1
|
Serefko A, Wróbel J, Szopa A, Dobrowolski P, Kluz T, Wdowiak A, Bojar I, Poleszak E, Romejko-Wolniewicz E, Derlatka P, Grabowska-Derlatka L, Kacperczyk-Bartnik J, Gieleta AW, Bartnik P, Jakimiuk A, Misiek M, Wróbel A. The Orexin OX 2 Receptor-Dependent Pathway Is Implicated in the Development of Overactive Bladder and Depression in Rats Exposed to Corticosterone. Neurourol Urodyn 2025; 44:229-244. [PMID: 39402852 DOI: 10.1002/nau.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 12/24/2024]
Abstract
AIM In the present study, we wanted to check whether TCS OX2 29 (TCS), a potent selective antagonist of OX2 receptors, would have positive effects in an animal model of detrusor overactivity co-existed with the depression-like state in Wistar male rats. METHODS The forced swim test with the measurement of spontaneous locomotor activity, conscious cystometry, determination of c-Fos expression in central micturition areas, and a set of biochemical analyses (with the use of urine, hippocampus, bladder urothelium, and detrusor muscle of tested animals) were carried out. RESULTS The outcomes showed that a 7-day administration of TCS (3 mg/kg/day, subcutaneously) normalizes the cystometric parameters corresponding to overactivity of the detrusor and reverses the pro-depressive response. Furthermore, the antagonism of OX2 receptors restored the abnormal levels of overactive bladder markers (i.e., ATP, CGRP, OCT3, TRPV1, ROCK1, and VAChT), diminished neuronal overactivity in central micturition areas (i.e., pontine micturition center, ventrolateral periaqueductal gray, and medial preoptic area) as well as restored the altered hippocampal levels of CRF, cytokines (IL-1β, IL-6, IL-10, and TNF-α), and growth factors (BDNF and NGF) that reflected biochemical disturbances detected in depressed people. CONCLUSIONS It seems that our findings open new perspectives regarding the implication of the orexin system in the functioning of the urinary bladder and in the pathophysiology of depression.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Iwona Bojar
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Romejko-Wolniewicz
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Derlatka
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Paweł Bartnik
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Center for Reproductive Health, Institute of Mother and Child, Warsaw, Poland
| | - Marcin Misiek
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Zaini A, Morgan PK, Cardwell B, Vlassopoulos E, Sgro M, Li CN, Salberg S, Mellett NA, Christensen J, Meikle PJ, Murphy AJ, Marsland BJ, Mychasiuk R, Yamakawa GR. Time restricted feeding alters the behavioural and physiological outcomes to repeated mild traumatic brain injury in male and female rats. Exp Neurol 2024; 385:115108. [PMID: 39662793 DOI: 10.1016/j.expneurol.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Affiliation(s)
- A Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - P K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - B Cardwell
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - E Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - M Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - C N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - N A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - P J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - B J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - R Mychasiuk
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - G R Yamakawa
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Krause GM, Chirich Barreira LM, Albrecht A. Spatial mRNA expression patterns of orexin receptors in the dorsal hippocampus. Sci Rep 2024; 14:24788. [PMID: 39433837 PMCID: PMC11494061 DOI: 10.1038/s41598-024-76237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Orexins are wake-promoting neuropeptides that originate from hypothalamic neurons projecting to widespread brain areas throughout the central nervous system. They modulate various physiological functions via their orexin 1 (OXR1) and 2 (OXR2) receptors, including sleep-wake rhythm but also cognitive functions such as memory formation. Here, we provide a detailed analysis of OXR1 and OXR2 mRNA expression profiles in the dorsal hippocampus as a key region for memory formation, using RNAscope multiplex in situ hybridization. Interconnected subareas relevant for cognition and memory such as the medial prefrontal cortex and the nucleus reuniens of the thalamus were assessed as well. Both receptor types display distinct profiles, with the highest percentage of OXR1 mRNA-positive cells in the hilus of the dentate gyrus. Here, the content of OXR1 mRNA per cell was slightly modulated at selected time points over a 12 h light/ 12 dark light phase. Using RNAScope and quantitative polymerase chain reaction approaches, we began to address a cell-type specific expression of OXR1 in hilar GABAergic interneurons. The distinct expression profiles of both receptor subtypes within hippocampal subareas and circuits provide an interesting basis for future interventional studies on orexin receptor function in spatial and contextual memory.
