1
|
Joo SH, Chun KS. Therapeutic strategies for colorectal cancer: antitumor efficacy of dopamine D2 receptor antagonists. Toxicol Res 2024; 40:533-540. [PMID: 39345737 PMCID: PMC11436607 DOI: 10.1007/s43188-024-00259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death, accounting for more than half a million deaths annually. Even worse, an increasing number of cancer cases are diagnosed yearly, and two and a half million new cancer cases are estimated to be diagnosed in 2035. Some antipsychotic drugs, especially those targeting dopamine receptor (DR) D2, demonstrated anticancer activity. Studies have revealed the potential of DRD2 antagonists as anticancer therapeutics, whether alone or as an adjuvant, in treating breast cancer, lung cancer, and others. Emerging evidences indicate DRD2 is involved in the CRC biology, and the association between DRD2 and CRC could be utilized in treating CRC. This study selected DRD2 antagonists with anticancer activity to elucidate the possibility of DRD2 antagonists as new therapeutics for treating CRC.
Collapse
Affiliation(s)
- Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan, 38430 Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601 Republic of Korea
| |
Collapse
|
2
|
Hsieh AL, Ganesh S, Kula T, Irshad M, Ferenczi EA, Wang W, Chen YC, Hu SH, Li Z, Joshi S, Haigis MC, Sabatini BL. Widespread Neuroanatomical Integration and Distinct Electrophysiological Properties of Glioma-Innervating Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609573. [PMID: 39253454 PMCID: PMC11383025 DOI: 10.1101/2024.08.25.609573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Gliomas are the most common malignant primary brain tumors and are often associated with severe neurological deficits and mortality. Unlike many cancers, gliomas rarely metastasize outside the brain, indicating a possible dependency on unique features of brain microenvironment. Synapses between neurons and glioma cells exist, suggesting that glioma cells rely on neuronal inputs and synaptic signaling for proliferation. Yet, the locations and properties of neurons that innervate gliomas have remained elusive. In this study, we utilized transsynaptic tracing with a pseudotyped, glycoprotein-deleted rabies virus to specifically infect TVA and glycoprotein-expressing human glioblastoma cells in an orthotopic xenograft mouse model, allowing us to identify the neurons that form synapses onto the gliomas. Comprehensive whole-brain mapping revealed that these glioma-innervating neurons (GINs) consistently arise at brain regions, including diverse neuromodulatory centers and specific cortical layers, known to project to the glioma locations. Molecular profiling revealed that these long-range cortical GINs are predominantly glutamatergic, and subsets express both glutamatergic and GABAergic markers, whereas local striatal GINs are largely GABAergic. Electrophysiological studies demonstrated that while GINs share passive intrinsic properties with cortex-innervating neurons, their action potential waveforms are altered. Our study introduces a novel method for identifying and mapping GINs and reveals their consistent integration into existing location-dependent neuronal network involving diverse neurotransmitters and neuromodulators. The observed intrinsic electrophysiological differences in GINs lay the groundwork for future investigations into how these alterations may correspond with the postsynaptic characteristics of glioma cells. Significance We have developed a novel system utilizing rabies virus-based monosynaptic tracing to directly visualize neurons that synapse onto human glioma cells implanted in mouse brain. This approach enables the mapping and quantitative analysis of these glioma-innervating neurons (GINs) in the entire mouse brain and overcomes previous barriers of molecular and electrophysiological analysis of these neurons due to the inability to identify them. Our findings indicate that GINs integrate into existing neural networks in a location-specific manner. Long-range GINs are mostly glutamatergic, with a subset expressing both glutamatergic and GABAergic markers and local striatal GINs are GABAergic, highlighting a complex neuromodulatory profile. Additionally, GINs exhibit unique action potential characteristics, distinct from similarly selected neurons in non-tumor-bearing brains. This study provides new insights into neuronal adaptations in response to forming putative synapses onto glioma, elucidating the intricate synaptic relationship between GINs and gliomas.
Collapse
|
3
|
Köse SN, Yaraş T, Bursali A, Oktay Y, Yandim C, Karakülah G. Expressions of the satellite repeat HSAT5 and transposable elements are implicated in disease progression and survival in glioma. Turk J Biol 2024; 48:242-256. [PMID: 39296333 PMCID: PMC11407350 DOI: 10.55730/1300-0152.2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/23/2024] [Accepted: 07/01/2024] [Indexed: 09/21/2024] Open
Abstract
The glioma genome encompasses a complex array of dysregulatory events, presenting a formidable challenge in managing this devastating disease. Despite the widespread distribution of repeat and transposable elements across the human genome, their involvement in glioma's molecular pathology and patient survival remains largely unexplored. In this study, we aimed to characterize the links between the expressions of repeat/transposable elements with disease progression and survival in glioma patients. Hence, we analyzed the expression levels of satellite repeats and transposons along with genes in low-grade glioma (LGG) and high-grade glioma (HGG). Endogenous transposable elements LTR5 and HERV_a-int exhibited higher expression in HGG patients, along with immune response-related genes. Altogether, 16 transposable elements were associated with slower progression of disease in LGG patients. Conversely, 22 transposons and the HSAT5 satellite repeat were linked to a shorter event-free survival in HGG patients. Intriguingly, our weighted gene coexpression network analysis (WGCNA) disclosed that the HSAT5 satellite repeat resided in the same module network with genes implicated in chromosome segregation and nuclear division; potentially hinting at its contribution to disease pathogenesis. Collectively, we report for the first time that repeat and/or transposon expression could be related to disease progression and survival in glioma. The expressions of these elements seem to exert a protective effect during LGG-to-HGG progression, whereas they could have a detrimental impact once HGG is established. The results presented herein could serve as a foundation for further experimental work aimed at elucidating the molecular regulation of glioma genome.
Collapse
Affiliation(s)
- Sıla Naz Köse
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, İzmir, Turkiye
| | - Tutku Yaraş
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
- İzmir International Biomedicine and Genome Institute (IBG-İzmir), Dokuz Eylül University, İzmir, Turkiye
| | - Ahmet Bursali
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
| | - Yavuz Oktay
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
- İzmir International Biomedicine and Genome Institute (IBG-İzmir), Dokuz Eylül University, İzmir, Turkiye
| | - Cihangir Yandim
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, İzmir, Turkiye
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
- İzmir International Biomedicine and Genome Institute (IBG-İzmir), Dokuz Eylül University, İzmir, Turkiye
| |
Collapse
|
4
|
Grant CE, Flis AL, Toulabi L, Zingone A, Rossi E, Aploks K, Sheppard H, Ryan BM. DRD1 suppresses cell proliferation and reduces EGFR activation and PD-L1 expression in NSCLC. Mol Oncol 2024; 18:1631-1648. [PMID: 38572507 PMCID: PMC11161724 DOI: 10.1002/1878-0261.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
Dopamine (DA) acts in various key neurological and physiological processes as both a neurotransmitter and circulating hormone. Over the past several decades, the DA signaling network has been shown to regulate the progression of several types of solid tumors, and considerable evidence has shown it is a druggable pathway in the cancer cell context. However, the specific activity and effect of these pathway components appears to be tissue-type and cell-context-dependent. In the present study, expression and methylation of dopamine receptor D1 (DRD1) were measured using RNA sequencing (RNAseq) and reverse transcription polymerase chain reaction (RT-PCR) in non-small cell lung cancer (NSCLC) samples, and validated using publicly available datasets, including The Cancer Genome Atlas (TCGA). In vitro and in vivo functional experiments were performed for cell proliferation and tumor growth, respectively. Mechanistic analyses of the transcriptome and kinome in DRD1-modulated cells informed further experiments, which characterized the effects on the epidermal growth factor receptor (EGFR) pathway and programmed cell death 1 ligand 1 (PD-L1) proteins. Through these experiments, we identified the DRD1 gene as a negative regulator of disease progression in NSCLC. We show that DRD1, as well as other DA pathway components, are expressed in normal human lung tissue, and that loss of DRD1 expression through promoter hypermethylation is a common feature in NSCLC patients and is associated with worse survival. At the cellular level, DRD1 affects proliferation by inhibiting the activation of EGFR and mitogen-activated protein kinase 1/2 (ERK1/2). Interestingly, we also found that DRD1 regulates the expression of PD-L1 in lung cancer cells. Taken together, these results suggest that DRD1 methylation may constitute a biomarker of poor prognosis in NSCLC patients while other components of this pathway could be targeted to improve response to EGFR- and PD-L1-targeted therapies.
Collapse
Affiliation(s)
- Christopher E. Grant
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Amy L. Flis
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Leila Toulabi
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Emily Rossi
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Krist Aploks
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Heather Sheppard
- Veterinary Pathology CoreSt. Jude Children's Research HospitalMemphisTNUSA
| | - Bríd M. Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| |
Collapse
|
5
|
Jackson ER, Persson ML, Fish CJ, Findlay IJ, Mueller S, Nazarian J, Hulleman E, van der Lugt J, Duchatel RJ, Dun MD. A review of current therapeutics targeting the mitochondrial protease ClpP in diffuse midline glioma, H3 K27-altered. Neuro Oncol 2024; 26:S136-S154. [PMID: 37589388 PMCID: PMC11066926 DOI: 10.1093/neuonc/noad144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/18/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are devastating pediatric brain tumors recognized as the leading cause of cancer-related death in children. DMGs are high-grade gliomas (HGGs) diagnosed along the brain's midline. Euchromatin is the hallmark feature of DMG, caused by global hypomethylation of H3K27 either through point mutations in histone H3 genes (H3K27M), or by overexpression of the enhancer of zeste homolog inhibitory protein. In a clinical trial for adults with progressive HGGs, a 22-year-old patient with a thalamic DMG, H3 K27-altered, showed a remarkable clinical and radiological response to dordaviprone (ONC201). This response in an H3 K27-altered HGG patient, coupled with the lack of response of patients harboring wildtype-H3 tumors, has increased the clinical interest in dordaviprone for the treatment of DMG. Additional reports of clinical benefit have emerged, but research defining mechanisms of action (MOA) fall behind dordaviprone's clinical use, with biomarkers of response unresolved. Here, we summarize dordaviprone's safety, interrogate its preclinical MOA identifying the mitochondrial protease "ClpP" as a biomarker of response, and discuss other ClpP agonists, expanding the arsenal of potential weapons in the fight against DMG. Finally, we discuss combination strategies including ClpP agonists, and their immunomodulatory effects suggestive of a role for the tumor microenvironment in DMG patient response.
