1
|
Klamer K, Craig J, Haines C, Sullivan K, Ekstrand C. Psychological well-being modulates neural synchrony during naturalistic fMRI. Neuropsychologia 2024; 204:108987. [PMID: 39222774 DOI: 10.1016/j.neuropsychologia.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Psychological well-being (PWB) is a combination of feeling good and functioning efficiently, and has a significant relationship with physical and mental health. Previous research has shown that PWB is associated with improvements in selective attention, mindfulness, semantic self-images, and adaptive decision making, however, it is unclear how these differences manifest in the brain. Naturalistic stimuli better encapsulate everyday experiences and can elicit more "true-to-life" neural responses. The current study seeks to identify how differing levels of PWB modulate neural synchrony in response to an audiovisual film. With consideration of the inherent variability of the literature, we aim to ascertain the validity of the regions previously associated with PWB. We identified that higher levels of PWB were associated with heightened stimulus driven neural synchrony in the bilateral superior parietal lobule, right planum temporale, and left superior temporal gyrus, and that lower levels of PWB were associated with heightened neural synchrony in the bilateral lateral occipital cortex and precuneus. Taken together, this research suggests that there is an association between differing levels of PWB and differential neural synchrony during movie-watching. PWB may therefore have an effect on complex, multimodal processing.
Collapse
Affiliation(s)
- Keva Klamer
- Ekstrand Neuroimaging Lab, Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, Canada, T1K 6T5
| | - Joshua Craig
- Ekstrand Neuroimaging Lab, Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, Canada, T1K 6T5
| | - Christina Haines
- Ekstrand Neuroimaging Lab, Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, Canada, T1K 6T5
| | - KiAnna Sullivan
- Ekstrand Neuroimaging Lab, Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, Canada, T1K 6T5
| | - Chelsea Ekstrand
- Ekstrand Neuroimaging Lab, Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, Canada, T1K 6T5.
| |
Collapse
|
2
|
Ding J, Tang Z, Liu Y, Chen Q, Tong K, Yang M, Ding X. Altered Intrinsic Brain Activity in Ischemic Stroke Patients Assessed Using the Percent Amplitude of a Fluctuation Method. Brain Topogr 2024; 37:1195-1202. [PMID: 38896171 DOI: 10.1007/s10548-024-01063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Ischemic stroke is a vascular disease that may cause cognitive and behavioral abnormalities. This study aims to assess abnormal brain function in ischemic stroke patients using the percent amplitude of fluctuation (PerAF) method and further explore the feasibility of PerAF as an imaging biomarker for investigating ischemic stroke pathophysiology mechanisms. Sixteen ischemic stroke patients and 22 healthy controls (HCs) underwent resting state functional magnetic resonance imaging (rs-fMRI) scanning, and the resulting data were analyzed using PerAF. Then a correlation analysis was conducted between PerAF values and Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. Finally, the abnormal PerAF values were extracted and defined as features for support vector machine (SVM) analysis. Compared with HCs, ischemic stroke patients showed decreased PerAF in the bilateral cuneus, left middle frontal gyrus, precuneus and right inferior temporal gyrus, and increased PerAF in the bilateral orbital part of middle frontal gyrus and right orbital part of superior frontal gyrus. Correlation analyses revealed that PerAF values in the left orbital part of middle frontal gyrus was negatively correlated with the MoCA scores. The SVM classification of the PerAF values achieved an area under the curve (AUC) of 0.98 and an accuracy of 94.74%. Abnormal brain function has been found among ischemic stroke patients, which may be correlated with visual impairment, attention deficits, and dysregulation of negative emotions following a stroke. Our findings may support the potential of PerAF as a sensitive biomarker for investigating the underlying mechanisms of ischemic stroke.
Collapse
Affiliation(s)
- Jurong Ding
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China.
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China.
| | - Zhiling Tang
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Yihong Liu
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Qiang Chen
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Ke Tong
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Mei Yang
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Xin Ding
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, PR China
| |
Collapse
|
3
|
Maulitz L, Nehls S, Stickeler E, Ignatov A, Kupec T, Henn AT, Chechko N, Tchaikovski SN. Psychological characteristics and structural brain changes in women with endometriosis and endometriosis-independent chronic pelvic pain. Hum Reprod 2024; 39:2473-2484. [PMID: 39241806 DOI: 10.1093/humrep/deae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
STUDY QUESTION Are there neurobiological changes induced by endometriosis? SUMMARY ANSWER Women with endometriosis demonstrate specific neurobiological changes distinct from those in patients with chronic pelvic pain (CPP) in the absence of endometriosis. WHAT IS KNOWN ALREADY Endometriosis is a chronic disease affecting women of reproductive age that presents with pain and infertility often accompanied by comorbid mental disorders. Only one study with a number of limitations has investigated changes in gray matter volumes and functional connectivity in a small group of patients with endometriosis. STUDY DESIGN, SIZE, DURATION This prospective study recruited 53 women undergoing a laparoscopy due to suspicion of symptomatic endometriosis and 25 healthy, pain-free women. Clinical and psychological characteristics, thermal pain perception, and voxel- and surface-based morphology were assessed in all study participants. Thereafter, the patients underwent a laparoscopy, where endometriosis was either histologically confirmed and removed, or ruled out. Correspondingly, patients were assigned into the group with endometriosis (n = 27) or with endometriosis-independent CPP (n = 26) and compared to the pain-free controls. PARTICIPANTS/MATERIALS, SETTING, METHODS The study groups were generally representative for the population of women with endometriosis. Sociodemographic, medical, clinical, and psychological characteristics were collected using various questionnaires and a structured clinical interview. Thermal pain perception and voxel- and surface-based morphometry were assessed using thermode and MRI, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Despite comparable pain intensity and burden of mental disorders, both patient groups demonstrated distinct neurobiological patterns. Women with endometriosis exhibited increased gray matter volume (GMV) in the left cerebellum, lingual gyrus and calcarine gyrus, compared to those with endometriosis-independent CPP. Patients with CPP had decreased GMV in the right cerebellum as compared to controls. Dysmenorrhoea severity correlated positively with GMV in the left inferior parietal lobule, whereas depressive symptoms were associated with decreased GMV in the right superior medial gyrus across patient groups. Dyspareunia correlated negatively with cortical thickness in the left inferior temporal gyrus and left middle temporal gyrus. LIMITATIONS, REASONS FOR CAUTION The study groups differed in a few baseline-characteristics, including educational levels, smoking and BMI. While measuring pain perception thresholds, we did not attempt to mimic CPP by placement of the thermode on the abdominal wall. WIDER IMPLICATIONS OF THE FINDINGS Changes in gray matter volume associated with endometriosis differ from those observed in women with endometriosis-independent CPP. Our results underline an involvement of the cerebellum in pain perception and the pathogenesis of pain associated with endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the START Program of the Faculty of Medicine, RWTH Aachen, Germany, and supported by the International Research Training Group (IRTG 2150) of the German Research Foundation (DFG)-269953372/GRK2150, Germany. S.T. was supported by postdoctoral fellowship of the Faculty of Medicine, RWTH Aachen, Germany. There are no conflicts of interest. TRIAL REGISTRATION NUMBER DRKS00021236.
Collapse
Affiliation(s)
- L Maulitz
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
- Department for Medical Education, University Clinic Bonn, Bonn, Germany
| | - S Nehls
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - E Stickeler
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - A Ignatov
- University Clinic for Gynaecology, Obstetrics and Reproductive Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - T Kupec
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - A T Henn
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
| | - N Chechko
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - S N Tchaikovski
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
- University Clinic for Gynaecology, Obstetrics and Reproductive Medicine, Otto-von-Guericke University, Magdeburg, Germany
- University Clinic for Gynaecology and Obstetrics, Brandenburg Medical School, Brandenburg, Germany
| |
Collapse
|
4
|
Rodríguez GC, Russell MA, Claus ED. Systematic review on resting-state fMRI in people with AUD and people who binge drink. Mol Psychiatry 2024:10.1038/s41380-024-02796-y. [PMID: 39448806 DOI: 10.1038/s41380-024-02796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Resting-state functional magnetic resonance imaging (rsfMRI) has become ubiquitous in neuroimaging to study disorders, including alcohol use disorder (AUD), given its potential to serve as a biomarker of psychiatric symptoms. The number of techniques, sample heterogeneity, and findings demand the assessment of results to identify potential biomarkers for the development of treatment. This systematic review aimed to synthesize the alcohol rsfMRI literature by summarizing the results by analysis approach and groups to examine these findings in the context of the neurobiology of addiction model. Three databases were systematically searched, resulting in the inclusion of 17 studies with a total of 784 participants (387 were people with AUD, 38 engaged in binge drinking, and 359 were controls). Seed-based functional connectivity studies were the most prominent. Compared to controls, people who binge drink and people with AUD showed greater connectivity of the Middle Frontal Gyrus-a region associated with the preoccupation/anticipation stage of the theory. Regions of the prefrontal and limbic cortex were most consistently reported in studies. The different types of analyses, sample size, and variability in the sample may have contributed to differences reported across studies. This review synthesizes and examines the results of different studies using the neurobiology of addiction theory, which may inform future studies on potential regions of interest, recruitment approaches, and analysis methods. Standardizing the methods for such a heterogeneous population could lead to more rapid development of neurobiologically-informed treatments for AUD.
Collapse
Affiliation(s)
- Gabriel C Rodríguez
- Department of Biobehavioral Health, Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.
| | - Michael A Russell
- Department of Biobehavioral Health, Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Eric D Claus
- Department of Biobehavioral Health, Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Chang YH, Yang MH, Yang CT, Goh J, Lin SH, Hsieh S. Alternation of psychological resilience may moderate mentalization toward mental health conditions from macro- and microstructure aspects. Neuroimage 2024; 299:120810. [PMID: 39181193 DOI: 10.1016/j.neuroimage.2024.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE We aim to investigate the interplay between mentalization, brain microstructure, and psychological resilience as potential protective factors against mental illness. METHOD Four hundred and twenty-six participants (mean age 40.12±16.95; 202 males, 224 females), without psychiatric or neurological history, completed assessments: Dissociative Process Scale (DPS), Peace of Mind (PoM), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Resilience Scale for Adults (RSA), and Magnetic Resonance Imaging (MRI) structures with selected regions of interest, and Diffusion Tensor Imaging (DTI) maps from various tracts in the right hemisphere and connection to the frontal areas, including anterior thalamic radiation (ATR), Cingulum (hippocampus) (CH), Corticospinal tract (CST), Superior longitudinal fasciculus (SLF), Inferior fronto-occipital fasciculus (IFOF), and Uncinate fasciculus (UF) were analyzed. RESULTS Two clusters, representing hypomentalization (HypoM) and hypermentalization (HyperM), were identified based on DPS, CPSS, and RFQ responses. One-way ANOVA showed no significant age or gender differences between clusters. The HypoM group exhibited lower PoM scores, higher BDI and BAI scores, and lower RSA scores (ps< 0.05). Structural brain metric comparison showed significant differences in GMV in the right caudal middle frontal gyrus (rcMFG), right superior frontal gyrus (rsFG), and right frontal pole (rFP) between groups. In addition, the HyperM individuals with a higher risk of depression and a higher ratio of intrapersonal to interpersonal factors of resilience were found with reduced GMV on the rcMFG. Additionally, analyses of DTI metrics revealed significant differences between two groups in rATR and rSLF in terms of fractional anisotropy (FA) values; rATR, rCST, rUF, rSLF, rCH and rIFOF in terms of mean diffusivity (MD) values, and radial diffusivity (RD) (corrected p = 0.05). Moreover, the positive correlation between different domains of resilience and white matter (WM) integrity implied further enhancement of intrapersonal or interpersonal resilience factors that are different for people with different mentalization. CONCLUSIONS The findings underscore the importance of considering both intrapersonal and interpersonal factors in understanding the interactions between psychological resilience and mental health conditions relevant to brain mechanisms.
Collapse
Affiliation(s)
- Yun-Hsuan Chang
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychology, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Douliu Branch, Yunlin, Taiwan; Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| | - Meng-Heng Yang
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ta Yang
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Education and Humanities in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Joshua Goh
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Yang T, Fan X, Hou B, Wang J, Chen X. Linguistic network in early deaf individuals: A neuroimaging meta-analysis. Neuroimage 2024; 299:120720. [PMID: 38971484 DOI: 10.1016/j.neuroimage.2024.120720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
This meta-analysis summarizes evidence from 44 neuroimaging experiments and characterizes the general linguistic network in early deaf individuals. Meta-analytic comparisons with hearing individuals found that a specific set of regions (in particular the left inferior frontal gyrus and posterior middle temporal gyrus) participates in supramodal language processing. In addition to previously described modality-specific differences, the present study showed that the left calcarine gyrus and the right caudate were additionally recruited in deaf compared with hearing individuals. In addition, this study showed that the bilateral posterior superior temporal gyrus is shaped by cross-modal plasticity, whereas the left frontotemporal areas are shaped by early language experience. Although an overall left-lateralized pattern for language processing was observed in the early deaf individuals, regional lateralization was altered in the inferior frontal gyrus and anterior temporal lobe. These findings indicate that the core language network functions in a modality-independent manner, and provide a foundation for determining the contributions of sensory and linguistic experiences in shaping the neural bases of language processing.