Collapse
Affiliation(s)
- Gina Marie Krause
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | | - Anne Albrecht
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106, Magdeburg, Germany.
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| |
Collapse
|
4
|
Wang Q, Zhou Q, Du Z, Lu R, Jiang Y, Zhu H. Clinical safety of daridorexant in insomnia treatment: Analysis of FDA adverse event reports. J Affect Disord 2024; 362:552-559. [PMID: 39019232 DOI: 10.1016/j.jad.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE Daridorexant, a novel dual orexin receptor antagonist, was approved by the FDA in 2022 for the treatment of insomnia in adults. The aim of this study is to delve into the adverse events (AEs) of daridorexant by analyzing data from the FAERS database, to assess its safety and effectiveness in clinical applications. METHODS This study selected data from the FAERS database from the first quarter of 2022 to the third quarter of 2023. Various data analysis methods were used, including the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM), to assess AEs related to daridorexant. RESULTS The study analyzed a total of 2,624,030 AE reports, of which 1318 were related to daridorexant. It identified 59 preferred terms (PTs) involving 23 system organ classes (SOCs). Signal mining identified new potential AEs related to daridorexant, including sleep-related psychiatric symptoms (nightmare, abnormal dreams, sleep terror, etc.), emotional and perceptual abnormalities (hallucination, depression, agitation), physiological and behavioral responses (palpitations, dry mouth, energy increased, etc.), suicide risk (suicidal ideation, intentional overdose), and other special concern AEs (tachyphrenia, sleep-related eating disorder, hypersensitivity). CONCLUSION Although some new potential AEs have been identified, these findings need further verification in broader datasets and long-term studies due to limitations in data sources and analysis methods. Future research should comprehensively assess the safety and effectiveness of daridorexant, providing more accurate guidance for medical professionals in the treatment of insomnia.
Collapse
Affiliation(s)
- Qi Wang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Qin Zhou
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Zhiqiang Du
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Rongrong Lu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| | - Haohao Zhu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| |
Collapse
|
5
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
6
|
Valente R, Cordeiro M, Pinto B, Machado A, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Alterations of pleiotropic neuropeptide-receptor gene couples in Cetacea. BMC Biol 2024; 22:186. [PMID: 39218857 PMCID: PMC11367936 DOI: 10.1186/s12915-024-01984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Miguel Cordeiro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - André Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre, Funchal, Madeira, Portugal
- ARNET - Aquatic Research Network, ARDITI, Funchal, Madeira, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
7
|
Chen XY, Yang W, Xue Y, Xie AM, Sun XR, Chen L. Orexin increases the neuronal excitability of several brain areas associated with maintaining of arousal. J Neurochem 2024; 168:2379-2390. [PMID: 39092633 DOI: 10.1111/jnc.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Orexin is exclusively produced in neurons localized within the lateral hypothalamic area (LHA) and perifornical area (PFA). Orexin has been identified as a key promotor of arousal. The selective loss of orexinergic neurons results in narcolepsy. It is known that the intrinsic electrophysiological properties are critical for neurons to perform their functions in corresponding brain regions. In addition to hypothalamic orexin, other brain nuclei are involved in the regulation of sleep and wakefulness. Quite a lot of studies focus on elucidating orexin-induced regulation of sleep-wake states and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that the orexinergic neurons exhibit spontaneous firing activity which is associated with the states of sleep-wake cycle. Orexin mainly exerts postsynaptic excitatory effects on multiple brain nuclei associated with the process of sleep and wakefulness. This review may provide a background to guide future research about the cellular mechanisms of orexin-induced maintaining of arousal.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wu Yang
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiang-Rong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Petrella L, Polito R, Catapano A, Santillo A, Ciliberti MG, Sevi A, Messina A, Cavaliere G, Marino F, Polverino MG, Messina G, Monda M, Mollica MP, Crispino M, Cimmino F, Albenzio M, Trinchese G. Goat Milk Supplementation Modulates the Mitochondrial Metabolic Flexibility and Orexin-A Levels Influencing the Inflammatory Pattern in Rats. Antioxidants (Basel) 2024; 13:1054. [PMID: 39334713 PMCID: PMC11429022 DOI: 10.3390/antiox13091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Milk and its derivatives are included in a balanced diet of humans as excellent sources of proteins, vitamins, and essential minerals that are functional nutrients. Knowledge about the nutritional benefits or harms due to milk consumption