1
|
Thacharodi A, Hassan S, Ahmed ZHT, Singh P, Maqbool M, Meenatchi R, Pugazhendhi A, Sharma A. The ruminant gut microbiome vs enteric methane emission: The essential microbes may help to mitigate the global methane crisis. ENVIRONMENTAL RESEARCH 2024; 261:119661. [PMID: 39043353 DOI: 10.1016/j.envres.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Ruminants release enteric methane into the atmosphere, significantly increasing greenhouse gas emissions and degrading the environment. A common focus of traditional mitigation efforts is on dietary management and manipulation, which may have limits in sustainability and efficacy, exploring the potential of essential microorganisms as a novel way to reduce intestinal methane emissions in ruminants; a topic that has garnered increased attention in recent years. Fermentation and feed digestion are significantly aided by essential microbes found in the rumen, such as bacteria, fungi, and archaea. The practical implications of the findings reported in various studies conducted on rumen gut concerning methane emissions may pave the way to understanding the mechanisms of CH4 production in the rumen to enhance cattle feed efficiency and mitigate CH4 emissions from livestock. This review discussed using essential bacteria to reduce intestinal methane emissions in ruminants. It investigates how particular microbial strains or consortia can alter rumen fermentation pathways to lower methane output while preserving the health and productivity of animals. We also describe the role of probiotics and prebiotics in managing methane emissions using microbial feed additives. Further, recent studies involving microbial interventions have been discussed. The use of new methods involving functional metagenomics and meta-transcriptomics for exploring the rumen microbiome structure has been highlighted. This review also emphasizes the challenges faced in altering the gut microbiome and future directions in this area.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Z H Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Mohsin Maqbool
- Sidney Kimmel Cancer Center, Jefferson Health, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, 603203, India
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
| |
Collapse
|
2
|
van Trijp MPH, Rios-Morales M, Logtenberg MJ, Keshtkar S, Afman LA, Witteman B, Bakker B, Reijngoud DJ, Schols H, Hooiveld GJEJ. Detailed Analysis of Prebiotic Fructo- and Galacto-Oligosaccharides in the Human Small Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21152-21165. [PMID: 39282870 PMCID: PMC11440495 DOI: 10.1021/acs.jafc.4c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are food ingredients that improve human health, but their degradation throughout the human small intestine is not well understood. We studied the breakdown kinetics of FOS and GOS in the intestines of seven healthy Dutch adults. Subjects were equipped with a catheter in the distal ileum or proximal colon and consumed 5 g of chicory-derived FOS (degree of polymerization (DP) DP2-10), and 5 g of GOS (DP2-6). Postprandially, intestinal content was frequently collected until 350 min and analyzed for mono-, di-, and oligosaccharides. FOS and GOS had recoveries of 96 ± 25% and 76 ± 28%, respectively. FOS DP ≥ 2 and GOS DP ≥ 3 abundances in the distal small intestine or proximal colon matched the consumed doses, while GOS dimers (DP2) had lower recoveries, namely 22.8 ± 11.1% for β-D-gal-(1↔1)-α-D-glc+β-D-gal-(1↔1)-β-D-glc, 19.3 ± 19.1% for β-D-gal-(1 → 2)-D-glc+β-D-gal-(1 → 3)-D-glc, 43.7 ± 24.6% for β-D-gal-(1 → 6)-D-gal, and 68.0 ± 38.5% for β-D-gal-(1 → 4)-D-gal. Lactose was still present in the distal small intestine of all of the participants. To conclude, FOS DP ≥ 2 and GOS DP ≥ 3 were not degraded in the small intestine of healthy adults, while most prebiotic GOS DP2 was hydrolyzed in a structure-dependent manner. We provide evidence on the resistances of GOS with specific β-linkages in the human intestine, supporting the development of GOS prebiotics that resist small intestine digestion.
Collapse
Affiliation(s)
- Mara P H van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Melany Rios-Morales
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Madelon J Logtenberg
- Laboratory of Food Chemistry, Wageningen University, Wageningen 6708 WG, The Netherlands
| | - Shohreh Keshtkar
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Ben Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
- Department of Gastroenterology and Hepatology, Hospital Gelderse Vallei, Gelderland 6716 RP Ede, The Netherlands
| | - Barbara Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University, Wageningen 6708 WG, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
3
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
4
|
Kok CR, Rose DJ, Cui J, Whisenhunt L, Hutkins R. Identification of carbohydrate gene clusters obtained from in vitro fermentations as predictive biomarkers of prebiotic responses. BMC Microbiol 2024; 24:183. [PMID: 38796418 PMCID: PMC11127362 DOI: 10.1186/s12866-024-03344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Prebiotic fibers are non-digestible substrates that modulate the gut microbiome by promoting expansion of microbes having the genetic and physiological potential to utilize those molecules. Although several prebiotic substrates have been consistently shown to provide health benefits in human clinical trials, responder and non-responder phenotypes are often reported. These observations had led to interest in identifying, a priori, prebiotic responders and non-responders as a basis for personalized nutrition. In this study, we conducted in vitro fecal enrichments and applied shotgun metagenomics and machine learning tools to identify microbial gene signatures from adult subjects that could be used to predict prebiotic responders and non-responders. RESULTS Using short chain fatty acids as a targeted response, we identified genetic features, consisting of carbohydrate active enzymes, transcription factors and sugar transporters, from metagenomic sequencing of in vitro fermentations for three prebiotic substrates: xylooligosacharides, fructooligosacharides, and inulin. A machine learning approach was then used to select substrate-specific gene signatures as predictive features. These features were found to be predictive for XOS responders with respect to SCFA production in an in vivo trial. CONCLUSIONS Our results confirm the bifidogenic effect of commonly used prebiotic substrates along with inter-individual microbial responses towards these substrates. We successfully trained classifiers for the prediction of prebiotic responders towards XOS and inulin with robust accuracy (≥ AUC 0.9) and demonstrated its utility in a human feeding trial. Overall, the findings from this study highlight the practical implementation of pre-intervention targeted profiling of individual microbiomes to stratify responders and non-responders.
Collapse
Affiliation(s)
- Car Reen Kok
- Complex Biosystems, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Devin J Rose
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Food Science and Technology, University of Nebraska, 268 Food Innovation Center, Lincoln, NE, 68588, USA
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lisa Whisenhunt
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert Hutkins
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Food Science and Technology, University of Nebraska, 268 Food Innovation Center, Lincoln, NE, 68588, USA.
- Department of Food Science and Technology, University of Nebraska, 258 Food Innovation Center, Lincoln, NE, 68588-6205, USA.
| |
Collapse
|
5
|
Mathieu E, Léjard V, Ezzine C, Govindin P, Morat A, Giat M, Lapaque N, Doré J, Blottière HM. An Insight into Functional Metagenomics: A High-Throughput Approach to Decipher Food-Microbiota-Host Interactions in the Human Gut. Int J Mol Sci 2023; 24:17630. [PMID: 38139456 PMCID: PMC10744307 DOI: 10.3390/ijms242417630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Our understanding of the symbiotic relationship between the microbiota and its host has constantly evolved since our understanding that the "self" was not only defined by our genetic patrimony but also by the genomes of bugs living in us. The first culture-based methods highlighted the important functions of the microbiota. However, these methods had strong limitations and did not allow for a full understanding of the complex relationships that occur at the interface between the microbiota and the host. The recent development of metagenomic approaches has been a groundbreaking step towards this understanding. Its use has provided new insights and perspectives. In the present chapter, we will describe the advances of functional metagenomics to decipher food-microbiota and host-microbiota interactions. This powerful high-throughput approach allows for the assessment of the microbiota as a whole (including non-cultured bacteria) and enabled the discovery of new signaling pathways and functions involved in the crosstalk between food, the gut microbiota and its host. We will present the pipeline and highlight the most important studies that helped to develop the field. To conclude, we will emphasize the most recent developments and hot topics in functional metagenomics.
Collapse
Affiliation(s)
- Elliot Mathieu
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Véronique Léjard
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Chaima Ezzine
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Pauline Govindin
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Aurélien Morat
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Margot Giat
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Joël Doré
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
- Nantes Université, INRAE, UMR 1280, PhAN, 44000 Nantes, France
| |
Collapse
|
6
|
Caputo M, Pigni S, Antoniotti V, Agosti E, Caramaschi A, Antonioli A, Aimaretti G, Manfredi M, Bona E, Prodam F. Targeting microbiota in dietary obesity management: a systematic review on randomized control trials in adults. Crit Rev Food Sci Nutr 2023; 63:11449-11481. [PMID: 35708057 DOI: 10.1080/10408398.2022.2087593] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an alarming public health problem. Tailored nutritional therapy is advisable since emerging evidence on complex cross-talks among multifactorial agents. In this picture, the gut microbiota is highly individualized and intricately dependent on dietary patterns, with implications for obesity management. Most of the papers on the topic are observational and often conflicting. This review aimed to systematically organize the body of evidence on microbiota deriving from dietary trials in adult obesity giving the most certain phylogenetic, and metabolomic signatures in relation to both the host metabolism and phenotype changes published until now. We retrieved 18 randomized control trials on 1385 subjects with obesity who underwent several dietary interventions, including standard diet and healthy dietary regimens. Some phyla and species were more related to diets rich in fibers and others to healthy diets. Weight loss, metabolism improvements, inflammatory markers decrease were specifically related to different microorganisms or functions. The Prevotella/Bacteroides ratio was one of the most reported predictors. People with the burden of obesity comorbidities had the most significant taxonomic changes in parallel with a general improvement. These data emphasize the possibility of using symbiotic approaches involving tailored diets, microbiota characteristics, and maybe drugs to treat obesity and metabolic disorders. We encourage Authors to search for specific phylogenetic associations beyond a too generally reported Firmicutes/Bacteroides ratio.
