative and reproductive stages. This study suggests that PSBR1 is a BR regulated mitochondrial protein in bamboo, which inhibits plant growth when overexpressed in Arabidopsis.
Collapse
Affiliation(s)
- Zejun Guo
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Zhe Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Xuelian Yang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kuixing Yin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Yitao Chen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Zhenzhen Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Kihye Shin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
29
|
Du J, Gerttula S, Li Z, Zhao ST, Liu YL, Liu Y, Lu MZ, Groover AT. Brassinosteroid regulation of wood formation in poplar. THE NEW PHYTOLOGIST 2020; 225:1516-1530. [PMID: 31120133 DOI: 10.1111/nph.15936] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/30/2019] [Indexed: 05/06/2023]
Abstract
Brassinosteroids have been implicated in the differentiation of vascular cell types in herbaceous plants, but their roles during secondary growth and wood formation are not well defined. Here we pharmacologically and genetically manipulated brassinosteroid levels in poplar trees and assayed the effects on secondary growth and wood formation, and on gene expression within stems. Elevated brassinosteroid levels resulted in increases in secondary growth and tension wood formation, while inhibition of brassinosteroid synthesis resulted in decreased growth and secondary vascular differentiation. Analysis of gene expression showed that brassinosteroid action is positively associated with genes involved in cell differentiation and cell-wall biosynthesis. The results presented here show that brassinosteroids play a foundational role in the regulation of secondary growth and wood formation, in part through the regulation of cell differentiation and secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou, 310058, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
| | - Suzanne Gerttula
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
| | - Zehua Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou, 310058, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou, 311300, China
| | - Andrew T Groover
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
30
|
Holzwart E, Wanke F, Glöckner N, Höfte H, Harter K, Wolf S. A Mutant Allele Uncouples the Brassinosteroid-Dependent and Independent Functions of BRASSINOSTEROID INSENSITIVE 1. PLANT PHYSIOLOGY 2020; 182:669-678. [PMID: 31641077 PMCID: PMC6945837 DOI: 10.1104/pp.19.00448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/11/2019] [Indexed: 05/19/2023]
Abstract
Plants depend on various cell surface receptors to integrate extracellular signals with developmental programs. One of the best-studied receptors is BRASSINOSTEROID INSENSITIVE 1 (BRI1) in Arabidopsis (Arabidopsis thaliana). Upon binding of its hormone ligands, BRI1 forms a complex with a shape-complementary coreceptor and initiates a signal transduction cascade, which leads to a variety of responses. At the macroscopic level, brassinosteroid (BR) biosynthetic and receptor mutants have similar growth defects, which initially led to the assumption that the signaling pathways were largely linear. However, recent evidence suggests that BR signaling is interconnected with several other pathways through various mechanisms. We recently described that feedback from the cell wall is integrated at the level of the receptor complex through interaction with RECEPTOR-LIKE PROTEIN 44 (RLP44). Moreover, BRI1 is required for another function of RLP44: the control of procambial cell fate. Here, we report a BRI1 mutant, bri1 cnu4 , which differentially affects canonical BR signaling and RLP44 function in the vasculature. Although BR signaling is only mildly impaired, bri1 cnu4 mutants show ectopic xylem in place of procambium. Mechanistically, this is explained by an increased association between RLP44 and the mutated BRI1 protein, which prevents the former from acting in vascular cell fate maintenance. Consistent with this, the mild BR response phenotype of bri1 cnu4 is a recessive trait, whereas the RLP44-mediated xylem phenotype is semidominant. Our results highlight the complexity of plant plasma membrane receptor function and provide a tool to dissect BR signaling-related roles of BRI1 from its noncanonical functions.
Collapse
Affiliation(s)
- Eleonore Holzwart
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Friederike Wanke
- Plant Physiology, Center for Plant Molecular Biology, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Nina Glöckner
- Plant Physiology, Center for Plant Molecular Biology, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Klaus Harter
- Plant Physiology, Center for Plant Molecular Biology, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Sebastian Wolf
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Bajguz A, Chmur M, Gruszka D. Comprehensive Overview of the Brassinosteroid Biosynthesis Pathways: Substrates, Products, Inhibitors, and Connections. FRONTIERS IN PLANT SCIENCE 2020; 11:1034. [PMID: 32733523 PMCID: PMC7358554 DOI: 10.3389/fpls.2020.01034] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/24/2020] [Indexed: 05/06/2023]
Abstract
Brassinosteroids (BRs) as a class of steroid plant hormones participate in the regulation of numerous developmental processes, including root and shoot growth, vascular differentiation, fertility, flowering, and seed germination, as well as in responding to environmental stresses. During four decades of research, the BR biosynthetic pathways have been well studied with forward- and reverse genetics approaches. The free BRs contain 27, 28, and 29 carbons within their skeletal structure: (1): 5α-cholestane or 26-nor-24α-methyl-5α-cholestane for C27-BRs; (2) 24α-methyl-5α-cholestane, 24β-methyl-5α-cholestane or 24-methylene-5α-cholestane for C28-BRs; (3) 24α-ethyl-5α-cholestane, 24(Z)-ethylidene-5α-cholestane, 25-methyl-5α-campestane or 24-methylene-25-methyl-5α-cholestane for C29-BRs, as well as different kinds and orientations of oxygenated functions in A- and B-ring. These alkyl substituents are also common structural features of sterols. BRs are derived from sterols carrying the same side chain. The C27-BRs without substituent at C-24 are biosynthesized from cholesterol. The C28-BRs carrying either an α-methyl, β-methyl, or methylene group are derived from campesterol, 24-epicampesterol or 24-methylenecholesterol, respectively. The C29-BRs with an α-ethyl group are produced from sitosterol. Furthermore, the C29 BRs carrying methylene at C-24 and an additional methyl group at C-25 are derived from 24-methylene-25-methylcholesterol. Generally, BRs are biosynthesized via cycloartenol and cycloartanol dependent pathways. Till now, more than 17 compounds were characterized as inhibitors of the BR biosynthesis. For nine of the inhibitors (e.g., brassinazole and YCZ-18) a specific target reaction within the BR biosynthetic pathway has been identified. Therefore, the review highlights comprehensively recent advances in our understanding of the BR biosynthesis, sterol precursors, and dependencies between the C27-C28 and C28-C29 pathways.