has been expanding in recent years. We previously explored, in rodent models, the metabolic effects of isoenergetic intake of milk derived from cows, donkeys, or humans, while the impact of goat's milk intake has remained unexplored. The aim of this work was to investigate, in an animal model, the effects of dietary supplementation with goat's milk on energy homeostasis and inflammatory state, focusing on the modulation of mitochondrial functions in most metabolically active organs, such as skeletal muscle and the liver. In addition, we highlighted a link between nutrient intake, substrate metabolism, and the orexinergic system. Our results indicate that goat milk improves mitochondrial oxidative capacity and reduces inflammation and oxidative stress in both organs. Notably, goat milk lowers the circulating levels of Orexin-A, a neuropeptide that plays a crucial role in regulating peripheral energy balance and central nervous system mechanisms. These data provide the first evidence that the anti-inflammatory and antioxidant effects of goat milk are mediated by the modulation of mitochondrial functions and orexinergic signaling.
Collapse
Affiliation(s)
- Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, 80131 Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Giovanni Messina
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
9
|
Konopińska N, Gmyrek R, Bylewska N, Tchórzewska S, Nowicki G, Lubawy J, Walkowiak-Nowicka K, Urbański A. The allatotropin/orexin system as an example of immunomodulatory properties of neuropeptides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 171:104149. [PMID: 38871133 DOI: 10.1016/j.ibmb.2024.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The central nervous system (CNS) plays a critical role in signal integration in animals and allows the orchestration of life processes to maintain homeostasis. Current research clearly shows that inflammatory processes can also be modulated by the CNS via the neuroendocrine system. One of the neuropeptide families that participate in vertebrates in this process is orexins (OXs). Interestingly, our previous results suggested that a similar dependency may also exist between neuropeptides and immune system activity in insects. Due to the structural homology of orexin and allatotropin receptors and the functional similarity between these two neuropeptide families, the main aim of this research was to perform a complex analysis of the relationships between allatotropin (AT) and the insect immune response. Our results revealed functional similarities between vertebrate OXs and insect ATs. Similar effects were observed in the profile of the expression level of the gene encoding the AT precursor in the Tenebrio molitor nervous system and in the general action of Tenmo-AT on selected immune parameters of the tested beetles. Moreover, for the first time in insects, we confirmed the role of cytokines in the modulation of neuroendocrine system by determining the effect of Spätzle-like protein injection on the expression of genes encoding AT precursor and receptor. All these results are important for understanding the evolutionary basis of hormonal regulation of the immune response.
Collapse
Affiliation(s)
- Natalia Konopińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Radosław Gmyrek
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Bylewska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sara Tchórzewska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
10
|
Suresh V, Bardhan M, Ghosh S, Chandani Y, Satapathy P, Roy P, Shamim MA, Gandhi AP, Sandeep M, Rustagi S, Sah R, Padhi BK. Exploring the role of Orexin-A neuropeptide in Parkinson's disease: A systematic review and meta-analysis. Clin Neurol Neurosurg 2024; 242:108320. [PMID: 38781804 DOI: 10.1016/j.clineuro.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurological condition that affects movement and coordination. Orexin-A (OXA) is an excitatory neuropeptide that is found throughout the central nervous system. There is growing interest in investigating the potential diagnostic and therapeutic utility of OXA in PD. To date, studies have reported a wide range of OXA concentrations in patients with PD. In this review, we discuss the current understanding of the dysregulation of OXA in PD and analyze its levels in the CSF. METHODS We searched six databases (PubMed, Scopus, Web of Science, EMBASE, ProQuest, and EBSCOHost) and preprint servers using a predetermined search strategy through 4th March 4, 2023. The search keywords included "Parkinson's disease", "Orexin-A", "Hypocretin-1", "cerebrospinal fluid", and "CSF". Studies that reported OXA/Hypocretin-1 levels in the CSF of patients with PD were included. Two researchers independently reviewed the records and extracted data. FINDINGS Eighteen studies involving 244 patients were analyzed. CSF Orexin-A concentrations were lower in patients with Parkinson's disease than in controls, with a mean difference of -59.21 (95 % CI: -89.10 to -29.32). The mean OXA levels were 281.52 (95 % CI: 226.65-336.40). CONCLUSION Our analysis reveals lower concentrations of orexin-A in the cerebrospinal fluid of Parkinson's disease patients compared to controls, but within the normal range. These findings suggest a potential, but not significant, disruption in the orexinergic system associated with the disease.