Collapse
Affiliation(s)
- Marina Caputo
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Stella Pigni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Valentina Antoniotti
- SCDU of Pediatrics, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Emanuela Agosti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Alice Caramaschi
- Department of Sustainable Development and Ecological Transition, Università del Piemonte Orientale, Vercelli, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | - Alessandro Antonioli
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | - Elisa Bona
- Department of Sustainable Development and Ecological Transition, Università del Piemonte Orientale, Vercelli, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
7
|
Labarthe S, Plancade S, Raguideau S, Plaza Oñate F, Le Chatelier E, Leclerc M, Laroche B. Four functional profiles for fibre and mucin metabolism in the human gut microbiome. MICROBIOME 2023; 11:231. [PMID: 37858269 PMCID: PMC10588041 DOI: 10.1186/s40168-023-01667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND With the emergence of metagenomic data, multiple links between the gut microbiome and the host health have been shown. Deciphering these complex interactions require evolved analysis methods focusing on the microbial ecosystem functions. Despite the fact that host or diet-derived fibres are the most abundant nutrients available in the gut, the presence of distinct functional traits regarding fibre and mucin hydrolysis, fermentation and hydrogenotrophic processes has never been investigated. RESULTS After manually selecting 91 KEGG orthologies and 33 glycoside hydrolases further aggregated in 101 functional descriptors representative of fibre and mucin degradation pathways in the gut microbiome, we used nonnegative matrix factorization to mine metagenomic datasets. Four distinct metabolic profiles were further identified on a training set of 1153 samples, thoroughly validated on a large database of 2571 unseen samples from 5 external metagenomic cohorts and confirmed with metatranscriptomic data. Profiles 1 and 2 are the main contributors to the fibre-degradation-related metagenome: they present contrasted involvement in fibre degradation and sugar metabolism and are differentially linked to dysbiosis, metabolic disease and inflammation. Profile 1 takes over Profile 2 in healthy samples, and unbalance of these profiles characterize dysbiotic samples. Furthermore, high fibre diet favours a healthy balance between profiles 1 and profile 2. Profile 3 takes over profile 2 during Crohn's disease, inducing functional reorientations towards unusual metabolism such as fucose and H2S degradation or propionate, acetone and butanediol production. Profile 4 gathers under-represented functions, like methanogenesis. Two taxonomic makes up of the profiles were investigated, using either the covariation of 203 prevalent genomes or metagenomic species, both providing consistent results in line with their functional characteristics. This taxonomic characterization showed that profiles 1 and 2 were respectively mainly composed of bacteria from the phyla Bacteroidetes and Firmicutes while profile 3 is representative of Proteobacteria and profile 4 of methanogens. CONCLUSIONS Integrating anaerobic microbiology knowledge with statistical learning can narrow down the metagenomic analysis to investigate functional profiles. Applying this approach to fibre degradation in the gut ended with 4 distinct functional profiles that can be easily monitored as markers of diet, dysbiosis, inflammation and disease. Video Abstract.
Collapse
Affiliation(s)
- Simon Labarthe
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
- Univ. Bordeaux, INRAE, BIOGECO, 33610, Cestas, France.
- Inria, INRAE, Pléiade, 33400, Talence, France.
| | - Sandra Plancade
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- UR875 MIAT, Université fédérale de Toulouse, INRAE, Castanet-Tolosan, France
| | - Sebastien Raguideau
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- Earlham Institute, Organisms and Ecosystems, NR4 7UZ, Norwich, UK
| | | | | | - Marion Leclerc
- Université Paris-Saclay, INRAE, Micalis, 78350, Jouy-en-Josas, France
- Pendulum Therapeutics, San Francisco, USA
| | - Beatrice Laroche
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
- Inria, INRAE, Musca, 91120, Palaiseau, France
| |
Collapse
|
8
|
Rahman Z, Dandekar MP. Implication of Paraprobiotics in Age-Associated Gut Dysbiosis and Neurodegenerative Diseases. Neuromolecular Med 2023; 25:14-26. [PMID: 35879588 DOI: 10.1007/s12017-022-08722-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are major age-related concerns in elderly people. Since no drug fully addresses the progression of neurodegenerative diseases, advance treatment strategies are urgently needed. Several studies have noted the senescence of immune system and the perturbation of gut microbiota in the aged population. In recent years, the role of gut microbiota has been increasingly studied in the manifestation of age-related CNS disorders. In this context, prebiotics, probiotics, and paraprobiotics are reported to improve the behavioural and neurobiological abnormalities in elderly patients. As live microbiota, prescribed in the form of probiotics, shows some adverse effects like sepsis, translocation, and horizontal gene transfer, paraprobiotics could be a possible alternative strategy in designing microbiome-based therapeutics. This review describes the health-beneficial effects of paraprobiotics in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
9
|
Sharma N, Kang DK, Paik HD, Park YS. Beyond probiotics: a narrative review on an era of revolution. Food Sci Biotechnol 2023; 32:413-421. [PMID: 36911329 PMCID: PMC9992473 DOI: 10.1007/s10068-022-01212-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Whether knowingly or unknowingly, humans have been consuming probiotic microorganisms through traditionally fermented foods for generations. Bacteria, like lactic acid bacteria, are generally thought to be harmless and produce many metabolites that are beneficial for human health. Probiotics offer a wide range of health benefits; however, their therapeutic usage is limited because they are living organisms. As a result, the focus on the health advantages of microbes has recently shifted from viable live probiotics to non-viable microbes made from probiotics. These newly emerging non-viable microbes include paraprobiotics, postbiotics, psychobiotics, nutribiotics, and gerobiotics. Their metabolites can boost physiological health and reveal the therapeutic effects of probiotics. This new terminology in microbes, their traits, and their applications are summarized in the present review.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
10
|
Pantoja-Feliciano IG, Karl JP, Perisin M, Doherty LA, McClung HL, Armstrong NJ, Renberg R, Racicot K, Branck T, Arcidiacono S, Soares JW. In vitro gut microbiome response to carbohydrate supplementation is acutely affected by a sudden change in diet. BMC Microbiol 2023; 23:32. [PMID: 36707764 PMCID: PMC9883884 DOI: 10.1186/s12866-023-02776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Interactions between diet, stress and the gut microbiome are of interest as a means to modulate health and performance. Here, in vitro fermentation was used to explore the effects of a sudden change in diet, 21 days sole sustenance on the Meal, Ready-to-Eat (MRE) U.S. military combat ration, on inter-species competition and functional potential of the human gut microbiota. Human fecal samples collected before and after MRE intervention or consuming a habitual diet (HAB) were introduced to nutrient-rich media supplemented with starch for in vitro fermentation under ascending colon conditions. 16S rRNA amplicon and Whole-metagenome sequencing (WMS) were used to measure community composition and functional potential. Specific statistical analyses were implemented to detect changes in relative abundance from taxa, genes and pathways. RESULTS Differential changes in relative abundance of 11 taxa, Dorea, Lachnospira, Bacteroides fragilis, Akkermansia muciniphila, Bifidobacterium adolescentis, Betaproteobacteria, Enterobacteriaceae, Bacteroides egerthii, Ruminococcus bromii, Prevotella, and Slackia, and nine Carbohydrate-Active Enzymes, specifically GH13_14, over the 24 h fermentation were observed as a function of the diet intervention and correlated to specific taxa of interest. CONCLUSIONS These findings suggest that consuming MRE for 21 days acutely effects changes in gut microbiota structure in response to carbohydrate but may induce alterations in metabolic capacity. Additionally, these findings demonstrate the potential of starch as a candidate supplemental strategy to functionally modulate specific gut commensals during stress-induced states.
Collapse
Affiliation(s)
| | - J. Philip Karl
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Matthew Perisin
- grid.420282.e0000 0001 2151 958XU.S. Army DEVCOM Army Research Laboratory, Adelphi, MD USA
| | - Laurel A. Doherty
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Holly L. McClung
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Nicholes J. Armstrong
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA USA
| | - Rebecca Renberg
- grid.420282.e0000 0001 2151 958XGeneral Technical Services, U.S. Army DEVCOM Army Research Laboratory, Adelphi, MD USA
| | - Kenneth Racicot
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Tobyn Branck
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Steve Arcidiacono
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| | - Jason W. Soares
- Soldier Effectiveness Directorate (SED), U.S. Army DEVCOM Soldier Center, Natick, MA USA
| |
Collapse
|
11
|
Abd El-Hack ME, El-Saadony MT, Shafi ME, Alshahrani OA, Saghir SAM, Al-Wajeeh AS, Al-Shargi OYA, Taha AE, Mesalam NM, Abdel-Moneim AME. Prebiotics can restrict Salmonella populations in poultry: a review. Anim Biotechnol 2022; 33:1668-1677. [PMID: 33607922 DOI: 10.1080/10495398.2021.1883637] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibiotics were over the years, the common supplement used for poultry production. There is a global trend to lessen antibiotics' use due to the contamination of consumed meat with antibiotic residues. Also, there is a concern that human treatments might be jeopardized due to the emergence of antibiotic-resistant bacteria. Prebiotics are attractive supplements, particularly in poultry production, because of the diversity of their effects, including pH amendments, production of short-chain fatty acids (SCFA) and the inhibition of pathogens' growth. The commonly used prebiotics are carbohydrate sources that cannot be easily broken down by chickens. However, they can efficiently be utilized by the intestinal tract's microflora. Oligosaccharides, polysaccharides and lactose are non-digestible carbohydrate sources that are typically used in poultry diets as prebiotics. This review covers current applications and prospects for using prebiotics to improve poultry performance and reduce pathogens, particularly Salmonella, in gastrointestinal tract.
Collapse
Affiliation(s)
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Science, Microbiology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan A M Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, AlHussein Bin Talal University, Ma'an, Jordan
| | | | | | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Nora M Mesalam
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abu-Zaabal, Egypt
| | | |
Collapse
|
12
|
Structural and Biochemical Characterization of a Nonbinding SusD-Like Protein Involved in Xylooligosaccharide Utilization by an Uncultured Human Gut Bacteroides Strain. mSphere 2022; 7:e0024422. [PMID: 36043703 PMCID: PMC9599597 DOI: 10.1128/msphere.00244-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the human gut microbiota, Bacteroidetes break down dietary and endogenous glycosides through highly specific polysaccharide utilization loci (PULs). PULs encode a variety of sensor regulators, binding proteins, transporters, and carbohydrate-active enzymes (CAZymes). Surface glycan-binding proteins (SGBPs) are essential for the efficient capture of the glycosides present on the cell surface, providing Bacteroidetes with a competitive advantage in colonizing their habitats. Here, we present the functional and structural characterization of a SusD-like protein encoded by a xylooligosaccharide (XOS) PUL from an uncultured human gut Bacteroides strain. This locus is also conserved in Bacteroides vulgatus, thereby providing new mechanistic insights into the role of SGBPs in the metabolism of dietary fiber of importance for gut health. Various in vitro analyses, including saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy, revealed that the SusD-like protein cannot bind to the cognate substrate of the XOS PUL, although its presence is essential for the PUL to function. Analysis of the crystal structure of the SusD-like protein reveals an unfolded binding surface and the absence or inappropriate orientation of several key residues compared with other known SusD-like structures. These results highlight the critical role of the SusD-like protein in the transport of oligosaccharides and provide fundamental knowledge about the structure-function of SusC/D-like transporters, revealing that the binding specificity of SusD-like SGBPs does not necessarily reflect the uptake specificity of the transporter. IMPORTANCE The metabolization of dietary fiber is a crucial function for many gut bacteria, especially Bacteroidetes, which are particularly well adapted for recognizing, binding, transporting, and degrading glycosides. In this study, we report the functional and structural characterization of a SusD-like protein involved in xylooligosaccharide utilization by an uncultured gut Bacteroides strain. We demonstrate that while this protein is structurally similar to many canonical Bacteroidetes surface glycan-binding proteins, it cannot bind the substrate taken up by the cognate SusC-like transporter. This lack of binding might be explained by the absence of several key residues known to be involved in oligosaccharide binding and/or the possible necessity of the SusC-like protein to be present to create a cooperative binding site. The term “surface glycan-binding proteins” generally used for SusD-like proteins is thus not generic. Overall, this study allowed us to revisit the concept of glycoside utilization by Bacteroidetes, in particular those strains that feed on the short fibers naturally present in some dietary compounds or on the leftovers of other microbes.