Collapse
Affiliation(s)
- Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Cameron J Fish
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Sabine Mueller
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery and Pediatric, UCSF, San Francisco, California, USA
| | - Javad Nazarian
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
6
|
Burton E, Ozer BH, Boris L, Brown D, Theeler B. Imipridones and Dopamine Receptor Antagonism in the Therapeutic Management of Gliomas. ADVANCES IN ONCOLOGY 2024; 4:101-110. [PMID: 38868646 PMCID: PMC11165802 DOI: 10.1016/j.yao.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Affiliation(s)
- Eric Burton
- Neuro-oncology Branch, National Cancer Institute, Bethesda, MD
- NOB, Building 82, Room 221, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Byram H. Ozer
- Neuro-oncology Branch, National Cancer Institute, Bethesda, MD
- NOB, Building 82, Room 217, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Lisa Boris
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. Frederick, USA
- NOB, Building 82, Room 203, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Desmond Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, NINDS, Bethesda, MD
- SNB, Building 10-CRC, Room 3D20, 10 Center Drive, Bethesda, MD 20814
| | - Brett Theeler
- Department of Neurology, Uniform Services University of the Health Sciences, Bethesda, MD.Department of Neurology, USUHS, 4301 Jones Bridge Road, Bethesda, MD. 20814
| |
Collapse
|
7
|
Arrillaga-Romany I, Gardner SL, Odia Y, Aguilera D, Allen JE, Batchelor T, Butowski N, Chen C, Cloughesy T, Cluster A, de Groot J, Dixit KS, Graber JJ, Haggiagi AM, Harrison RA, Kheradpour A, Kilburn LB, Kurz SC, Lu G, MacDonald TJ, Mehta M, Melemed AS, Nghiemphu PL, Ramage SC, Shonka N, Sumrall A, Tarapore RS, Taylor L, Umemura Y, Wen PY. ONC201 (Dordaviprone) in Recurrent H3 K27M-Mutant Diffuse Midline Glioma. J Clin Oncol 2024; 42:1542-1552. [PMID: 38335473 PMCID: PMC11095894 DOI: 10.1200/jco.23.01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
PURPOSE Histone 3 (H3) K27M-mutant diffuse midline glioma (DMG) has a dismal prognosis with no established effective therapy beyond radiation. This integrated analysis evaluated single-agent ONC201 (dordaviprone), a first-in-class imipridone, in recurrent H3 K27M-mutant DMG. METHODS Fifty patients (pediatric, n = 4; adult, n = 46) with recurrent H3 K27M-mutant DMG who received oral ONC201 monotherapy in four clinical trials or one expanded access protocol were included. Eligible patients had measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma (HGG) criteria and performance score (PS) ≥60 and were ≥90 days from radiation; pontine and spinal tumors were ineligible. The primary end point was overall response rate (ORR) by RANO-HGG criteria. Secondary end points included duration of response (DOR), time to response (TTR), corticosteroid response, PS response, and ORR by RANO low-grade glioma (LGG) criteria. Radiographic end points were assessed by dual-reader, blinded independent central review. RESULTS The ORR (RANO-HGG) was 20.0% (95% CI, 10.0 to 33.7). The median TTR was 8.3 months (range, 1.9-15.9); the median DOR was 11.2 months (95% CI, 3.8 to not reached). The ORR by combined RANO-HGG/LGG criteria was 30.0% (95% CI, 17.9 to 44.6). A ≥50% corticosteroid dose reduction occurred in 7 of 15 evaluable patients (46.7% [95% CI, 21.3 to 73.4]); PS improvement occurred in 6 of 34 evaluable patients (20.6% [95% CI, 8.7 to 37.9]). Grade 3 treatment-related treatment-emergent adverse events (TR-TEAEs) occurred in 20.0% of patients; the most common was fatigue (n = 5; 10%); no grade 4 TR-TEAEs, deaths, or discontinuations occurred. CONCLUSION ONC201 monotherapy was well tolerated and exhibited durable and clinically meaningful efficacy in recurrent H3 K27M-mutant DMG.
Collapse
Affiliation(s)
| | | | - Yazmin Odia
- Miami Cancer Institute, part of Baptist Health South Florida, Miami, FL
| | - Dolly Aguilera
- Children's Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA
| | | | | | | | - Clark Chen
- University of Minnesota Medical Center, Minneapolis, MN
| | | | | | | | - Karan S. Dixit
- Northwestern Medical Lou and Jean Malnati Brain Tumor Institute, Chicago, IL
| | | | | | | | | | | | | | | | - Tobey J. MacDonald
- Children's Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA
| | - Minesh Mehta
- Miami Cancer Institute, part of Baptist Health South Florida, Miami, FL
| | | | | | | | | | | | | | - Lynne Taylor
- University of Washington Medical Center, Seattle, WA
| | | | - Patrick Y. Wen
- Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| |
Collapse
|
8
|
Xin DE, Liao Y, Rao R, Ogurek S, Sengupta S, Xin M, Bayat AE, Seibel WL, Graham RT, Koschmann C, Lu QR. Chaetocin-mediated SUV39H1 inhibition targets stemness and oncogenic networks of diffuse midline gliomas and synergizes with ONC201. Neuro Oncol 2024; 26:735-748. [PMID: 38011799 PMCID: PMC10995509 DOI: 10.1093/neuonc/noad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting. METHODS We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth. RESULTS High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to the downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs; however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, a combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy. CONCLUSIONS Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.
Collapse
Affiliation(s)
- Dazhuan Eric Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yunfei Liao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Arman Esshaghi Bayat
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - William L Seibel
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Richard T Graham
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carl Koschmann
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Wang Y, Liu Z, Tian Y, Zhao H, Fu X. Periampullary cancer and neurological interactions: current understanding and future research directions. Front Oncol 2024; 14:1370111. [PMID: 38567163 PMCID: PMC10985190 DOI: 10.3389/fonc.2024.1370111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Periampullary cancer is a malignant tumor occurring around the ampullary region of the liver and pancreas, encompassing a variety of tissue types and sharing numerous biological characteristics, including interactions with the nervous system. The nervous system plays a crucial role in regulating organ development, maintaining physiological equilibrium, and ensuring life process plasticity, a role that is equally pivotal in oncology. Investigations into nerve-tumor interactions have unveiled their key part in controlling cancer progression, inhibiting anti-tumor immune responses, facilitating invasion and metastasis, and triggering neuropathic pain. Despite many mechanisms by which nerve fibers contribute to cancer advancement still being incompletely understood, the growing emphasis on the significance of nerves within the tumor microenvironment in recent years has set the stage for the development of groundbreaking therapies. This includes combining current neuroactive medications with established therapeutic protocols. This review centers on the mechanisms of Periampullary cancer's interactions with nerves, the influence of various types of nerve innervation on cancer evolution, and outlines the horizons for ongoing and forthcoming research.
Collapse
Affiliation(s)
- Yuchen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zi’ang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoliang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- General Surgery Department , Shanxi Bethune Hospital/General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Joghataei MT, Bakhtiarzadeh F, Dehghan S, Ketabforoush AHME, Golab F, Zarbakhsh S, Ahmadirad N. The role of neurotransmitters in glioblastoma multiforme-associated seizures. Int J Dev Neurosci 2023; 83:677-690. [PMID: 37563091 DOI: 10.1002/jdn.10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
GBM, or glioblastoma multiforme, is a brain tumor that poses a great threat to both children and adults, being the primary cause of death related to brain tumors. GBM is often associated with epilepsy, which can be debilitating. Seizures and the development of epilepsy are the primary symptoms that have a severe impact on the quality of life for GBM patients. It is increasingly apparent that the nervous system plays an essential role in the tumor microenvironment for all cancer types, including GBM. In recent years, there has been a growing understanding of how neurotransmitters control the progression of gliomas. Evidence suggests that neurotransmitters and neuromodulators found in the tumor microenvironment play crucial roles in the excitability, proliferation, quiescence, and differentiation of neurons, glial cells, and neural stem cells. The involvement of neurotransmitters appears to play a significant role in various stages of GBM. In this review, the focus is on presenting updated knowledge and emerging ideas regarding the interplay between neurotransmitters and neuromodulators, such as glutamate, GABA, norepinephrine, dopamine, serotonin, adenosine, and their relationship with GBM and the seizures induced by this condition. The review aims to explore the current understanding and provide new insights into the complex interactions between these neurotransmitters and neuromodulators in the context of GBM-related seizures.
Collapse
Affiliation(s)
| | - Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Jackson ER, Duchatel RJ, Staudt DE, Persson ML, Mannan A, Yadavilli S, Parackal S, Game S, Chong WC, Jayasekara WSN, Grand ML, Kearney PS, Douglas AM, Findlay IJ, Germon ZP, McEwen HP, Beitaki TS, Patabendige A, Skerrett-Byrne DA, Nixon B, Smith ND, Day B, Manoharan N, Nagabushan S, Hansford JR, Govender D, McCowage GB, Firestein R, Howlett M, Endersby R, Gottardo NG, Alvaro F, Waszak SM, Larsen MR, Colino-Sanguino Y, Valdes-Mora F, Rakotomalala A, Meignan S, Pasquier E, André N, Hulleman E, Eisenstat DD, Vitanza NA, Nazarian J, Koschmann C, Mueller S, Cain JE, Dun MD. ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma. Cancer Res 2023; 83:CAN-23-0186. [PMID: 37145169 PMCID: PMC10345962 DOI: 10.1158/0008-5472.can-23-0186] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023]
Abstract
Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992.
Collapse
Affiliation(s)
- Evangeline R. Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ryan J. Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sridevi Yadavilli
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
- Brain Tumor Institute, Children's National Hospital, Washington, DC
| | - Sarah Parackal
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Shaye Game
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Wai Chin Chong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - W. Samantha N. Jayasekara
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France
| | - Padraic S. Kearney
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alicia M. Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J. Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P. Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Holly P. McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tyrone S. Beitaki
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - David A. Skerrett-Byrne
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan D. Smith
- Analytical and Biomolecular Research Facility Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bryan Day
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neevika Manoharan
- Department of Paediatric Oncology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Sumanth Nagabushan
- Department of Paediatric Oncology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australia ImmunoGenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Dinisha Govender
- Department of Oncology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Geoff B. McCowage
- Department of Oncology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Meegan Howlett
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Raelene Endersby
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Nicholas G. Gottardo
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
- Department of Pediatric and Adolescent Oncology and Hematology, Perth Children's Hospital, Perth, Australia
| | - Frank Alvaro
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Yolanda Colino-Sanguino
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, New South Wales, Australia
- School of Women's and Children's Health, University of NSW, Sydney, New South Wales, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, New South Wales, Australia
- School of Women's and Children's Health, University of NSW, Sydney, New South Wales, Australia
| | - Andria Rakotomalala
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, Lille, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Samuel Meignan
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, Lille, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France
- Metronomics Global Health Initiative, Marseille, France
| | - Nicolas André
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France
- Metronomics Global Health Initiative, Marseille, France
- Department of Pediatric Oncology, La Timone Children's Hospital, AP-HM, Marseille, France
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - David D. Eisenstat
- Children's Cancer Centre, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Neuro-Oncology Laboratory, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A. Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
- Department of Pediatrics, University Children's Hospital Zurich, Zurich, Switzerland
- The George Washington University, School of Medicine and Health Sciences, Washington, DC
| | - Carl Koschmann
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Sabine Mueller
- Department of Pediatrics, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Neurology, Neurosurgery and Pediatric, University of California, San Francisco, California
| | - Jason E. Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| |
Collapse
|
12
|
Anastasaki C, Gao Y, Gutmann DH. Neurons as stromal drivers of nervous system cancer formation and progression. Dev Cell 2023; 58:81-93. [PMID: 36693322 PMCID: PMC9883043 DOI: 10.1016/j.devcel.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Aporphine and isoquinoline derivatives block glioblastoma cell stemness and enhance temozolomide cytotoxicity. Sci Rep 2022; 12:21113. [PMID: 36477472 PMCID: PMC9729571 DOI: 10.1038/s41598-022-25534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common primary malignant brain tumor with limited available therapeutic approaches. Despite improvements in therapeutic options for GBM patients, efforts to develop new successful strategies remain as major unmet medical needs. Based on the cytotoxic properties of aporphine compounds, we evaluated the biological effect of 12 compounds obtained through total synthesis of ( ±)-apomorphine hydrochloride (APO) against GBM cells. The compounds 2,2,2-trifluoro-1-(1-methylene-3,4-dihydroisoquinolin-2(1H)-yl)ethenone (A5) and ( ±)-1-(10,11-dimethoxy-6a,7-dihydro-4H-dibenzo[de,g]quinolin-6(5H)-yl)ethenone (C1) reduced the viability of GBM cells, with 50% inhibitory concentration ranging from 18 to 48 μM in patient-derived GBM cultures. Our data show that APO, A5 or C1 modulate the expression of DNA damage and apoptotic markers, impair 3D-gliomasphere growth and reduce the expression of stemness markers. Potential activity and protein targets of A5, C1 or APO were predicted in silico based on PASS and SEA software. Dopamine receptors (DRD1 and 5), CYP2B6, CYP2C9 and ABCB1, whose transcripts were differentially expressed in the GBM cells, were among the potential A5 or C1 target proteins. Docking analyses (HQSAR and 3D-QSAR) were performed to characterize possible interactions of ABCB1 and CYP2C9 with the compounds. Notably, A5 or C1 treatment, but not temozolomide (TMZ), reduced significantly the levels of extracellular ATP, suggesting ABCB1 negative regulation, which was correlated with stronger cytotoxicity induced by the combination of TMZ with A5 or C1 on GBM cells. Hence, our data reveal a potential therapeutic application of A5 and C1 as cytotoxic agents against GBM cells and predicted molecular networks that can be further exploited to characterize the pharmacological effects of these isoquinoline-containing substances.