Collapse
Affiliation(s)
- Vinay Suresh
- King George's Medical University, Lucknow 226003, India; Global Center for Evidence Synthesis, Chandigarh, 160036 India
| | - Mainak Bardhan
- Department of Neuro oncology,Miami Cancer Institute, Baptist Health South Florida,USA.
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | - Yash Chandani
- King George's Medical University, Lucknow 226003, India
| | | | - Priyanka Roy
- Deputy Chief Inspector of Factories/ Deputy Director (Medical) and Certifying Surgeon, Directorate of Factories, Department of Labour, Government of West Bengal, India
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342008, India
| | - Aravind P Gandhi
- Global Center for Evidence Synthesis, Chandigarh, 160036 India; Assistant Professor, Department of Community Medicine, ESIC Medical College & Hospital, Sanath Nagar, Hyderabad, India
| | - Mokanpally Sandeep
- Global Center for Evidence Synthesis, Chandigarh, 160036 India; School of Medical Sciences, University of Hyderabad, Telangana 500046, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu 46000, Nepal; Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411018, India; Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra 411000, India
| | - Bijaya K Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
11
|
Al Katatbeh M, Al-Mashakbeh Y, Freihat H, Gharam H, Mohammad R, Aldalki R, Eid S, Sharman R, Heissat N, Al-Samarraie G, Al-Shaibie A, Khasawneh L. Incidence of narcolepsy symptoms after taking COVID-19 vaccines: a Jordanian cross-sectional study. Clin Exp Vaccine Res 2024; 13:218-224. [PMID: 39144130 PMCID: PMC11319113 DOI: 10.7774/cevr.2024.13.3.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose Sleeping disorders were reported in many patients who took vaccines during previous pandemics. We aim to investigate the relationship between coronavirus disease 2019 (COVID-19) vaccines and the incidence of narcolepsy symptoms in the Jordanian population. Materials and Methods We used a descriptive, cross-sectional, online self-administered survey conducted between December 2022 and May 2023. The survey targeted males and females above the age of 18 years who took any type of COVID-19 vaccine, had no chronic diseases, and had no sleep disorders prior to taking the vaccine. The survey was distributed via social media platforms. Results A total of 873 participants were included in this study, consisting of 44.4% males and 55.6% females, with the majority being in the 18-29 age group. Most participants (79.8%) received two vaccine doses, with the Pfizer vaccine being the most common. Nearly half of the participants reported excessive daytime sleepiness. Sleep paralysis and hypnagogic hallucinations were reported by a notable proportion of participants, but no significant differences were found among the vaccine types. Sleep attacks and fragmented nighttime sleep were associated with the number of vaccine doses received, suggesting a possible influence of the dose count on these symptoms. The presence of excessive daytime sleepiness, sudden loss of muscle tone, sleep paralysis, and hypnagogic hallucinations showed no significant association with the number of doses taken. Conclusion We hypothesize a possible link between COVID-19 vaccination and the emergence of narcolepsy symptoms in Jordanian individuals. Additional investigations and continuous monitoring to determine the extent of the risk and uncover potential mechanisms behind this connection should be performed.