Collapse
|
13
|
Wang Z, Tauzin AS, Laville E, Potocki-Veronese G. Identification of Glycoside Transporters From the Human Gut Microbiome. Front Microbiol 2022; 13:816462. [PMID: 35401468 PMCID: PMC8990778 DOI: 10.3389/fmicb.2022.816462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Transport is a crucial step in the metabolism of glycosides by bacteria, which is itself key for microbiota function and equilibrium. However, most transport proteins are function-unknown or only predicted, limiting our understanding of how bacteria utilize glycosides. Here, we present an activity-based screening method to identify functional glycoside transporters from microbiomes. The method is based on the co-expression in Escherichia coli of genes encoding transporters and carbohydrate-active enzymes (CAZymes) from metagenomic polysaccharide utilization loci (PULs) cloned in fosmids. To establish the proof of concept of the methodology, we used two different metagenomic libraries derived from human gut microbiota to select 18 E. coli clones whose metagenomic sequence contained at least one putative glycoside transporter and one functional CAZyme, identified by screening for various glycoside-hydrolase activities. Growth tests were performed on plant-derived glycosides, which are the target substrates of the CAZymes identified in each PUL. This led to the identification of 10 clones that are able to utilize oligosaccharides as sole carbon sources, thanks to the production of transporters from the PTS, ABC, MFS, and SusCD families. Six of the 10 hit clones contain only one transporter, providing direct experimental evidence that these transporters are functional. In the six cases where two transporters are present in the sequence of a clone, the transporters’ function can be predicted from the flanking CAZymes or from similarity with transporters characterized previously, which facilitates further functional characterization. The results expand the understanding of how glycosides are selectively metabolized by bacteria and offers a new approach to screening for glycoside-transporter specificity toward oligosaccharides with defined structures.
Collapse
Affiliation(s)
- Zhi Wang
- TBI, CNRS, INRA, INSAT, Université de Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
14
|
Precup G, Pocol CB, Teleky BE, Vodnar DC. Awareness, Knowledge, and Interest about Prebiotics-A Study among Romanian Consumers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031208. [PMID: 35162231 PMCID: PMC8834855 DOI: 10.3390/ijerph19031208] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
The consumer awareness towards healthier diets and the impact of nutrition on health has triggered an increase in the production and commercialization of foods with health claims. The scientific literature classifies these food products as functional foods, with a role in promoting health and preventing diseases, and they had a market share of almost 200 million EUR in 2019. Prebiotics are considered functional foods, referring to substrates that are selectively utilized by host microorganisms conferring a health benefit, as defined by the International Scientific Association for Probiotics and Prebiotics. Several health benefits are associated with the consumption of prebiotics; however, specific requirements must demonstrate the causality between the specific ingredient and the claimed effect. Health claims associated with food products are assessed in the European Union and need to be supported by rigorous scientific evidence before being authorized and permitted on the market. Consumers’ perception of this topic is influenced by the various stakeholders involved. The current work aimed to study the consumers’ perception and interest and to assess the knowledge on the prebiotic concept in Romania. The consumer interest level was quantified by using the web-based data tool Google Trends, and a questionnaire-based investigation was designed. The collected data were analyzed with the help of the SPSS program, and crosstabulation was used to identify the influence of socio-demographic characteristics on diet choice and awareness of prebiotics. A total of 303 persons answered the online applied questionnaire, grouped as young consumers (15–24 years old) and adults (25–64 years old). Even if most responders were familiar with the term of prebiotics (74% of total responders), some results were contradictory regarding their knowledge. The work emphasized the need to carry out educational campaigns and inform consumers on the relationship between certain food ingredients and health outcomes in a clear way and based on a rigorous assessment of the scientific evidence.
Collapse
Affiliation(s)
- Gabriela Precup
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (G.P.); (B.-E.T.)
| | - Cristina Bianca Pocol
- Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Bernadette-Emőke Teleky
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (G.P.); (B.-E.T.)
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (G.P.); (B.-E.T.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-747-341-881
| |
Collapse
|
15
|
Metagenomic identification, purification and characterisation of the Bifidobacterium adolescentis BgaC β-galactosidase. Appl Microbiol Biotechnol 2021; 105:1063-1078. [PMID: 33427933 PMCID: PMC7843569 DOI: 10.1007/s00253-020-11084-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 11/27/2022]
Abstract
Members of the human gut microbiota use glycoside hydrolase (GH) enzymes, such as β-galactosidases, to forage on host mucin glycans and dietary fibres. A human faecal metagenomic fosmid library was constructed and functionally screened to identify novel β-galactosidases. Out of the 16,000 clones screened, 30 β-galactosidase-positive clones were identified. The β-galactosidase gene found in the majority of the clones was BAD_1582 from Bifidobacterium adolescentis, subsequently named bgaC. This gene was cloned with a hexahistidine tag, expressed in Escherichia coli and His-tagged-BgaC was purified using Ni2+-NTA affinity chromatography and size filtration. The enzyme had optimal activity at pH 7.0 and 37 °C, with a wide range of pH (4–10) and temperature (0–40 °C) stability. It required a divalent metal ion co-factor; maximum activity was detected with Mg2+, while Cu2+ and Mn2+ were inhibitory. Kinetic parameters were determined using ortho-nitrophenyl-β-d-galactopyranoside (ONPG) and lactose substrates. BgaC had a Vmax of 107 μmol/min/mg and a Km of 2.5 mM for ONPG and a Vmax of 22 μmol/min/mg and a Km of 3.7 mM for lactose. It exhibited low product inhibition by galactose with a Ki of 116 mM and high tolerance for glucose (66% activity retained in presence of 700 mM glucose). In addition, BgaC possessed transglycosylation activity to produce galactooligosaccharides (GOS) from lactose, as determined by TLC and HPLC analysis. The enzymatic characteristics of B. adolescentis BgaC make it an ideal candidate for dairy industry applications and prebiotic manufacture. Key points • Bifidobacterium adolescentis BgaC β-galactosidase was selected from human faecal metagenome. • BgaC possesses sought-after properties for biotechnology, e.g. low product inhibition. • BgaC has transglycosylation activity producing prebiotic oligosaccharides. Graphical Abstract ![]()
Collapse
|
16
|
Tansirichaiya S, Reynolds LJ, Roberts AP. Functional Metagenomic Screening for Antimicrobial Resistance in the Oral Microbiome. Methods Mol Biol 2021; 2327:31-50. [PMID: 34410638 DOI: 10.1007/978-1-0716-1518-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A large proportion of bacteria, from a multitude of environments, are not yet able to be grown in the laboratory, and therefore microbiological and molecular biological investigations of these bacteria are challenging. A way to circumvent this challenge is to analyze the metagenome, the entire collection of DNA molecules that can be isolated from a particular environment or sample. This collection of DNA molecules can be sequenced and assembled to determine what is present and infer functional potential, or used as a PCR template to detect known target DNA and potentially unknown regions of DNA nearby those targets; however assigning functions to new or conserved hypothetical, functionally cryptic, genes is difficult. Functional metagenomics allows researchers to determine which genes are responsible for selectable phenotypes, such as resistance to antimicrobials and metabolic capabilities, without the prerequisite needs to grow the bacteria containing those genes or to already know which genes are of interest. It is estimated that a third of the resident species of the human oral cavity is not yet cultivable and, together with the ease of sample acquisition, makes this metagenome particularly suited to functional metagenomic studies. Here we describe the methodology related to the collection of saliva samples, extraction of metagenomic DNA, construction of metagenomic libraries, as well as the description of functional assays that have previously led to the identification of new genes conferring antimicrobial resistance.
Collapse
Affiliation(s)
- Supathep Tansirichaiya
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
17
|
Tauzin AS, Pereira MR, Van Vliet LD, Colin PY, Laville E, Esque J, Laguerre S, Henrissat B, Terrapon N, Lombard V, Leclerc M, Doré J, Hollfelder F, Potocki-Veronese G. Investigating host-microbiome interactions by droplet based microfluidics. MICROBIOME 2020; 8:141. [PMID: 33004077 PMCID: PMC7531118 DOI: 10.1186/s40168-020-00911-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Despite the importance of the mucosal interface between microbiota and the host in gut homeostasis, little is known about the mechanisms of bacterial gut colonization, involving foraging for glycans produced by epithelial cells. The slow pace of progress toward understanding the underlying molecular mechanisms is largely due to the lack of efficient discovery tools, especially those targeting the uncultured fraction of the microbiota. RESULTS Here, we introduce an ultra-high-throughput metagenomic approach based on droplet microfluidics, to screen fosmid libraries. Thousands of bacterial genomes can be covered in 1 h of work, with less than ten micrograms of substrate. Applied to the screening of the mucosal microbiota for β-N-acetylgalactosaminidase activity, this approach allowed the identification of pathways involved in the degradation of human gangliosides and milk oligosaccharides, the structural homologs of intestinal mucin glycans. These pathways, whose prevalence is associated with inflammatory bowel diseases, could be the result of horizontal gene transfers with Bacteroides species. Such pathways represent novel targets to study the microbiota-host interactions in the context of inflammatory bowel diseases, in which the integrity of the mucosal barrier is impaired. CONCLUSION By compartmentalizing experiments inside microfluidic droplets, this method speeds up and miniaturizes by several orders of magnitude the screening process compared to conventional approaches, to capture entire metabolic pathways from metagenomic libraries. The method is compatible with all types of (meta)genomic libraries, and employs a commercially available flow cytometer instead of a custom-made sorting system to detect intracellular or extracellular enzyme activities. This versatile and generic workflow will accelerate experimental exploration campaigns in functional metagenomics and holobiomics studies, to further decipher host-microbiota relationships. Video Abstract.
Collapse
Affiliation(s)
- Alexandra S Tauzin
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Mariana Rangel Pereira
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- CAPES Foundation, Ministry of Education of Brazil, BrasÍlia, DF, 70040-020, Brazil
| | - Liisa D Van Vliet
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Drop-Tech, Canterbury Court, Cambridge, CB4 3QU, UK
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Elisabeth Laville
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Jeremy Esque
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Sandrine Laguerre
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicolas Terrapon
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Vincent Lombard
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Marion Leclerc
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
- Metagenopolis, INRAE, F-78350, Jouy-en-Josas, France
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
18
|
van Trijp MPH, Rösch C, An R, Keshtkar S, Logtenberg MJ, Hermes GDA, Zoetendal EG, Schols HA, Hooiveld GJEJ. Fermentation Kinetics of Selected Dietary Fibers by Human Small Intestinal Microbiota Depend on the Type of Fiber and Subject. Mol Nutr Food Res 2020; 64:e2000455. [PMID: 32918522 PMCID: PMC7685165 DOI: 10.1002/mnfr.202000455] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Indexed: 12/25/2022]
Abstract
SCOPE An underexplored topic is the investigation of health effects of dietary fibers via modulation of human small intestine (SI) microbiota. A few previous studies hint at fermentation of some dietary fibers in the distal SI of humans and pigs. Here the potential of human SI microbiota to degrade dietary fibers and produce metabolites in vitro is investigated. METHODS AND RESULTS Fructans, galacto-oligosaccharides, lemon pectins, and isomalto/malto-polysaccharides are subjected to in vitro batch fermentations inoculated with ileostomy effluent from five subjects. Fiber degradation products, formation of bacterial metabolites, and microbiota composition are determined over time. Galacto- and fructo-oligosaccharides are rapidly utilized by the SI microbiota of all subjects. At 5h of fermentation, 31%-82% of galacto-oligosaccharides and 29%-89% fructo-oligosaccharides (degree of polymerization DP4-8) are utilized. Breakdown of fructo-oligosaccharides/inulin DP ≥ 10, lemon pectin, and iso-malto/maltopolysaccharides only started after 7h incubation. Degradation of different fibers result in production of mainly acetate, and changed microbiota composition over time. CONCLUSION Human SI microbiota have hydrolytic potential for prebiotic galacto- and fructo-oligosaccharides. In contrast, the higher molecular weight fibers inulin, lemon pectin, and iso-malto/maltopolysaccharides show slow fermentation rate. Fiber degradation kinetics and microbiota responses are subject dependent, therefore personalized nutritional fiber based strategies are required.