Collapse
|
14
|
Role of nerves in neurofibromatosis type 1-related nervous system tumors. Cell Oncol (Dordr) 2022; 45:1137-1153. [PMID: 36327093 DOI: 10.1007/s13402-022-00723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that affects nearly 1 in 3000 infants. Neurofibromin inactivation and NF1 gene mutations are involved in various aspects of neuronal function regulation, including neuronal development induction, electrophysiological activity elevation, growth factor expression, and neurotransmitter release. NF1 patients often exhibit a predisposition to tumor development, especially in the nervous system, resulting in the frequent occurrence of peripheral nerve sheath tumors and gliomas. Recent evidence suggests that nerves play a role in the development of multiple tumor types, prompting researchers to investigate the nerve as a vital component in and regulator of the initiation and progression of NF1-related nervous system tumors. CONCLUSION In this review, we summarize existing evidence about the specific effects of NF1 mutation on neurons and emerging research on the role of nerves in neurological tumor development, promising a new set of selective and targeted therapies for NF1-related tumors.
Collapse
|
15
|
Di Ruscio V, Del Baldo G, Fabozzi F, Vinci M, Cacchione A, de Billy E, Megaro G, Carai A, Mastronuzzi A. Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics (Basel) 2022; 12:2064. [PMID: 36140466 PMCID: PMC9497626 DOI: 10.3390/diagnostics12092064] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Diffuse midline glioma (DMG) is a heterogeneous group of aggressive pediatric brain tumors with a fatal prognosis. The biological hallmark in the major part of the cases is H3K27 alteration. Prognosis remains poor, with median survival ranging from 9 to 12 months from diagnosis. Clinical and radiological prognostic factors only partially change the progression-free survival but they do not improve the overall survival. Despite efforts, there is currently no curative therapy for DMG. Radiotherapy remains the standard treatment with only transitory benefits. No chemotherapeutic regimens were found to significantly improve the prognosis. In the new era of a deeper integration between histological and molecular findings, potential new approaches are currently under investigation. The entire international scientific community is trying to target DMG on different aspects. The therapeutic strategies involve targeting epigenetic alterations, such as methylation and acetylation status, as well as identifying new molecular pathways that regulate oncogenic proliferation; immunotherapy approaches too are an interesting point of research in the oncology field, and the possibility of driving the immune system against tumor cells has currently been evaluated in several clinical trials, with promising preliminary results. Moreover, thanks to nanotechnology amelioration, the development of innovative delivery approaches to overcross a hostile tumor microenvironment and an almost intact blood-brain barrier could potentially change tumor responses to different treatments. In this review, we provide a comprehensive overview of available and potential new treatments that are worldwide under investigation, with the intent that patient- and tumor-specific treatment could change the biological inauspicious history of this disease.
Collapse
Affiliation(s)
- Valentina Di Ruscio
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Fabozzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, 00165 Rome, Italy
| | - Maria Vinci
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonella Cacchione
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Emmanuel de Billy
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giacomina Megaro
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
16
|
Laskowska AK, Kleczkowska P. Anticancer efficacy of endo- and exogenous potent ligands acting at dopaminergic receptor-expressing cancer cells. Eur J Pharmacol 2022; 932:175230. [PMID: 36027983 DOI: 10.1016/j.ejphar.2022.175230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
Cancer is one of the most common and dreaded diseases affecting the vastness of society. Unfortunately, still some people die especially when cancer is not diagnosed and thus caught early enough. On the other hand, using available chemo- or radiotherapy may result in serious side effects. Therefore, cancer-specific medications seem to be the most desired and safe therapy. Knowing that some cancers are characterized by overexpression of specific receptors on the cell surface, target-mediated drugs could serve as a unique and effective form of therapy. In line with this, recently dopaminergic receptors were presented important in cancer therapy as several dopaminergic ligands revealed their efficacy in tumor growth reduction as well as in apoptosis mediation. Unfortunately, the indication of whether DA receptor agonists or antagonists are the best choices in cancer treatment is quite difficult, since both of them may exert either pro- or anticancer effects. In this review, we analyze the therapeutic efficacy of compounds, both of exogenous and endogenous origin, targeting dopaminergic receptor-expressing cancers.
Collapse
Affiliation(s)
- Anna K Laskowska
- Centre for Preclinical Research and Technology (CePT), Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411, Warsaw, Poland; Military Institute of Hygiene and Epidemiology, Kozielska 4 Str., 01-163, Warsaw, Poland.
| |
Collapse
|
17
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
18
|
Lauko A, Lo A, Ahluwalia MS, Lathia JD. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol 2022; 82:162-175. [PMID: 33640445 PMCID: PMC9618157 DOI: 10.1016/j.semcancer.2021.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Brain tumors remain one of the most difficult tumors to treat and, depending on the diagnosis, have a poor prognosis. Of brain tumors, glioblastoma (GBM) is the most common malignant glioma and has a dismal prognosis, with only about 5% of patients alive five years after diagnosis. While advances in targeted therapies and immunotherapies are rapidly improving outcomes in a variety of other cancers, the standard of care for GBM has largely remained unaltered since 2005. There are many well-studied challenges that are either unique to brain tumors (i.e., blood-brain barrier and immunosuppressive environment) or amplified within GBM (i.e., tumor heterogeneity at the cellular and molecular levels, plasticity, and cancer stem cells) that make this disease particularly difficult to treat. While we touch on all these concepts, the focus of this review is to discuss the immense inter- and intra-tumoral heterogeneity and advances in our understanding of tumor cell plasticity and epigenetics in GBM. With each improvement in technology, our understanding of the complexity of tumoral heterogeneity and plasticity improves and we gain more clarity on the causes underlying previous therapeutic failures. However, these advances are unlocking new therapeutic opportunities that scientists and physicians are currently exploiting and have the potential for new breakthroughs.
Collapse
Affiliation(s)
- Adam Lauko
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alice Lo
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Manmeet S Ahluwalia
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
19
|
Manoharan GB, Okutachi S, Abankwa D. Potential of phenothiazines to synergistically block calmodulin and reactivate PP2A in cancer cells. PLoS One 2022; 17:e0268635. [PMID: 35617282 PMCID: PMC9135253 DOI: 10.1371/journal.pone.0268635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/04/2022] [Indexed: 11/19/2022] Open
Abstract
Phenothiazines (PTZ) were developed as inhibitors of monoamine neurotransmitter receptors, notably dopamine receptors. Because of this activity they have been used for decades as antipsychotic drugs. In addition, they possess significant anti-cancer properties and several attempts for their repurposing were made. However, their incompletely understood polypharmacology is challenging. Here we examined the potential of the PTZ fluphenazine (Flu) and its mustard derivative (Flu-M) to synergistically act on two cancer associated targets, calmodulin (CaM) and the tumor suppressor protein phosphatase 2A (PP2A). Both proteins are known to modulate the Ras- and MAPK-pathway, cell viability and features of cancer cell stemness. Consistently, we show that the combination of a CaM inhibitor and the PP2A activator DT-061 synergistically inhibited the 3D-spheroid formation of MDA-MB-231 (K-Ras-G13D), NCI-H358 (K-Ras-G12C) and A375 (B-raf-V600E) cancer cells, and increased apoptosis in MDA-MB-231. We reasoned that these activities remain combined in PTZ, which were the starting point for PP2A activator development, while several PTZ are known CaM inhibitors. We show that both Flu and Flu-M retained CaM inhibitory activity in vitro and in cells, with a higher potency of the mustard derivative in cells. In line with the CaM dependence of Ras plasma membrane organization, the mustard derivative potently reduced the functional membrane organization of oncogenic Ras, while DT-061 had a negligible effect. Like DT-061, both PTZ potently decreased c-MYC levels, a hallmark of PP2A activation. Benchmarking against the KRAS-G12C specific inhibitor AMG-510 in MIA PaCa-2 cells revealed a higher potency of Flu-M than combinations of DT-061 and a CaM inhibitor on MAPK-output and a strong effect on cell proliferation. While our study is limited, our results suggest that improved PTZ derivatives that retain both, their CaM inhibitory and PP2A activating properties, but have lost their neurological side-effects, may be interesting to pursue further as anti-cancer agents.
Collapse
Affiliation(s)
- Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sunday Okutachi
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- * E-mail:
| |
Collapse
|
20
|
Grant CE, Flis A, Ryan BM. Understanding the Role of Dopamine in Cancer: Past, Present, and Future. Carcinogenesis 2022; 43:517-527. [PMID: 35616105 DOI: 10.1093/carcin/bgac045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Dopamine (DA, 3-hydroxytyramine) is member of the catecholamine family and is classically characterized according to its role in the central nervous system as a neurotransmitter. In recent decades, many novel and intriguing discoveries have been made about the peripheral expression of DA receptors (DRs) and the role of DA signaling in both normal and pathological processes. Drawing from decades of evidence suggesting a link between DA and cancer, the DA pathway (DAP) has recently emerged as a potential target in antitumor therapies. Due to the onerous, expensive, and frequently unsuccessful nature of drug development, the repurposing of dopaminergic drugs for cancer therapy has the potential to greatly benefit patients and drug developers alike. However, the lack of clear mechanistic data supporting the direct involvement of DRs and their downstream signaling components in cancer represents an ongoing challenge that has limited the translation of these drugs to the clinic. Despite this, the breadth of evidence linking DA to cancer and non-tumor cells in the tumor microenvironment (TME) justifies further inquiry into the potential applications of this treatment modality in cancer. Herein, we review the literature characterizing the interplay between the DA signaling axis and cancer, highlighting key findings, and then propose rational lines of investigation to follow.
Collapse
Affiliation(s)
- Christopher E Grant
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Amy Flis
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
21
|
Shi Y, Luo J, Wang X, Zhang Y, Zhu H, Su D, Yu W, Tian J. Emerging Trends on the Correlation Between Neurotransmitters and Tumor Progression in the Last 20 Years: A Bibliometric Analysis via CiteSpace. Front Oncol 2022; 12:800499. [PMID: 35280754 PMCID: PMC8907850 DOI: 10.3389/fonc.2022.800499] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 01/15/2023] Open
Abstract
Background Bibliometric analysis is used to gain a systematic understanding of developments in the correlation between neurotransmitters and tumor progression in research hotspots over the past 20 years. Methods Relevant publications from the Web of Science Core Collection (WoSCC) were downloaded on August 1, 2021. Acquired data were then analyzed using the Online Analysis Platform of Literature Metrology (http://biblimetric.com) and the CiteSpace software to analyze and predict trends and hot spots in this field. Results A total of 1310 publications on neurotransmitters and tumor progression were identified, and 1285 qualified records were included in the final analysis. The country leading the research was the United States of America. The University of Buenos Aires featured the highest number of publications among all institutions. Co-citation cluster labels revealed the characteristics of 10 main clusters: beta-adrenergic receptors (β-AR), glutamate, neurotransmitters, serotonin, drd2, histamine, glycine, interleukin-2, neurokinin receptor-1, and nicotinic acetylcholine receptors (AchRs). Keywords and references burst detection indicated that apart from β-AR, dopamine receptor and cancer types like gastric cancer and glioblastoma are the newly emerging research hotspots. Conclusions This study analyzed 1285 publications and 39677 references covering the topic of neurotransmitters and tumor progression and showed that while β-AR has always been a hot topic in this field, dopamine receptor is an emerging target for this research field, and gastric cancer and glioblastoma are the top two tumors that have garnered increasing attention and have become the focal point of recent studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Miete C, Solis GP, Koval A, Brückner M, Katanaev VL, Behrens J, Bernkopf DB. Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth. Nat Commun 2022; 13:674. [PMID: 35115535 PMCID: PMC8814139 DOI: 10.1038/s41467-022-28286-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Conductin/axin2 is a scaffold protein negatively regulating the pro-proliferative Wnt/β-catenin signaling pathway. Accumulation of scaffold proteins in condensates frequently increases their activity, but whether condensation contributes to Wnt pathway inhibition by conductin remains unclear. Here, we show that the Gαi2 subunit of trimeric G-proteins induces conductin condensation by targeting a polymerization-inhibiting aggregon in its RGS domain, thereby promoting conductin-mediated β-catenin degradation. Consistently, transient Gαi2 expression inhibited, whereas knockdown activated Wnt signaling via conductin. Colorectal cancers appear to evade Gαi2-induced Wnt pathway suppression by decreased Gαi2 expression and inactivating mutations, associated with shorter patient survival. Notably, the Gαi2-activating drug guanabenz inhibited Wnt signaling via conductin, consequently reducing colorectal cancer growth in vitro and in mouse models. In summary, we demonstrate Wnt pathway inhibition via Gαi2-triggered conductin condensation, suggesting a tumor suppressor function for Gαi2 in colorectal cancer, and pointing to the FDA-approved drug guanabenz for targeted cancer therapy.