Collapse
Affiliation(s)
- Tengyu Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
7
|
Zhou W, Zhu B, Weng Y, Chen C, Ni J, Shen W, Lan W, Wang J. The Combination of Presurgical Cortical Gray Matter Volumetry and Cerebral Perfusion Improves the Efficacy of Predicting Postoperative Cognitive Impairment of Elderly Patients. Tomography 2024; 10:1379-1396. [PMID: 39330750 PMCID: PMC11435822 DOI: 10.3390/tomography10090104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication of the central nervous system in elderly surgical patients. Structural MRI and arterial spin labelling (ASL) techniques found that the grey matter volume and cerebral perfusion in some specific brain areas are associated with the occurrence of POCD, but the results are inconsistent, and the predictive accuracy is low. We hypothesised that the combination of cortical grey matter volumetry and cerebral blood flow yield higher accuracy than either of the methods in discriminating the elderly individuals who are susceptible to POCD after abdominal surgery. MATERIALS AND METHODS Participants underwent neuropsychological testing before and after surgery. Postoperative cognitive dysfunction (POCD) was defined as a decrease in cognitive score of at least 20%. ASL-MRI and T1-weighted imaging were performed before surgery. We compared differences in cerebral blood flow (CBF) and cortical grey matter characteristics between POCD and non-POCD patients and generated receiver operating characteristic curves. RESULTS Out of 51 patients, 9 (17%) were diagnosed with POCD. CBF in the inferior frontal gyrus was lower in the POCD group compared to the non-POCD group (p < 0.001), and the volume of cortical grey matter in the anterior cingulate gyrus was higher in the POCD group (p < 0.001). The highest AUC value was 0.973. CONCLUSIONS The combination of cortical grey matter volumetry and cerebral perfusion based on ASL-MRI has improved efficacy in the early warning of POCD to elderly abdominal surgical patients.
Collapse
Affiliation(s)
- Weijian Zhou
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Health Science Centre, Ningbo University, Ningbo 315211, China
| | - Binbin Zhu
- Department of Anaesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Health Science Centre, Ningbo University, Ningbo 315211, China
| | - Yifei Weng
- Department of Radiology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Siming District, Xiamen 361026, China
| | - Chunqu Chen
- Health Science Centre, Ningbo University, Ningbo 315211, China
| | - Jiajing Ni
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Health Science Centre, Ningbo University, Ningbo 315211, China
| | - Wenqi Shen
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Health Science Centre, Ningbo University, Ningbo 315211, China
| | - Wenting Lan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Jianhua Wang
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Department of Radiology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Siming District, Xiamen 361026, China
| |
Collapse
|
8
|
Li CY, Chang WC, Chen MH, Tu PC, Chen TL, Chen CC, Chang YT, Chen YY, Bai YM. Correlation of Disease Severity, Proinflammatory Cytokines, and Reduced Brain Gray Matter Volumes in Patients with Atopic Dermatitis. Dermatitis 2024; 35:489-497. [PMID: 38634841 DOI: 10.1089/derm.2023.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease. However, few studies have investigated brain changes associated with chronic inflammation. We hypothesized that chronic inflammation might be related to brain structural alterations in patients with AD. Objectives: To investigate the association between disease severity (Eczema Area and Severity Index [EASI]), proinflammatory cytokines, and differences in brain gray matter (GM) volume in patients with AD. Methods: Nineteen patients with AD and 19 age- and sex-matched healthy subjects were enrolled. All participants underwent clinical assessment and brain magnetic resonance imaging. Voxel-based morphometry was performed to analyze GM volume differences. Results: Patients with AD exhibited significantly decreased GM volume in many brain regions, such as bilateral precentral gyrus, right frontal pole, and right middle temporal gyrus (P < 0.001), compared with healthy subjects. Notably, in patients with AD, the GM volume in right middle temporal gyrus was negatively associated with both EASI score and proinflammatory cytokines (sIL-2R [soluble interleukin 2 receptor] and TNF-α receptor-1), whereas the GM volume in left precentral gyrus was negatively associated with both EASI score and proinflammatory cytokines (sIL-2R and CRP). Conclusion: Patients with AD demonstrated significant brain GM volume reduction in many brain regions, which is related to disease severity and proinflammatory cytokines.
Collapse
Affiliation(s)
- Cheng-Yuan Li
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang-Ming University, Taipei, Taiwan
| | - Tai-Li Chen
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chen
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ya-Mei Bai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Novak L, Malinakova K, Trnka R, Mikoska P, Sverak T, Kiiski H, Tavel P, van Dijk JP. Neural bases of social deficits in ADHD: A systematic review. Does the Theory of Mind matter? Brain Res Bull 2024; 215:111011. [PMID: 38906229 DOI: 10.1016/j.brainresbull.2024.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION The Attention Deficit Hyperactivity Disorder (ADHD) causes serious interpersonal problems from childhood to adulthood, one of them being problematic social functioning. This phenomenon in ADHD should be associated with impairments in the Theory of Mind (ToM). Therefore, understanding the neural correlates of the ToM could be crucial for helping individuals with ADHD with their social functioning. Thus, we aimed to review published literature concerning neuroanatomical and functional correlates of ToM deficits in children and adolescents with ADHD. METHODS We reviewed studies published between 1970 and 2023. In accordance with PRISMA guidelines, after data from three databases were collected, two authors (LN and PM) independently screened all relevant records (n=638) and consequently, both authors did the data extraction. The quality of the included studies (n=5) was measured by a modified version of The Newcastle-Ottawa Scale and by measures specific for our study. This systematic review was registered on PROSPERO (CRD42020139847). RESULTS Results indicated that impairments in performing of the ToM tasks were negatively associated with the grey matter volume in the bilateral amygdala and hippocampus in both, ADHD and control group. In EEG studies, a significantly greater electrophysiological activity during ToM tasks was observed in the, frontal, temporal, parietal and occipital lobes in participants with ADHD as compared to healthy subjects. CONCLUSION More research is needed to explore the ToM deficits in children with ADHD. Future research might focus on the neural circuits associated with attention and inhibition, which deficits seems to contribute to the ToM deficits in children and adolescents with ADHD.
Collapse
Affiliation(s)
- Lukas Novak
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic; Department of Community and Occupational Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Klara Malinakova
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Radek Trnka
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic; Prague College of Psychosocial Studies, Prague, Czech Republic
| | - Petr Mikoska
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomas Sverak
- Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hanni Kiiski
- Trinity Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland
| | - Peter Tavel
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jitse P van Dijk
- Olomouc University Social Health Institute, Palacký University Olomouc, Olomouc, Czech Republic; Department of Community and Occupational Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Graduate School Kosice Institute for Society and Health, P.J. Safarik University in Kosice, Kosice, Slovak Republic
| |
Collapse
|
10
|
Saiz-Masvidal C, De la Peña-Arteaga V, Bertolín S, Martínez-Zalacaín I, Juaneda-Seguí A, Chavarría-Elizondo P, Subirà M, Menchón JM, Fullana MA, Soriano-Mas C. Uncovering the correlation between neurotransmitter-specific functional connectivity and multidimensional anxiety in a non-clinical cohort. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01879-9. [PMID: 39190041 DOI: 10.1007/s00406-024-01879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Research on anxiety faces challenges due to the wide range of symptoms, making it difficult to determine if different aspects of anxiety are linked to distinct neurobiological processes. Both alterations in functional brain connectivity (FC) and monoaminergic neurotransmitter systems are implicated as potential neural bases of anxiety. We aimed to investigate whole-brain FC involving monoaminergic nuclei and its association with anxiety dimensions in 178 non-clinical participants. Nine anxiety-related scales were used, encompassing trait and state anxiety scores, along with measures of cost-probability, hypervigilance, reward-punishment sensitivity, uncertainty, and trait worry. Resting-state functional magnetic resonance imaging data were acquired, focusing on seven brainstem regions representing serotonergic, dopaminergic, and noradrenergic nuclei, with their FC patterns voxel-wise correlated with the scales. All models underwent family-wise-error correction for multiple comparisons. We observed intriguing relationships: trait and state anxiety scores exhibited opposing correlations in FC between the dorsal raphe nucleus and the paracingulate gyrus. Additionally, we identified shared neural correlates, such as a negative correlation between the locus coeruleus and the frontal pole. This connection was significantly associated with scores on measures of probability, hypervigilance, reward sensitivity, and trait worry. These findings underscore the intricate interplay between anxiety dimensions and subcortico-cortical FC patterns, shedding light on the underlying neural mechanisms governing anxiety.
Collapse
Affiliation(s)
- C Saiz-Masvidal
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
| | - V De la Peña-Arteaga
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau, Sant Pau - Campus Salut Barcelona, Barcelona, Spain
| | - S Bertolín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - I Martínez-Zalacaín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, Barcelona, 08907, Spain
| | - A Juaneda-Seguí
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
| | - P Chavarría-Elizondo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - M Subirà
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - J M Menchón
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, Universitat de Barcelona - UB, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - M A Fullana
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Hospital Clinic, Barcelona, Spain.
| | - C Soriano-Mas
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Higuchi Y, Odagiri S, Tateno T, Suzuki M, Takahashi T. Resting-state electroencephalogram in drug-free subjects with at-risk mental states who later developed psychosis: a low-resolution electromagnetic tomography analysis. Front Hum Neurosci 2024; 18:1449820. [PMID: 39257698 PMCID: PMC11384587 DOI: 10.3389/fnhum.2024.1449820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Background and objectives Several studies have reported on the resting-state electroencephalogram (EEG) power in patients with schizophrenia, with a decrease in α (especially α2) and an increase in δ and β1 power compared with healthy control; however, reports on at-risk mental states (ARMS) are few. In this study, we measured the resting-state EEG power in ARMS, and investigated its features and the relationship between the power of the frequency bands and their diagnostic outcomes. Methods Patients with ARMS who were not on any psychotropic medication and met the Comprehensive Assessment of At-Risk Mental State criteria were included. Patients who developed psychotic disorders were labeled as the ARMS-P group, while patients with ARMS who were followed up prospectively for more than 2 years and did not develop psychotic disorders were classified as the ARMS-NP group. EEGs were measured in the resting state, and frequencies were analyzed using standardized low-resolution brain electromagnetic tomography (sLORETA). Seven bands (δ, θ, α1, α2, β1-3) underwent analysis. The sLORETA values (current source density [CSD]) were compared between the ARMS-P and ARMS-NP groups. Clinical symptoms were assessed at the time of EEG measurements using the Positive and Negative Syndrome Scale (PANSS). Results Of the 39 patients included (25 males, 14 females, 18.8 ± 4.5 years old), eight developed psychotic disorders (ARMS-P). The ARMS-P group exhibited significantly higher CSD in the β1 power within areas of the left middle frontal gyrus (MFG) compared with the ARMS-NP group (best match: X = -35, Y = 25, Z = 50 [MNI coordinates], Area 8, CSD = 2.33, p < 0.05). There was a significant positive correlation between the β1/α ratio of the CSD at left MFG and the Somatic concern score measured by the PANSS. Discussion Increased β1 power was observed in the resting EEG before the onset of psychosis and correlated with a symptom. This suggests that resting EEG power may be a useful marker for predicting future conversion to psychosis and clinical symptoms in patients with ARMS.
Collapse
Affiliation(s)
- Yuko Higuchi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Shizuka Odagiri
- Center for Clinical Training, Toyama University Hospital, Toyama, Japan
| | | | - Michio Suzuki
- Itoigawa Clinic, Niigata, Japan
- Ariwawabashi Hospital, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
Madsen SS, Andersen TL, Pihl-Thingvad J, Brandt L, Olsen BB, Gerke O, Videbech P. Brain Glucose Metabolism and COMT Val 158 Met Polymorphism in Female Patients with Work-Related Stress. Diagnostics (Basel) 2024; 14:1730. [PMID: 39202218 PMCID: PMC11353128 DOI: 10.3390/diagnostics14161730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Stress is a ubiquitous challenge in modern societies. Symptoms range from mood swings and cognitive impairment to autonomic symptoms. This study explores the link between work-related stress and the neurobiological element of brain processing, testing the hypothesis that patients with occupational stress have altered cerebral glucose consumption compared to healthy controls. The participants' present conditions were evaluated using an adapted WHO SCAN interview. Neural activity at rest was assessed by positron emission tomography (PET) with the glucose analogue [18F]fluorodeoxyglucose. Participants were genotyped for the Val158Met polymorphism of the COMT gene, believed to influence stress resilience. This study included 11 women with work-related stress and 11 demographically comparable healthy controls aged 28-62 years, with an average of 46.2 years. The PET scans indicated clusters of decreased glucose consumption primarily located in the white matter of frontal lobe sub-gyral areas in stress patients. COMT Val158Met polymorphism detection indicated no immediate relation of the homozygous alleles and stress resilience; however, healthy controls mainly had the heterozygous allele. In conclusion, the results support that work-related stress does affect the brain in the form of altered glucose metabolism, suggesting neurobiological effects could be related to white matter abnormalities rather than gray matter deterioration. Genotyping indicates a more complex picture than just that of the one type being more resilient to stress. Further studies recruiting a larger number of participants are needed to confirm our preliminary findings.