Collapse
Affiliation(s)
- Mara P. H. van Trijp
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen UniversityStippeneng 4WageningenWG 6708The Netherlands
| | - Christiane Rösch
- Laboratory of Food ChemistryWageningen UniversityBornse Weilanden 9WageningenWG 6708The Netherlands
| | - Ran An
- Laboratory of MicrobiologyWageningen UniversityStippeneng 4WageningenWG 6708The Netherlands
| | - Shohreh Keshtkar
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen UniversityStippeneng 4WageningenWG 6708The Netherlands
| | - Madelon J. Logtenberg
- Laboratory of Food ChemistryWageningen UniversityBornse Weilanden 9WageningenWG 6708The Netherlands
| | - Gerben D. A. Hermes
- Laboratory of MicrobiologyWageningen UniversityStippeneng 4WageningenWG 6708The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of MicrobiologyWageningen UniversityStippeneng 4WageningenWG 6708The Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen UniversityBornse Weilanden 9WageningenWG 6708The Netherlands
| | - Guido J. E. J. Hooiveld
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen UniversityStippeneng 4WageningenWG 6708The Netherlands
| |
Collapse
|
19
|
Abdelsalam NA, Ramadan AT, ElRakaiby MT, Aziz RK. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Front Pharmacol 2020; 11:390. [PMID: 32372951 PMCID: PMC7179069 DOI: 10.3389/fphar.2020.00390] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
The harmful impact of xenobiotics on the environment and human health is being more widely recognized; yet, inter- and intraindividual genetic variations among humans modulate the extent of harm, mostly through modulating the outcome of xenobiotic metabolism and detoxification. As the Human Genome Project revealed that host genetic, epigenetic, and regulatory variations could not sufficiently explain the complexity of interindividual variability in xenobiotics metabolism, its sequel, the Human Microbiome Project, is investigating how this variability may be influenced by human-associated microbial communities. Xenobiotic-microbiome relationships are mutual and dynamic. Not only does the human microbiome have a direct metabolizing potential on xenobiotics, but it can also influence the expression of the host metabolizing genes and the activity of host enzymes. On the other hand, xenobiotics may alter the microbiome composition, leading to a state of dysbiosis, which is linked to multiple diseases and adverse health outcomes, including increased toxicity of some xenobiotics. Toxicomicrobiomics studies these mutual influences between the ever-changing microbiome cloud and xenobiotics of various origins, with emphasis on their fate and toxicity, as well the various classes of microbial xenobiotic-modifying enzymes. This review article discusses classic and recent findings in toxicomicrobiomics, with examples of interactions between gut, skin, urogenital, and oral microbiomes with pharmaceutical, food-derived, and environmental xenobiotics. The current state and future prospects of toxicomicrobiomic research are discussed, and the tools and strategies for performing such studies are thoroughly and critically compared.
Collapse
Affiliation(s)
| | - Ahmed Tarek Ramadan
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Marwa Tarek ElRakaiby
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ramy Karam Aziz
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Alessi AM, Gray V, Farquharson FM, Flores-López A, Shaw S, Stead D, Wegmann U, Shearman C, Gasson M, Collie-Duguid ESR, Flint HJ, Louis P. β-Glucan is a major growth substrate for human gut bacteria related to Coprococcus eutactus. Environ Microbiol 2020; 22:2150-2164. [PMID: 32141148 DOI: 10.1111/1462-2920.14977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
A clone encoding carboxymethyl cellulase activity was isolated during functional screening of a human gut metagenomic library using Lactococcus lactis MG1363 as heterologous host. The insert carried a glycoside hydrolase family 9 (GH9) catalytic domain with sequence similarity to a gene from Coprococcus eutactus ART55/1. Genome surveys indicated a limited distribution of GH9 domains among dominant human colonic anaerobes. Genomes of C. eutactus-related strains harboured two GH9-encoding and four GH5-encoding genes, but the strains did not appear to degrade cellulose. Instead, they grew well on β-glucans and one of the strains also grew on galactomannan, galactan, glucomannan and starch. Coprococcus comes and Coprococcus catus strains did not harbour GH9 genes and were not able to grow on β-glucans. Gene expression and proteomic analysis of C. eutactus ART55/1 grown on cellobiose, β-glucan and lichenan revealed similar changes in expression in comparison to glucose. On β-glucan and lichenan only, one of the four GH5 genes was strongly upregulated. Growth on glucomannan led to a transcriptional response of many genes, in particular a strong upregulation of glycoside hydrolases involved in mannan degradation. Thus, β-glucans are a major growth substrate for species related to C. eutactus, with glucomannan and galactans alternative substrates for some strains.
Collapse
Affiliation(s)
- Anna M Alessi
- University of Aberdeen, Rowett Institute, Aberdeen, UK.,Institute of Food Research, Norwich, UK
| | - Victoria Gray
- University of Aberdeen, Rowett Institute, Aberdeen, UK.,University of Aberdeen, Centre for Genome-Enabled Biology and Medicine, Aberdeen, UK
| | | | | | - Sophie Shaw
- University of Aberdeen, Centre for Genome-Enabled Biology and Medicine, Aberdeen, UK
| | - David Stead
- University of Aberdeen, Rowett Institute, Aberdeen, UK
| | - Udo Wegmann
- Institute of Food Research, Norwich, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | | | | | - Harry J Flint
- University of Aberdeen, Rowett Institute, Aberdeen, UK
| | - Petra Louis
- University of Aberdeen, Rowett Institute, Aberdeen, UK
| |
Collapse
|
21
|
Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103838] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Abstract
Prebiotics are increasingly used as food supplements, especially in infant formulas, to modify the functioning and composition of the microbiota. However, little is currently known about the mechanisms of prebiotic recognition and transport by gut bacteria, while these steps are crucial in their metabolism. In this study, we established a new strategy to profile the specificity of oligosaccharide transporters, combining microbiomics, genetic locus and strain engineering, and state-of-the art metabolomics. We revisited the transporter classification database and proposed a new way to classify these membrane proteins based on their structural and mechanistic similarities. Based on these developments, we identified and characterized, at the molecular level, a fructooligosaccharide transporting phosphotransferase system, which constitutes a biomarker of diet and gut pathology. The deciphering of this prebiotic metabolization mechanism by a nonbeneficial bacterium highlights the controversial use of prebiotics, especially in the context of chronic gut diseases. Prebiotic oligosaccharides, such as fructooligosaccharides, are increasingly being used to modulate the composition and activity of the gut microbiota. However, carbohydrate utilization analyses and metagenomic studies recently revealed the ability of deleterious and uncultured human gut bacterial species to metabolize these functional foods. Moreover, because of the difficulties of functionally profiling transmembrane proteins, only a few prebiotic transporters have been biochemically characterized to date, while carbohydrate binding and transport are the first and thus crucial steps in their metabolization. Here, we describe the molecular mechanism of a phosphotransferase system, highlighted as a dietary and pathology biomarker in the human gut microbiome. This transporter is encoded by a metagenomic locus that is highly conserved in several human gut Firmicutes, including Dorea species. We developed a generic strategy to deeply analyze, in vitro and in cellulo, the specificity and functionality of recombinant transporters in Escherichia coli, combining carbohydrate utilization locus and host genome engineering and quantification of the binding, transport, and growth rates with analysis of phosphorylated carbohydrates by mass spectrometry. We demonstrated that the Dorea fructooligosaccharide transporter is specific for kestose, whether for binding, transport, or phosphorylation. This constitutes the biochemical proof of effective phosphorylation of glycosides with a degree of polymerization of more than 2, extending the known functional diversity of phosphotransferase systems. Based on these new findings, we revisited the classification of these carbohydrate transporters. IMPORTANCE Prebiotics are increasingly used as food supplements, especially in infant formulas, to modify the functioning and composition of the microbiota. However, little is currently known about the mechanisms of prebiotic recognition and transport by gut bacteria, while these steps are crucial in their metabolism. In this study, we established a new strategy to profile the specificity of oligosaccharide transporters, combining microbiomics, genetic locus and strain engineering, and state-of-the art metabolomics. We revisited the transporter classification database and proposed a new way to classify these membrane proteins based on their structural and mechanistic similarities. Based on these developments, we identified and characterized, at the molecular level, a fructooligosaccharide transporting phosphotransferase system, which constitutes a biomarker of diet and gut pathology. The deciphering of this prebiotic metabolization mechanism by a nonbeneficial bacterium highlights the controversial use of prebiotics, especially in the context of chronic gut diseases.
Collapse
|
23
|
Kok CR, Gomez Quintero DF, Niyirora C, Rose D, Li A, Hutkins R. An In Vitro Enrichment Strategy for Formulating Synergistic Synbiotics. Appl Environ Microbiol 2019; 85:e01073-19. [PMID: 31201276 PMCID: PMC6677857 DOI: 10.1128/aem.01073-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
Research on the role of diet on gut and systemic health has led to considerable interest toward identifying novel therapeutic modulators of the gut microbiome, including the use of prebiotics and probiotics. However, various host responses have often been reported among many clinical trials. This is in part due to competitive exclusion as a result of the absence of ecological niches as well as host-mediated constraints via colonization resistance. In this research, we developed a novel in vitro enrichment (IVE) method for isolating autochthonous strains that can function as synergistic synbiotics and overcome these constraints. The method relied on stepwise in vitro fecal fermentations to enrich for and isolate Bifidobacterium strains that ferment the prebiotic xylooligosaccharide (XOS). We subsequently isolated Bifidobacterium longum subsp. longum CR15 and then tested its establishment in 20 unique fecal samples with or without XOS. The strain was established in up to 18 samples but only in the presence of XOS. Our findings revealed that the IVE method is suitable for isolating potential synergistic probiotic strains that possess the genetic and biochemical ability to ferment specific prebiotic substrates. The IVE method can be used as an initial high-throughput screen for probiotic selection and isolation prior to further characterization and in vivo tests.IMPORTANCE This study describes an in vitro enrichment method to formulate synergistic synbiotics that have potential for establishing autochthonous strains across multiple individuals. The rationale for this approach-that the chance of survival of a bacterial strain is improved by providing it with its required resources-is based on classic ecological theory. From these experiments, a human-derived strain, Bifidobacterium longum subsp. longum CR15, was identified as a xylooligosaccharide (XOS) fermenter in fecal environments and displayed synergistic effects in vitro The high rate of strain establishment observed in this study provides a basis for using synergistic synbiotics to overcome the responder/nonresponder phenomenon that occurs frequently in clinical trials with probiotic and prebiotic interventions. In addition, this approach can be applied in other protocols that require enrichment of specific bacterial populations prior to strain isolation.