Collapse
Affiliation(s)
- Cezanne Miete
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Gonzalo P Solis
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Martina Brückner
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, 690922, Vladivostok, Russia
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Dominic B Bernkopf
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
23
|
Shi DD, Guo JA, Hoffman HI, Su J, Mino-Kenudson M, Barth JL, Schenkel JM, Loeffler JS, Shih HA, Hong TS, Wo JY, Aguirre AJ, Jacks T, Zheng L, Wen PY, Wang TC, Hwang WL. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol 2022; 23:e62-e74. [PMID: 35114133 PMCID: PMC9516432 DOI: 10.1016/s1470-2045(21)00596-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
With increasing attention on the essential roles of the tumour microenvironment in recent years, the nervous system has emerged as a novel and crucial facilitator of cancer growth. In this Review, we describe the foundational, translational, and clinical advances illustrating how nerves contribute to tumour proliferation, stress adaptation, immunomodulation, metastasis, electrical hyperactivity and seizures, and neuropathic pain. Collectively, this expanding knowledge base reveals multiple therapeutic avenues for cancer neuroscience that warrant further exploration in clinical studies. We discuss the available clinical data, including ongoing trials investigating novel agents targeting the tumour-nerve axis, and the therapeutic potential for repurposing existing neuroactive drugs as an anti-cancer approach, particularly in combination with established treatment regimens. Lastly, we discuss the clinical challenges of these treatment strategies and highlight unanswered questions and future directions in the burgeoning field of cancer neuroscience.
Collapse
Affiliation(s)
- Diana D Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Jimmy A Guo
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hannah I Hoffman
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, MA, USA
| | - Jennifer Su
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Schenkel
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - William L Hwang
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
24
|
Persico M, Abbruzzese C, Matteoni S, Matarrese P, Campana AM, Villani V, Pace A, Paggi MG. Tackling the Behavior of Cancer Cells: Molecular Bases for Repurposing Antipsychotic Drugs in the Treatment of Glioblastoma. Cells 2022; 11:263. [PMID: 35053377 PMCID: PMC8773942 DOI: 10.3390/cells11020263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is associated with a very dismal prognosis, and current therapeutic options still retain an overall unsatisfactorily efficacy in clinical practice. Therefore, novel therapeutic approaches and effective medications are highly needed. Since the development of new drugs is an extremely long, complex and expensive process, researchers and clinicians are increasingly considering drug repositioning/repurposing as a valid alternative to the standard research process. Drug repurposing is also under active investigation in GBM therapy, since a wide range of noncancer and cancer therapeutics have been proposed or investigated in clinical trials. Among these, a remarkable role is played by the antipsychotic drugs, thanks to some still partially unexplored, interesting features of these agents. Indeed, antipsychotic drugs have been described to interfere at variable incisiveness with most hallmarks of cancer. In this review, we analyze the effects of antipsychotics in oncology and how these drugs can interfere with the hallmarks of cancer in GBM. Overall, according to available evidence, mostly at the preclinical level, it is possible to speculate that repurposing of antipsychotics in GBM therapy might contribute to providing potentially effective and inexpensive therapies for patients with this disease.
Collapse
Affiliation(s)
- Michele Persico
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00162 Rome, Italy;
| | - Anna Maria Campana
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Veronica Villani
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.V.); (A.P.)
| | - Andrea Pace
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.V.); (A.P.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| |
Collapse
|
25
|
The Role of Neuropeptide-Stimulated cAMP-EPACs Signalling in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010311. [PMID: 35011543 PMCID: PMC8746471 DOI: 10.3390/molecules27010311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3′, 5′-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.
Collapse
|
26
|
Wang Y, Chen W, Shi Y, Yan C, Kong Z, Wang Y, Wang Y, Ma W. Imposing Phase II and Phase III Clinical Trials of Targeted Drugs for Glioblastoma: Current Status and Progress. Front Oncol 2021; 11:719623. [PMID: 34568049 PMCID: PMC8458950 DOI: 10.3389/fonc.2021.719623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
The most common primary intracranial tumor is glioma, among which glioblastoma (GBM) has the worst prognosis. Because of the high degree of malignancy of GBM and frequent recurrence after surgery, postoperative therapy, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, is particularly important. A wide variety of targeted drugs have undergone phase III clinical trials for patients with GBM, but these drugs do not work for all patients, and few patients in these trials have prolonged overall survival. In this review, some imposing phase III clinical trials of targeted drugs for glioma are introduced, and some prospective phase II clinical trials that have been completed or are in progress are summarized. In addition, the mechanisms of these drugs are briefly introduced, and deficiencies of these clinical trials are analyzed. This review aims to provide a comprehensive overview of current research on targeted drugs for glioma to clarify future research directions.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqi Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengrui Yan
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
C3G Protein, a New Player in Glioblastoma. Int J Mol Sci 2021; 22:ijms221810018. [PMID: 34576182 PMCID: PMC8466177 DOI: 10.3390/ijms221810018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival.
Collapse
|
28
|
Liu YS, Huang BR, Lin CJ, Shen CK, Lai SW, Chen CW, Lin HJ, Lin CH, Hsieh YC, Lu DY. Paliperidone Inhibits Glioblastoma Growth in Mouse Brain Tumor Model and Reduces PD-L1 Expression. Cancers (Basel) 2021; 13:cancers13174357. [PMID: 34503167 PMCID: PMC8430966 DOI: 10.3390/cancers13174357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The present study showed that a prescribed psychotropic medicine paliperidone inhibits GBM growth and prolongs survival in mouse brain tumor model and decreased the programmed death ligand 1 expression. Using the 3D co-culture also found that dopamine receptor D2 regulates the interaction of GBM-macrophage-induced PD-L1 expression in GBMs. In addition, the expression of DRD2 and PD-L1 in GBM modulates tumor-associated macrophage polarization. Our results also indicated that there is a contact-independent mechanism of PD-L1 induction in GBM upon interaction between GBM and monocytes. The present study also found that the interaction of GBM-macrophage-enhanced PD-L1 expression in GBM occurred by modulating the ERK and STAT3 signaling pathways. In addition, the inhibition of DRD2 reduces the upregulation of PD-1 expression, and it is regulating signaling in GBM. Abstract A previous study from our group reported that monocyte adhesion to glioblastoma (GBM) promoted tumor growth and invasion activity and increased tumor-associated macrophages (TAMs) proliferation and inflammatory mediator secretion as well. The present study showed that prescribed psychotropic medicine paliperidone reduced GBM growth and immune checkpoint protein programmed death ligand (PD-L)1 expression and increased survival in an intracranial xenograft mouse model. An analysis of the database of patients with glioma showed that the levels of PD-L1 and dopamine receptor D (DRD)2 were higher in the GBM group than in the low grade astrocytoma and non-tumor groups. In addition, GFP expressing GBM (GBM-GFP) cells co-cultured with monocytes-differentiated macrophage enhanced PD-L1 expression in GBM cells. The enhancement of PD-L1 in GBM was antagonized by paliperidone and risperidone as well as DRD2 selective inhibitor L741426. The expression of CD206 (M2 phenotype marker) was observed to be markedly increased in bone marrow-derived macrophages (BMDMs) co-cultured with GBM. Importantly, treatment with paliperidone effectively decreased CD206 and also dramatically increased CD80 (M1 phenotype marker) in BMDMs. We have previously established a PD-L1 GBM-GFP cell line that stably expresses PD-L1. Experiments showed that the expressions of CD206 was increased and CD80 was mildly decreased in the BMDMs co-cultured with PD-L1 GBM-GFP cells. On the other hands, knockdown of DRD2 expression in GBM cells dramatically decreased the expression of CD206 but markedly increased CD80 expressions in BMDMs. The present study suggests that DRD2 may be involved in regulating the PD-L1 expression in GBM and the microenvironment of GBM. Our results provide a valuable therapeutic strategy and indicate that treatments combining DRD2 antagonist paliperidone with standard immunotherapy may be beneficial for GBM treatment.
Collapse
Affiliation(s)
- Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-S.L.); (S.-W.L.); (H.-J.L.)
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 404, Taiwan;
- School of Medicine, Tzu Chi University, Taichung 404, Taiwan
| | - Ching-Ju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-S.L.); (S.-W.L.); (H.-J.L.)
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan;
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-S.L.); (S.-W.L.); (H.-J.L.)
| | - Chia-Huei Lin
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan; (C.-H.L.); (Y.-C.H.)
| | - Yun-Chen Hsieh
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan; (C.-H.L.); (Y.-C.H.)
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-S.L.); (S.-W.L.); (H.-J.L.)