Collapse
Affiliation(s)
- Andrzej Bajguz
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- *Correspondence: Andrzej Bajguz,
| | - Magdalena Chmur
- Faculty of Biology, University of Bialystok, Bialystok, Poland
| | - Damian Gruszka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
32
|
Rozhon W, Akter S, Fernandez A, Poppenberger B. Inhibitors of Brassinosteroid Biosynthesis and Signal Transduction. Molecules 2019; 24:E4372. [PMID: 31795392 PMCID: PMC6930552 DOI: 10.3390/molecules24234372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Chemical inhibitors are invaluable tools for investigating protein function in reverse genetic approaches. Their application bears many advantages over mutant generation and characterization. Inhibitors can overcome functional redundancy, their application is not limited to species for which tools of molecular genetics are available and they can be applied to specific tissues or developmental stages, making them highly convenient for addressing biological questions. The use of inhibitors has helped to elucidate hormone biosynthesis and signaling pathways and here we review compounds that were developed for the plant hormones brassinosteroids (BRs). BRs are steroids that have strong growth-promoting capacities, are crucial for all stages of plant development and participate in adaptive growth processes and stress response reactions. In the last two decades, impressive progress has been made in BR inhibitor development and application, which has been instrumental for studying BR modes of activity and identifying and characterizing key players. Both, inhibitors that target biosynthesis, such as brassinazole, and inhibitors that target signaling, such as bikinin, exist and in a comprehensive overview we summarize knowledge and methodology that enabled their design and key findings of their use. In addition, the potential of BR inhibitors for commercial application in plant production is discussed.
Collapse
Affiliation(s)
- Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany
| | | | | | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany
| |
Collapse
|
33
|
Song L, Chen W, Yao Q, Guo B, Valliyodan B, Wang Z, Nguyen HT. Genome-wide transcriptional profiling for elucidating the effects of brassinosteroids on Glycine max during early vegetative development. Sci Rep 2019; 9:16085. [PMID: 31695113 PMCID: PMC6834599 DOI: 10.1038/s41598-019-52599-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Soybean is a widely grown grain legume and one of the most important economic crop species. Brassinosteroids play a crucial role in plant vegetative growth and reproductive development. However, it remains unclear how BRs regulate the developmental processes in soybean, and the molecular mechanism underlying soybean early development is largely unexplored. In this study, we first characterized how soybean early vegetative growth was specifically regulated by the BR biosynthesis inhibitor propiconazole; this characterization included shortened root and shoot lengths, reduced leaf area, and decreased chlorophyll content. In addition, the growth inhibition induced by Pcz could be rescued by exogenous brassinolide application. The RNA-seq technique was employed to investigate the BR regulatory networks during soybean early vegetative development. Identification and analysis of differentially expressed genes indicated that BRs orchestrate a wide range of cellular activities and biological processes in soybean under various BR concentrations. The regulatory networks between BRs and multiple hormones or stress-related pathways were investigated. The results provide a comprehensive view of the physiological functions of BRs and new insights into the molecular mechanisms at the transcriptional level of BR regulation of soybean early development.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Wei Chen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Qiuming Yao
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
34
|
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y. The AP2/ERF Transcription Factor TINY Modulates Brassinosteroid-Regulated Plant Growth and Drought Responses in Arabidopsis. THE PLANT CELL 2019; 31:1788-1806. [PMID: 31126980 PMCID: PMC6713308 DOI: 10.1105/tpc.18.00918] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 05/04/2023]
Abstract
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors have well-documented functions in stress responses, but their roles in brassinosteroid (BR)-regulated growth and stress responses have not been established. Here, we show that the Arabidopsis (Arabidopsis thaliana) stress-inducible AP2/ERF transcription factor TINY inhibits BR-regulated growth while promoting drought responses. TINY-overexpressing plants have stunted growth, increased sensitivity to BR biosynthesis inhibitors, and compromised BR-responsive gene expression. By contrast, tiny tiny2 tiny3 triple mutants have increased BR-regulated growth and BR-responsive gene expression. TINY positively regulates drought responses by activating drought-responsive genes and promoting abscisic acid-mediated stomatal closure. Global gene expression studies revealed that TINY and BRs have opposite effects on plant growth and stress response genes. TINY interacts with and antagonizes BRASSINOSTERIOID INSENSITIVE1-ETHYL METHANESULFONATE SUPRESSOR1 (BES1) in the regulation of these genes. Glycogen synthase kinase 3-like protein kinase BR-INSENSITIVE2 (BIN2), a negative regulator in the BR pathway, phosphorylates and stabilizes TINY, providing a mechanism for BR-mediated downregulation of TINY to prevent activation of stress responses under optimal growth conditions. Taken together, our results demonstrate that BR signaling negatively regulates TINY through BIN2 phosphorylation and TINY positively regulates drought responses, as well as inhibiting BR-mediated growth through TINY-BES1 antagonistic interactions. Our results thus provide insight into the coordination of BR-regulated growth and drought responses.