Collapse
Affiliation(s)
- Saga Steinmann Madsen
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, University of Copenhagen, 2600 Glostrup, Denmark; (S.S.M.); (P.V.)
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- OPEN (Open Patient data Explorative Network), Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jesper Pihl-Thingvad
- Department of Occupational and Environmental Medicines, Odense University Hospital, 5000 Odense, Denmark; (J.P.-T.)
- Research Unit of Occupational & Environmental Medicine, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Lars Brandt
- Department of Occupational and Environmental Medicines, Odense University Hospital, 5000 Odense, Denmark; (J.P.-T.)
- Research Unit of Occupational & Environmental Medicine, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | - Oke Gerke
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, University of Copenhagen, 2600 Glostrup, Denmark; (S.S.M.); (P.V.)
| |
Collapse
|
13
|
Zhou Y, Zhu H, Hu W, Song Y, Zhang S, Peng Y, Yang G, Shi H, Yang Y, Li W, Lv L, Zhang Y. Abnormal regional homogeneity as a potential imaging indicator for identifying adolescent-onset schizophrenia: Insights from resting-state functional magnetic resonance imaging. Asian J Psychiatr 2024; 98:104106. [PMID: 38865883 DOI: 10.1016/j.ajp.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND In patients with schizophrenia, there is abnormal regional functional synchrony. However, whether it also in patients with adolescent-onset schizophrenia (AOS) remains unclear. The goal of this study was to analyze the regional homogeneity (ReHo) of resting functional magnetic resonance imaging to explore the functional abnormalities of the brain in patients with AOS. METHODS The study included 107 drug-naive first-episode AOS patients and 67 healthy, age, sex, and education-matched controls using resting-state functional magnetic resonance imaging scans. The ReHo method was used to analyze the imaging dataset. RESULTS Compared with the control group, the ReHo values of the right inferior frontal gyrus orbital part, right middle frontal gyrus (MFG.R), left inferior parietal, but supramarginal and angular gyri, and left precentral gyrus (PreCG.L) were significantly increased and the ReHo value of the left posterior cingulate cortex/anterior cuneiform lobe was significantly decreased in schizophrenia patients. ROC analysis showed that the ReHo values of the MFG.R and PreCG.L might be regarded as potential markers in helping to identify patients. Furthermore, the PANSS scores in the patient group and the ReHo values showed a positive correlation between MFG.R ReHo values and general scores. CONCLUSIONS Our results suggested that AOS patients had ReHo abnormalities. The ReHo values of these abnormal regions may serve as potential imaging biomarkers for the identification of AOS patients.
Collapse
Affiliation(s)
- Youqi Zhou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Hanyu Zhu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Wenyan Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Yichen Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Sen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Yue Peng
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ge Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China.
| |
Collapse
|
14
|
Li J, Yao C, Li Y, Liu X, Zhao Z, Shang Y, Yang J, Yao Z, Sheng Y, Hu B. Effects of second language acquisition on brain functional networks at different developmental stages. Brain Imaging Behav 2024; 18:808-818. [PMID: 38492128 DOI: 10.1007/s11682-024-00865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/18/2024]
Abstract
Previous studies have shown that language acquisition influences both the structure and function of the brain. However, whether the acquisition of a second language at different periods of life alters functional network organization in different ways remains unclear. Here, functional magnetic resonance imaging data from 27 English-speaking monolingual controls and 52 Spanish-English bilingual individuals, including 22 early bilinguals who began learning a second language before the age of ten and 30 late bilinguals who started learning a second language at age fourteen or later, were collected from the OpenNeuro database. Topological metrics of resting-state functional networks, including small-world attributes, network efficiency, and rich- and diverse-club regions, that characterize functional integration and segregation of the networks were computed via a graph theoretical approach. The results showed obvious increases in network efficiency in early bilinguals and late bilinguals relative to the monolingual controls; for example, the global efficiency of late bilinguals and early bilinguals was improved relative to that of monolingual controls, and the local efficiency of early bilinguals occupied an intermediate position between that of late bilinguals and monolingual controls. Obvious increases in rich-club and diverse-club functional connectivity were observed in the bilinguals relative to the monolingual controls. Three network metrics were positively correlated with Spanish proficiency test scores. These findings demonstrated that early and late acquisition of a second language had different impacts on the functional networks of the brain.
Collapse
Affiliation(s)
- Jiajia Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Chaofan Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xia Liu
- School of Computer Science, Qinghai Normal University, Xining, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yingying Shang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Jing Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| | - Yucen Sheng
- School of Foreign Languages, Lanzhou Jiaotong University, Lanzhou, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University &, Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China.
| |
Collapse
|
15
|
Kotowicz J, Banaszkiewicz A, Dzięgiel-Fivet G, Emmorey K, Marchewka A, Jednoróg K. Neural underpinnings of sentence reading in deaf, native sign language users. BRAIN AND LANGUAGE 2024; 255:105447. [PMID: 39079468 DOI: 10.1016/j.bandl.2024.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 08/11/2024]
Abstract
The goal of this study was to investigate sentence-level reading circuits in deaf native signers, a unique group of deaf people who are immersed in a fully accessible linguistic environment from birth, and hearing readers. Task-based fMRI, functional connectivity and lateralization analyses were conducted. Both groups exhibited overlapping brain activity in the left-hemispheric perisylvian regions in response to a semantic sentence task. We found increased activity in left occipitotemporal and right frontal and temporal regions in deaf readers. Lateralization analyses did not confirm more rightward asymmetry in deaf individuals. Deaf readers exhibited weaker functional connectivity between inferior frontal and middle temporal gyri and enhanced coupling between temporal and insular cortex. In conclusion, despite the shared functional activity within the semantic reading network across both groups, our results suggest greater reliance on cognitive control processes for deaf readers, possibly resulting in greater effort required to perform the task in this group.
Collapse
Affiliation(s)
| | - Anna Banaszkiewicz
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Gabriela Dzięgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karen Emmorey
- Laboratory for Language and Cognitive Neuroscience, San Diego State University, San Diego, USA
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
16
|
de Sampaio Barros MF, Stefano Filho CA, de Menezes LT, Araújo-Moreira FM, Trevelin LC, Pimentel Maia R, Radel R, Castellano G. Psycho-physio-neurological correlates of qualitative attention, emotion and flow experiences in a close-to-real-life extreme sports situation: low- and high-altitude slackline walking. PeerJ 2024; 12:e17743. [PMID: 39076780 PMCID: PMC11285370 DOI: 10.7717/peerj.17743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
It has been indicated that extreme sport activities result in a highly rewarding experience, despite also providing fear, stress and anxiety. Studies have related this experience to the concept of flow, a positive feeling that individuals undergo when they are completely immersed in an activity. However, little is known about the exact nature of these experiences, and, there are still no empirical results to characterize the brain dynamics during extreme sport practice. This work aimed at investigating changes in psychological responses while recording physiological (heart rate-HR, and breathing rate-BR) and neural (electroencephalographic-EEG) data of eight volunteers, during outdoors slackline walking in a mountainous environment at two different altitude conditions (1 m-low-walk- and 45 m-high-walk-from the ground). Low-walk showed a higher score on flow scale, while high-walk displayed a higher score in the negative affect aspects, which together point to some level of flow restriction during high-walk. The order of task performance was shown to be relevant for the physiological and neural variables. The brain behavior during flow, mainly considering attention networks, displayed the stimulus-driven ventral attention network-VAN, regionally prevailing (mainly at the frontal lobe), over the goal-directed dorsal attention network-DAN. Therefore, we suggest an interpretation of flow experiences as an opened attention to more changing details in the surroundings, i.e., configured as a 'task-constantly-opened-to-subtle-information experience', rather than a 'task-focused experience'.
Collapse
Affiliation(s)
- Marcelo Felipe de Sampaio Barros
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Laboratoire LAMHESS, Université de Nice Sophia Antipolis, Nice, Côte d’Azur, France
| | - Carlos Alberto Stefano Filho
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Lucas Toffoli de Menezes
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Fernando Manuel Araújo-Moreira
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Programa de pós-graduação em Engenharia Nuclear, Instituto Militar de Engenharia/IME, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Carlos Trevelin
- Programa de Pós-graduação em Biotecnologia, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- Departamento de Computação, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Rafael Pimentel Maia
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Rémi Radel
- Laboratoire LAMHESS, Université de Nice Sophia Antipolis, Nice, Côte d’Azur, France
| | - Gabriela Castellano
- Neurophysics Group, Gleb Wataghin Institute of Physics, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Juan Q, Shiwan T, Yurong S, Jiabo S, Yu C, Shui T, Zhijian Y, Qing L. Brain structural and functional abnormalities in affective network are associated with anxious depression. BMC Psychiatry 2024; 24:533. [PMID: 39054442 PMCID: PMC11270941 DOI: 10.1186/s12888-024-05970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Anxious depression (AD) is a common subtype of major depressive disorder (MDD). Neuroimaging studies of AD have revealed inconsistent and heterogeneous brain alterations with the use of single-model methods. Therefore, it is necessary to explore the pathogenesis of AD using multi-model imaging analyses to obtain more homogeneous and robust results. METHODS One hundred and eighty-two patients with MDD and 64 matched healthy controls (HCs) were recruited. Voxel-based morphometry (VBM) was used to estimate the gray matter volume (GMV) of all subjects. The GMV differences between the AD and non-anxious depression (NAD) participants were used as regions of interest (ROIs) for subsequent resting state functional connectivity (rs-FC) analyses. Correlation analysis was used to evaluate the associations between clinical symptoms and abnormal function in specific brain areas. RESULTS Decreased GMV in the medial frontal gyrus (MFG) and the superior frontal gyrus (SFG) was observed in the AD group compared to the NAD group. Taking the MFG and SFG as ROIs, the rs-FC analysis revealed decreased FC between the left SFG and left temporal pole and between the left SFG and right MFG in the AD group compared to the NAD group. Finally, the FC between the left SFG and left temporal pole was negatively correlated with HAMD-17 scores in the AD group. CONCLUSION By combining the GMV and rs-FC models, this study revealed that structural and functional disruption of the affective network may be an important pathophysiology underlying AD. The structural impairment may serve as the foundation of the functional impairment.
Collapse
Affiliation(s)
- Qiao Juan
- Department of Psychology, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou, 221004, China
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Shiwan
- West China Hospital, Mental Health Center, Sichuan University, Chengdu, 610047, China
| | - Sun Yurong
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Shi Jiabo
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Chen Yu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Tian Shui
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Zhijian
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lu Qing
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China.
| |
Collapse
|
18
|
Romero-Martínez Á, Beser-Robles M, Cerdá-Alberich L, Aparici F, Martí-Bonmatí L, Sarrate-Costa C, Lila M, Moya-Albiol L. Executive dysfunction and cortical variations among intimate partner violence perpetrators and the association with sexism. Soc Cogn Affect Neurosci 2024; 19:nsae046. [PMID: 38915189 PMCID: PMC11223607 DOI: 10.1093/scan/nsae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
Malfunctioning in executive functioning has been proposed as a risk factor for intimate partner violence (IPV). This is not only due to its effects on behavioral regulation but also because of its association with other variables such as sexism. Executive dysfunctions have been associated with frontal and prefrontal cortical thickness. Therefore, our first aim was to assess differences in cortical thickness in frontal and prefrontal regions, as well as levels of sexism, between two groups of IPV perpetrators (with and without executive dysfunctions) and a control group of non-violent men. Second, we analyzed whether the cortical thickness in the frontal and prefrontal regions would explain sexism scores. Our results indicate that IPV perpetrators classified as dysexecutive exhibited a lower cortical thickness in the right rostral anterior cingulate superior frontal bilaterally, caudal middle frontal bilaterally, right medial orbitofrontal, right paracentral, and precentral bilaterally when compared with controls. Furthermore, they exhibited higher levels of sexism than the rest of the groups. Most importantly, in the brain structures that distinguished between groups, lower thickness was associated with higher sexism scores. This research emphasizes the need to incorporate neuroimaging techniques to develop accurate IPV profiles or subtypes based on neuropsychological functioning.