Collapse
Affiliation(s)
- Car Reen Kok
- Department of Food Science and Technology, Nebraska Food for Health Center, Lincoln, Nebraska, USA
| | | | - Clement Niyirora
- Department of Food Science and Technology, Nebraska Food for Health Center, Lincoln, Nebraska, USA
| | - Devin Rose
- Department of Food Science and Technology, Nebraska Food for Health Center, Lincoln, Nebraska, USA
| | - Amanda Li
- Department of Food Science and Technology, Nebraska Food for Health Center, Lincoln, Nebraska, USA
| | - Robert Hutkins
- Department of Food Science and Technology, Nebraska Food for Health Center, Lincoln, Nebraska, USA
| |
Collapse
|
24
|
Stringlis IA, Zhang H, Pieterse CMJ, Bolton MD, de Jonge R. Microbial small molecules - weapons of plant subversion. Nat Prod Rep 2019; 35:410-433. [PMID: 29756135 DOI: 10.1039/c7np00062f] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to 2018 Plants live in close association with a myriad of microbes that are generally harmless. However, the minority of microbes that are pathogens can severely impact crop quality and yield, thereby endangering food security. By contrast, beneficial microbes provide plants with important services, such as enhanced nutrient uptake and protection against pests and diseases. Like pathogens, beneficial microbes can modulate host immunity to efficiently colonize the nutrient-rich niches within and around the roots and aerial tissues of a plant, a phenomenon mirroring the establishment of commensal microbes in the human gut. Numerous ingenious mechanisms have been described by which pathogenic and beneficial microbes in the plant microbiome communicate with their host, including the delivery of immune-suppressive effector proteins and the production of phytohormones, toxins and other bioactive molecules. Plants signal to their associated microbes via exudation of photosynthetically fixed carbon sources, quorum-sensing mimicry molecules and selective secondary metabolites such as strigolactones and flavonoids. Molecular communication thus forms an integral part of the establishment of both beneficial and pathogenic plant-microbe relations. Here, we review the current knowledge on microbe-derived small molecules that can act as signalling compounds to stimulate plant growth and health by beneficial microbes on the one hand, but also as weapons for plant invasion by pathogens on the other. As an exemplary case, we used comparative genomics to assess the small molecule biosynthetic capabilities of the Pseudomonas genus; a genus rich in both plant pathogenic and beneficial microbes. We highlight the biosynthetic potential of individual microbial genomes and the population at large, providing evidence for the hypothesis that the distinction between detrimental and beneficial microbes is increasingly fading. Knowledge on the biosynthesis and molecular activity of microbial small molecules will aid in the development of successful biological agents boosting crop resiliency in a sustainable manner and could also provide scientific routes to pathogen inhibition or eradication.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br J Nutr 2019; 122:131-140. [PMID: 30924428 DOI: 10.1017/s0007114519000680] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gut microbiota has a profound impact on human health. Emerging data show that dietary patterns are associated with different communities of bacterial species within the gut. Prevotella species have been correlated with plant-rich diets, abundant in carbohydrates and fibres. Dysbiosis within the gut ecosystem has been associated with the development of non-communicable diseases such as obesity, the metabolic syndrome, inflammatory bowel disease, irritable bowel syndrome, colorectal cancer, type 1 diabetes, allergies and other diseases. The purpose of this comprehensive literature review was to evaluate the available data on the impact of diet on the Prevotella genus, as a dietary fibre fermenter in the gut as well as its implications as a potential biomarker for homeostasis or disease state through its metabolite signature. Studies were identified by conducting PubMed, Web of Science Core Collection and Google Scholar electronic searches. We found eighty-five publications reporting the impact of dietary patterns on gut microbial communities, including Prevotella or Prevotella/Bacteroides ratio in particular. Moreover, the role of Prevotella species on health status was also evaluated. Prevotella possess a high genetic diversity, representing one of the important groups found in the oral cavity and large intestine of man. The gut commensal Prevotella bacteria contribute to polysaccharide breakdown, being dominant colonisers of agrarian societies. However, studies also suggested a potential role of Prevotella species as intestinal pathobionts. Further metagenomic studies are needed in order to reveal health- or disease-modulating properties of Prevotella species in the gut.
Collapse
|
26
|
Laville E, Perrier J, Bejar N, Maresca M, Esque J, Tauzin AS, Bouhajja E, Leclerc M, Drula E, Henrissat B, Berdah S, Di Pasquale E, Robe P, Potocki-Veronese G. Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol 2019; 10:1286. [PMID: 31275257 PMCID: PMC6593285 DOI: 10.3389/fmicb.2019.01286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
The human Intestinal mucus is formed by glycoproteins, the O- and N-linked glycans which constitute a crucial source of carbon for commensal gut bacteria, especially when deprived of dietary glycans of plant origin. In recent years, a dozen carbohydrate-active enzymes from cultivated mucin degraders have been characterized. But yet, considering the fact that uncultured species predominate in the human gut microbiota, these biochemical data are far from exhaustive. In this study, we used functional metagenomics to identify new metabolic pathways in uncultured bacteria involved in harvesting mucin glycans. First, we performed a high-throughput screening of a fosmid metagenomic library constructed from the ileum mucosa microbiota using chromogenic substrates. The screening resulted in the isolation of 124 clones producing activities crucial in the degradation of human O- and N-glycans, namely sialidases, β-D-N-acetyl-glucosaminidase, β-D-N-acetyl-galactosaminidase, and/or β-D-mannosidase. Thirteen of these clones were selected based on their diversified functional profiles and were further analyzed on a secondary screening. This step consisted of lectin binding assays to demonstrate the ability of the clones to degrade human intestinal mucus. In total, the structural modification of several mucin motifs, sialylated mucin ones in particular, was evidenced for nine clones. Sequencing their metagenomic loci highlighted complex catabolic pathways involving the complementary functions of glycan sensing, transport, hydrolysis, deacetylation, and deamination, which were sometimes associated with amino acid metabolism machinery. These loci are assigned to several Bacteroides and Feacalibacterium species highly prevalent and abundant in the gut microbiome and explain the metabolic flexibility of gut bacteria feeding both on dietary and human glycans.
Collapse
Affiliation(s)
| | - Josette Perrier
- iSm2, Centrale Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Nada Bejar
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | - Marc Maresca
- iSm2, Centrale Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Jeremy Esque
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | | | - Emna Bouhajja
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | - Marion Leclerc
- UMR1319, Micalis, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Elodie Drula
- CNRS, Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- USC 1408 AFMB, INRA, Marseille, France
| | - Bernard Henrissat
- CNRS, Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- USC 1408 AFMB, INRA, Marseille, France
| | - Stephane Berdah
- UMRT24 IFSTTAR, Laboratoire de Biomécanique Appliquée, Faculté de Médecine Secteur Nord, Aix-Marseille University, Marseille, France
- Inst Neurophysiopathol, INP, CNRS, Aix-Marseille Université, Marseille, France
| | - Eric Di Pasquale
- UMRT24 IFSTTAR, Laboratoire de Biomécanique Appliquée, Faculté de Médecine Secteur Nord, Aix-Marseille University, Marseille, France
- Inst Neurophysiopathol, INP, CNRS, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
27
|
Cherry P, Yadav S, Strain CR, Allsopp PJ, McSorley EM, Ross RP, Stanton C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar Drugs 2019; 17:E327. [PMID: 31159359 PMCID: PMC6627129 DOI: 10.3390/md17060327] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Seaweeds are an underexploited and potentially sustainable crop which offer a rich source of bioactive compounds, including novel complex polysaccharides, polyphenols, fatty acids, and carotenoids. The purported efficacies of these phytochemicals have led to potential functional food and nutraceutical applications which aim to protect against cardiometabolic and inflammatory risk factors associated with non-communicable diseases, such as obesity, type 2 diabetes, metabolic syndrome, cardiovascular disease, inflammatory bowel disease, and some cancers. Concurrent understanding that perturbations of gut microbial composition and metabolic function manifest throughout health and disease has led to dietary strategies, such as prebiotics, which exploit the diet-host-microbe paradigm to modulate the gut microbiota, such that host health is maintained or improved. The prebiotic definition was recently updated to "a substrate that is selectively utilised by host microorganisms conferring a health benefit", which, given that previous discussion regarding seaweed prebiotics has focused upon saccharolytic fermentation, an opportunity is presented to explore how non-complex polysaccharide components from seaweeds may be metabolised by host microbial populations to benefit host health. Thus, this review provides an innovative approach to consider how the gut microbiota may utilise seaweed phytochemicals, such as polyphenols, polyunsaturated fatty acids, and carotenoids, and provides an updated discussion regarding the catabolism of seaweed-derived complex polysaccharides with potential prebiotic activity. Additional in vitro screening studies and in vivo animal studies are needed to identify potential prebiotics from seaweeds, alongside untargeted metabolomics to decipher microbial-derived metabolites from seaweeds. Furthermore, controlled human intervention studies with health-related end points to elucidate prebiotic efficacy are required.