Collapse
Affiliation(s)
- Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
35
|
Neill EM, Byrd MCR, Billman T, Brandizzi F, Stapleton AE. Plant growth regulators interact with elevated temperature to alter heat stress signaling via the Unfolded Protein Response in maize. Sci Rep 2019. [PMID: 31316112 DOI: 10.1101/532796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Plants are increasingly exposed to high temperatures, which can cause accumulation of unfolded protein in the endoplasmic reticulum (ER). This condition, known as ER stress, evokes the unfolded protein response (UPR), a cytoprotective signaling pathway. One important branch of the UPR is regulated by splicing of bZIP60 mRNA by the IRE1 stress sensor. There is increasing evidence that commercial plant growth regulators may protect against abiotic stressors including heat stress and drought, but there is very little mechanistic information about these effects or about the regulatory pathways involved. We evaluated evidence in the B73 Zea mays inbred for differences in the activity of the UPR between permissive and elevated temperature in conjunction with plant growth regulator application. Treatment with elevated temperature and plant growth regulators increased UPR activation, as assessed by an increase in splicing of the mRNA of the IRE1 target bZIP60 following paclobutrazol treatment. We propose that plant growth regulator treatment induces bZIP60 mRNA splicing which 'primes' plants for rapid adaptive response to subsequent endoplasmic reticulum-stress inducing conditions.
Collapse
Affiliation(s)
- Elena M Neill
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Department of Mathematics and Statistics, Wilmington, NC, USA
- North Carolina Department of Health and Human Services, State Laboratory of Public Health, Raleigh, NC, USA
| | - Michael C R Byrd
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Department of Mathematics and Statistics, Wilmington, NC, USA
| | - Thomas Billman
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Department of Mathematics and Statistics, Wilmington, NC, USA
- Blue Cross and Blue Shield of North Carolina, Underwriting Division, Durham, NC, USA
| | - Federica Brandizzi
- Michigan State University, Department of Plant Biology, East Lansing, MI, USA
| | - Ann E Stapleton
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Department of Mathematics and Statistics, Wilmington, NC, USA.
| |
Collapse
|
36
|
Neill EM, Byrd MCR, Billman T, Brandizzi F, Stapleton AE. Plant growth regulators interact with elevated temperature to alter heat stress signaling via the Unfolded Protein Response in maize. Sci Rep 2019; 9:10392. [PMID: 31316112 PMCID: PMC6637120 DOI: 10.1038/s41598-019-46839-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
Plants are increasingly exposed to high temperatures, which can cause accumulation of unfolded protein in the endoplasmic reticulum (ER). This condition, known as ER stress, evokes the unfolded protein response (UPR), a cytoprotective signaling pathway. One important branch of the UPR is regulated by splicing of bZIP60 mRNA by the IRE1 stress sensor. There is increasing evidence that commercial plant growth regulators may protect against abiotic stressors including heat stress and drought, but there is very little mechanistic information about these effects or about the regulatory pathways involved. We evaluated evidence in the B73 Zea mays inbred for differences in the activity of the UPR between permissive and elevated temperature in conjunction with plant growth regulator application. Treatment with elevated temperature and plant growth regulators increased UPR activation, as assessed by an increase in splicing of the mRNA of the IRE1 target bZIP60 following paclobutrazol treatment. We propose that plant growth regulator treatment induces bZIP60 mRNA splicing which 'primes' plants for rapid adaptive response to subsequent endoplasmic reticulum-stress inducing conditions.
Collapse
Affiliation(s)
- Elena M Neill
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Department of Mathematics and Statistics, Wilmington, NC, USA
- North Carolina Department of Health and Human Services, State Laboratory of Public Health, Raleigh, NC, USA
| | - Michael C R Byrd
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Department of Mathematics and Statistics, Wilmington, NC, USA
| | - Thomas Billman
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Department of Mathematics and Statistics, Wilmington, NC, USA
- Blue Cross and Blue Shield of North Carolina, Underwriting Division, Durham, NC, USA
| | - Federica Brandizzi
- Michigan State University, Department of Plant Biology, East Lansing, MI, USA
| | - Ann E Stapleton
- University of North Carolina Wilmington, Department of Biology and Marine Biology, Department of Mathematics and Statistics, Wilmington, NC, USA.