Collapse
Affiliation(s)
| | - María Beser-Robles
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia 46026, Spain
| | - Leonor Cerdá-Alberich
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia 46026, Spain
| | - Fernando Aparici
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia 46026, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia 46026, Spain
| | | | - Marisol Lila
- Department of Social Psychology, University of Valencia, Valencia 46010, Spain
| | - Luis Moya-Albiol
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
19
|
Yao Y, Zhang S, Wang B, Lin X, Zhao G, Deng H, Chen Y. Neural dysfunction underlying working memory processing at different stages of the illness course in schizophrenia: a comparative meta-analysis. Cereb Cortex 2024; 34:bhae267. [PMID: 38960703 DOI: 10.1093/cercor/bhae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Schizophrenia, as a chronic and persistent disorder, exhibits working memory deficits across various stages of the disorder, yet the neural mechanisms underlying these deficits remain elusive with inconsistent neuroimaging findings. We aimed to compare the brain functional changes of working memory in patients at different stages: clinical high risk, first-episode psychosis, and long-term schizophrenia, using meta-analyses of functional magnetic resonance imaging studies. Following a systematic literature search, 56 whole-brain task-based functional magnetic resonance imaging studies (15 for clinical high risk, 16 for first-episode psychosis, and 25 for long-term schizophrenia) were included. The separate and pooled neurofunctional mechanisms among clinical high risk, first-episode psychosis, and long-term schizophrenia were generated by Seed-based d Mapping toolbox. The clinical high risk and first-episode psychosis groups exhibited overlapping hypoactivation in the right inferior parietal lobule, right middle frontal gyrus, and left superior parietal lobule, indicating key lesion sites in the early phase of schizophrenia. Individuals with first-episode psychosis showed lower activation in left inferior parietal lobule than those with long-term schizophrenia, reflecting a possible recovery process or more neural inefficiency. We concluded that SCZ represent as a continuum in the early stage of illness progression, while the neural bases are inversely changed with the development of illness course to long-term course.
Collapse
Affiliation(s)
- Yuhao Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Shufang Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Boyao Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyong Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Gaofeng Zhao
- Department of Psychiatry, Shandong Daizhuang Hospital, Jinning, China
| | - Hong Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Lee Y, Gilbert JR, Waldman LR, Zarate CA, Ballard ED. Potential association between suicide risk, aggression, impulsivity, and the somatosensory system. Soc Cogn Affect Neurosci 2024; 19:nsae041. [PMID: 38874947 PMCID: PMC11219302 DOI: 10.1093/scan/nsae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
Aggression and impulsivity are linked to suicidal behaviors, but their relationship to the suicidal crisis remains unclear. This magnetoencephalography (MEG) study investigated the link between aggression, impulsivity, and resting-state MEG power and connectivity. Four risk groups were enrolled: high-risk (HR; n = 14), who had a recent suicidal crisis; lower-risk (LR; n = 41), who had a history of suicide attempts but no suicide attempt or ideation in the past year; clinical control (CC; n = 38), who had anxiety/mood disorders but no suicidal history; and minimal risk (MR; n = 28), who had no psychiatric/suicidal history. No difference in resting-state MEG power was observed between the groups. Individuals in the HR group with high self-reported aggression and impulsivity scores had reduced MEG power in regions responsible for sensory/emotion regulation vs. those in the HR group with low scores. The HR group also showed downregulated bidirectional glutamatergic feedback between the precuneus (PRE) and insula (INS) compared to the LR, CC, and MR groups. High self-reported impulsivity was linked to reduced PRE to INS feedback, whereas high risk-taking impulsivity was linked to upregulated INS to postcentral gyrus (PCG) and PCG to INS feedback. These preliminary findings suggest that glutamatergic-mediated sensory and emotion-regulation processes may function as potential suicide risk markers.
Collapse
Affiliation(s)
- Yoojin Lee
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Laura R Waldman
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
21
|
Tan S, Deng S, Song X, Su X, Zhao J, Yang K, Li H, Wang D, Fu J, Gong R, Lin X, Li X. Altered effective connectivity on rapid automatized naming deficits in Chinese children with developmental dyslexia: An rs-fMRI study with Ganger causality analysis. J Psychiatr Res 2024; 175:235-242. [PMID: 38749297 DOI: 10.1016/j.jpsychires.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 09/06/2024]
Abstract
Rapid Automatized Naming (RAN) is the core defect of developmental dyslexia (DD), requiring collaboration among brain areas to complete. However, it's still unclear which effective connectivity (EC) among brain areas are crucial for RAN deficits in Chinses children with DD. The current study aims to explore the EC among brain areas related to RAN deficits in Chinese children with DD. We recruited 36 Chinese children with DD and 64 typically developing (TD) children aged 8-12 to complete resting-state functional magnetic resonance imaging (rs-fMRI) scan. Granger causality analysis (GCA) was employed to analysis the EC among brain areas related to RAN, and to calculate the relationship between EC and RAN scores. Compared to TD group, the DD group exhibited significantly decreased EC from left precentral gyrus (PG) to right precuneus, left anterior cingulate and paracingulate gyrus (ACG), left calcarine and right angular, from left middle frontal gyrus (MFG) to left calcarine. Additionally, the DD group showed increased EC from right cuneus to left inferior frontal gyrus triangular part (IFGtri). The EC from left PG to left ACG was positively correlated with letters-RAN score. The results showed Chinese children with DD had both defect and compensatory mechanisms for their RAN deficits. The decreased EC output from left PG may be the core problem of the RAN deficits, which may influence the integration of visual-spatial information, attention, memory retrieval, and speech motor in speech production. The current study has important clinic implications for establishing intervention measures targeted brain.
Collapse
Affiliation(s)
- Si Tan
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Simin Deng
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaojing Song
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xintong Su
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Jingxian Zhao
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Kaize Yang
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Hailin Li
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Daosen Wang
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Jiaxuan Fu
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Ranran Gong
- School of Public Health, Sun Yat-sen University, 518107, Shenzhen, China
| | - Xinyun Lin
- School of Public Health, Sun Yat-sen University, 518107, Shenzhen, China
| | - Xiuhong Li
- School of Public Health, Sun Yat-sen University, 518107, Shenzhen, China.
| |
Collapse
|
22
|
Xie Y, Chang H, Zhang Y, Wang C, Zhang Y, Chen L, Geng F, Ku Y, Menon V, Chen F. Long-term abacus training gains in children are predicted by medial temporal lobe anatomy and circuitry. Dev Sci 2024; 27:e13489. [PMID: 38421061 PMCID: PMC11161333 DOI: 10.1111/desc.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Abacus-based mental calculation (AMC) is a widely used educational tool for enhancing math learning, offering an accessible and cost-effective method for classroom implementation. Despite its universal appeal, the neurocognitive mechanisms that drive the efficacy of AMC training remain poorly understood. Notably, although abacus training relies heavily on the rapid recall of number positions and sequences, the role of memory systems in driving long-term AMC learning remains unknown. Here, we sought to address this gap by investigating the role of the medial temporal lobe (MTL) memory system in predicting long-term AMC training gains in second-grade children, who were longitudinally assessed up to fifth grade. Leveraging multimodal neuroimaging data, we tested the hypothesis that MTL systems, known for their involvement in associative memory, are instrumental in facilitating AMC-induced improvements in math skills. We found that gray matter volume in bilateral MTL, along with functional connectivity between the MTL and frontal and ventral temporal-occipital cortices, significantly predicted learning gains. Intriguingly, greater gray matter volume but weaker connectivity of the posterior parietal cortex predicted better learning outcomes, offering a more nuanced view of brain systems at play in AMC training. Our findings not only underscore the critical role of the MTL memory system in AMC training but also illuminate the neurobiological factors contributing to individual differences in cognitive skill acquisition. A video abstract of this article can be viewed at https://youtu.be/StVooNRc7T8. RESEARCH HIGHLIGHTS: We investigated the role of medial temporal lobe (MTL) memory system in driving children's math learning following abacus-based mental calculation (AMC) training. AMC training improved math skills in elementary school children across their second and fifth grade. MTL structural integrity and functional connectivity with prefrontal and ventral temporal-occipital cortices predicted long-term AMC training-related gains.
Collapse
Affiliation(s)
- Ye Xie
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Chunjie Wang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Lang Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053, United States
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, PR China
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
- Peng Cheng Laboratory, Shenzhen, 518040, PR China
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, United States
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
23
|
Lim YB, Song H, Lee H, Lim S, Kwon SY, Chun J, Kim S, Tosun C, Yoon KS, Sohn CH, Kim BN. Comparison of arterial spin labeled MRI (ASL MRI) between ADHD and control group (ages of 6-12). Sci Rep 2024; 14:14950. [PMID: 38942754 PMCID: PMC11213899 DOI: 10.1038/s41598-024-63658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024] Open
Abstract
This study utilized arterial spin labeling-magnetic resonance imaging (ASL-MRI) to explore the developmental trajectory of brain activity associated with attention deficit hyperactivity disorder (ADHD). Pulsed arterial spin labeling (ASL) data were acquired from 157 children with ADHD and 109 children in a control group, all aged 6-12 years old. Participants were categorized into the age groups of 6-7, 8-9, and 10-12, after which comparisons were performed between each age group for ASL analysis of cerebral blood flow (CBF). In total, the ADHD group exhibited significantly lower CBF in the left superior temporal gyrus and right middle frontal gyrus regions than the control group. Further analysis revealed: (1) The comparison between the ADHD group (N = 70) aged 6-7 and the age-matched control group (N = 33) showed no statistically significant difference between. (2) However, compared with the control group aged 8-9 (N = 39), the ADHD group of the same age (N = 53) showed significantly lower CBF in the left postcentral gyrus and left middle frontal gyrus regions. (3) Further, the ADHD group aged 10-12 (N = 34) demonstrated significantly lower CBF in the left superior occipital region than the age-matched control group (N = 37). These age-specific differences suggest variations in ADHD-related domains during brain development post age 6-7.
Collapse
Affiliation(s)
- You Bin Lim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Huijin Song
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunjoo Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seungbee Lim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seo Young Kwon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeeyoung Chun
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sujin Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ceren Tosun
- Istanbul University-Cerrahpasa Medical Faculty Child and Adolescent Psychiatry, Istanbul, Turkey
| | - Kyung Seu Yoon
- Department of Psychiatry, Hanyang University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
24
|
Lai J, Zou P, Dalboni da Rocha JL, Heitzer AM, Patni T, Li Y, Scoggins MA, Sharma A, Wang WC, Helton KJ, Sitaram R. Hydroxyurea maintains working memory function in pediatric sickle cell disease. PLoS One 2024; 19:e0296196. [PMID: 38935785 PMCID: PMC11210848 DOI: 10.1371/journal.pone.0296196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/08/2024] [Indexed: 06/29/2024] Open
Abstract
Sickle cell disease (SCD) decreases the oxygen-carrying capacity of red blood cells. Children with SCD have reduced/restricted cerebral blood flow, resulting in neurocognitive deficits. Hydroxyurea is the standard treatment for SCD; however, whether hydroxyurea influences such effects is unclear. A key area of SCD-associated neurocognitive impairment is working memory, which is implicated in other cognitive and academic skills. The neural correlates of working memory can be tested using n-back tasks. We analyzed functional magnetic resonance imaging (fMRI) data of patients with SCD (20 hydroxyurea-treated patients and 11 controls, aged 7-18 years) while they performed n-back tasks. Blood-oxygenation level-dependent (BOLD) signals were assessed during working memory processing at 2 time points: before hydroxyurea treatment and ~1 year after treatment was initiated. Neurocognitive measures were also assessed at both time points. Our results suggested that working memory was stable in the treated group. We observed a treatment-by-time interaction in the right cuneus and angular gyrus for the 2- >0-back contrast. Searchlight-pattern classification of the 2 time points of the 2-back tasks identified greater changes in the pattern and magnitude of BOLD signals, especially in the posterior regions of the brain, in the control group than in the treated group. In the control group at 1-year follow-up, 2-back BOLD signals increased across time points in several clusters (e.g., right inferior temporal lobe, right angular gyrus). We hypothesize that these changes resulted from increased cognitive effort during working memory processing in the absence of hydroxyurea. In the treated group, 0- to 2-back BOLD signals in the right angular gyrus and left cuneus increased continuously with increasing working memory load, potentially related to a broader dynamic range in response to task difficulty and cognitive effort. These findings suggest that hydroxyurea treatment helps maintain working memory function in SCD.