- Department of Photonics and Communication Engineering, Asia University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-422-053-366 (ext. 2253)
| |
Collapse
|
29
|
Free RB, Cuoco CA, Xie B, Namkung Y, Prabhu VV, Willette BKA, Day MM, Sanchez-Soto M, Lane JR, Laporte SA, Shi L, Allen JE, Sibley DR. Pharmacological characterization of the imipridone anti-cancer drug ONC201 reveals a negative allosteric mechanism of action at the D 2 dopamine receptor. Mol Pharmacol 2021; 100:372-387. [PMID: 34353882 DOI: 10.1124/molpharm.121.000336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
ONC201 is a first-in-class imipridone compound that is in clinical trials for the treatment of high-grade gliomas and other advanced cancers. Recent studies identified that ONC201 antagonizes D2-like dopamine receptors at therapeutically relevant concentrations. In the current study, characterization of ONC201 using radioligand binding and multiple functional assays revealed that it was a full antagonist of the D2 and D3 receptors (D2R and D3R) with low micromolar potencies, similar to its potency for anti-proliferative effects. Curve-shift experiments using D2R-mediated b-arrestin recruitment and cAMP assays revealed that ONC201 exhibited a mixed form of antagonism. An operational model of allostery was used to analyze these data, which suggested that the predominant modulatory effect of ONC201 was on dopamine efficacy with little to no effect on dopamine affinity. To investigate how ONC201 binds to the D2R, we employed scanning mutagenesis coupled with a D2R-mediated calcium efflux assay. Eight residues were identified as being important for ONC201's functional antagonism of the D2R. Mutation of these residues followed by assessing ONC201 antagonism in multiple signaling assays highlighted specific residues involved in ONC201 binding. Together with computational modeling and simulation studies, our results suggest that ONC201 interacts with the D2R in a bitopic manner where the imipridone core of the molecule protrudes into the orthosteric binding site, but does not compete with dopamine, whereas a secondary phenyl ring engages an allosteric binding pocket that may be associated with negative modulation of receptor activity. Significance Statement ONC201 is a novel antagonist of the D2 dopamine receptor with demonstrated efficacy in the treatment of various cancers, especially high-grade glioma. In this study, we demonstrate that it antagonizes the D2 receptor with novel bitopic and negative allosteric mechanisms of action, which may explain its high selectivity and some of its clinical anti-cancer properties that are distinct from other D2 receptor antagonists widely used for the treatment of schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- R Benjamin Free
- Molecular Neuropharmacology Section, NIH / NINDS, United States
| | | | | | | | | | | | | | | | - J Robert Lane
- Universities of Birmingham and Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Lee H, Shim S, Kong JS, Kim MJ, Park S, Lee SS, Kim A. Overexpression of dopamine receptor D2 promotes colorectal cancer progression by activating the β-catenin/ZEB1 axis. Cancer Sci 2021; 112:3732-3743. [PMID: 34118099 PMCID: PMC8409418 DOI: 10.1111/cas.15026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a recurring cancer that is often resistant to conventional therapies and therefore requires the development of molecular-based therapeutic approaches. Dopamine receptor D2 (DRD2) is associated with the growth of many types of tumors, but its oncogenic role in CRC is unclear. Here, we observed that elevated DRD2 expression was associated with a poor survival rate among patients with CRC. Depletion of DRD2 suppressed CRC cell growth and motility by downregulating β-catenin/ZEB signaling in vitro and in vivo, whereas overexpression of DRD2 promoted CRC cell progression. Inhibition of DRD2 by the antagonist pimozide inhibited tumor growth and lymph node metastasis in vivo and enhanced the cytotoxic effects of conventional agents in vitro. Taken together, our findings indicate that targeting the DRD2/β-catenin/ZEB1 signaling axis is a potentially promising therapeutic strategy for patients with CRC.
Collapse
Affiliation(s)
- Hyunjung Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, Korea
| | - Joon Seog Kong
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, Korea
| |
Collapse
|
31
|
Perrone MG, Ruggiero A, Centonze A, Carrieri A, Ferorelli S, Scilimati A. Diffuse Intrinsic Pontine Glioma (DIPG): Breakthrough and Clinical Perspective. Curr Med Chem 2021; 28:3287-3317. [PMID: 32767913 DOI: 10.2174/0929867327666200806110206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) mainly affects children with a median age of 6-7 years old. It accounts for 10% of all pediatric tumors. Unfortunately, DIPG has a poor prognosis, and the median survival is generally less than 16-24 months independently from the treatment received. Up to now, children with DIPG are treated with focal radiotherapy alone or in combination with antitumor agents. In the last decade, ONC201 known as dopamine receptor antagonist was uncovered, by a high throughput screening of public libraries of compounds, to be endowed with cytotoxic activity against several cancer cell lines. Efforts were made to identify the real ONC201 target, responsible for its antiproliferative effect. The hypothesized targets were the Tumor necrosis factor-Related Apoptosis-Inducing Ligand stimulation (TRAIL), two oncogenic kinases (ERK/AKT system) that target the same tumor-suppressor gene (FOXO3a), dopamine receptors (DRD2 and DRD3 subtypes) and finally the mitochondrial Caseynolitic Protease P (ClpP). ONC201 structure-activity relationship is extensively discussed in this review, together with other two classes of compounds, namely ADEPs and D9, already known for their antibiotic activity but noteworthy to be discussed and studied as potential "leads" for the development of new drugs to be used in the treatment of DIPG. In this review, a detailed and critical description of ONC201, ADEPs, and D9 pro-apoptotic activity is made, with particular attention to the specific interactions established with its targets that also are intimately described. Pubmed published patents and clinical trial reports of the last ten years were used as the bibliographic source.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonella Centonze
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
32
|
D’Alessandro G, Lauro C, Quaglio D, Ghirga F, Botta B, Trettel F, Limatola C. Neuro-Signals from Gut Microbiota: Perspectives for Brain Glioma. Cancers (Basel) 2021; 13:2810. [PMID: 34199968 PMCID: PMC8200200 DOI: 10.3390/cancers13112810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma tumor in adult brain. Among the numerous factors responsible for GBM cell proliferation and invasion, neurotransmitters such as dopamine, serotonin and glutamate can play key roles. Studies performed in mice housed in germ-free (GF) conditions demonstrated the relevance of the gut-brain axis in a number of physiological and pathological conditions. The gut-brain communication is made possible by vagal/nervous and blood/lymphatic routes and pave the way for reciprocal modulation of functions. The gut microbiota produces and consumes a wide range of molecules, including neurotransmitters (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid [GABA], and glutamate) that reach their cellular targets through the bloodstream. Growing evidence in animals suggests that modulation of these neurotransmitters by the microbiota impacts host neurophysiology and behavior, and affects neural cell progenitors and glial cells, along with having effects on tumor cell growth. In this review we propose a new perspective connecting neurotransmitter modulation by gut microbiota to glioma progression.
Collapse
Affiliation(s)
- Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Cristina Limatola
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia, 00185 Rome, Italy
| |
Collapse
|
33
|
Williford SE, Libby CJ, Ayokanmbi A, Otamias A, Gordillo JJ, Gordon ER, Cooper SJ, Redmann M, Li Y, Griguer C, Zhang J, Napierala M, Ananthan S, Hjelmeland AB. Novel dopamine receptor 3 antagonists inhibit the growth of primary and temozolomide resistant glioblastoma cells. PLoS One 2021; 16:e0250649. [PMID: 33945569 PMCID: PMC8096095 DOI: 10.1371/journal.pone.0250649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Treatment for the lethal primary adult brain tumor glioblastoma (GBM) includes the chemotherapy temozolomide (TMZ), but TMZ resistance is common and correlates with promoter methylation of the DNA repair enzyme O-6-methylguanine-DNA methyltransferase (MGMT). To improve treatment of GBMs, including those resistant to TMZ, we explored the potential of targeting dopamine receptor signaling. We found that dopamine receptor 3 (DRD3) is expressed in GBM and is also a previously unexplored target for therapy. We identified novel antagonists of DRD3 that decreased the growth of GBM xenograft-derived neurosphere cultures with minimal toxicity against human astrocytes and/or induced pluripotent stem cell-derived neurons. Among a set of DRD3 antagonists, we identified two compounds, SRI-21979 and SRI-30052, that were brain penetrant and displayed a favorable therapeutic window analysis of The Cancer Genome Atlas data demonstrated that higher levels of DRD3 (but not DRD2 or DRD4) were associated with worse prognosis in primary, MGMT unmethylated tumors. These data suggested that DRD3 antagonists may remain efficacious in TMZ-resistant GBMs. Indeed, SRI-21979, but not haloperidol, significantly reduced the growth of TMZ-resistant GBM cells. Together our data suggest that DRD3 antagonist-based therapies may provide a novel therapeutic option for the treatment of GBM.
Collapse
Affiliation(s)
- Sarah E. Williford
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Catherine J. Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Adetokunbo Ayokanmbi
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Arphaxad Otamias
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Juan J. Gordillo
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Emily R. Gordon
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Sara J. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Matthew Redmann
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Yanjie Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Corinne Griguer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Subramaniam Ananthan
- Chemistry Department, Southern Research, Birmingham, AL, United States of America
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
34
|
Weissenrieder JS, Reed JL, Moldovan G, Johnson MT, Trebak M, Neighbors JD, Mailman RB, Hohl RJ. Antipsychotic drugs elicit cytotoxicity in glioblastoma multiforme in a calcium-dependent, non-D 2 receptor-dependent, manner. Pharmacol Res Perspect 2021; 9:e00689. [PMID: 34003586 PMCID: PMC8130568 DOI: 10.1002/prp2.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Dopamine D2 -like receptor antagonists have been suggested as being potential anticancer therapeutics with specific utility for central nervous system cancers due to their ability to cross the blood-brain barrier. Despite a plethora of data reporting anticancer effects for D2 R antagonists in cell or animal studies, the ligand concentrations or doses required to achieve such effects greatly exceed the levels known to cause high degrees of occupancy of the D2 receptor. To resolve this conundrum, we interrogated a panel of glioblastoma multiforme (GBM) cell lines using D2 antagonists of varying chemotype. We studied the cytotoxic effects of these compounds, and also ascertained the expression of D2 receptors (D2 R) on these cells. Although several chemotypes of D2 R antagonists, including phenothiazines and phenylbutylpiperidines, were effective against GBM cell line cultures, the highly selective antagonist remoxipride had no anticancer activity at biologically relevant concentrations. Moreover the D2 R antagonist-induced cytotoxicity in monolayer cultures was independent of whether the cells expressed D2 R. Instead, cytotoxicity was associated with a rapid, high-magnitude calcium flux into the cytoplasm and mitochondria, which then induced depolarization and apoptosis. Blocking this flux protected the GBM cell lines U87MG, U251MG, and A172. Together, these data suggest that the cytotoxicity of these D2 R antagonists involves calcium signaling mechanisms, not D2 R antagonism. Repurposing of existing drugs should focus on the former, not latter, mechanism.
Collapse
Affiliation(s)
- Jillian S. Weissenrieder
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - Jessie L. Reed
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - George‐Lucian Moldovan
- Penn State Cancer InstituteHersheyPAUSA
- Department of Biochemistry and Molecular BiologyPenn State College of MedicineHersheyPAUSA
| | - Martin T. Johnson
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Mohamed Trebak
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Jeffrey D. Neighbors
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | | | - Raymond J. Hohl
- Department of MedicinePenn State College of MedicineHersheyPAUSA
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| |
Collapse
|
35
|
He Y, Li J, Koga T, Ma J, Dhawan S, Suzuki Y, Furnari F, Prabhu VV, Allen JE, Chen CC. Epidermal growth factor receptor as a molecular determinant of glioblastoma response to dopamine receptor D2 inhibitors. Neuro Oncol 2021; 23:400-411. [PMID: 32830856 DOI: 10.1093/neuonc/noaa188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There are ongoing clinical trials exploring the efficacy of dopamine receptor D2 (DRD2) inhibition against glioblastomas, the most common primary brain tumor. Here we examine potential molecular determinants of this efficacy. METHODS The Cancer Genome Atlas glioblastoma database and other published mRNA profiles were used to analyze the DRD2 and epidermal growth factor receptor (EGFR) expression pattern. In vitro and in vivo responses to DRD2 inhibitors were determined using patient-derived xenograft (PDX) glioblastoma models. Immunohistochemical studies were performed on clinically annotated glioblastoma samples derived from patients treated with ONC201. RESULTS Analysis of clinical glioblastoma specimens derived from independent patient cohorts revealed an inverse correlation between EGFR and DRD2 mRNA expression, with implication that signaling mediated by these proteins shares overlapping functions. In independent panels of PDX glioblastoma lines, high EGFR expression was associated with poor in vitro and in vivo response to DRD2 inhibitors, including haloperidol and ONC201. Moreover, ectopic expression of a constitutively active EGFR, variant (v)III, suppressed glioblastoma sensitivity to ONC201. DRD2 expression positively correlated with expression of rate-limiting enzymes for dopamine synthesis as well as dopamine secretion, suggesting contribution of autocrine DRD2 signaling. Analysis of specimens from patients treated with ONC201 (n = 15) showed an inverse correlation between the intensity of EGFR staining and clinical response. The median overall survival for patients with high and low EGFR staining was 162 and 373 days, respectively (0.037). CONCLUSIONS High EGFR expression is a determinant of poor glioblastoma response to DRD2. This finding should inform future clinical trial designs.