| |
Collapse
|
37
|
Hou Q, Saima S, Ren H, Ali K, Bai C, Wu G, Li G. Less Conserved LRRs Is Important for BRI1 Folding. FRONTIERS IN PLANT SCIENCE 2019; 10:634. [PMID: 31164898 PMCID: PMC6536576 DOI: 10.3389/fpls.2019.00634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/26/2019] [Indexed: 05/27/2023]
Abstract
Brassinosteroid insensitive 1 (BRI1) is a multidomain plant leucine-rich repeat receptor-like kinase (LRR-RLK), belongs to the LRR X subfamily. BRI1 perceives plant hormone brassinosteroids (BRs) through its extracellular domain that constitutes of LRRs interrupted by a 70 amino acid residue island domain (ID), which activates the kinase domain (KD) in its intracellular domain to trigger BR response. Thus, the KD and the ID of BRI1 are highly conserved and greatly contribute to BR functions. In fact, most bri1 mutants are clustered in or surrounded around the ID and the KD. However, the role of the less conserved LRR domains, particularly the first few LRRs after the signal peptide, is elusive. Here, we report the identification of a loss-of-function mutant bri1-235 that carries a mutation in the less conserved fourth LRR of BRI1 extracellular domain in Arabidopsis. This mutant had a base alteration from C to T, resulting in an amino acid substitution from serine to phenylalanine at the 156th position of BRI1. Compared with the wild-type plants, bri1-235 exhibited round leaves, prolonged life span, shorter stature, and approximately normal fertility under light conditions. The bri1-235 mutant was less sensitive to exogenous brassinolide under normal conditions. Importantly, both wild-type BRI1 expression and a sbi1 mutant that activates BRI1 rescued bri1-235 and resembled the wild type. Furthermore, bri1-235 protein was localized in endoplasmic reticulum rather than plasma membrane, suggestive of a cause for reducing BR sensitive in bri1-235. Taken together, our findings provide an insight into the role of the less conserved LRRs of BRI1, shedding light on the role of LRRs in a variety of LRR-RLKs that control numerous processes of plant growth, development, and stress response.
Collapse
Affiliation(s)
- Qiang Hou
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Shehzadi Saima
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chengke Bai
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
38
|
Song L, Chen W, Wang B, Yao QM, Valliyodan B, Bai MY, Zhao MZ, Ye H, Wang ZY, Nguyen HT. GmBZL3 acts as a major BR signaling regulator through crosstalk with multiple pathways in Glycine max. BMC PLANT BIOLOGY 2019; 19:86. [PMID: 30795735 PMCID: PMC6387493 DOI: 10.1186/s12870-019-1677-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Brassinosteroids (BRs) play a crucial role in plant vegetative growth and reproductive development. The transcription factors BZR1 and BES1/BZR2 are well characterized as downstream regulators of the BR signaling pathway in Arabidopsis and rice. Soybean contains four BZR1-like proteins (GmBZLs), and it was reported that GmBZL2 plays a conserved role in BR signaling regulation. However, the roles of other GmBZLs have not been thoroughly studied, and the targets of GmBZLs in soybean remain unclear. RESULTS In this study, we first characterized GmBZL3 in soybean from gene expression patterns, conserved domains in coding sequences, and genomic replication times of four GmBZL orthologous. The results indicated that GmBZL3 might play conserved roles during soybean development. The overexpression of GmBZL3P219L in the Arabidopsis BR-insensitive mutant bri1-5 partially rescued the phenotypic defects including BR-insensitivity, which provides further evidence that GmBZL3 functions are conserved between soybean and the homologous Arabidopsis genes. In addition, the identification of the GmBZL3 target genes through ChIP-seq technology revealed that BR has broad roles in soybean and regulates multiple pathways, including other hormone signaling, disease-related, and immunity response pathways. Moreover, the BR-regulated GmBZL3 target genes were further identified, and the results demonstrate that GmBZL3 is a major transcription factor responsible for BR-regulated gene expression and soybean growth. A comparison of GmBZL3 and AtBZR1/BES1 targets demonstrated that GmBZL3 might play conserved as well as specific roles in the soybean BR signaling network. Finally, the identification of two natural soybean varieties of the GmBZL3 mutantion by SNP analysis could facilitate the understanding of gene function during soybean development in the future. CONCLUSIONS We illustrate here that GmBZL3 orchestrates a genome-wide transcriptional response that underlies BR-mediated soybean early vegetative growth, and our results support that BRs play crucial regulatory roles in soybean morphology and gene expression levels.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Wei Chen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Biao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Qiu-Ming Yao
- Department of Computer Science, Informatics Institute, and Christopher S. Bond Life, Sciences Center, University of Missouri, Columbia, MO 65211 USA
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Ming-Yi Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305 USA
- Present address: Shandong University, Jinan, Shandong China
| | - Ming-Zhe Zhao
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
- Present address: Agronomy College of Shenyang Agricultural University, Shenyang, Liaoning China
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305 USA
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
39
|
Subramanian S, Tehrani R, Van Aken B. Transcriptomic response of Arabidopsis thaliana exposed to hydroxylated polychlorinated biphenyls (OH-PCBs). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:52-59. [PMID: 30648423 PMCID: PMC6548195 DOI: 10.1080/15226514.2018.1523872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) are toxic contaminants produced by biotic or abiotic transformation of PCBs. In this study, we have tested the toxicity of 2,5-dichlorobiphenyl (2,5-DCB) and three of its OH-derivatives, 2'-OH-, 3'-OH-, and 4'-OH-2,5-DCB toward the model plant, Arabidopsis thaliana. Toxicity tests showed that the parent 2,5-DCB (5 mg L-1) had little effect on the plants, while all three OH-metabolites (5 mg L-1) exhibited a significant toxicity, with 4'-OH-2,5-DCB being the most potent (inhibition concentration 50%-IC50 in germination tests = 9.8 mg L-1 for 2'-OH-2,5-DCB, 9.5 mg L-1 for 3'-OH-2,5-DCB, and 4.8 mg L-1 for 4'-OH-2,5-DCB). Whole-genome expression microarrays (Affymetrix) showed that exposure to the three OH-PCBs resulted in rather similar expression patterns, which were distinct from the one developing in response to 2,5-DCB. Searching an Arabidopsis microarray database (Genevestigator) revealed that, unlike the parent compound, the three OH-derivatives induced expression profiles similar to inhibitors of brassinosteroid synthesis (i.e., brassinazole, propiconazole, and uniconazole), resulting in severe iron deficiency in exposed plants. Our results suggest that the higher phytotoxicity of OH-derivatives as compared to 2,5-DCB is at least partly explained by the inhibition of the brassinosteroid pathway.