Collapse
Affiliation(s)
- Mohammad Al Katatbeh
- Department of Special Surgery, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Yazan Al-Mashakbeh
- Department of Ear Throat Nose, New Zarqa Governmental Hospital, Zarqa, Jordan
| | - Hadeel Freihat
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Hiba Gharam
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Rahmeh Mohammad
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Rahma Aldalki
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Sadeen Eid
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Reema Sharman
- Department of Obstetrics and Gynecology, Princess Badea Teaching Hospital, Irbid, Jordan
| | - Nizar Heissat
- Department of Anesthesia, Al Hussain New Salt Hospital, Salt, Jordan
| | | | - Ahmad Al-Shaibie
- Department of Emergency Medicine, Bashir Hospital, Amman, Jordan
| | - Laith Khasawneh
- Department of Special Surgery, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| |
Collapse
|
12
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
13
|
Hristov M, Landzhov B, Yakimova K. Effect of leptin on nitrergic neurons in the lateral hypothalamic area and the supraoptic nucleus of rats. Biotech Histochem 2024; 99:125-133. [PMID: 38533595 DOI: 10.1080/10520295.2024.2335167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production. We used histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) as a marker for nitric oxide synthase activity and assessed the effect of leptin on nitrergic neurons in the LH and SO of rats. We found that intraperitoneal administration of leptin led to a significant increase in the number of NADPH-d-positive neurons in the LH and SO. In addition, the intensity (optical density) of NADPH-d staining in LH and SO neurons was significantly elevated in rats that received leptin compared with saline-treated rats. These findings suggest that nitrergic neurons in the LH and SO may be implicated in mediating the central effects of leptin.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yakimova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
14
|
Liu H, Wang G, Zhang J, Lu B, Li D, Chen J. Inhalation of diesel exhaust particulate matter accelerates weight gain via regulation of hypothalamic appetite-related genes and gut microbiota metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133570. [PMID: 38309172 DOI: 10.1016/j.jhazmat.2024.133570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Mice exposed to diesel exhaust particulate matter (DEPM) exhibited accelerated weight gain. Several hypothalamic genes, hormones (serum Hypothalamic-Pituitary-Adrenal (HPA) axis hormones and gastrointestinal peptide tyrosine tyrosine (PYY)), metabolites (intrahepatic triglyceride (IHTG) and fecal short-chain fatty acids (SCFAs)), and gut microbiota structure, which may influence obesity and appetite regulation, were examined. The result suggested that DEPM-induced accelerated weight gain may be associated with increased expression of hypothalamic Gamma-aminobutyric acid (GABA) type B receptor, tight junction protein, and orexin receptors, in addition with decreased IHTG and repressed HPA axis. Moreover, changes in the structure of intestinal microbiota are also related to weight changes, especially for phylum Firmicutes, genus Lactobacillus, and the ratio of relative abundance of Firmicutes and Bacteroidetes (F/B). DEPM exposure also caused widespread increase in the levels of intestinal SCFAs, the concentrations of propionic acid and isobutyric acid were associated with weight gain rate and the abundance of some bacteria. Although DEPM exposure caused changes in expression of hypothalamic serotonin, NPY, and melanocortin receptors, they were not associated with weight changes. Furthermore, no significant difference in gastrointestinal PYY and expression of hypothalamic receptors for leptin, insulin, and glucagon-like peptide 1 receptors was observed between DEPM-exposed and control mice.
Collapse
Affiliation(s)
- Hou Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guicheng Wang
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China
| | - Jin Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bingjie Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Braun A, Manavis J, Yamanaka A, Ootsuka Y, Blumbergs P, Bobrovskaya L. The role of orexin in Parkinson's disease. J Neurosci Res 2024; 102:e25322. [PMID: 38520160 DOI: 10.1002/jnr.25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Emerging evidence has implicated the orexin system in non-motor pathogenesis of Parkinson's disease. It has also been suggested the orexin system is involved in the modulation of motor control, further implicating the orexin system in Parkinson's disease. Parkinson's disease is the second most common neurodegenerative disease with millions of people suffering worldwide with motor and non-motor symptoms, significantly affecting their quality of life. Treatments are based solely on symptomatic management and no cure currently exists. The orexin system has the potential to be a treatment target in Parkinson's disease, particularly in the non-motor stage. In this review, the most current evidence on the orexin system in Parkinson's disease and its potential role in motor and non-motor symptoms of the disease is summarized. This review begins with a brief overview of Parkinson's disease, animal models of the disease, and the orexin system. This leads into discussion of the possible roles of orexin neurons in Parkinson's disease and levels of orexin in the cerebral spinal fluid and plasma in Parkinson's disease and animal models of the disease. The role of orexin is then discussed in relation to symptoms of the disease including motor control, sleep, cognitive impairment, psychological behaviors, and the gastrointestinal system. The neuroprotective effects of orexin are also summarized in preclinical models of the disease.