Collapse
Affiliation(s)
- Yuyu He
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jie Li
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Sanjay Dhawan
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuta Suzuki
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Furnari
- Ludwig Institute of Cancer Research, University of California San Diego, San Diego, California, USA
| | | | | | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Mitchell K, Troike K, Silver DJ, Lathia JD. The evolution of the cancer stem cell state in glioblastoma: emerging insights into the next generation of functional interactions. Neuro Oncol 2021; 23:199-213. [PMID: 33173943 DOI: 10.1093/neuonc/noaa259] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular heterogeneity is a hallmark of advanced cancers and has been ascribed in part to a population of self-renewing, therapeutically resistant cancer stem cells (CSCs). Glioblastoma (GBM), the most common primary malignant brain tumor, has served as a platform for the study of CSCs. In addition to illustrating the complexities of CSC biology, these investigations have led to a deeper understanding of GBM pathogenesis, revealed novel therapeutic targets, and driven innovation towards the development of next-generation therapies. While there continues to be an expansion in our knowledge of how CSCs contribute to GBM progression, opportunities have emerged to revisit this conceptual framework. In this review, we will summarize the current state of CSCs in GBM using key concepts of evolution as a paradigm (variation, inheritance, selection, and time) to describe how the CSC state is subject to alterations of cell intrinsic and extrinsic interactions that shape their evolutionarily trajectory. We identify emerging areas for future consideration, including appreciating CSCs as a cell state that is subject to plasticity, as opposed to a discrete population. These future considerations will not only have an impact on our understanding of this ever-expanding field but will also provide an opportunity to inform future therapies to effectively treat this complex and devastating disease.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Katie Troike
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, Ohio
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
37
|
Involvement of the Catecholamine Pathway in Glioblastoma Development. Cells 2021; 10:cells10030549. [PMID: 33806345 PMCID: PMC7998903 DOI: 10.3390/cells10030549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the central nervous system (CNS). The standard of care improves the overall survival of patients only by a few months. Explorations of new therapeutic targets related to molecular properties of the tumor are under way. Even though neurotransmitters and their receptors normally function as mediators of interneuronal communication, growing data suggest that these molecules are also involved in modulating the development and growth of GBM by acting on neuronal and glioblastoma stem cells. In our previous DNA CpG methylation studies, gene ontology analyses revealed the involvement of the monoamine pathway in sequential GBM. In this follow-up study, we quantitated the expression levels of four selected catecholamine pathway markers (alpha 1D adrenergic receptor-ADRA1D; adrenergic beta receptor kinase 1 or G protein-coupled receptor kinase 2-ADRBK1/GRK2; dopamine receptor D2-DRD2; and synaptic vesicle monoamine transporter-SLC18A2) by immunohistochemistry, and compared the histological scores with the methylation levels within the promoters + genes of these markers in 21 pairs of sequential GBM and in controls. Subsequently, we also determined the promoter and gene methylation levels of the same markers in an independent database cohort of sequential GBM pairs. These analyses revealed partial inverse correlations between the catecholamine protein expression and promoter + gene methylation levels, when the tumor and control samples were compared. However, we found no differences in the promoter + gene methylation levels of these markers in either our own or in the database primary-recurrent GBM pairs, despite the higher protein expression of all markers in the primary samples. This observation suggests that regulation of catecholamine expression is only partially related to CpG methylation within the promoter + gene regions, and additional mechanisms may also influence the expression of these markers in progressive GBM. These analyses underscore the involvement of certain catecholamine pathway markers in GBM development and suggest that these molecules mediating or modulating tumor growth merit further exploration.
Collapse
|
38
|
Dai D, He L, Chen Y, Zhang C. Astrocyte responses to nanomaterials: Functional changes, pathological changes and potential applications. Acta Biomater 2021; 122:66-81. [PMID: 33326883 DOI: 10.1016/j.actbio.2020.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Astrocytes are responsible for regulating and optimizing the functional environment of neurons in the brain and can reduce the adverse impacts of external factors by protecting neurons. However, excessive astrocyte activation upon stimulation may alter their initial protective effect and actually lead to aggravation of injury. Similar to the dual effects of astrocytes in the response to injury within the central nervous system (CNS), nanomaterials (NMs) can have either toxic or beneficial effects on astrocytes, serving to promote injury or inhibit tumors. As the important physiological functions of astrocytes have been gradually revealed, the effects of NMs on astrocytes and the underlying mechanisms have become a new frontier in nanomedicine and neuroscience. This review summarizes the in vitro and in vivo findings regarding the effects of various NMs on astrocytes, focusing on functional alterations and pathological processes in astrocytes, as well as the possible underlying mechanisms. We also emphasize the importance of co-culture models in studying the interaction between NMs and cells of the CNS. Finally, we discuss NMs that have shown promise for application in astrocyte-related diseases and propose some challenges and suggestions for further investigations, with the aim of providing guidance for the widespread application of NMs in the CNS.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longwen He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
39
|
Pediatric Glioma: An Update of Diagnosis, Biology, and Treatment. Cancers (Basel) 2021; 13:cancers13040758. [PMID: 33673070 PMCID: PMC7918156 DOI: 10.3390/cancers13040758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Recent research has enhanced our understanding of the diverse biological processes that occur in pediatric gliomas; and molecular genetic analysis has become essential to diagnose and treat these conditions. Because targetable molecular aberrations can be detected in pediatric gliomas, identifying these aberrations is very important. This review provides an overview of pediatric gliomas, and describes recent developments made in strategies for their diagnosis and treatment. Additionally, it presents a current picture of pediatric gliomas in light of advances in molecular genetics, and describes the current scientific progress in gliomas’ treatment using information from recently completed and ongoing clinical trials. The era of incorporating molecular genetic analysis into clinical practice is emerging. Abstract Recent research has promoted elucidation of the diverse biological processes that occur in pediatric central nervous system (CNS) tumors. Molecular genetic analysis is essential not only for proper classification, but also for monitoring biological behavior and clinical management of tumors. Ever since the 2016 World Health Organization classification of CNS tumors, molecular profiling has become an indispensable step in the diagnosis, prediction of prognosis, and treatment of pediatric as well as adult CNS tumors. These molecular data are changing diagnosis, leading to new guidelines, and offering novel molecular targeted therapies. The Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) makes practical recommendations using recent advances in CNS tumor classification, particularly in molecular discernment of these neoplasms as morphology-based classification of tumors is being replaced by molecular-based classification. In this article, we summarize recent knowledge to provide an overview of pediatric gliomas, which are major pediatric CNS tumors, and describe recent developments in strategies employed for their diagnosis and treatment.
Collapse
|
40
|
Arrillaga-Romany I, Odia Y, Prabhu VV, Tarapore RS, Merdinger K, Stogniew M, Oster W, Allen JE, Mehta M, Batchelor TT, Wen PY. Biological activity of weekly ONC201 in adult recurrent glioblastoma patients. Neuro Oncol 2021; 22:94-102. [PMID: 31702782 DOI: 10.1093/neuonc/noz164] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ONC201 is a dopamine receptor D2 (DRD2) antagonist that penetrates the blood-brain barrier. ONC201 efficacy has been shown in glioblastoma animal models and is inversely correlated with dopamine receptor DRD5 expression. ONC201 is well tolerated in adult recurrent glioblastoma patients with dosing every 3 weeks and has achieved an objective radiographic response in a patient harboring the H3 K27M mutation. METHODS In a window-of-opportunity arm, 6 adult subjects initiated ONC201 prior to re-resection of recurrent glioblastoma with intratumoral concentrations as the primary endpoint. An additional 20 adults with recurrent glioblastoma received single agent weekly oral ONC201 at 625 mg, with progression-free survival at 6 months (PFS6) by Response Assessment in Neuro-Oncology (RANO) criteria as the primary endpoint. RESULTS The window-of-opportunity arm achieved its primary endpoint with intratumoral ONC201 concentrations at ~24 hours following the second weekly dose ranging from 600 nM to 9.3 µM. Intratumoral pharmacodynamics assessed by activating transcriptional factor 4, death receptor 5, and apoptosis induction relative to archival samples were observed with the strongest intensity and uniformity among patients with low DRD5 tumor expression. The primary endpoint of PFS6 by RANO was not achieved at 5% in this molecularly unselected cohort; however, 1 of 3 patients enrolled with the H3 K27M mutation had a complete regression of enhancing multifocal lesions that remained durable for >1.5 years. No treatment modifications or discontinuations due to toxicity were observed, including in those who underwent re-resection. CONCLUSIONS Weekly ONC201 is well tolerated, and meaningful intratumoral concentrations were achieved. ONC201 may be biologically active in a subset of adult patients with recurrent glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tracy T Batchelor
- Brigham and Women's Hospital, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|
41
|
Pierce SR, Fang Z, Yin Y, West L, Asher M, Hao T, Zhang X, Tucker K, Staley A, Fan Y, Sun W, Moore DT, Xu C, Tsai YH, Parker J, Prabhu VV, Allen JE, Lee D, Zhou C, Bae-Jump V. Targeting dopamine receptor D2 as a novel therapeutic strategy in endometrial cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:61. [PMID: 33557912 PMCID: PMC7869513 DOI: 10.1186/s13046-021-01842-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
Background ONC201 is a dopamine receptor D2 (DRD2) antagonist that inhibits tumor growth in preclinical models through ClpP activation to induce integrated stress response pathway and mitochondrial events related to inhibition of cell growth, which is being explored in clinical trials for solid tumors and hematological malignancies. In this study, we investigated the anti-tumorigenic effect of ONC201 in endometrial cancer cell lines and a genetically engineered mouse model of endometrial cancer. Methods Cell proliferation was assessed by MTT and colony formation assays. Cell cycle and apoptosis were evaluated by Cellometer. Invasion capacity was tested using adhesion, transwell and wound healing assays. LKB1fl/flp53fl/fl mouse model of endometrial cancer were fed a control low fat diet versus a high fat diet to mimic diet-induced obesity. Following tumor onset, mice were treated with placebo or ONC201. Metabolomics and lipidomics were used to identify the obesity-dependent effects of ONC201 in the mouse endometrial tumors. DRD2 expression was analyzed by immunohistochemistry in human endometrioid and serous carcinoma specimens. DRD2 mRNA expression from the Cancer Genome Atlas (TCGA) database was compared between the four molecular subtypes of endometrial cancer. Results Increasing DRD2 expression in endometrial cancer was significantly associated with grade, serous histology and stage, as well as worse progression free survival and overall survival. Higher expression of DRD2 mRNA was found for the Copy Number High (CNH) subtype when compared to the other subtypes. ONC201 inhibited cell proliferation, induced cell cycle G1 arrest, caused cellular stress and apoptosis and reduced invasion in endometrial cancer cells. Diet-induced obesity promoted endometrial tumor growth while ONC201 exhibited anti-tumorigenic efficacy in the obese and lean LKB1fl/fl/p53fl/fl mice. Metabolomic analysis demonstrated that ONC201 reversed the obesity-driven upregulation of lipid biosynthesis and reduced protein biosynthesis in obese and lean mice. Conclusion ONC201 has anti-tumorigenic effects in endometrial cancer cells and a transgenic mouse model of endometrial cancer, and DRD2 expression was documented in both human serous and endometrioid endometrial cancer. These studies support DRD2 antagonism via ONC201 as a promising therapeutic strategy for endometrial cancer that has already demonstrated pharmacodynamic activity and clinical benefit in both serous and endometrioid endometrial cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01842-9.