Collapse
Affiliation(s)
- Srishty Subramanian
- Department of Civil & Environmental Engineering, Temple University, Philadelphia, PA
| | - Rouzbeh Tehrani
- Department of Civil & Environmental Engineering, Temple University, Philadelphia, PA
| | - Benoit Van Aken
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA
| |
Collapse
|
40
|
Shishatskaya E, Menzyanova N, Zhila N, Prudnikova S, Volova T, Thomas S. Toxic effects of the fungicide tebuconazole on the root system of fusarium-infected wheat plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:400-407. [PMID: 30286405 DOI: 10.1016/j.plaphy.2018.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The study investigates toxic effects of the fungicide tebuconazole (TEB) on Fusarium-infected wheat (Triticum aestivum) plants based on the morphological characteristics of root apices and changes in the integrated parameters of redox homeostasis, including the contents of free proline and products of peroxidation of proteins (carbonylated proteins, CP) and lipids (malondialdehyde, MDA) in roots. In two-day-old wheat sprouts infected by Fusarium graminearum, the levels of proline, CP, and border cells of root apices are higher than in roots of uninfected sprouts by a factor of 1.4, 8.0, and 3, respectively. The triazole fungicide tebuconazole (TEB) at the concentrations of 0.01, 0.10, and 1.00 μg ml-1 of medium causes a dose-dependent decrease in the number of border cells. The study of the effects of TEB and fusarium infection on wheat plants in a 30-day experiment shows that the effect of the fungicide TEB on redox homeostasis in wheat roots varies depending on the plant growth stage and is significantly different in ecosystems with soil and plants infected by Fusarium phytopathogens. The study of the morphology of root apices shows that the toxic effects of TEB and fusarium infection are manifested in the destructive changes in root apices and the degradation of the root tip mantle.
Collapse
Affiliation(s)
- Ekaterina Shishatskaya
- Siberian Federal University, 79 Svobodnyi Ave., Krasnoyarsk, 660041, Russian Federation; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok, Krasnoyarsk, 660036, Russian Federation
| | - Natalia Menzyanova
- Siberian Federal University, 79 Svobodnyi Ave., Krasnoyarsk, 660041, Russian Federation
| | - Natalia Zhila
- Siberian Federal University, 79 Svobodnyi Ave., Krasnoyarsk, 660041, Russian Federation; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok, Krasnoyarsk, 660036, Russian Federation
| | - Svetlana Prudnikova
- Siberian Federal University, 79 Svobodnyi Ave., Krasnoyarsk, 660041, Russian Federation
| | - Tatiana Volova
- Siberian Federal University, 79 Svobodnyi Ave., Krasnoyarsk, 660041, Russian Federation; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok, Krasnoyarsk, 660036, Russian Federation.
| | - Sabu Thomas
- Siberian Federal University, 79 Svobodnyi Ave., Krasnoyarsk, 660041, Russian Federation; International and Interuniversity Centre for Nano Science and Nano Technology, Kottayam, Kerala, India
| |
Collapse
|
41
|
BRI1 controls vascular cell fate in the Arabidopsis root through RLP44 and phytosulfokine signaling. Proc Natl Acad Sci U S A 2018; 115:11838-11843. [PMID: 30377268 PMCID: PMC6243276 DOI: 10.1073/pnas.1814434115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cell-fate determination and cellular behavior in plants rely mainly on positional information and intercellular communication. A plethora of cues are perceived by surface receptors and integrated into an adequate cellular output. Here, we show that the small receptor-like protein RLP44 acts as an intermediary to connect the receptors for two well-known signaling molecules, brassinosteroid and phytosulfokine, to control cell fate in the root vasculature. Furthermore, we show that the brassinosteroid receptor has functions that are independent from the responses to its hormone ligands and reveal that phytosulfokine signaling promotes procambial cell identity. These results provide a mechanistic framework for the integration of multiple signaling pathways at the plasma membrane by shifting associations of receptors in multiprotein complexes. Multicellularity arose independently in plants and animals, but invariably requires a robust determination and maintenance of cell fate that is adaptive to the environment. This is exemplified by the highly specialized water- and nutrient-conducting cells of the plant vasculature, the organization of which is already prepatterned close to the stem-cell niche, but can be modified according to extrinsic cues. Here, we show that the hormone receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) is required for root vascular cell-fate maintenance, as BRI1 mutants show ectopic xylem in procambial position. However, this phenotype seems unrelated to canonical brassinosteroid signaling outputs. Instead, BRI1 is required for the expression and function of its interacting partner RECEPTOR-LIKE PROTEIN 44 (RLP44), which, in turn, associates with the receptor for the peptide hormone phytosulfokine (PSK). We show that PSK signaling is required for the maintenance of procambial cell identity and quantitatively controlled by RLP44, which promotes complex formation between the PSK receptor and its coreceptor. Mimicking the loss of RLP44, PSK-related mutants show ectopic xylem in the position of the procambium, whereas rlp44 is rescued by exogenous PSK. Based on these findings, we propose that RLP44 controls cell fate by connecting BRI1 and PSK signaling, providing a mechanistic framework for the dynamic balancing of signaling mediated by the plethora of plant receptor-like kinases at the plasma membrane.