Collapse
Affiliation(s)
- Jesyin Lai
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ping Zou
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Josue L. Dalboni da Rocha
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Andrew M. Heitzer
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Tushar Patni
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yimei Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Matthew A. Scoggins
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Akshay Sharma
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Winfred C. Wang
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kathleen J. Helton
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ranganatha Sitaram
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
25
|
Pulferer HS, Guan C, Müller-Putz GR. Investigating multilevel cognitive processing within error-free and error-prone feedback conditions in executed and observed car driving. Front Hum Neurosci 2024; 18:1383956. [PMID: 38993330 PMCID: PMC11236611 DOI: 10.3389/fnhum.2024.1383956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Accident analyses repeatedly reported the considerable contribution of run-off-road incidents to fatalities in road traffic, and despite considerable advances in assistive technologies to mitigate devastating consequences, little insight into the drivers' brain response during such accident scenarios has been gained. While various literature documents neural correlates to steering motion, the driver's mental state, and the impact of distraction and fatigue on driving performance, the cortical substrate of continuous deviations of a car from the road - i.e., how the brain represents a varying discrepancy between the intended and observed car position and subsequently assigns customized levels of corrective measures - remains unclear. Furthermore, the superposition of multiple subprocesses, such as visual and erroneous feedback processing, performance monitoring, or motor control, complicates a clear interpretation of engaged brain regions within car driving tasks. In the present study, we thus attempted to disentangle these subprocesses, employing passive and active steering conditions within both error-free and error-prone vehicle operation conditions. We recorded EEG signals of 26 participants in 13 sessions, simultaneously measuring pairs of Executors (actively steering) and Observers (strictly observing) during a car driving task. We observed common brain patterns in the Executors regardless of error-free or error-prone vehicle operation, albeit with a shift in spectral activity from motor beta to occipital alpha oscillations within erroneous conditions. Further, significant frontocentral differences between Observers and Executors, tracing back to the caudal anterior cingulate cortex, arose during active steering conditions, indicating increased levels of motor-behavioral cognitive control. Finally, we present regression results of both the steering signal and the car position, indicating that a regression of continuous deviations from the road utilizing the EEG might be feasible.
Collapse
Affiliation(s)
- Hannah S. Pulferer
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Cuntai Guan
- College of Computing and Data Science, Nanyang Technological University, Singapore, Singapore
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
26
|
Wang Y, Ma L, Wang J, Ding Y, Liu N, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. The neural and genetic underpinnings of different developmental trajectories of Attention-Deficit/Hyperactivity Symptoms in children and adolescents. BMC Med 2024; 22:223. [PMID: 38831366 PMCID: PMC11149188 DOI: 10.1186/s12916-024-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The trajectory of attention-deficit hyperactivity disorder (ADHD) symptoms in children and adolescents, encompassing descending, stable, and ascending patterns, delineates their ADHD status as remission, persistence or late onset. However, the neural and genetic underpinnings governing the trajectory of ADHD remain inadequately elucidated. METHODS In this study, we employed neuroimaging techniques, behavioral assessments, and genetic analyses on a cohort of 487 children aged 6-15 from the Children School Functions and Brain Development project at baseline and two follow-up tests for 1 year each (interval 1: 1.14 ± 0.32 years; interval 2: 1.14 ± 0.30 years). We applied a Latent class mixed model (LCMM) to identify the developmental trajectory of ADHD symptoms in children and adolescents, while investigating the neural correlates through gray matter volume (GMV) analysis and exploring the genetic underpinnings using polygenic risk scores (PRS). RESULTS This study identified three distinct trajectories (ascending-high, stable-low, and descending-medium) of ADHD symptoms from childhood through adolescence. Utilizing the linear mixed-effects (LME) model, we discovered that attention hub regions served as the neural basis for these three developmental trajectories. These regions encompassed the left anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), responsible for inhibitory control; the right inferior parietal lobule (IPL), which facilitated conscious focus on exogenous stimuli; and the bilateral middle frontal gyrus/precentral gyrus (MFG/PCG), accountable for regulating both dorsal and ventral attention networks while playing a crucial role in flexible modulation of endogenous and extrinsic attention. Furthermore, our findings revealed that individuals in the ascending-high group exhibited the highest PRS for ADHD, followed by those in the descending-medium group, with individuals in the stable-low group displaying the lowest PRS. Notably, both ascending-high and descending-medium groups had significantly higher PRS compared to the stable-low group. CONCLUSIONS The developmental trajectory of ADHD symptoms in the general population throughout childhood and adolescence can be reliably classified into ascending-high, stable-low, and descending-medium groups. The bilateral MFG/PCG, left ACC/mPFC, and right IPL may serve as crucial brain regions involved in attention processing, potentially determining these trajectories. Furthermore, the ascending-high pattern of ADHD symptoms exhibited the highest PRS for ADHD.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuyin Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
27
|
Güldener L, Pollmann S. Behavioral Bias for Exploration Is Associated with Enhanced Signaling in the Lateral and Medial Frontopolar Cortex. J Cogn Neurosci 2024; 36:1156-1171. [PMID: 38437186 DOI: 10.1162/jocn_a_02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Should we keep doing what we know works for us, or should we risk trying something new as it could work even better? The exploration-exploitation dilemma is ubiquitous in daily life decision-making, and balancing between the two is crucial for adaptive behavior. Yet, we only have started to unravel the neurocognitive mechanisms that help us to find this balance in practice. Analyzing BOLD signals of healthy young adults during virtual foraging, we could show that a behavioral tendency for prolonged exploitation was associated with weakened signaling during exploration in central node points of the frontoparietal attention network, plus the frontopolar cortex. These results provide an important link between behavioral heuristics that we use to balance between exploitation and exploration and the brain function that supports shifts from one tendency to the other. Importantly, they stress that interindividual differences in behavioral strategies are reflected in differences in brain activity during exploration and should thus be more in the focus of basic research that aims at delineating general laws governing visual attention.
Collapse
|
28
|
Malik M, Weber A, Lang D, Vanderwal T, Zwicker JG. Cortical grey matter volume differences in children with developmental coordination disorder compared to typically developing children. Front Hum Neurosci 2024; 18:1276057. [PMID: 38826616 PMCID: PMC11140146 DOI: 10.3389/fnhum.2024.1276057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/08/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction The cause of Developmental Coordination Disorder (DCD) is unknown, but neuroimaging evidence suggests that DCD may be related to altered brain development. Children with DCD show less structural and functional connectivity compared to typically developing (TD) children, but few studies have examined cortical volume in children with DCD. The purpose of this study was to investigate cortical grey matter volume using voxel-based morphometry (VBM) in children with DCD compared to TD children. Methods This cross-sectional study was part of a larger randomized-controlled trial (ClinicalTrials.gov ID: NCT02597751) that involved various MRI scans of children with/without DCD. This paper focuses on the anatomical scans, performing VBM of cortical grey matter volume in 30 children with DCD and 12 TD children. Preprocessing and VBM data analysis were conducted using the Computational Anatomy Tool Box-12 and a study-specific brain template. Differences between DCD and TD groups were assessed using a one-way ANOVA, controlling for total intracranial volume. Regression analyses examined if motor and/or attentional difficulties predicted grey matter volume. We used threshold-free cluster enhancement (5,000 permutations) and set an alpha level of 0.05. Due to the small sample size, we did not correct for multiple comparisons. Results Compared to the TD group, children with DCD had significantly greater grey matter in the left superior frontal gyrus. Lower motor scores (meaning greater impairment) were related to greater grey matter volume in left superior frontal gyrus, frontal pole, and right middle frontal gyrus. Greater grey matter volume was also significantly correlated with higher scores on the Conners 3 ADHD Index in the left superior frontal gyrus, superior parietal lobe, and precuneus. These results indicate that greater grey matter volume in these regions is associated with poorer motor and attentional skills. Discussion Greater grey matter volume in the left superior frontal gyrus in children with DCD may be a result of delayed or absent healthy cortical thinning, potentially due to altered synaptic pruning as seen in other neurodevelopmental disorders. These findings provide further support for the hypothesis that DCD is related to altered brain development.
Collapse
Affiliation(s)
- Myrah Malik
- Graduate Programs in Rehabilitation Science, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Weber
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Donna Lang
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Tamara Vanderwal
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jill G. Zwicker
- Brain, Behaviour, & Development Theme, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Wang Y, Ma L, Wang J, Ding Y, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. Connections Between the Middle Frontal Gyrus and the Dorsoventral Attention Network Are Associated With the Development of Attentional Symptoms. Biol Psychiatry 2024:S0006-3223(24)01291-5. [PMID: 38718879 DOI: 10.1016/j.biopsych.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The right middle frontal gyrus (MFG) has been proposed as a convergence site for the dorsal attention network (DAN) and ventral attention network (VAN), regulating both networks and enabling flexible modulation of attention. However, it is unclear whether the connections between the right MFG and these networks can predict changes in attention-deficit/hyperactivity disorder (ADHD) symptoms. METHODS This study used data from the Children School Functions and Brain Development project (N = 713, 56.2% boys). Resting-state functional magnetic resonance imaging was employed to analyze the connections of the right MFG with the DAN/VAN; connectome-based predictive modeling was applied for longitudinal prediction, and ADHD polygenic risk scores were used for genetic analysis. RESULTS ADHD symptoms were associated with the connections between the right MFG and DAN subregion, including the frontal eye field, as well as the VAN subregions, namely the inferior parietal lobule and inferior frontal gyrus. Furthermore, these connections of the right MFG with the frontal eye field, the inferior parietal lobule, and the inferior frontal gyrus could significantly predict changes in ADHD symptoms over 1 year and mediate the prediction of ADHD symptom changes by polygenic risk scores for ADHD. Finally, the validation samples confirmed that the functional connectivity between the right MFG and the frontal eye field/inferior parietal lobule in patients with ADHD was significantly weaker than that in typically developing control participants, and this difference disappeared after medication. CONCLUSIONS The connection of the right MFG with the DAN and VAN can serve as a predictive indicator for changes in ADHD symptoms over the following year, while also mediating the prediction of ADHD symptom changes by a polygenic risk score for ADHD. These findings hold promise as potential biomarkers for early identification of children who are at risk of developing ADHD.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuyin Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
30
|
Aoe T, Kawanaka R, Ohsone F, Hara A, Yokokawa T. Functional connectivity associated with attention networks differs among subgroups of fibromyalgia patients: an observational case-control study. Sci Rep 2024; 14:10197. [PMID: 38702506 PMCID: PMC11068894 DOI: 10.1038/s41598-024-60993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Fibromyalgia is a heterogenous chronic pain disorder diagnosed by symptom-based criteria. The aim of this study was to clarify different pathophysiological characteristics between subgroups of patients with fibromyalgia. We identified subgroups with distinct pain thresholds: those with a low pressure pain threshold (PL; 16 patients) and those with a normal pressure pain threshold (PN; 15 patients). Both groups experienced severe pain. We performed resting-state functional MRI analysis and detected 11 functional connectivity pairs among all 164 ROIs with distinct difference between the two groups (p < 0.001). The most distinctive one was that the PN group had significantly higher functional connectivity between the secondary somatosensory area and the dorsal attention network (p < 0.0001). Then, we investigated the transmission pathway of pain stimuli. Functional connectivity of the thalamus to the insular cortex was significantly higher in the PL group (p < 0.01 - 0.05). These results suggest that endogenous pain driven by top-down signals via the dorsal attention network may contribute to pain sensation in a subgroup of fibromyalgia patients with a normal pain threshold. Besides, external pain driven by bottom-up signals via the spinothalamic tract may contribute to pain sensations in another group of patients with a low pain threshold. Trial registration: UMIN000037712.
Collapse
Affiliation(s)
- Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo University, 3426-3 Anesaki, Ichihara, Chiba, 299-0111, Japan.
| | - Ryoko Kawanaka
- Department of Anesthesiology, Chiba Medical Center, Teikyo University, 3426-3 Anesaki, Ichihara, Chiba, 299-0111, Japan
| | - Fumio Ohsone
- Department of Radiology, Chiba Medical Center, Teikyo University, 3426-3 Anesaki, Ichihara , Chiba, 299-0111, Japan
| | - Akira Hara
- Department of Radiology, Chiba Medical Center, Teikyo University, 3426-3 Anesaki, Ichihara , Chiba, 299-0111, Japan
| | - Tokuzo Yokokawa
- Department of Radiology, Chiba Medical Center, Teikyo University, 3426-3 Anesaki, Ichihara , Chiba, 299-0111, Japan
| |
Collapse
|
31
|
Wu K, Li H, Xie Y, Zhang S, Wang X. Fractional amplitude of low-frequency fluctuation alterations in patients with cervical spondylotic myelopathy: a resting-state fMRI study. Neuroradiology 2024; 66:847-854. [PMID: 38530417 DOI: 10.1007/s00234-024-03337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE We sought to use the fractional amplitude of low-frequency fluctuation (fALFF) method to investigate the changes in spontaneous brain activity in CSM patients and their relationships with clinical features. METHODS We recruited 20 patients with CSM, and 20 healthy controls (HCs) matched for age, sex, and education status. The fALFF method was used to evaluate the altered spontaneous brain activities. The Pearson correlation analysis of fALFF and the clinical features were carried out. RESULTS Compared with HC, CSM group showed increased fALFF values in the left middle frontal gyrus, inferior parietal lobule, and right angular gyrus. Decreased fALFF values were found in the right lingual gyrus, cuneus (P < 0.05). Pearson correlation analysis shows that the fALFF values of all CSM were positively correlated with JOA score in the right angular gyrus (r = 0.518, P < 0.05). CONCLUSION CSM patients have abnormal fALFF distribution in multiple brain regions and might be an appealing alternative approach for further exploration of the pathological and neuropsychological states in CSM.