Collapse
Affiliation(s)
- Stuart R Pierce
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ziwei Fang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yajie Yin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lindsay West
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Majdouline Asher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianran Hao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xin Zhang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Katherine Tucker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Allison Staley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yali Fan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dominic T Moore
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chang Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Joel Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Tan JY, Wijesinghe IVS, Alfarizal Kamarudin MN, Parhar I. Paediatric Gliomas: BRAF and Histone H3 as Biomarkers, Therapy and Perspective of Liquid Biopsies. Cancers (Basel) 2021; 13:cancers13040607. [PMID: 33557011 PMCID: PMC7913734 DOI: 10.3390/cancers13040607] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Gliomas are major causes of worldwide cancer-associated deaths in children. Generally, paediatric gliomas can be classified into low-grade and high-grade gliomas. They differ significantly from adult gliomas in terms of prevalence, molecular alterations, molecular mechanisms and predominant histological types. The aims of this review article are: (i) to discuss the current updates of biomarkers in paediatric low-grade and high-grade gliomas including their diagnostic and prognostic values, and (ii) to discuss potential targeted therapies in treating paediatric low-grade and high-grade gliomas. Our findings revealed that liquid biopsy is less invasive than tissue biopsy in obtaining the samples for biomarker detections in children. In addition, future clinical trials should consider blood-brain barrier (BBB) penetration of therapeutic drugs in paediatric population. Abstract Paediatric gliomas categorised as low- or high-grade vary markedly from their adult counterparts, and denoted as the second most prevalent childhood cancers after leukaemia. As compared to adult gliomas, the studies of diagnostic and prognostic biomarkers, as well as the development of therapy in paediatric gliomas, are still in their infancy. A body of evidence demonstrates that B-Raf Proto-Oncogene or V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) and histone H3 mutations are valuable biomarkers for paediatric low-grade gliomas (pLGGs) and high-grade gliomas (pHGGs). Various diagnostic methods involving fluorescence in situ hybridisation, whole-genomic sequencing, PCR, next-generation sequencing and NanoString are currently used for detecting BRAF and histone H3 mutations. Additionally, liquid biopsies are gaining popularity as an alternative to tumour materials in detecting these biomarkers, but still, they cannot fully replace solid biopsies due to several limitations. Although histone H3 mutations are reliable prognosis biomarkers in pHGGs, children with these mutations have a dismal prognosis. Conversely, the role of BRAF alterations as prognostic biomarkers in pLGGs is still in doubt due to contradictory findings. The BRAF V600E mutation is seen in the majority of pLGGs (as seen in pleomorphic xanthoastrocytoma and gangliomas). By contrast, the H3K27M mutation is found in the majority of paediatric diffuse intrinsic pontine glioma and other midline gliomas in pHGGs. pLGG patients with a BRAF V600E mutation often have a lower progression-free survival rate in comparison to wild-type pLGGs when treated with conventional therapies. BRAF inhibitors (Dabrafenib and Vemurafenib), however, show higher overall survival and tumour response in BRAF V600E mutated pLGGs than conventional therapies in some studies. To date, targeted therapy and precision medicine are promising avenues for paediatric gliomas with BRAF V600E and diffuse intrinsic pontine glioma with the H3K27M mutations. Given these shortcomings in the current treatments of paediatric gliomas, there is a dire need for novel therapies that yield a better therapeutic response. The present review discusses the diagnostic tools and the perspective of liquid biopsies in the detection of BRAF V600E and H3K27M mutations. An in-depth understanding of these biomarkers and the therapeutics associated with the respective challenges will bridge the gap between paediatric glioma patients and the development of effective therapies.
Collapse
Affiliation(s)
| | | | | | - Ishwar Parhar
- Correspondence: ; Tel.: +603-5514-6304; Fax: +603-5515-6341
| |
Collapse
|
43
|
Duchatel RJ, Mannan A, Woldu AS, Hawtrey T, Hindley PA, Douglas AM, Jackson ER, Findlay IJ, Germon ZP, Staudt D, Kearney PS, Smith ND, Hindley KE, Cain JE, André N, La Madrid AM, Nixon B, De Iuliis GN, Nazarian J, Irish K, Alvaro F, Eisenstat DD, Beck A, Vitanza NA, Mueller S, Morris JC, Dun MD. Preclinical and clinical evaluation of German-sourced ONC201 for the treatment of H3K27M-mutant diffuse intrinsic pontine glioma. Neurooncol Adv 2021; 3:vdab169. [PMID: 34988452 PMCID: PMC8709907 DOI: 10.1093/noajnl/vdab169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem tumor for which radiation is the only treatment. Case studies report a clinical response to ONC201 for patients with H3K27M-mutant gliomas. Oncoceutics (ONC201) is only available in the United States and Japan; however, in Germany, DIPG patients can be prescribed and dispensed a locally produced compound—ONC201 German-sourced ONC201 (GsONC201). Pediatric oncologists face the dilemma of supporting the administration of GsONC201 as conjecture surrounds its authenticity. Therefore, we compared GsONC201 to original ONC201 manufactured by Oncoceutics Inc. Methods Authenticity of GsONC201 was determined by high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Biological activity was shown via assessment of on-target effects, in vitro growth, proliferation, and apoptosis analysis. Patient-derived xenograft mouse models were used to assess plasma and brain tissue pharmacokinetics, pharmacodynamics, and overall survival (OS). The clinical experience of 28 H3K27M+ mutant DIPG patients who received GsONC201 (2017–2020) was analyzed. Results GsONC201 harbored the authentic structure, however, was formulated as a free base rather than the dihydrochloride salt used in clinical trials. GsONC201 in vitro and in vivo efficacy and drug bioavailability studies showed no difference compared to Oncoceutics ONC201. Patients treated with GsONC201 (n = 28) showed a median OS of 18 months (P = .0007). GsONC201 patients who underwent reirradiation showed a median OS of 22 months compared to 12 months for GsONC201 patients who did not (P = .012). Conclusions This study confirms the biological activity of GsONC201 and documents the OS of patients who received the drug; however, GsONC201 was never used as a monotherapy.
Collapse
Affiliation(s)
- Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ameha S Woldu
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tom Hawtrey
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Phoebe A Hindley
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Jewells Medical Centre, Jewells, New South Wales, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Padraic S Kearney
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kate E Hindley
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Sash Small Animal Specialist Hospital, Tuggerah, New South Wales, Australia
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nicolas André
- Department of Pediatric Oncology, La Timone Children's Hospital, AP-HM, Marseille, France.,SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Aix Marseille Univ, Marseille, France
| | - Andres Morales La Madrid
- Laboratory of Developmental Cancer, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Department of Oncology, Hospital Sant Joan de Déu, Barcelona, Spain.,Neuro-Oncology Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Brett Nixon
- Reproductive Science Group, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffry N De Iuliis
- Reproductive Science Group, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
| | - Javad Nazarian
- Children's National Medical Center, Washington, District of Columbia., USA.,University Children's Hospital Zurich, Zurich, Switzerland
| | - Kathleen Irish
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - David D Eisenstat
- Children's Cancer Centre, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia.,Neuro-Oncology Laboratory, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Beck
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
| | - Sabine Mueller
- University Children's Hospital Zurich, Zurich, Switzerland.,Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, California, USA
| | - Jonathan C Morris
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
44
|
Rosas-Cruz A, Salinas-Jazmín N, Velázquez MAV. Dopamine Receptors in Cancer: Are They Valid Therapeutic Targets? Technol Cancer Res Treat 2021; 20:15330338211027913. [PMID: 34212819 PMCID: PMC8255587 DOI: 10.1177/15330338211027913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
The dopamine receptors (DRs) family includes 5 members with differences in signal transduction and ligand affinity. Abnormal DRs expression has been correlated multiple tumors with their clinical outcome. Thus, it has been proposed that DRs-targeting drugs-developed for other diseases as schizophrenia or Parkinson's disease-could be helpful in managing neoplastic diseases. In this review, we discuss the role of DRs and the effects of DRs-targeting in tumor progression and cancer cell biology using multiple high-prevalence neoplasms as examples. The evidence shows that DRs are valid therapeutic targets for certain receptor/disease combinations, but the data are inconclusive or contradictory for others. In either case, further studies are required to define the precise role of DRs in tumor progression and propose better therapeutic strategies for their targeting.
Collapse
Affiliation(s)
- Arely Rosas-Cruz
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México
- Posgrado en Ciencias Bioquímicas, UNAM, México
| | - Nohemí Salinas-Jazmín
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México
| | - Marco A. Velasco- Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México
- Unidad Periférica de Investigación en Biomedicina Traslacional, Centro Médico Nacional 20 de noviembre ISSSTE / Facultad de Medicina, UNAM, México
| |
Collapse
|
45
|
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, Zhang Y, Borsuk R, Chang WI, Honeyman JN, Tavora F, Carneiro B, Raufi A, Huntington K, Carlsen L, Louie A, Safran H, Seyhan AA, Tarapore RS, Schalop L, Stogniew M, Allen JE, Oster W, El-Deiry WS. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia 2020; 22:725-744. [PMID: 33142238 PMCID: PMC7588802 DOI: 10.1016/j.neo.2020.09.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells. This typically results in DR5/TRAIL-mediated apoptosis of tumor cells; however, DR5/TRAIL-independent apoptosis, cell cycle arrest, or antiproliferative effects also occur. The effects of ONC201 extend beyond bulk tumor cells to include cancer stem cells, cancer associated fibroblasts and immune cells within the tumor microenvironment that can contribute to its efficacy. ONC201 is orally administered, crosses the intact blood brain barrier, and is under evaluation in clinical trials in patients with advanced solid tumors and hematological malignancies. ONC201 has single agent clinical activity in tumor types that are enriched for DRD2 and/or ClpP expression including specific subtypes of high-grade glioma, endometrial cancer, prostate cancer, mantle cell lymphoma, and adrenal tumors. Synergy with radiation, chemotherapy, targeted therapy and immune-checkpoint agents has been identified in preclinical models and is being evaluated in clinical trials. Structure-activity relationships based on the core pharmacophore of ONC201, termed the imipridone scaffold, revealed novel potent compounds that are being developed. Imipridones represent a novel approach to therapeutically target previously undruggable GPCRs, ClpP, and innate immune pathways in oncology.
Collapse
Key Words
- 5-fu, 5-fluorouracil
- a2a, adenosine 2a receptor
- alcl, anaplastic large cell lymphoma
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- ampk, amp kinase
- atrt, atypical teratoid rhabdoid tumor
- auc, area under the curve
- brd, bromodomain
- camp, cyclic amp
- cck18, caspase-cleaved cytokeratin 18
- ck18, cytokeratin 18
- cll, chronic lymphocytic leukemia
- clpp, caseinolytic protease p
- clpx, caseinolytic mitochondrial matrix peptidase chaperone subunit x
- cml, chronic myelogenous leukemia
- crc, colorectal cancer
- csc, cancer stem cell
- ctcl, cutaneous t-cell lymphoma
- dipg, diffuse intrinsic pontine glioma
- dlbcl, diffuse large b-cell lymphoma
- dna-pkcs, dna-activated protein kinase catalytic subunit
- dr5, death receptor 5
- drd1, dopamine receptor d1
- drd2, dopamine receptor d2
- drd3, dopamine receptor d3
- drd4, dopamine receptor d4
- drd5, dopamine receptor d5
- dsrct, desmoplastic small round cell tumor
- ec, endometrial cancer
- egfr, epidermal growth factor receptor
- flair, fluid-attenuated inversion recovery
- gbm, glioblastoma multiforme
- gdsc, genomics of drug sensitivity in cancer
- girk, g protein-coupled inwardly rectifying potassium channel
- gnrh, gonadotropin-releasing hormone receptor
- gpcr, g protein coupled receptor
- hcc, hepatocellular carcinoma
- ihc, immunohistochemistry
- hgg, high-grade glioma
- isr, integrated stress response
- mcl, mantle cell lymphoma
- mm, multiple myeloma
- mtd, maximum tolerated dose
- nhl, non-hodgkin’s lymphoma
- nk, natural killer
- noael, no-observed-adverse-event-level
- nsclc, non-small cell lung cancer
- os, overall survival
- oxphos, oxidative phosphorylation
- pc-pg, pheochromocytoma-paraganglioma
- pd, pharmacodynamic
- pdx, patient-derived xenograft
- pfs, progression-free survival
- pk, pharmacokinetic
- plc, phospholipase c
- rano, response assessment in neuro-oncology
- recist, response evaluation criteria in solid tumors
- rhtrail, recombinant human trail
- rp2d, recommended phase ii dose
- sar, structure–activity relationship
- sclc, small-cell lung cancer
- tic10, trail-inducing compound 10
- tmz, temozolomide
- tnbc, triple-negative breast cancer
- trail, tnf-associated apoptosis-inducing ligand
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- who, world health organization
Collapse
Affiliation(s)
- Varun Vijay Prabhu
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Sara Morrow
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | | | - Lanlan Zhou
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Marie Ralff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jocelyn Ray
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Aakash Jhaveri
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Isacco Ferrarini
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Young Lee
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Cassandra Parker
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Yiqun Zhang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Robyn Borsuk
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Wen-I Chang
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Joshua N Honeyman
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Fabio Tavora
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Benedito Carneiro
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Alexander Raufi
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Kelsey Huntington
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Lindsey Carlsen
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Anna Louie
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Howard Safran
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | - Attila A Seyhan
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA
| | | | - Lee Schalop
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Martin Stogniew
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Joshua E Allen
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA.