Collapse
|
42
|
Zhao Y, Zhang Y, Wang L, Wang X, Xu W, Gao X, Liu B. Mapping and Functional Analysis of a Maize Silkless Mutant sk-A7110. FRONTIERS IN PLANT SCIENCE 2018; 9:1227. [PMID: 30186299 PMCID: PMC6111845 DOI: 10.3389/fpls.2018.01227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/31/2018] [Indexed: 05/03/2023]
Abstract
The maize (Zea mays) stigma, which is commonly known as silk, is indispensable for reproduction and thus for grain yield. Here, we isolated a spontaneous mutant sk-A7110, which completely lacks silk; scanning electron microscopy showed that the sk-A7110 pistils degenerated during late floret differentiation. Genetic analysis confirmed that this trait was controlled by a recessive nuclear gene and sk-A7110 was mapped to a 74.13-kb region on chromosome 2 between the simple sequence repeat markers LA714 and L277. Sequence analysis of candidate genes in this interval identified a single-nucleotide insertion at position 569 downstream of the transcriptional start site in Zm00001d002970, which encodes a UDP-glycosyltransferase; this insertion produces a frameshift and premature translational termination. RNA-sequencing analysis of young ears identified 258 differentially expressed genes (DEGs) between sk-A7110 and the wild type (WT), including 119 up- and 139 down-regulated genes. Interestingly, most DEGs related to jasmonic acid (JA) synthesis were up-regulated in the mutant compared to WT. Consistent with this, the JA and JA-Isoleucine (JA-Ile) contents were significantly higher in sk-A7110 ears than in WT. At the same time, RNA-sequencing analysis of tassels showed that sk-A7110 could reduce the number of tassel branches in maize by down-regulating the expression of UB2 and UB3 genes. Our identification of the sk-A7110 mutant and the responsible gene will facilitate further studies on female infertility research or maize breeding.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongzhong Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lijing Wang
- Agricultural Technology Promotion Center of Yanzhou, Jining, China
| | - Xueran Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wei Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xianyu Gao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Baoshen Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Baoshen Liu,
| |
Collapse
|
43
|
Yang J, Thames S, Best NB, Jiang H, Huang P, Dilkes BP, Eveland AL. Brassinosteroids Modulate Meristem Fate and Differentiation of Unique Inflorescence Morphology in Setaria viridis. THE PLANT CELL 2018; 30:48-66. [PMID: 29263085 PMCID: PMC5810575 DOI: 10.1105/tpc.17.00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/20/2017] [Accepted: 12/13/2017] [Indexed: 05/08/2023]
Abstract
Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In Setaria spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage Setaria viridis to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the Bristleless1 (Bsl1) locus in S. viridis, which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The bsl1 mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture.
Collapse
Affiliation(s)
- Jiani Yang
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132
| | - Shuiyi Thames
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132
| | - Norman B Best
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Hui Jiang
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132
| | - Pu Huang
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Andrea L Eveland
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132
| |
Collapse
|
44
|
Mantilla-Perez MB, Salas Fernandez MG. Differential manipulation of leaf angle throughout the canopy: current status and prospects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5699-5717. [PMID: 29126242 DOI: 10.1093/jxb/erx378] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/01/2017] [Indexed: 05/20/2023]
Abstract
Leaf angle is defined as the inclination between the midrib of the leaf blade and the vertical stem of a plant. This trait has been identified as a key component in the development of high-yielding varieties of cereal species, particularly maize, rice, wheat, and sorghum. The effect of leaf angle on light interception efficiency, photosynthetic rate, and yield has been investigated since the 1960s, yet, significant knowledge gaps remain in understanding the genetic control of this complex trait. Recent advances in physiology and modeling have proposed a plant ideotype with varying leaf angles throughout the canopy. In this context, we present historical and recent evidence of: (i) the effect of leaf angle on photosynthetic efficiency and yield; (ii) the hormonal regulation of this trait; (iii) the current knowledge on its quantitative genetic control; and (iv) the opportunity to utilize high-throughput phenotyping methods to characterize leaf angle at multiple canopy levels. We focus on research conducted on grass species of economic importance, with similar plant architecture and growth patterns. Finally, we present the challenges and strategies plant breeders will need to embrace in order to manipulate leaf angle differentially throughout the canopy and develop superior crops for food, feed, and fuel production.