Collapse
Affiliation(s)
- Kaifu Wu
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China
| | - Han Li
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China
| | - Yuanliang Xie
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China
| | - Shutong Zhang
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China
| | - Xiang Wang
- Department of Radiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Wuhan, 430014, China.
| |
Collapse
|
32
|
Hu Y, Shi T, Xu Z, Zhang M, Yang J, Liu Z, Wan Q, Liu Y. Heart failure potentially affects the cortical structure of the brain. Aging (Albany NY) 2024; 16:7357-7386. [PMID: 38656892 PMCID: PMC11087114 DOI: 10.18632/aging.205762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Heart failure (HF) has been reported to affect cerebral cortex structure, but the underlying cause has not been determined. This study used Mendelian randomization (MR) to reveal the causal relationship between HF and structural changes in the cerebral cortex. METHODS HF was defined as the exposure variable, and cerebral cortex structure was defined as the outcome variable. Inverse-variance weighted (IVW), MR-Egger regression and weighted median (WME) were performed for MR analysis; MR-PRESSO and Egger's intercept was used to test horizontal pleiotropy; and "leave-one-out" was used for sensitivity analysis. RESULTS Fifty-two single nucleotide polymorphisms (SNPs) were defined as instrumental variables (IVs), and there was no horizontal pleiotropy in the IVs. According to the IVW analysis, the OR and 95% CI of cerebral cortex thickness were 0.9932 (0.9868-1.00) (P=0.0402), and the MR-Egger intercept was -15.6× 10-5 (P = 0.7974) and the Global test pval was 0.078. The P-value of the cerebral cortex surface was 0.2205, and the MR-Egger intercept was -34.69052 (P= 0.6984) and the Global Test pval was 0.045. HF had a causal effect on the surface area of the caudal middle frontal lobule (P=0.009), insula lobule (P=0.01), precuneus lobule (P=0.049) and superior parietal lobule (P=0.044). CONCLUSIONS HF was potentially associated with changes in cortical thickness and in the surface area of the caudal middle frontal lobule, insula lobule, precuneus lobule and superior parietal lobule.
Collapse
Affiliation(s)
- Yinqin Hu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyun Shi
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaohui Xu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Zhang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahui Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhirui Liu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiqi Wan
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongming Liu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anhui Provincial Hospital of Integrated Medicine, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of TCM, Hefei 230011, Anhui, China
| |
Collapse
|
33
|
Wu Q, Xu L, Wan J, Yu Z, Lei Y. Intolerance of uncertainty affects the behavioral and neural mechanisms of higher generalization. Cereb Cortex 2024; 34:bhae153. [PMID: 38615238 DOI: 10.1093/cercor/bhae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024] Open
Abstract
Intolerance of uncertainty (IU) is associated with several anxiety disorders. In this study, we employed rewards and losses as unconditioned positive and negative stimuli, respectively, to explore the effects of an individual's IU level on positive and negative generalizations using magnetic resonance imaging technology. Following instrumental learning, 48 participants (24 high IU; 24 low IU) were invited to complete positive and negative generalization tasks; their behavioral responses and neural activities were recorded by functional magnetic resonance imaging. The behavior results demonstrated that participants with high IUs exhibited higher generalizations to both positive and negative cues as compared with participants having low IUs. Neuroimaging results demonstrated that they exhibited higher activation levels in the right anterior insula and the default mode network (i.e. precuneus and posterior cingulate gyrus), as well as related reward circuits (i.e. caudate and right putamen). Therefore, higher generalization scores and the related abnormal brain activation may be key markers of IU as a vulnerability factor for anxiety disorders.
Collapse
Affiliation(s)
- Qi Wu
- Institute for Brain and Psychological Sciences, Sichuan Normal University, China
| | - Lei Xu
- Institute for Brain and Psychological Sciences, Sichuan Normal University, China
| | - Jiaming Wan
- Institute for Brain and Psychological Sciences, Sichuan Normal University, China
| | - Zhang Yu
- Institute for Brain and Psychological Sciences, Sichuan Normal University, China
| | - Yi Lei
- Institute for Brain and Psychological Sciences, Sichuan Normal University, China
| |
Collapse
|
34
|
Kampaite A, Gustafsson R, York EN, Foley P, MacDougall NJJ, Bastin ME, Chandran S, Waldman AD, Meijboom R. Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: A systematic review. PLoS One 2024; 19:e0299634. [PMID: 38551913 PMCID: PMC10980255 DOI: 10.1371/journal.pone.0299634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease affecting the central nervous system, characterised by neuroinflammation and neurodegeneration. Fatigue and depression are common, debilitating, and intertwined symptoms in people with relapsing-remitting MS (pwRRMS). An increased understanding of brain changes and mechanisms underlying fatigue and depression in RRMS could lead to more effective interventions and enhancement of quality of life. To elucidate the relationship between depression and fatigue and brain connectivity in pwRRMS we conducted a systematic review. Searched databases were PubMed, Web-of-Science and Scopus. Inclusion criteria were: studied participants with RRMS (n ≥ 20; ≥ 18 years old) and differentiated between MS subtypes; published between 2001-01-01 and 2023-01-18; used fatigue and depression assessments validated for MS; included brain structural, functional magnetic resonance imaging (fMRI) or diffusion MRI (dMRI). Sixty studies met the criteria: 18 dMRI (15 fatigue, 5 depression) and 22 fMRI (20 fatigue, 5 depression) studies. The literature was heterogeneous; half of studies reported no correlation between brain connectivity measures and fatigue or depression. Positive findings showed that abnormal cortico-limbic structural and functional connectivity was associated with depression. Fatigue was linked to connectivity measures in cortico-thalamic-basal-ganglial networks. Additionally, both depression and fatigue were related to altered cingulum structural connectivity, and functional connectivity involving thalamus, cerebellum, frontal lobe, ventral tegmental area, striatum, default mode and attention networks, and supramarginal, precentral, and postcentral gyri. Qualitative analysis suggests structural and functional connectivity changes, possibly due to axonal and/or myelin loss, in the cortico-thalamic-basal-ganglial and cortico-limbic network may underlie fatigue and depression in pwRRMS, respectively, but the overall results were inconclusive, possibly explained by heterogeneity and limited number of studies. This highlights the need for further studies including advanced MRI to detect more subtle brain changes in association with depression and fatigue. Future studies using optimised imaging protocols and validated depression and fatigue measures are required to clarify the substrates underlying these symptoms in pwRRMS.
Collapse
Affiliation(s)
- Agniete Kampaite
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecka Gustafsson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth N. York
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Foley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Niall J. J. MacDougall
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
He M, Mao Y, Qiu J. Trait anxiety and corresponding neuromarkers predict internet addiction: A longitudinal study. J Behav Addict 2024; 13:177-190. [PMID: 38451271 PMCID: PMC10988413 DOI: 10.1556/2006.2023.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 03/08/2024] Open
Abstract
Background and Aims The high prevalence of internet addiction (IA) has become a worldwide problem that profoundly affects people's mental health and executive function. Empirical studies have suggested trait anxiety (TA) as one of the most robust predictors of addictive behaviors. The present study investigated the neural and socio-psychological mechanisms underlying the association between TA and IA. Methods Firstly, we tested the correlation between TA and IA. Then we investigated the longitudinal influence of TA on IA using a linear mixed effect (LME) model. Secondly, connectome-based predictive modeling (CPM) was employed to explore neuromarkers of TA, and we tested whether the identified neuromarkers of TA can predict IA. Lastly, stressful life events and default mode network (DMN) were considered as mediating variables to explore the relationship between TA and IA. Findings A significant positive correlation between TA and IA was found and the high TA group demonstrated higher IA across time. CPM results revealed that the functional connectivity of cognitive control and emotion-regulation circuits and DMN were significantly correlated with TA. Furthermore, a significant association was found between the neuromarkers of TA and IA. Notably, the CPM results were all validated in an independent sample. The results of mediation demonstrated that stressful life events and correlated functional connectivity mediated the association between TA and IA. Conclusions Findings of the present study facilitate a deeper understanding of the neural and socio-psychological mechanisms linking TA and IA and provide new directions for developing neural and psychological interventions.
Collapse
Affiliation(s)
- Miao He
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yu Mao
- College of Computer and Information Science, College of Software, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Georgiopoulos C, Buechner MA, Falkenburger B, Engström M, Hummel T, Haehner A. Differential connectivity of the posterior piriform cortex in Parkinson's disease and postviral olfactory dysfunction: an fMRI study. Sci Rep 2024; 14:6256. [PMID: 38491209 PMCID: PMC10943068 DOI: 10.1038/s41598-024-56996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Olfactory dysfunction is a common feature of both postviral upper respiratory tract infections (PV) and idiopathic Parkinson's disease (PD). Our aim was to investigate potential differences in the connectivity of the posterior piriform cortex, a major component of the olfactory cortex, between PV and PD patients. Fifteen healthy controls (median age 66 years, 9 men), 15 PV (median age 63 years, 7 men) and 14 PD patients (median age 70 years, 9 men) were examined with task-based olfactory fMRI, including two odors: peach and fish. fMRI data were analyzed with the co-activation pattern (CAP) toolbox, which allows a dynamic temporal assessment of posterior piriform cortex (PPC) connectivity. CAP analysis revealed 2 distinct brain networks interacting with the PPC. The first network included regions related to emotion recognition and attention, such as the anterior cingulate and the middle frontal gyri. The occurrences of this network were significantly fewer in PD patients compared to healthy controls (p = 0.023), with no significant differences among PV patients and the other groups. The second network revealed a dissociation between the olfactory cortex (piriform and entorhinal cortices), the anterior cingulate gyrus and the middle frontal gyri. This second network was significantly more active during the latter part of the stimulation, across all groups, possibly due to habituation. Our study shows how the PPC interacts with areas that regulate higher order processing and how this network is substantially affected in PD. Our findings also suggest that olfactory habituation is independent of disease.
Collapse
Affiliation(s)
- Charalampos Georgiopoulos
- Diagnostic Radiology, Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden.
- Department of Radiology, Section of Neuroradiology and Odontology, Skånes Universitetssjukhus, Entrégatan 7, 221 85, Lund, Sweden.
| | | | | | - Maria Engström
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
37
|
Xia L, Wang Y, Luo S, Zhang Y, Qiu B, Wang X, Feng L. Abnormal occipital and frontal activity during voluntary convergence in intermittent exotropia: A task-fMRI study. Heliyon 2024; 10:e26197. [PMID: 38495127 PMCID: PMC10943311 DOI: 10.1016/j.heliyon.2024.e26197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
Intermittent exotropia (IXT) is characterized by intermittently outward deviation of the eye and involved with vergence dysfunction. This study aimed to investigate the brain areas related to voluntary convergence and cortical activation changes between IXT patients and normal subjects. A total of 21 subjects, including 11 IXT patients and 10 age- and sex-matched normal subjects, were recruited for this study. A voluntary convergence task was employed, with changes in brain function measured by functional magnetic resonance imaging (fMRI). Correlations between cortical activation and clinical measurements were conducted by Pearson's correlation analysis. fMRI results showed that during voluntary convergence, the medial frontal gyrus (MFG) and bilateral occipital cortex were activated in the normal group, whereas only activation of the occipital cortex in IXT patients. Compared with the normal, IXT patients showed hypo-activation of both the MFG and cuneus during the task. The activation of MFG was negatively correlated to the duration of IXT. This study demonstrates that both MFG and occipital cortex may participate in voluntary convergence in normal subjects, while IXT patients have an aberrant cortical function of the MFG and cuneus, and the duration of IXT likely influences the severity of MFG. These findings may provide valuable insights for understanding the relationship between convergence and IXT.