Collapse
Affiliation(s)
- Paul Cherry
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| | - Supriya Yadav
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- College of Science, Engineering and Food Science, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| |
Collapse
|
28
|
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019; 8:E92. [PMID: 30857316 PMCID: PMC6463098 DOI: 10.3390/foods8030092] [Citation(s) in RCA: 614] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Prebiotics are a group of nutrients that are degraded by gut microbiota. Their relationship with human overall health has been an area of increasing interest in recent years. They can feed the intestinal microbiota, and their degradation products are short-chain fatty acids that are released into blood circulation, consequently, affecting not only the gastrointestinal tracts but also other distant organs. Fructo-oligosaccharides and galacto-oligosaccharides are the two important groups of prebiotics with beneficial effects on human health. Since low quantities of fructo-oligosaccharides and galacto-oligosaccharides naturally exist in foods, scientists are attempting to produce prebiotics on an industrial scale. Considering the health benefits of prebiotics and their safety, as well as their production and storage advantages compared to probiotics, they seem to be fascinating candidates for promoting human health condition as a replacement or in association with probiotics. This review discusses different aspects of prebiotics, including their crucial role in human well-being.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Pharmaceutical Biotechnology Incubator, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Mostafa Seifan
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Milad Mohkam
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Aydin Berenjian
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| |
Collapse
|
29
|
Ricke SC. Impact of Prebiotics on Poultry Production and Food Safety. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:151-159. [PMID: 29955220 PMCID: PMC6020725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
With the phasing out of routine use of antibiotics in animal agriculture, interest has grown for the need to develop feed supplements that augment commercial poultry performance and provide food safety benefits. From a food safety perspective, alternative feed supplements can be broadly categorized as either agents which reduce or eliminate already colonized foodborne pathogens or prevent colonization of incoming pathogens. Prebiotics are considered preventative agents since they select for gastrointestinal microbiota which not only benefits the host but can serve as a barrier to pathogen colonization. In poultry, prebiotics can elicit both indirect effects on the bird by shifting the composition and fermentation patterns of the gastrointestinal microbiota or directly by influencing host systems such as immune responses. Generation of short chain fatty acids is believed to be a primary inhibitory mechanism against pathogens when prebiotics are fermented by gastrointestinal bacteria, but other mechanisms such as interference with attachment can occur as well. While most of the impact of the prebiotic is believed to occur in the lower parts of the bird gastrointestinal tract, particularly the ceca, it is possible that some microbial hydrolysis could occur in upper sections such as the crop. Development of next generation sequencing has increased the resolution of identifying gastrointestinal organisms that are involved in metabolism of prebiotics either directly or indirectly. Novel sources of non-digestible oligosaccharides such as cereal grain brans are being explored for potential use in poultry to limit Salmonella establishment. This review will cover the current applications and prospects for use of prebiotics in poultry to improve performance and limit pathogens in the gastrointestinal tract.
Collapse
Affiliation(s)
- Steven C. Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR
| |
Collapse
|
30
|
Bivolarski V, Vasileva T, Gabriel V, Iliev I. Synthesis of glucooligosaccharides with prebiotic potential by glucansucrase URE 13-300 acceptor reactions with maltose, raffinose and lactose. Eng Life Sci 2018; 18:904-913. [PMID: 32624884 DOI: 10.1002/elsc.201800047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
In the present work, we report an efficient synthesis of glucooligosaccharides (GOSs) with prebiotic potential by novel glucansucrase URE 13-300 from Leuconostoc mesenteroides URE 13 strain. The highest total yield of GOSs with degree of polymerization (DP) from 3 to 6 was obtained with maltose as an acceptor and maltose/sucrose (M/S) ratio 1-136 g/L. An efficient modulation of GOSs composition is achieved by varying the M/S ratio. At M/S = 1, 2, 4 and 7 the content of DP3 products gradually increase from 54.50 to 91.70%. When the M/S ratio was decreased the synthesis of DP>3 GOSs is predominant and reaches 75.60% (M/S = 0.25). In addition, the maltose derived GOSs with DP>3, as well as raffinose and lactose glucosylation products have a branched structure which is prerequisite for increased prebiotic potential. The synthesized GOSs were efficiently metabolized by probiotic strains of Lb. plantarum S26, Lb. brevis S27 and Lb. sakei S16, and the calculated values of specific growth rate (μ) were nearly identical to this on glucose media, when maltose derived GOSs were used as a carbohydrate source. Strain specific features were observed in the utilization of the synthesized GOSs, as well as in the production of lactic acid and acetic acid.
Collapse
Affiliation(s)
- Veselin Bivolarski
- Department of Biochemistry and Microbiology Plovdiv University "Paisii Hilendarski" Plovdiv Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology Plovdiv University "Paisii Hilendarski" Plovdiv Bulgaria
| | - Valerie Gabriel
- Laboratory of Food and Environmental Biotechnology (LBAE-EA4565) University Institute of Technology "Paul Sabatier" Auch France
| | - Ilia Iliev
- Department of Biochemistry and Microbiology Plovdiv University "Paisii Hilendarski" Plovdiv Bulgaria
| |
Collapse
|
31
|
Cerdó T, Ruiz A, Acuña I, Jáuregui R, Jehmlich N, Haange SB, von Bergen M, Suárez A, Campoy C. Gut microbial functional maturation and succession during human early life. Environ Microbiol 2018; 20:2160-2177. [PMID: 29687552 DOI: 10.1111/1462-2920.14235] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/08/2018] [Indexed: 12/20/2022]
Abstract
The evolutional trajectory of gut microbial colonization from birth has been shown to prime for health later in life. Here, we combined cultivation-independent 16S rRNA gene sequencing and metaproteomics to investigate the functional maturation of gut microbiota in faecal samples from full-term healthy infants collected at 6 and 18 months of age. Phylogenetic analysis of the metaproteomes showed that Bifidobacterium provided the highest number of distinct protein groups. Considerable divergences between taxa abundance and protein phylogeny were observed at all taxonomic ranks. Age had a profound effect on early microbiota where compositional and functional diversity of less dissimilar communities increased with time. Comparisons of the relative abundances of proteins revealed the transition of taxon-associated saccharolytic and fermentation strategies from milk and mucin-derived monosaccharide catabolism feeding acetate/propanoate synthesis to complex food-derived hexoses fuelling butanoate production. Furthermore, co-occurrence network analysis uncovered two anti-correlated modules of functional taxa. A low-connected Bifidobacteriaceae-centred guild of facultative anaerobes was succeeded by a rich club of obligate anaerobes densely interconnected around Lachnospiraceae, underpinning their pivotal roles in microbial ecosystem assemblies. Our findings establish a framework to visualize whole microbial community metabolism and ecosystem succession dynamics, proposing opportunities for microbiota-targeted health-promoting strategies early in life.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain.,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alicia Ruiz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, Spain
| | - Inmaculada Acuña
- Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, Spain
| | - Ruy Jáuregui
- AgResearch Grasslands, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand
| | - Nico Jehmlich
- Department of Molecular System Biology, Helmholtz Centre for Environmental Research- UFZ, Permoserstraße 15, Leipzig, Germany
| | - Sven-Bastian Haange
- Department of Molecular System Biology, Helmholtz Centre for Environmental Research- UFZ, Permoserstraße 15, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular System Biology, Helmholtz Centre for Environmental Research- UFZ, Permoserstraße 15, Leipzig, Germany
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain.,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain.,Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute, Granada node, Spain
| |
Collapse
|
32
|
Dagkesamanskaya A, Langer K, Tauzin AS, Rouzeau C, Lestrade D, Potocki-Veronese G, Boitard L, Bibette J, Baudry J, Pompon D, Anton-Leberre V. Use of photoswitchable fluorescent proteins for droplet-based microfluidic screening. J Microbiol Methods 2018; 147:59-65. [PMID: 29518436 DOI: 10.1016/j.mimet.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 01/27/2023]
Abstract
Application of droplet-based microfluidics for the screening of microbial libraries is one of the important ongoing developments in functional genomics/metagenomics. In this article, we propose a new method that can be employed for high-throughput profiling of cell growth. It consists of light-driven labelling droplets that contain growing cells directly in a microfluidics observation chamber, followed by recovery of the labelled cells. This method is based on intracellular expression of green-to-red switchable fluorescent proteins. The proof of concept is established here for two commonly used biological models, E. coli and S. cerevisiae. Growth of cells in droplets was monitored under a microscope and, depending on the targeted phenotype, the fluorescence of selected droplets was switched from a "green" to a "red" state. Red fluorescent cells from labelled droplets were then successfully detected, sorted with the Fluorescence Activated Cell Sorting machine and recovered. Finally, the application of this method for different kind of screenings, in particular of metagenomic libraries, is discussed and this idea is validated by the analysis of a model mini-library.
Collapse
Affiliation(s)
| | - Krzysztof Langer
- Laboratoire Colloïdes et Matériaux Divisés, the Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech, CNRS - UMR 8231, PSL* Research University, 10 rue Vauquelin, 75005 Paris, France
| | | | | | | | | | - Laurent Boitard
- Laboratoire Colloïdes et Matériaux Divisés, the Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech, CNRS - UMR 8231, PSL* Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, the Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech, CNRS - UMR 8231, PSL* Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés, the Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech, CNRS - UMR 8231, PSL* Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Denis Pompon
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | |
Collapse
|
33
|
Boddu RS, Divakar K. Metagenomic Insights into Environmental Microbiome and Their Application in Food/Pharmaceutical Industry. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Ufarté L, Laville E, Duquesne S, Morgavi D, Robe P, Klopp C, Rizzo A, Pizzut-Serin S, Potocki-Veronese G. Discovery of carbamate degrading enzymes by functional metagenomics. PLoS One 2017; 12:e0189201. [PMID: 29240834 PMCID: PMC5730166 DOI: 10.1371/journal.pone.0189201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Bioremediation of pollutants is a major concern worldwide, leading to the research of new processes to break down and recycle xenobiotics and environment contaminating polymers. Among them, carbamates have a very broad spectrum of uses, such as toxinogenic pesticides or elastomers. In this study, we mined the bovine rumen microbiome for carbamate degrading enzymes. We isolated 26 hit clones exhibiting esterase activity, and were able to degrade at least one of the targeted polyurethane and pesticide carbamate compounds. The most active clone was deeply characterized. In addition to Impranil, this clone was active on Tween 20, pNP-acetate, butyrate and palmitate, and on the insecticide fenobucarb. Sequencing and sub-cloning of the best target revealed a novel carboxyl-ester hydrolase belonging to the lipolytic family IV, named CE_Ubrb. This study highlights the potential of highly diverse microbiota such as the ruminal one for the discovery of promiscuous enzymes, whose versatility could be exploited for industrial uses.
Collapse
Affiliation(s)
- Lisa Ufarté
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Sophie Duquesne
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | | | - Christophe Klopp
- Plateforme Bio-informatique Toulouse Genopole, UBIA INRA, Castanet-Tolosan, France
| | - Angeline Rizzo
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | | |
Collapse
|
35
|
Alfa MJ, Strang D, Tappia PS, Graham M, Van Domselaar G, Forbes JD, Laminman V, Olson N, DeGagne P, Bray D, Murray BL, Dufault B, Lix LM. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin Nutr 2017; 37:797-807. [PMID: 28410921 DOI: 10.1016/j.clnu.2017.03.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The elderly often have a diet lacking resistant starch (RS) which is thought to lead to gut microbiome dysbiosis that may result in deterioration of gut colonocytes. OBJECTIVE The primary objective was to assess if elderly (ELD; ≥ 70 years age) had microbiome dysbiosis compared to mid-age (MID; 30-50 years age) adults and then determine the impact of daily consumption of MSPrebiotic® (a RS) or placebo over 3 months on gut microbiome composition. Secondary objectives included assessment of stool short-chain fatty acids (SCFA) and inflammatory markers in ELD and MID Canadian adults. DESIGN This was a prospective, placebo controlled, randomized, double-blinded study. Stool was collected at enrollment and 6, 10 and 14 weeks after randomization to placebo or MSPrebiotic®. Microbiome analysis was done using 16S rRNA sequencing of DNA extracted from stool. SCFA analysis of stool was performed using gas chromatography. RESULTS There were 42 ELD and 42 MID participants randomized to either placebo or MSPrebiotic® who completed the study. There was significantly higher abundance of Proteobacteria (Escherichia coli/Shigella) in ELD compared to MID at enrollment (p < 0.001) that was not observed after 12 weeks of MSPrebiotic® consumption. There was a significant increase in Bifidobacterium in both ELD and MID compared to placebo (p = 0.047 and 0.006, respectively). There was a small but significant increase in the stool SCFA butyrate levels in the ELD on MSPrebiotic® versus placebo. CONCLUSIONS The study data demonstrated that MSPrebiotic® meets the criteria of a prebiotic and can stimulate an increased abundance of endogenous Bifidobacteria in both ELD and MID without additional probiotic supplementation. MSPrebiotic® consumption also eliminated the dysbiosis of gut Proteobacteria observed in ELD at baseline. CLINICAL TRIAL REGISTRY NUMBER NCT01977183 listed on NIH website: ClinicalTrials.gov. The full trial protocol is available on request from the corresponding author. NUCLEOTIDE SEQUENCE ACCESSION NUMBERS The 16S rRNA sequencing data and metadata generated in this study have been submitted to the NCBI Sequence Read Archive (SRA: http://www.ncbi.nlm.nih.gov/bioproject/381931).