Collapse
|
45
|
Chen J, Yin Y. WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. PLANT SIGNALING & BEHAVIOR 2017; 12:e1365212. [PMID: 29027842 PMCID: PMC5703256 DOI: 10.1080/15592324.2017.1365212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Brassinosteroids (BRs) are critical for the plant growth and development. BRs signal through the plasma membrane localized receptor-like kinases to downstream transcription factors BES1/BZR1 to regulate the expression of thousands of genes for various BR responses. In addition to the role in plant growth and development, BRs have been implicated in responses to environmental stresses such as drought. However, the mechanism through which BRs regulate drought have just begun emerging. We have recently found that a group of WRKY transcription factors, WRKY46, WRKY54, WRKY70, which are well known for the function in abiotic and biotic stress, cooperates with BES1 to mediate BR-regulated drought response. The wrky46 wrky54 wrky70 triple mutants showed growth defect, likely due to impaired BR signaling as well as some reduction of endogenous BR level. WRKY46/54/70 cooperates with BES1 to regulate the expression of BR target genes to promote growth. We also found that WRKY46/54/70 negatively modulates drought tolerance by globally repressing drought-inducible gene expression. Thus, our result uncovers a new role for WRKY transcription factors in BR signaling and provides the molecular mechanism for BR-regulated plant growth and drought stress through WRKY46/54/70 and BES1 transcription factors.
Collapse
Affiliation(s)
- Jiani Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
- CONTACT Yanhai Yin Iowa State University, 1111 WOI Road, Ames, IA50011-1085, USA
| |
Collapse
|
46
|
Jakubowska D, Janicka M. The role of brassinosteroids in the regulation of the plasma membrane H +-ATPase and NADPH oxidase under cadmium stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:37-47. [PMID: 28969801 DOI: 10.1016/j.plantsci.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 05/10/2023]
Abstract
The present research aim was to define the role of brassinosteroids (BRs) in plant adaptation to cadmium stress. We observed a stimulating effect of exogenous BR on the activity of two plasma membrane enzymes which play a key role in plants adaptation to cadmium stress, H+-ATPase (EC 3.6.3.14) and NADPH oxidase (EC 1.6.3.1). Using anti-phosphothreonine antibody we showed that modification of PM H+-ATPase activity under BR action could result from phosphorylation of the enzyme protein. Also the relative expression of genes encoding both PM H+-ATPase and NADPH oxidase was affected by BR. To confirm the role of BR in the cadmium stimulating effect on activity of both studied plasma membrane enzymes, an assay in the presence of a BR biosynthesis inhibitor (propiconazole) was performed. Moreover, as a tool in our work we used commercially available plant mutants unable to BR biosynthesis or with dysfunctional BR signaling pathway, to further confirm participation of BR in plant adaptation to heavy metal stress. Presented results demonstrate some elements of the brassinosteroid-induced pathway activated under cadmium stress, wherein H+-ATPase and NADPH oxidase are key factors.
Collapse
Affiliation(s)
- Dagmara Jakubowska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| |
Collapse
|
47
|
Hu S, Sanchez DL, Wang C, Lipka AE, Yin Y, Gardner CAC, Lübberstedt T. Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:132-141. [PMID: 28818369 DOI: 10.1016/j.plantsci.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 05/24/2023]
Abstract
In this study, we established two doubled haploid (DH) libraries with a total of 207 DH lines. We applied BR and GA inhibitors to all DH lines at seedling stage and measured seedling BR and GA inhibitor responses. Moreover, we evaluated field traits for each DH line (untreated). We conducted genome-wide association studies (GWAS) with 62,049 genome wide SNPs to explore the genetic control of seedling traits by BR and GA. In addition, we correlate seedling stage hormone inhibitor response with field traits. Large variation for BR and GA inhibitor response and field traits was observed across these DH lines. Seedling stage BR and GA inhibitor response was significantly correlate with yield and flowering time. Using three different GWAS approaches to balance false positive/negatives, multiple SNPs were discovered to be significantly associated with BR/GA inhibitor responses with some localized within gene models. SNPs from gene model GRMZM2G013391 were associated with GA inhibitor response across all three GWAS models. This gene is expressed in roots and shoots and was shown to regulate GA signaling. These results show that BRs and GAs have a great impact for controlling seedling growth. Gene models from GWAS results could be targets for seeding traits improvement.
Collapse
Affiliation(s)
- Songlin Hu
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA.