Collapse
Affiliation(s)
- Alisha Braun
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jim Manavis
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Youichirou Ootsuka
- College of Medicine and Public Health, Flinders Medical and Health Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Peter Blumbergs
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Alizadeh Pahlavani H. Possible role of exercise therapy on depression: Effector neurotransmitters as key players. Behav Brain Res 2024; 459:114791. [PMID: 38048912 DOI: 10.1016/j.bbr.2023.114791] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
About 280 million people suffer from depression as the most common neurological disorder and the most common cause of death worldwide. Exercise with serotonin released in the brain by the 5-HT3-IGF-1 mechanism can lead to antidepressant effects. Swimming exercise has antidepressant effects by increasing the sensitivity of serotonin 5-HT2 receptors and postsynaptic 5-HT1A receptors, increasing 5-HT and 5HIAA levels, increasing TPH and serotonin, and decreasing inflammatory levels of IFN-γ and TNF-α. Anaerobic and aerobic exercises increase beta-endorphin, enkephalin, and dynorphin and have antidepressant effects. Exercise by increasing dopamine, D1R, and D2R leads to the expression of BDNF and activation of TrkB and has antidepressant behavior. Exercise leads to a significant increase in GABAAR (γ2 and α2 subunits) and reduces neurodegenerative disorders caused by GABA imbalance through anti-inflammatory pathways. By increasing glutamate and PGC1α and reducing glutamatergic neurotoxicity, exercise enhances neurogenesis and synaptogenesis and prevents neurodegeneration and the onset of depression. Irisin release during exercise shows an important role in depression by increasing dopamine, BDNF, NGF, and IGF-1 and decreasing inflammatory mediators such as IL-6 and IL-1β. In addition, exercise-induced orexin and NPY can increase hippocampal neurogenesis and relieve depression. After exercise, the tryptophan to large neutral amino acids (TRP/LNAA) ratio and the tryptophan to branched-chain amino acids (BCAA) ratio increase, which may have antidepressant effects. The expression of M5 receptor and nAChR α7 increases after exercise and significantly increases dopamine and acetylcholine and ameliorates depression. It appears that during exercise, muscarinic receptors can reduce depression through dopamine in the absence of acetylcholine. Therefore, exercise can be used to reduce depression by affecting neurotransmitters, neuromodulators, cytokines, and/or neurotrophins.
Collapse
|
17
|
Hawley AL, Baum JI. Nutrition as the foundation for successful aging: a focus on dietary protein and omega-3 polyunsaturated fatty acids. Nutr Rev 2024; 82:389-406. [PMID: 37319363 DOI: 10.1093/nutrit/nuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Skeletal muscle plays a critical role throughout the aging process. People living with sarcopenia, a progressive and generalized loss of skeletal muscle mass and function, often experience diminished quality of life, which can be attributed to a long period of decline and disability. Therefore, it is important to identify modifiable factors that preserve skeletal muscle and promote successful aging (SA). In this review, SA was defined as (1) low cardiometabolic risk, (2) preservation of physical function, and (3) positive state of wellbeing, with nutrition as an integral component. Several studies identify nutrition, specifically high-quality protein (eg, containing all essential amino acids), and long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), as positive regulators of SA. Recently, an additive anabolic effect of protein and n-3 PUFAs has been identified in skeletal muscle of older adults. Evidence further suggests that the additive effect of protein and n-3 PUFAs may project beyond skeletal muscle anabolism and promote SA. The key mechanism(s) behind the enhanced effects of intake of protein and n-3 PUFAs needs to be defined. The first objective of this review is to evaluate skeletal muscle as a driver of cardiometabolic health, physical function, and wellbeing to promote SA. The second objective is to examine observational and interventional evidence of protein and n-3 PUFAs on skeletal muscle to promote SA. The final objective is to propose mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely play a key role in SA. Current evidence suggests that increased intake of protein above the Recommended Dietary Allowance and n-3 PUFAs above the Dietary Guidelines for Americans recommendations for late middle-aged and older adults is required to maintain skeletal muscle mass and to promote SA, potentially through the mechanistical target of rapamycin complex 1 (mTORC1).