Collapse
Affiliation(s)
- Michelle J Alfa
- St. Boniface Research Centre, Canada; Dept of Medical Microbiology University of Manitoba, Canada.
| | | | | | - Morag Graham
- Dept of Medical Microbiology University of Manitoba, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Gary Van Domselaar
- Dept of Medical Microbiology University of Manitoba, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Jessica D Forbes
- Dept of Medical Microbiology University of Manitoba, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Vanessa Laminman
- National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | | | | | | | | | - Brenden Dufault
- George and Fay Yee Centre for Healthcare Innovation, Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lisa M Lix
- George and Fay Yee Centre for Healthcare Innovation, Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Pantophlet AJ, Wopereis S, Eelderink C, Vonk RJ, Stroeve JH, Bijlsma S, van Stee L, Bobeldijk I, Priebe MG. Metabolic Profiling Reveals Differences in Plasma Concentrations of Arabinose and Xylose after Consumption of Fiber-Rich Pasta and Wheat Bread with Differential Rates of Systemic Appearance of Exogenous Glucose in Healthy Men. J Nutr 2017; 147:152-160. [PMID: 27927976 DOI: 10.3945/jn.116.237404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/01/2016] [Accepted: 11/01/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The consumption of products rich in cereal fiber and with a low glycemic index is implicated in a lower risk of metabolic diseases. Previously, we showed that the consumption of fiber-rich pasta compared with bread resulted in a lower rate of appearance of exogenous glucose and a lower glucose clearance rate quantified with a dual-isotope technique, which was in accordance with a lower insulin and glucose-dependent insulinotropic polypeptide response. OBJECTIVE To gain more insight into the acute metabolic consequences of the consumption of products resulting in differential glucose kinetics, postprandial metabolic profiles were determined. METHODS In a crossover study, 9 healthy men [mean ± SEM age: 21 ± 0.5 y; mean ± SEM body mass index (kg/m2): 22 ± 0.5] consumed wheat bread (132 g) and fresh pasta (119 g uncooked) enriched with wheat bran (10%) meals. A total of 134 different metabolites in postprandial plasma samples (at -5, 30, 60, 90, 120, and 180 min) were quantified by using a gas chromatography-mass spectrometry-based metabolomics approach (secondary outcomes). Two-factor ANOVA and advanced multivariate statistical analysis (partial least squares) were applied to detect differences between both food products. RESULTS Forty-two different postprandial metabolite profiles were identified, primarily representing pathways related to protein and energy metabolism, which were on average 8% and 7% lower after the men consumed pasta rather than bread, whereas concentrations of arabinose and xylose were 58% and 53% higher, respectively. Arabinose and xylose are derived from arabinoxylans, which are important components of wheat bran. The higher bioavailability of arabinose and xylose after pasta intake coincided with a lower rate of appearance of glucose and amino acids. We speculate that this higher bioavailability is due to higher degradation of arabinoxylans by small intestinal microbiota, facilitated by the higher viscosity of arabinoxylans after pasta intake than after bread intake. CONCLUSION This study suggests that wheat bran, depending on the method of processing, can increase the viscosity of the meal bolus in the small intestine and interfere with macronutrient absorption in healthy men, thereby influencing postprandial glucose and insulin responses. This trial was registered at www.controlled-trials.com as ISRCTN42106325.
Collapse
Affiliation(s)
- Andre J Pantophlet
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, and
| | - Suzan Wopereis
- Netherlands Organization for Applied Scientific Research (TNO), Food and Nutrition, Zeist, Netherlands
| | - Coby Eelderink
- Center for Medical Biomics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; and
| | - Roel J Vonk
- Center for Medical Biomics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; and
| | - Johanna H Stroeve
- Netherlands Organization for Applied Scientific Research (TNO), Food and Nutrition, Zeist, Netherlands
| | - Sabina Bijlsma
- Netherlands Organization for Applied Scientific Research (TNO), Food and Nutrition, Zeist, Netherlands
| | - Leo van Stee
- Netherlands Organization for Applied Scientific Research (TNO), Food and Nutrition, Zeist, Netherlands
| | - Ivana Bobeldijk
- Netherlands Organization for Applied Scientific Research (TNO), Food and Nutrition, Zeist, Netherlands
| | - Marion G Priebe
- Center for Medical Biomics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; and
| |
Collapse
|
37
|
Patrascu O, Béguet-Crespel F, Marinelli L, Le Chatelier E, Abraham AL, Leclerc M, Klopp C, Terrapon N, Henrissat B, Blottière HM, Doré J, Béra-Maillet C. A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Sci Rep 2017; 7:40248. [PMID: 28091525 PMCID: PMC5238381 DOI: 10.1038/srep40248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
The digestion of dietary fibers is a major function of the human intestinal microbiota. So far this function has been attributed to the microorganisms inhabiting the colon, and many studies have focused on this distal part of the gastrointestinal tract using easily accessible fecal material. However, microbial fermentations, supported by the presence of short-chain fatty acids, are suspected to occur in the upper small intestine, particularly in the ileum. Using a fosmid library from the human ileal mucosa, we screened 20,000 clones for their activities against carboxymethylcellulose and xylans chosen as models of the major plant cell wall (PCW) polysaccharides from dietary fibres. Eleven positive clones revealed a broad range of CAZyme encoding genes from Bacteroides and Clostridiales species, as well as Polysaccharide Utilization Loci (PULs). The functional glycoside hydrolase genes were identified, and oligosaccharide break-down products examined from different polysaccharides including mixed-linkage β-glucans. CAZymes and PULs were also examined for their prevalence in human gut microbiome. Several clusters of genes of low prevalence in fecal microbiome suggested they belong to unidentified strains rather specifically established upstream the colon, in the ileum. Thus, the ileal mucosa-associated microbiota encompasses the enzymatic potential for PCW polysaccharide degradation in the small intestine.
Collapse
Affiliation(s)
- Orlane Patrascu
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Fabienne Béguet-Crespel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Ludovica Marinelli
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Anne-Laure Abraham
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Marion Leclerc
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | - Nicolas Terrapon
- CNRS UMR 7257, Université Aix-Marseille, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Université Aix-Marseille, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Metagenopolis, INRA, 78350 Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Metagenopolis, INRA, 78350 Jouy-en-Josas, France
| | - Christel Béra-Maillet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
38
|
Tauzin AS, Laville E, Xiao Y, Nouaille S, Le Bourgeois P, Heux S, Portais J, Monsan P, Martens EC, Potocki‐Veronese G, Bordes F. Functional characterization of a gene locus from an uncultured gut
Bacteroides
conferring xylo‐oligosaccharides utilization to
Escherichia coli. Mol Microbiol 2016; 102:579-592. [DOI: 10.1111/mmi.13480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Alexandra S. Tauzin
- LISBP, CNRS, INRA, INSAT, Université de ToulouseToulouse France
- TWB, INRARamonville Saint‐Agne France
| | | | - Yao Xiao
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn Arbor MI USA
| | | | | | - Stéphanie Heux
- LISBP, CNRS, INRA, INSAT, Université de ToulouseToulouse France
| | | | | | - Eric C. Martens
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn Arbor MI USA
| | | | - Florence Bordes
- LISBP, CNRS, INRA, INSAT, Université de ToulouseToulouse France
| |
Collapse
|
39
|
Louis P, Flint HJ, Michel C. How to Manipulate the Microbiota: Prebiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 902:119-42. [PMID: 27161355 DOI: 10.1007/978-3-319-31248-4_9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During the last century, human nutrition has evolved from the definition of our nutritional needs and the identification of ways to meet them, to the identification of food components that can optimise our physiological and psychological functions. This development, which aims to ensure the welfare, health and reduced susceptibility to disease during life, gave birth to the concept of "functional foods". In this context, there is an increasing interest in the physiological effects induced by the dense and diverse microbiota which inhabits the human colon and whose development depends on the fermentation of undigested food residues. Thus, much research aims at identifying ways to guide these impacts in order to benefit the health of the host. It is in this context that the concept of "prebiotics" was developed in the 1990s. Since then, prebiotics have stimulated extensive work in order to clarify their definition, their nature and their physiological properties in accordance with the evolution of knowledge on the intestinal microbiota. However many questions remain open about their specificities, their mechanism(s) of action and therefore the relevance of their current categorisation.
Collapse
Affiliation(s)
- Petra Louis
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Harry J Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Catherine Michel
- UMR Physiologie des Adaptations Nutritionnelles, Université de Nantes, INRA, HNB1- CHU-Hotel DIEU, Place Alexis Ricordeau, 44093, NANTES Cedex 1, France
| |
Collapse
|
40
|
CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems. BMC Genomics 2016; 17:671. [PMID: 27552843 PMCID: PMC4994258 DOI: 10.1186/s12864-016-2988-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and degradation of plant polysaccharides through their production of a vast variety of Glycoside Hydrolases (GH). The CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify enzymes acting on hydrolysis of polysaccharides or glycans. RESULTS This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes were designed using two softwares, and microarrays were directly synthesized using the in situ ink-jet technology. CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from recombinant E. coli strains, which were previously identified by a functional metagenomic approach. The GHs arsenal was also studied in bioprocess conditions using rumen derived microbiota. CONCLUSIONS The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs. It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new efficient candidates for enzymatic conversions from various ecosystems.
Collapse
|
41
|
Boland M. Human digestion--a processing perspective. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2275-2283. [PMID: 26711173 DOI: 10.1002/jsfa.7601] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/14/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
The human digestive system is reviewed in the context of a process with four major unit operations: oral processing to reduce particle size and produce a bolus; gastric processing to initiate chemical and enzymatic breakdown; small intestinal processing to break down macromolecules and absorb nutrients; and fermentation and water removal in the colon. Topics are highlighted about which we need to know more, including effects of aging and dentition on particle size in the bolus, effects of different patterns of food and beverage intake on nutrition, changes in saliva production and composition, mechanical effects of gastric processing, distribution of pH in the stomach, physicochemical and enzymatic effects on nutrient availability and uptake in the small intestine, and the composition, effects of and changes in the microbiota of the colon. Current topics of interest including food synergy, gut-brain interactions, nutritional phenotype and digestion in the elderly are considered. Finally, opportunities for food design based on an understanding of digestive processing are discussed.