Collapse
Affiliation(s)
- Lin Xia
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanming Wang
- Centre for Biomedical Imaging, University of Science and Technology of China, Anhui, China
| | - Sha Luo
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, China
| | - Bensheng Qiu
- Centre for Biomedical Imaging, University of Science and Technology of China, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiaoxiao Wang
- Centre for Biomedical Imaging, University of Science and Technology of China, Anhui, China
| | - Lixia Feng
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Dastidar SG, Leon C, Pegwal N, Balhara YPS, Prakash MS, Tayade P, Sharma R, Kaur S. Default mode network aberrance in subjects of alcohol and opioid use disorders during working memory task: An exploratory EEG microstates study. Indian J Psychiatry 2024; 66:272-279. [PMID: 39100116 PMCID: PMC11293291 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_930_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 08/06/2024] Open
Abstract
Background Aberrance in switching from default mode network (DMN) to fronto-parietal network (FPN) is proposed to underlie working memory deficits in subjects with substance use disorders, which can be studied using neuro-imaging techniques during cognitive tasks. The current study used EEG to investigate pre-stimulus microstates during the performance of Sternberg's working memory task in subjects with substance use disorders. Methods 128-channel EEG was acquired and processed in ten age and gender-matched subjects, each with alcohol use disorder, opioid use disorder, and controls while they performed Sternberg's task. Behavioral parameters, pre-stimulus EEG microstate, and underlying sources were analyzed and compared between subjects with substance use disorders and controls. Results Both alcohol and opioid use disorder subjects had significantly lower accuracy (P < 0.01), while reaction times were significantly higher only in subjects of alcohol use disorder compared to controls (P < 0.01) and opioid use disorder (P < 0.01), reflecting working memory deficits of varying degrees in subjects with substance use disorders. Pre-stimulus EEG microstate revealed four topographic Maps 1-4: subjects of alcohol and opioid use disorder showing significantly lower mean duration of Map 3 (visual processing) and Map 2 (saliency and DMN switching), respectively, compared to controls (P < 0.05). Conclusion Reduced mean durations in Map 3 and 2 in subjects of alcohol and opioid use disorder can underlie their poorer performance in Sternberg's task. Furthermore, cortical sources revealed higher activity in both groups of substance use disorders in the parahippocampal gyrus- a hub of DMN; superior and middle temporal gyri associated with impulsivity; and insula that maintains balance between executive reflective system and impulsive system. EEG microstates can be used to envisage neural underpinnings implicated for working memory deficits in subjects of alcohol and opioid use disorders, reflected by aberrant switching between neural networks and information processing mechanisms.
Collapse
Affiliation(s)
- Shaon Ghosh Dastidar
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Chaithanya Leon
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Nishi Pegwal
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Yatan Pal Singh Balhara
- NDDTC and Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - M Suriya Prakash
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prashant Tayade
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
39
|
Pantaleo MM, Arcuri G, Manfredi M, Proverbio AM. Music literacy improves reading skills via bilateral orthographic development. Sci Rep 2024; 14:3506. [PMID: 38347056 PMCID: PMC10861541 DOI: 10.1038/s41598-024-54204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
Considerable evidence suggests that musical education induces structural and functional neuroplasticity in the brain. This study aimed to explore the potential impact of such changes on word-reading proficiency. We investigated whether musical training promotes the development of uncharted orthographic regions in the right hemisphere leading to better reading abilities. A total of 60 healthy, right-handed culturally matched professional musicians and controls took part in this research. They were categorised as normo-typical readers based on their reading speed (syl/sec) and subdivided into two groups of relatively good and poor readers. High density EEG/ERPs were recorded while participants engaged in a note or letter detection task. Musicians were more fluent in word, non-word and text reading tests, and faster in detecting both notes and words. They also exhibited greater N170 and P300 responses, and target-non target differences for words than controls. Similarly, good readers showed larger N170 and P300 responses than poor readers. Increased reading skills were associated to a bilateral activation of the occipito/temporal cortex, during music and word reading. Source reconstruction also showed a reduced activation of the left fusiform gyrus, and of areas devoted to attentional/ocular shifting in poor vs. good readers, and in controls vs. musicians. Data suggest that music literacy acquired early in time can shape reading circuits by promoting the specialization of a right-sided reading area, whose activity was here associated with enhanced reading proficiency. In conclusion, music literacy induces measurable neuroplastic changes in the left and right OT cortex responsible for improved word reading ability.
Collapse
Affiliation(s)
- Marta Maria Pantaleo
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Piazza Dell'Ateneo Nuovo 1, 20162, Milan, Italy
| | - Giulia Arcuri
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Piazza Dell'Ateneo Nuovo 1, 20162, Milan, Italy
| | - Mirella Manfredi
- Psychologisches Institut, University of Zurich, Zurich, Switzerland
| | - Alice Mado Proverbio
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Piazza Dell'Ateneo Nuovo 1, 20162, Milan, Italy.
- Milan Center for Neuroscience, NeuroMI, Milan, Italy.
| |
Collapse
|
40
|
Yang X, Song Y, Zou Y, Li Y, Zeng J. Neural correlates of prediction error in patients with schizophrenia: evidence from an fMRI meta-analysis. Cereb Cortex 2024; 34:bhad471. [PMID: 38061699 DOI: 10.1093/cercor/bhad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal processes of learning from prediction errors, i.e. the discrepancies between expectations and outcomes, are thought to underlie motivational impairments in schizophrenia. Although dopaminergic abnormalities in the mesocorticolimbic reward circuit have been found in patients with schizophrenia, the pathway through which prediction error signals are processed in schizophrenia has yet to be elucidated. To determine the neural correlates of prediction error processing in schizophrenia, we conducted a meta-analysis of whole-brain neuroimaging studies that investigated prediction error signal processing in schizophrenia patients and healthy controls. A total of 14 studies (324 schizophrenia patients and 348 healthy controls) using the reinforcement learning paradigm were included. Our meta-analysis showed that, relative to healthy controls, schizophrenia patients showed increased activity in the precentral gyrus and middle frontal gyrus and reduced activity in the mesolimbic circuit, including the striatum, thalamus, amygdala, hippocampus, anterior cingulate cortex, insula, superior temporal gyrus, and cerebellum, when processing prediction errors. We also found hyperactivity in frontal areas and hypoactivity in mesolimbic areas when encoding prediction error signals in schizophrenia patients, potentially indicating abnormal dopamine signaling of reward prediction error and suggesting failure to represent the value of alternative responses during prediction error learning and decision making.
Collapse
Affiliation(s)
- Xun Yang
- School of Public Policy and Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yuan Song
- School of Public Policy and Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yuhan Zou
- School of Economics and Business Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yilin Li
- Psychology and Neuroscience Department, University of St Andrews, Forbes 1 DRA, Buchanan Garden, St Andrews, Fife, United Kingdom
| | - Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| |
Collapse
|
41
|
Lee AJ, Stark JH, Hayes SM. Baseline Frontoparietal Gray Matter Volume Predicts Executive Function Performance in Aging and Mild Cognitive Impairment at 24-Month Follow-Up. J Alzheimers Dis 2024; 100:357-374. [PMID: 38875035 DOI: 10.3233/jad-231468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Executive dysfunction in mild cognitive impairment (MCI) has been associated with gray matter atrophy. Prior studies have yielded limited insight into associations between gray matter volume and executive function in early and late amnestic MCI (aMCI). Objective To examine the relative importance of predictors of executive function at 24 months and relationships between baseline regional gray matter volume and executive function performance at 24-month follow-up in non-demented older adults. Methods 147 participants from the Alzheimer's Disease Neuroimaging Initiative (mean age = 70.6 years) completed brain magnetic resonance imaging and neuropsychological testing and were classified as cognitively normal (n = 49), early aMCI (n = 60), or late aMCI (n = 38). Analyses explored the importance of demographic, APOEɛ4, biomarker (p-tau/Aβ42, t-tau/Aβ42), and gray matter regions-of-interest (ROI) variables to 24-month executive function, whether ROIs predicted executive function, and whether relationships varied by baseline diagnostic status. Results Across all participants, baseline anterior cingulate cortex and superior parietal lobule volumes were the strongest predictors of 24-month executive function performance. In early aMCI, anterior cingulate cortex volume was the strongest predictor and demonstrated a significant interaction such that lower volume related to worse 24-month executive function in early aMCI. Educational attainment and inferior frontal gyrus volume were the strongest predictors of 24-month executive function performance for cognitively normal and late aMCI groups, respectively. Conclusions Baseline frontoparietal gray matter regions were significant predictors of executive function performance in the context of aMCI and may identify those at risk of Alzheimer's disease. Anterior cingulate cortex volume may predict executive function performance in early aMCI.
Collapse
Affiliation(s)
- Ann J Lee
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Jessica H Stark
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Scott M Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Cornwell H, Toschi N, Hamilton-Giachritsis C, Staginnus M, Smaragdi A, Gonzalez-Madruga K, Rogers J, Martinelli A, Kohls G, Raschle NM, Konrad K, Stadler C, Freitag C, De Brito S, Fairchild G. Identifying structural brain markers of resilience to adversity in young people using voxel-based morphometry. Dev Psychopathol 2023; 35:2302-2314. [PMID: 37424502 DOI: 10.1017/s0954579423000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
There is increasing evidence that resilience in youth may have a neurobiological basis. However, the existing literature lacks a consistent way of operationalizing resilience, often relying on arbitrary judgments or narrow definitions (e.g., not developing PTSD) to classify individuals as resilient. Therefore, this study used data-driven, continuous resilience scores based on adversity and psychopathology to investigate associations between resilience and brain structure in youth. Structural MRI data from 298 youth aged 9-18 years (Mage = 13.51; 51% female) who participated in the European multisite FemNAT-CD study were preprocessed using SPM12 and analyzed using voxel-based morphometry. Resilience scores were derived by regressing data on adversity exposure against current/lifetime psychopathology and quantifying each individual's distance from the regression line. General linear models tested for associations between resilience and gray matter volume (GMV) and examined whether associations between resilience and GMV differed by sex. Resilience was positively correlated with GMV in the right inferior frontal and medial frontal gyri. Sex-by-resilience interactions were observed in the middle temporal and middle frontal gyri. These findings demonstrate that resilience in youth is associated with volume in brain regions implicated in executive functioning, emotion regulation, and attention. Our results also provide evidence for sex differences in the neurobiology of resilience.
Collapse
Affiliation(s)
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, USA
| | | | | | | | | | - Jack Rogers
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Anne Martinelli
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Fresenius University of Applied Sciences, School of Psychology, Frankfurt, Germany
| | - Gregor Kohls
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nora Maria Raschle
- Department of Child and Adolescent Psychiatry, University of Basel, Psychiatric University Hospital, Basel, Switzerland
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen and Research Centre Juelich, Juelich, Germany
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, University of Basel, Psychiatric University Hospital, Basel, Switzerland
| | - Christine Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stephane De Brito
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
43
|
Zhu J, Jiao Y, Chen R, Wang XH, Han Y. Aberrant dynamic and static functional connectivity of the striatum across specific low-frequency bands in patients with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111749. [PMID: 37977097 DOI: 10.1016/j.pscychresns.2023.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Dysfunctions of the striatum have been repeatedly observed in autism spectrum disorder (ASD). However, previous studies have explored the static functional connectivity (sFC) of the striatum in a single frequency band, ignoring the dynamics and frequency specificity of brain FC. Therefore, we investigated the dynamic FC (dFC) and sFC of the striatum in the slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) frequency bands. METHODS Data of 47 ASD patients and 47 typically developing (TD) controls were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. A seed-based approach was used to compute the dFC and sFC. Then, a two-sample t-test was performed. For regions showing abnormal sFC and dFC, we performed clinical correlation analysis and constructed support vector machine (SVM) models. RESULTS The middle frontal gyrus (MFG), precuneus, and medial superior frontal gyrus (mPFC) showed both dynamic and static alterations. The reduced striatal dFC in the right MFG was associated with autism symptoms. The dynamic‒static FC model had a great performance in ASD classification, with 95.83 % accuracy. CONCLUSIONS The striatal dFC and sFC were altered in ASD, which were frequency specific. Examining brain activity using dynamic and static FC provides a comprehensive view of brain activity.
Collapse
Affiliation(s)
- Junsa Zhu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China; Network Information Center, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Ran Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yunyan Han
- Public Health School of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
44
|
Aquino G, Schiel JE. Neuroimaging in insomnia: Review and reconsiderations. J Sleep Res 2023; 32:e14030. [PMID: 37730282 DOI: 10.1111/jsr.14030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Over the last decades, neuroimaging has become a substantial component of insomnia research. While theoretical underpinnings of different studies vary just like methodological choices and the experimental design, it is suggested that major features of insomnia disorder rely on the impaired function, structure, metabolism and connectivity of brain areas involved in sleep generation, emotion regulation, self-processing/-awareness and attentional orientation. However, neuroimaging research on insomnia often suffers from small sample sizes, heterogeneous methodology and a lack of replicability. With respect to these issues, the field needs to address the questions: (1a) how sufficiently large sample sizes can be accumulated within a reasonable economic framework; (1b) how effect sizes in insomnia-related paradigms can be amplified; (2a) how a higher degree of standardisation and transparency in methodology can be provided; and (2b) how an adequate amount of flexibility/complexity in study design can be maintained. On condition that methodological consistency and a certain degree of adaptability are given, pooled data/large cohort analyses can be considered to be one way to answer these questions. Regarding experimental single-centre trials, it might be helpful to focus on insomnia-related transdiagnostic concepts. In doing so, expectable effect sizes (in between-subjects designs) can be increased by: (a) comparing groups that are truly distinct regarding the variables examined in a concept-specific paradigm; and (b) facilitated, intensified and precise elicitation of a target symptom.