| | - Wolfgang Oster
- Oncoceutics, Inc., 3675 Market St, Suite 200, Philadelphia, PA 19104, USA
| | - Wafik S El-Deiry
- Warren Alpert Medical School, Brown University, 70 Ship Street, Room 537, Providence, RI 02912, USA.
| |
Collapse
|
46
|
Bonnet R, Nebout M, Brousse C, Reinier F, Imbert V, Rohrlich PS, Peyron JF. New Drug Repositioning Candidates for T-ALL Identified Via Human/Murine Gene Signature Comparison. Front Oncol 2020; 10:557643. [PMID: 33240808 PMCID: PMC7680901 DOI: 10.3389/fonc.2020.557643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) is an aggressive subtype of leukemia for which important progress in treatment efficiency have been made in the past decades to reach a cure rate of 75%-80% nowadays. It is nevertheless mandatory to find new targets and active molecules for innovative therapeutic strategies as relapse is associated with a very dismal outcome. We designed an experimental workflow to highlight the conserved core pathways associated with leukemogenesis by confronting the gene expression profiles (GEPs) of human T-ALL cases to the GEP of a murine T-ALL representative model, generated by the conditional deletion of the PTEN tumor suppressor gene in T cell precursors (tPTEN-/-). We identified 844 differentially expressed genes, common GEPs (cGEP) that were conserved between human T-ALL and murine signatures, and also similarly differentially expressed, compared to normal T cells. Using bioinformatic tools we highlighted in cGEPan upregulation of E2F, MYC and mTORC1. Next, using Connectivity Map (CMAP) and CMAPViz a visualization procedure for CMAP data that we developed, we selected in silico three FDA-approved, bioactive molecule candidates: α-estradiol (α-E), nordihydroguaiaretic acid (NDGA) and prochlorperazine dimaleate (PCZ). At a biological level, we showed that the three drugs triggered an apoptotic cell death in a panel of T-ALL cell lines, activated a DNA damage response and interfered with constitutive mTORC1 activation and c-MYC expression. This analysis shows that the investigation of conserved leukemogenesis pathways could be a strategy to reveal new avenues for pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Pierre Simon Rohrlich
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Pediatric Hematology-Oncology, CHU de Nice, Nice, France
| | | |
Collapse
|
47
|
Ejma M, Madetko N, Brzecka A, Guranski K, Alster P, Misiuk-Hojło M, Somasundaram SG, Kirkland CE, Aliev G. The Links between Parkinson's Disease and Cancer. Biomedicines 2020; 8:biomedicines8100416. [PMID: 33066407 PMCID: PMC7602272 DOI: 10.3390/biomedicines8100416] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiologic studies indicate a decreased incidence of most cancer types in Parkinson’s disease (PD) patients. However, some neoplasms are associated with a higher risk of occurrence in PD patients. Both pathologies share some common biological pathways. Although the etiologies of PD and cancer are multifactorial, some factors associated with PD, such as α-synuclein aggregation; mutations of PINK1, PARKIN, and DJ-1; mitochondrial dysfunction; and oxidative stress can also be involved in cancer proliferation or cancer suppression. The main protein associated with PD, i.e., α-synuclein, can be involved in some types of neoplastic formations. On the other hand, however, its downregulation has been found in the other cancers. PINK1 can act as oncogenic or a tumor suppressor. PARKIN dysfunction may lead to some cancers’ growth, and its expression may be associated with some tumors’ suppression. DJ-1 mutation is involved in PD pathogenesis, but its increased expression was found in some neoplasms, such as melanoma or breast, lung, colorectal, uterine, hepatocellular, and nasopharyngeal cancers. Both mitochondrial dysfunction and oxidative stress are involved in PD and cancer development. The aim of this review is to summarize the possible associations between PD and carcinogenesis.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland;
| | - Konstanty Guranski
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa, Poland;
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
- Correspondence: or ; Tel.: +1-210-442-8625 or +1-440-263-7461
| |
Collapse
|
48
|
Yan Y, Pan J, Chen Y, Xing W, Li Q, Wang D, Zhou X, Xie J, Miao C, Yuan Y, Zeng W, Chen D. Increased dopamine and its receptor dopamine receptor D1 promote tumor growth in human hepatocellular carcinoma. Cancer Commun (Lond) 2020; 40:694-710. [PMID: 33017522 PMCID: PMC7743025 DOI: 10.1002/cac2.12103] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
Background Dopamine and dopamine receptor D1 (DRD1), a member of the dopamine receptor family, have been indicated to play important roles in cancer progression, but dopamine secretion in hepatocellular carcinoma (HCC) and the effects of DRD1 on HCC remain unclear. This study was designed to explore the contribution of the dopaminergic system to HCC and determine the relationship between DRD1 and prognosis in HCC patients. Methods The dopamine metabolic system was monitored using enzyme‐linked immunosorbent assays (ELISAs). The expression of DRD1 was detected by microarray analysis, immunohistochemistry (IHC), and quantitative real‐time PCR (qRT‐PCR). Stable DRD1 knockout and overexpression cell lines were established for investigation. Transwell, colony formation, and Cell Counting Kit 8 (CCK8) assays were performed to assess the malignant behaviors of cancer cells. The cAMP/PI3K/AKT/ cAMP response element‐binding (CREB) signaling pathway was evaluated by Western blot. This pathway, which is agitated by DRD1 in striatal neurons, had been proven to participate in tumor progression. Xenograft HCC tumors were generated for in vivo experiments. Results Dopamine secretion increased locally in HCC due to an imbalance in dopamine metabolism, including the upregulation of dopa decarboxylase (DDC) and the downregulation of monoamine oxidase A (MAOA). Dopamine promoted the proliferation and metastasis of HCC. DRD1 was highly expressed in HCC tissues and positive DRD1 expression was related to a poor prognosis in HCC patients. The upregulation of DRD1 agitated malignant activities, including proliferation and metastasis in HCC by regulating the cAMP/PI3K/AKT/CREB pathway, and the downregulation of DRD1 had opposing effects. The effects of dopamine on HCC was reversed by depleting DRD1. SCH23390, a selective DRD1 antagonist, inhibited the proliferation and metastasis of HCC cells both in vitro and in vivo. Conclusion Dopamine secretion was locally increased in HCC and promoted HCC cell proliferation and metastasis. DRD1 was found to exert positive effects on HCC progression and play a vital role in the dopamine system, and could be a potential therapeutic target and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Yan Yan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Department of Anesthesiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516001, P. R. China
| | - Jiahao Pan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Yonghua Chen
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518000, P. R. China
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Dongyin Wang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Xiaoshuang Zhou
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Zhongshan Hospital, Shanghai, 20032, P. R. China
| | - Yunfei Yuan
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
49
|
Wehbe N, Slika H, Mesmar J, Nasser SA, Pintus G, Baydoun S, Badran A, Kobeissy F, Eid AH, Baydoun E. The Role of Epac in Cancer Progression. Int J Mol Sci 2020; 21:ijms21186489. [PMID: 32899451 PMCID: PMC7555121 DOI: 10.3390/ijms21186489] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer continues to be a prime contributor to global mortality. Despite tremendous research efforts and major advances in cancer therapy, much remains to be learned about the underlying molecular mechanisms of this debilitating disease. A better understanding of the key signaling events driving the malignant phenotype of cancer cells may help identify new pharmaco-targets. Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a plethora of biological processes, including those that are characteristic of malignant cells. Over the years, most cAMP-mediated actions were attributed to the activity of its effector protein kinase A (PKA). However, studies have revealed an important role for the exchange protein activated by cAMP (Epac) as another effector mediating the actions of cAMP. In cancer, Epac appears to have a dual role in regulating cellular processes that are essential for carcinogenesis. In addition, the development of Epac modulators offered new routes to further explore the role of this cAMP effector and its downstream pathways in cancer. In this review, the potentials of Epac as an attractive target in the fight against cancer are depicted. Additionally, the role of Epac in cancer progression, namely its effect on cancer cell proliferation, migration/metastasis, and apoptosis, with the possible interaction of reactive oxygen species (ROS) in these phenomena, is discussed with emphasis on the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Hasan Slika
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Suzanne A. Nasser
- Department of Pharmacology, Beirut Arab University, P.O. Box 11-5020 Beirut, Lebanon;
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sharjah, P.O. Box 27272 Sharjah, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Serine Baydoun
- Department of Radiology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| |
Collapse
|
50
|
Hu W, Zhang L, Ferri-Borgogno S, Kwan SY, Lewis KE, Cun HT, Yeung TL, Soliman PT, Tarapore RS, Allen JE, Guan X, Lu KH, Mok SC, Au-Yeung CL. Targeting Dopamine Receptor D2 by Imipridone Suppresses Uterine Serous Cancer Malignant Phenotype. Cancers (Basel) 2020; 12:cancers12092436. [PMID: 32867127 PMCID: PMC7563948 DOI: 10.3390/cancers12092436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/02/2023] Open
Abstract
Uterine serous cancer (USC) is an aggressive subtype of endometrial cancer, with poor survival and high recurrence rates. The development of novel and effective therapies specific to USC would aid in its management. However, few studies have focused solely on this rare subtype. The current study demonstrated that the orally bioavailable, investigational new drug and novel imipridone ONC206 suppressed USC cell proliferation and induced apoptosis both in vitro and in vivo. Disruption of the DRD2-mediated p38MAPK/ERK/PGC-1α network by ONC206 led to metabolic reprogramming and suppression of both glycolysis and oxidative phosphorylation. ONC206 also synergized with paclitaxel in reducing USC cell viability. In addition, DRD2 overexpression correlated with poor overall survival in patients. This study provides the first evidence that ONC206 induced metabolic reprogramming in USC cells and is a promising therapeutic agent for USC treatment. These findings support further development of ONC206 as a promising therapeutic agent and improves survival rates in patients with USC.
Collapse
Affiliation(s)
- Wen Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
- State Key Laboratory of Oncology in South China and Collaborative Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China;
| | - Li Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
| | - Sammy Ferri-Borgogno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
| | - Suet-Ying Kwan
- Department of Molecular and Cellular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelsey E. Lewis
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Han T. Cun
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
| | - Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
| | - Pamela T. Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
| | | | - Joshua E. Allen
- Oncoceutics Inc., Philadelphia, PA 19104, USA; (R.S.T.); (J.E.A.)
| | - Xinyuan Guan
- State Key Laboratory of Oncology in South China and Collaborative Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China;
| | - Karen H. Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
| | - Samuel C. Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
| | - Chi-Lam Au-Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (L.Z.); (S.F.-B.); (H.T.C.); (T.-L.Y.); (P.T.S.); (K.H.L.); (S.C.M.)
- Correspondence:
| |
Collapse
|