Collapse
Affiliation(s)
- Mike Boland
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
42
|
Utzschneider KM, Kratz M, Damman CJ, Hullar M. Mechanisms Linking the Gut Microbiome and Glucose Metabolism. J Clin Endocrinol Metab 2016; 101:1445-54. [PMID: 26938201 PMCID: PMC4880177 DOI: 10.1210/jc.2015-4251] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review details potential mechanisms linking gut dysbiosis to metabolic dysfunction, including lipopolysaccharide, bile acids, short chain fatty acids, gut hormones, and branched-chain amino acids.
Collapse
Affiliation(s)
- Kristina M Utzschneider
- Division of Metabolism, Endocrinology and Nutrition (K.M.U.), Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington; Division of Public Health Sciences (M.K.), Fred Hutchinson Cancer Research Center, and the Department of Epidemiology, University of Washington, Seattle, Washington; Division of Gastroenterology (C.J.D.), Department of Medicine, University of Washington, Seattle, Washington; and Division of Public Health Sciences (M.H.), Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mario Kratz
- Division of Metabolism, Endocrinology and Nutrition (K.M.U.), Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington; Division of Public Health Sciences (M.K.), Fred Hutchinson Cancer Research Center, and the Department of Epidemiology, University of Washington, Seattle, Washington; Division of Gastroenterology (C.J.D.), Department of Medicine, University of Washington, Seattle, Washington; and Division of Public Health Sciences (M.H.), Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chris J Damman
- Division of Metabolism, Endocrinology and Nutrition (K.M.U.), Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington; Division of Public Health Sciences (M.K.), Fred Hutchinson Cancer Research Center, and the Department of Epidemiology, University of Washington, Seattle, Washington; Division of Gastroenterology (C.J.D.), Department of Medicine, University of Washington, Seattle, Washington; and Division of Public Health Sciences (M.H.), Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Meredith Hullar
- Division of Metabolism, Endocrinology and Nutrition (K.M.U.), Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington; Division of Public Health Sciences (M.K.), Fred Hutchinson Cancer Research Center, and the Department of Epidemiology, University of Washington, Seattle, Washington; Division of Gastroenterology (C.J.D.), Department of Medicine, University of Washington, Seattle, Washington; and Division of Public Health Sciences (M.H.), Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
43
|
Yaung SJ, Deng L, Li N, Braff JL, Church GM, Bry L, Wang HH, Gerber GK. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. Mol Syst Biol 2016; 11:788. [PMID: 26148351 PMCID: PMC4380924 DOI: 10.15252/msb.20145866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large‐scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co‐evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.
Collapse
|
44
|
Mondot S, Lepage P. The human gut microbiome and its dysfunctions through the meta-omics prism. Ann N Y Acad Sci 2016; 1372:9-19. [PMID: 26945826 DOI: 10.1111/nyas.13033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/16/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
The microorganisms inhabiting the human gut are abundant (10(14) cells) and diverse (approximately 500 species per individual). It is now acknowledged that the microbiota has coevolved with its host to achieve a symbiotic relationship, leading to physiological homeostasis. The gut microbiota ensures vital functions, such as food digestibility, maturation of the host immune system, and protection against pathogens. Over the last few decades, the gut microbiota has also been associated with numerous diseases, such as inflammatory bowel disease, irritable bowel syndrome, obesity, and metabolic diseases. In most of these pathologies, a microbial dysbiosis has been found, indicating shifts in the taxonomic composition of the gut microbiota and changes in its functionality. Our understanding of the influence of the gut microbiota on human health is still growing. Working with microorganisms residing in the gut is challenging since most of them are anaerobic and a vast majority (approximately 75%) are uncultivable to date. Recently, a wide range of new approaches (meta-omics) has been developed to bypass the uncultivability and reveal the intricate mechanisms that sustain gut microbial homeostasis. After a brief description of these approaches (metagenomics, metatranscriptomics, metaproteomics, and metabolomics), this review will discuss the importance of considering the gut microbiome as a structured ecosystem and the use of meta-omics to decipher dysfunctions of the gut microbiome in diseases.
Collapse
Affiliation(s)
- Stanislas Mondot
- National Institute of Agricultural Research (INRA) and AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Patricia Lepage
- National Institute of Agricultural Research (INRA) and AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
45
|
Ufarté L, Bozonnet S, Laville E, Cecchini DA, Pizzut-Serin S, Jacquiod S, Demanèche S, Simonet P, Franqueville L, Veronese GP. Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes. Methods Mol Biol 2016; 1399:257-71. [PMID: 26791508 DOI: 10.1007/978-1-4939-3369-3_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.
Collapse
Affiliation(s)
- Lisa Ufarté
- INSA, UPS, INP; LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
- UMR792 Ingénierie des Systèmes Biologiques et des Procédés, INRA, 31400, Toulouse, France
- UMR5504, CNRS, 31400, Toulouse, France
| | - Sophie Bozonnet
- INSA, UPS, INP; LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
- UMR792 Ingénierie des Systèmes Biologiques et des Procédés, INRA, 31400, Toulouse, France
- UMR5504, CNRS, 31400, Toulouse, France
| | - Elisabeth Laville
- INSA, UPS, INP; LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
- UMR792 Ingénierie des Systèmes Biologiques et des Procédés, INRA, 31400, Toulouse, France
- UMR5504, CNRS, 31400, Toulouse, France
| | - Davide A Cecchini
- INSA, UPS, INP; LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
- UMR792 Ingénierie des Systèmes Biologiques et des Procédés, INRA, 31400, Toulouse, France
- UMR5504, CNRS, 31400, Toulouse, France
| | - Sandra Pizzut-Serin
- INSA, UPS, INP; LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
- UMR792 Ingénierie des Systèmes Biologiques et des Procédés, INRA, 31400, Toulouse, France
- UMR5504, CNRS, 31400, Toulouse, France
| | - Samuel Jacquiod
- Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon, Université de Lyon, 69134, Ecully, France
| | - Sandrine Demanèche
- Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon, Université de Lyon, 69134, Ecully, France
| | - Pascal Simonet
- Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon, Université de Lyon, 69134, Ecully, France
| | - Laure Franqueville
- Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon, Université de Lyon, 69134, Ecully, France
| | - Gabrielle Potocki Veronese
- INSA, UPS, INP; LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France.
- UMR792 Ingénierie des Systèmes Biologiques et des Procédés, INRA, 31400, Toulouse, France.
- UMR5504, CNRS, 31400, Toulouse, France.
| |
Collapse
|
46
|
Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC. Current and future resources for functional metagenomics. Front Microbiol 2015; 6:1196. [PMID: 26579102 PMCID: PMC4625089 DOI: 10.3389/fmicb.2015.01196] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022] Open
Abstract
Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries—physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research.
Collapse
Affiliation(s)
- Kathy N Lam
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Jiujun Cheng
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Katja Engel
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| |
Collapse
|
47
|
Lecerf JM, Clerc E, Jaruga A, Wagner A, Respondek F. Postprandial glycaemic and insulinaemic responses in adults after consumption of dairy desserts and pound cakes containing short-chain fructo-oligosaccharides used to replace sugars. J Nutr Sci 2015; 4:e34. [PMID: 26495125 PMCID: PMC4611083 DOI: 10.1017/jns.2015.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/29/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
The present studies aimed to evaluate the glycaemic and insulinaemic responses, in healthy adults, to short-chain fructo-oligosaccharides (scFOS) from sucrose used to replace sugars in foods. Two study populations aged 18-50 years were recruited and they consumed dairy desserts or pound cakes containing either standard sugar content or scFOS to replace 30 % of the sugar content. For each study, the two products were tested once under a double-blind and cross-over design with at least 7 d between the two tests. Glucose and insulin were measured using standard methods in blood samples collected with a venous catheter for 120 min during a kinetic test. For the dairy desserts, replacing 30 % of the sugars with scFOS significantly reduced postprandial glycaemic (AUC0-120 min; P = 0·020) and insulinaemic (AUC0-120 min; P = 0·003) responses. For the pound cakes, the glycaemic response was not altered (AUC0-120 min; P = 0·322) while the insulinaemic response tended to be lower (AUC0-120 min; P = 0·067). This study showed that scFOS can be used to replace sugars with the benefit of lowering the postprandial glycaemic response without increasing the insulinaemic response. The effect might be modulated by other parameters (e.g. fat content) of the food matrices.
Collapse
Affiliation(s)
- J. M. Lecerf
- Nutrition Department, Institut Pasteur de Lille, Lille, France
| | - E. Clerc
- Nutrition Department, Institut Pasteur de Lille, Lille, France
| | - A. Jaruga
- Nutrition Department, Institut Pasteur de Lille, Lille, France
| | - A. Wagner
- Research and Innovation Department, Tereos, Marckolsheim, France
| | - F. Respondek
- Research and Innovation Department, Tereos, Marckolsheim, France
| |
Collapse
|
48
|
Cecchini DA, Fauré R, Laville E, Potocki-Veronese G. Biochemical identification of the catalytic residues of a glycoside hydrolase family 120 β-xylosidase, involved in xylooligosaccharide metabolisation by gut bacteria. FEBS Lett 2015; 589:3098-106. [DOI: 10.1016/j.febslet.2015.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 01/30/2023]
|
49
|
Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front Microbiol 2015; 6:672. [PMID: 26175729 PMCID: PMC4485178 DOI: 10.3389/fmicb.2015.00672] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022] Open
Abstract
Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre Cork, Ireland ; Alimentary Pharmabiotic Centre Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre Cork, Ireland ; School of Microbiology, University College Cork Cork, Ireland
| | | |
Collapse
|
50
|
Ufarté L, Potocki-Veronese G, Laville É. Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol 2015; 6:563. [PMID: 26097471 PMCID: PMC4456863 DOI: 10.3389/fmicb.2015.00563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
Abstract
The rapid expansion of new sequencing technologies has enabled large-scale functional exploration of numerous microbial ecosystems, by establishing catalogs of functional genes and by comparing their prevalence in various microbiota. However, sequence similarity does not necessarily reflect functional conservation, since just a few modifications in a gene sequence can have a strong impact on the activity and the specificity of the corresponding enzyme or the recognition for a sensor. Similarly, some microorganisms harbor certain identified functions yet do not have the expected related genes in their genome. Finally, there are simply too many protein families whose function is not yet known, even though they are highly abundant in certain ecosystems. In this context, the discovery of new protein functions, using either sequence-based or activity-based approaches, is of crucial importance for the discovery of new enzymes and for improving the quality of annotation in public databases. This paper lists and explores the latest advances in this field, along with the challenges to be addressed, particularly where microfluidic technologies are concerned.
Collapse
Affiliation(s)
- Lisa Ufarté
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Gabrielle Potocki-Veronese
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Élisabeth Laville
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| |
Collapse
|