Collapse
Affiliation(s)
- Giulia Aquino
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine - University of Pisa, Pisa, Italy
| | - Julian E Schiel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Wang T, Huang X, Dai LX, Zhan KM, Wang J. Investigation of altered spontaneous brain activity in patients with bronchial asthma using the percent amplitude of fluctuation method: a resting-state functional MRI study. Front Hum Neurosci 2023; 17:1228541. [PMID: 38098762 PMCID: PMC10719853 DOI: 10.3389/fnhum.2023.1228541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose To explore the regions of aberrant spontaneous brain activity in asthma patients and their potential impacts using the Percent amplitude of fluctuation (PerAF) analysis method. Patients and methods In this study, a total of 31 bronchial asthma (BA) patients were ultimately included, comprising 17 males and 14 females. Subsequently, 31 healthy control subjects (HCS) were recruited, consisting of 17 males and 14 females, and they were matched with the BA group based on age, sex, and educational status. The PerAF analysis technique was employed to study the differences in spontaneous brain activity between the two groups. The SPM12 toolkit was used to carry out a two sample t-test on the collected fMRI data, in order to examine the differences in PerAF values between the asthma patients and the healthy controls. We employed the Montreal Cognitive Assessment (MoCA) scale and the Hamilton Depression Scale (HAMD) to evaluate the cognitive and emotional states of the two groups. Pearson correlation analysis was utilized to ascertain the relationship between changes in the PerAF values within specific brain regions and cognitive as well as emotional conditions. Results Compared with the healthy control group, areas of the brain with reduced PerAF in asthma patients included the inferior cerebellum, fusiform gyrus, right inferior orbital frontal gyrus, left middle orbital frontal gyrus, left/right middle frontal gyrus (MFG), dorsal lateral superior frontal gyrus (SFGdl), left superior temporal gyrus (STG), precuneus, right inferior parietal lobule (IPL), and left/right angular gyrus. BA patients exhibit mild cognitive impairments and a propensity for emotional disturbances. Furthermore, the perAF values of the SFGdl region are significantly positively correlated with the results of the MoCA cognitive assessment, while negatively correlated with the HAMD evaluation. Conclusion Through the application of PerAF analysis methods, we discovered that several brain regions in asthma patients that control the amplitude of respiration, vision, memory, language, attention, and emotional control display abnormal changes in intrinsic brain activity. This helps characterize the neural mechanisms behind cognitive, sensory, and motor function impairments in asthma patients, providing valuable insights for potential therapeutic targets and disease management strategies.
Collapse
Affiliation(s)
- Tao Wang
- Medical College of Nanchang University, Nanchang, China
- The Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Li-xue Dai
- The Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Kang-min Zhan
- Medical College of Nanchang University, Nanchang, China
- The Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
46
|
Gianola M, Llabre MM, Losin EAR. Does pain hurt more in Spanish? The neurobiology of pain among Spanish-English bilingual adults. Soc Cogn Affect Neurosci 2023; 19:nsad074. [PMID: 38102223 PMCID: PMC10868134 DOI: 10.1093/scan/nsad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
We previously found Spanish-English bilingual adults reported higher pain intensity when exposed to painful heat in the language of their stronger cultural orientation. Here, we elucidate brain systems involved in language-driven alterations in pain responses. During separate English- and Spanish-speaking fMRI scanning runs, 39 (21 female) bilingual adults rated painful heat intermixed between culturally evocative images and completed sentence reading tasks. Surveys of cultural identity and language use measured relative preference for US-American vs Hispanic culture (cultural orientation). Participants produced higher intensity ratings in Spanish compared to English. Group-level whole-brain differences in pain-evoked activity between languages emerged in somatosensory, cingulate, precuneus and cerebellar cortex. Regions of interest associated with semantic, attention and somatosensory processing showed higher average pain-evoked responses in participants' culturally preferred language, as did expression of a multivariate pain-predictive pattern. Follow-up moderated mediation analyses showed somatosensory activity mediated language effects on pain intensity, particularly for Hispanic oriented participants. These findings relate to distinct ('meddler', 'spotlight' and 'inducer') hypotheses about the nature of language effects on perception and cognition. Knowledge of language influences on pain could improve efficacy of culturally sensitive treatment approaches across the diversity of Hispanic adults to mitigate documented health disparities in this population.
Collapse
Affiliation(s)
- Morgan Gianola
- Psychology, University of Miami, Coral Gables, Florida 33146, USA
| | - Maria M Llabre
- Psychology, University of Miami, Coral Gables, Florida 33146, USA
| | | |
Collapse
|
47
|
Korologou-Linden R, Schuurmans IK, Cecil CAM, White T, Banaschewski T, Bokde ALW, Desrivières S, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Holz N, Fröhner JH, Smolka M, Walter H, Winterer J, Whelan R, Schumann G, Howe LD, Ben-Shlomo Y, Davies NM, Anderson EL. The bidirectional effects between cognitive ability and brain morphology: A life course Mendelian randomization analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.17.23297145. [PMID: 38014064 PMCID: PMC10680890 DOI: 10.1101/2023.11.17.23297145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Introduction Little is understood about the dynamic interplay between brain morphology and cognitive ability across the life course. Additionally, most existing research has focused on global morphology measures such as estimated total intracranial volume, mean thickness, and total surface area. Methods Mendelian randomization was used to estimate the bidirectional effects between cognitive ability, global and regional measures of cortical thickness and surface area, estimated total intracranial volume, total white matter, and the volume of subcortical structures (N=37,864). Analyses were stratified for developmental periods (childhood, early adulthood, mid-to-late adulthood; age range: 8-81 years). Results The earliest effects were observed in childhood and early adulthood in the frontoparietal lobes. A bidirectional relationship was identified between higher cognitive ability, larger estimated total intracranial volume (childhood, mid-to-late adulthood) and total surface area (all life stages). A thicker posterior cingulate cortex and a larger surface area in the caudal middle frontal cortex and temporal pole were associated with greater cognitive ability. Contrary, a thicker temporal pole was associated with lower cognitive ability. Discussion Stable effects of cognitive ability on brain morphology across the life course suggests that childhood is potentially an important window for intervention.
Collapse
|
48
|
Melis M, Blommaert J, Van der Gucht K, Smeets A, McDonald BC, Sunaert S, Smith A, Deprez S. The impact of mindfulness on working memory-related brain activation in breast cancer survivors with cognitive complaints. J Cancer Surviv 2023:10.1007/s11764-023-01484-0. [PMID: 37922071 DOI: 10.1007/s11764-023-01484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE Cancer-related cognitive impairment (CRCI) has been associated with altered brain activation after chemotherapy in areas related to working memory. Hence, improving working memory capacity and associated brain activation might aid in the recovery of CRCI. In this study, we investigated the potential of a mindfulness-based intervention (MBI) to impact working memory-related brain activation. METHODS Female breast cancer survivors reporting cognitive complaints (N=117) were randomized into a mindfulness (n=43; MBI), physical training (n=36; PT), or waitlist control condition (n=38; WL). Participants completed MRI scans before the intervention, immediately after, and three months post-intervention. Task-based functional MRI was used to measure differences between groups over time in working memory-related brain activation while performing a visual-verbal n-back task. RESULTS Data of 83 participants (32/26/25 MBI/PT/WL) was included. Compared to the waitlist group, MBI participants showed reduced task-related activation in the right middle frontal and angular gyrus and increased activation in the right dorsal posterior cingulate cortex over time. Compared to the physical training group, MBI participants showed reduced brain activation in the bilateral superior parietal lobule and right dorsal anterior cingulate cortex over time. No differences between physical training and no intervention were identified. CONCLUSION This study showed that an 8-week mindfulness-based intervention can significantly alter brain activation across brain regions involved in working memory, attentional control, and emotion processing during performance of a working memory task. This might aid in the recovery of CRCI. IMPLICATIONS FOR CANCER SURVIVORS Mindfulness might alter brain activation patterns while performing a working memory task, which might ultimately aid in restoring higher order cognitive functions.
Collapse
Affiliation(s)
- Michelle Melis
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Herestraat 49-box 7003, 3000, Leuven, UZ, Belgium.
- Research Foundation Flanders (FWO), Flanders, Belgium.
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Jeroen Blommaert
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Katleen Van der Gucht
- Leuven Mindfulness Centre, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Neuromodulation Laboratory, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
- Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands
| | - Ann Smeets
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Multidisciplinary Breast Center, Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine and Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Stefan Sunaert
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Herestraat 49-box 7003, 3000, Leuven, UZ, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Andra Smith
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - Sabine Deprez
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Herestraat 49-box 7003, 3000, Leuven, UZ, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Bonacchi R, Valsasina P, Pagani E, Meani A, Preziosa P, Rocca MA, Filippi M. Sex-related differences in upper limb motor function in healthy subjects and multiple sclerosis patients: a multiparametric MRI study. J Neurol 2023; 270:5235-5250. [PMID: 37639018 DOI: 10.1007/s00415-023-11948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND We investigated sex-related differences in upper limb motor performance tested with the 9-Hole Peg Test (9HPT) in healthy controls (HC) and multiple sclerosis (MS) patients and their MRI substrates. MATERIALS AND METHODS We enrolled 94 HC and 133 MS patients, who underwent neurological examination, 9HPT and brain 3T MRI, with sequences for regional grey matter volume (GMV), white matter (WM) fractional anisotropy (FA) and resting state (RS) functional connectivity (FC) analysis. Associations between MRI variables and 9HPT performance were analyzed with general linear models. RESULTS 9HPT performance was better in HC vs MS patients, and in female vs male HC. Regional GMV analysis showed: associations between better 9HPT performance and higher GMV in motor and cognitive cortical areas in HC, with stronger positive correlations in females vs males. In MS, worse 9HPT performance correlated with lower volume in motor and cognitive areas. Sex-related differences were minimal and mostly found in cerebellar areas. WM FA analysis disclosed neither associations with 9HPT performance in HC, nor sex-related differences in MS. RS FC analysis showed: in the sensorimotor network, stronger associations of RS FC with 9HPT performance in female vs male HC and no sex-related differences in MS; in the cerebellar network, no sex-related differences in HC but stronger negative correlation in left cerebellum in male vs female MS patients. CONCLUSIONS Sex influences 9HPT performance in HC, mainly through differences in volume and RS FC of motor and cognitive areas. Sex-related effects on motor performance become secondary but still present in MS.
Collapse
Affiliation(s)
- Raffaello Bonacchi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
50
|
Xing SY, Lu JM, Jiang YH, Wang T, Du GJ, Yang BB, Gao QQ, Wang B, Wu N, Xu CL, Song T, Dai YT. Abnormal cortical surface-based spontaneous and functional connectivity in the whole brain in lifelong premature ejaculation patients. Asian J Androl 2023; 25:699-703. [PMID: 37800899 DOI: 10.4103/aja202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Recent research has highlighted structural and functional abnormalities in the cerebral cortex of patients with premature ejaculation (PE). These anomalies could play a pivotal role in the physiological mechanisms underlying PE. This study leveraged functional magnetic resonance imaging (fMRI), a noninvasive technique, to explore these neural mechanisms. We conducted resting-state fMRI scans on 36 PE patients and 22 healthy controls (HC), and collected data on Premature Ejaculation Diagnostic Tool (PEDT) scores and intravaginal ejaculation latency time (IELT). Employing a surface-based regional homogeneity (ReHo) approach, we analyzed local neural synchronous spontaneous activity, diverging from previous studies that utilized a volume-based ReHo method. Areas with significant ReHo differences between PE and HC groups underwent surface-based functional connectivity (FC) analysis. Significant discrepancies in ReHo and FC across the cortical surface were observed in the PE cohort. Notably, PE patients exhibited decreased ReHo in the left triangular inferior frontal gyrus and enhanced ReHo in the right middle frontal gyrus. The latter showed heightened connectivity with the left lingual gyrus and the right orbital superior frontal gyrus. Furthermore, a correlation between ReHo and FC values with PEDT scores and IELT was found in the PE group. Our findings, derived from surface-based fMRI data, underscore specific brain regions linked to the neurobiological underpinnings of PE.
Collapse
Affiliation(s)
- Si-Yan Xing
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jia-Ming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yue-Hui Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Tong Wang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Guang-Jun Du
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Bai-Bing Yang
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qing-Qiang Gao
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Bin Wang
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ning Wu
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Chun-Lu Xu
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Tao Song
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yu-Tian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|