| | - Darlene L Sanchez
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| | - Cuiling Wang
- Department of Agronomy, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471023, China
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Champaign, IL 61801, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| | - Candice A C Gardner
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA; U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), 100 Osborn Drive, Ames, IA 50011, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| |
Collapse
|
48
|
Bhattacharyya D, Lee YH. A cocktail of volatile compounds emitted from Alcaligenes faecalis JBCS1294 induces salt tolerance in Arabidopsis thaliana by modulating hormonal pathways and ion transporters. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:64-73. [PMID: 28448840 DOI: 10.1016/j.jplph.2017.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/20/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
In our previous study we showed that volatile organic compounds (VOCs) from Alcaligenes faecalis JBCS1294 (JBCS1294) induced tolerance to salt stress in Arabidopsis thaliana by influencing the auxin and gibberellin pathways and upregulating the expression of key ion transporters. The aim of this study was to evaluate the contribution of each VOC and blends of the VOCs on the induction of salt tolerance and signaling pathways. The key VOCs emitted from JBCS1294 were dissolved in lanolin and applied to one side of bipartite I-plates that contained Arabidopsis seeds on Murashige and Skoog (MS) media supplemented with NaCl on the other side. Changes in plant growth were investigated using Arabidopsis mutant lines and hormone inhibitors, and gene expression was assessed by real-time PCR (qPCR). Among the VOCs, butyric acid conferred salt tolerance over a concentration range of 5.6μM (10ng)-56mM (100μg), whereas propionic and benzoic acid were effective at micromolar doses. Intriguingly, the optimized cocktail of the three VOCs increased fresh weight of Arabidopsis under salt stress compared to that achieved with each single compound. However, Arabidopsis growth was not promoted by the VOCs without salt stress. Exogenous indole-3-acetic acid (IAA) application arrested salt tolerance or growth promotion of Arabidopsis induced by volatiles from propionic acid, but not from butyric acid and an optimized volatile mixture of butyric acid, propionic acid, and benzoic acid (1PBB). High and intense auxin-responsive DR5:GUS activity was observed in the roots of Arabidopsis grown on media without salt via 1PBB, butyric acid, and benzoic acid. Growth promotion by the cocktail was inhibited in the eir1 mutant and in Col-0 plants treated with inhibitors of auxin and gibberellin. The present study clearly demonstrated the effects of individual VOCs and blends of VOCs from a rhizobacterial strain on the induction of salt stress. The results with the blend of VOCs, which mimics bacterial emissions in nature, may lead to a deeper understanding of the interaction between rhizobacteria and plants.
Collapse
Affiliation(s)
- Dipto Bhattacharyya
- Division of Biotechnology, Chonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Yong Hoon Lee
- Division of Biotechnology, Chonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea; Advanced Institute of Environment and Bioscience, Plant Medical Research Center, and Institute of Bio-industry, Chonbuk National University, Republic of Korea.
| |
Collapse
|
49
|
Approaches to Study Light Effects on Brassinosteroid Sensitivity. Methods Mol Biol 2017; 1564:39-47. [PMID: 28124245 DOI: 10.1007/978-1-4939-6813-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light perception and hormone signaling in plants are likely connected at multiple points. Light conditions, perceived by photoreceptors, control plant responses by altering hormone concentration, tissue sensitivity, or a combination of both. Whereas it is relatively straightforward to assess the light effects on hormone levels, hormone sensitivity is subjected to interpretation. In Arabidopsis thaliana seedlings, hypocotyl length is strongly affected by light conditions. As hypocotyl elongation also depends on brassinosteroids (BRs), assaying this response provides a valuable and easy way to measure the responsiveness of seedlings to BRs and the impact of light. We describe a simple protocol to evaluate the responsiveness of hypocotyls to commercial BRs and/or BR inhibitors under a range of light conditions. These assays can be used to establish whether light affects BR sensitivity or whether BRs affect light sensitivity. Overall, our protocol can be easily applied for deetiolation (under polychromatic or monochromatic light) and simulated shade treatments combined with BR treatments.
Collapse
|
50
|
Corvalán C, Choe S. Identification of brassinosteroid genes in Brachypodium distachyon. BMC PLANT BIOLOGY 2017; 17:5. [PMID: 28061864 PMCID: PMC5217202 DOI: 10.1186/s12870-016-0965-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/23/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND Brassinosteroids (BRs) are steroidal phytohormones that are involved in diverse physiological processes and affect many important traits, such as plant stature, stress tolerance, leaf angle, fertility, and grain filling. BR signaling and biosynthetic pathways have been studied in various plants, such as the model dicot Arabidopsis thaliana; however, relatively little is known about these pathways in monocots. RESULTS To characterize BR-related processes in the model grass Brachypodium distachyon, we studied the response of these plants to the specific BR biosynthesis inhibitor, propiconazole (Pcz). We found that treatments with Pcz produced a dwarf phenotype in B. distachyon seedlings, similar to that observed in Pcz-treated Arabidopsis plants and in characterized BR-deficient mutants. Through bioinformatics analysis, we identified a list of putative homologs of genes known to be involved in BR biosynthesis and signaling in Arabidopsis, such as DWF4, BR6OX2, CPD, BRI1, and BIN2. Evaluating the response of these genes to Pcz treatments revealed that candidates for BdDWF4, BR6OX2 and, CPD were under feedback regulation. In addition, Arabidopsis plants heterologously expressing BdDWF4 displayed tall statures and elongated petioles, as would be expected in plants with elevated levels of BRs. Moreover, heterologous expression of BdBIN2 in Arabidopsis resulted in dwarfism, suggesting that BdBIN2 functions as a negative regulator of BR signaling. However, the dwarf phenotypes of Arabidopsis bri1-5, a weak BRI1 mutant allele, were not complemented by overexpression of BdBRI1, indicating that BdBRI1 and BRI1 are not functionally equivalent. CONCLUSION We identified components of the BR biosynthetic and signaling pathways in Brachypodium, and provided examples of both similarities and differences in the BR biology of these two plants. Our results suggest a framework for understanding BR biology in monocot crop plants such as Zea mays (maize) and Oryza sativa (rice).
Collapse
Affiliation(s)
- Claudia Corvalán
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Sunghwa Choe
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea
- Convergence Research Lab for Plant Functional Products, Advanced Institutes of Convergence Technology, Suwon, 16229 Gyeonggi-do South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|