Collapse
Affiliation(s)
- Aubree L Hawley
- School of Human and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| |
Collapse
|
18
|
Scheppke KA, Pepe PE, Jui J, Crowe RP, Scheppke EK, Klimas NG, Marty AM. Remission of severe forms of long COVID following monoclonal antibody (MCA) infusions: A report of signal index cases and call for targeted research. Am J Emerg Med 2024; 75:122-127. [PMID: 37944296 DOI: 10.1016/j.ajem.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Long COVID has afflicted tens of millions globally leaving many previously-healthy persons severely and indefinitely debilitated. The objective here was to report cases of complete, rapid remission of severe forms of long COVID following certain monoclonal antibody (MCA) infusions and review the corresponding pathophysiological implications. DESIGN Case histories of the first three index events (among others) are presented. Unaware of others with similar remissions, each subject independently completed personal narratives and standardized surveys regarding demographics/occupation, past history, and the presence and respective severity grading of 33 signs/symptoms associated with long COVID, comparing the presence/severity of those symptoms during the pre-COVID, long-COVID, post-vaccination, and post-MCA phases. SETTING Patient interviews, e-mails and telephone conversations. SUBJECTS Three previously healthy, middle-aged, highly-functioning persons, two women and one man (ages 60, 43, and 63 years respectively) who, post-acute COVID-19 infection, developed chronic, unrelenting fatigue and cognitive impairment along with other severe, disabling symptoms. Each then independently reported incidental and unanticipated complete remissions within days of MCA treatment. INTERVENTIONS The casirivimab/imdevimab cocktail. MEASUREMENTS AND MAIN RESULTS Irrespective of sex, age, medical history, vaccination status, or illness duration (18, 8 and 5 months, respectively), each subject experienced the same complete remission of their persistent disabling disease within a week of MCA infusion. Each rapidly returned to normal health and previous lifestyles/occupations with normalized exercise tolerance, still sustained to date over two years later. CONCLUSIONS These index cases provide compelling clinical signals that MCA infusions may be capable of treating long COVID in certain cases, including those with severe debilitation. While the complete and sustained remissions observed here may only apply to long COVID resulting from pre-Delta variants and the specific MCA infused, the striking rapid and complete remissions observed in these cases also provide mechanistic implications for treating/managing other post-viral chronic conditions and long COVID from other variants. KEY POINTS
Collapse
Affiliation(s)
- Kenneth A Scheppke
- Florida Department of Health, 4052 Bald Cypress Way, Tallahassee, FL 32399, USA; Palm Beach County Fire Rescue, 405 Pike Road, West Palm Beach, FL 33411, USA; Broward Sheriff's Office, 2601 West Broward Boulevard, Ft Lauderdale, FL 33312, USA
| | - Paul E Pepe
- Palm Beach County Fire Rescue, 405 Pike Road, West Palm Beach, FL 33411, USA; Broward Sheriff's Office, 2601 West Broward Boulevard, Ft Lauderdale, FL 33312, USA; Broward Health Medical Center, 1600 S Andrews Ave, Fort Lauderdale, FL 33316, USA; Department of Management, Policy and Community Health, School of Public Health, University of Texas Health Sciences Center, 1200 Pressler St, Houston, TX 77030, USA; Dallas County EMS/Public Safety Agencies, Suite 500, 500 Elm St, Dallas, TX 75202, USA.
| | - Jonathan Jui
- Department of Emergency Medicine, Oregon Health & Sciences University, CDW-EM, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | - Eric K Scheppke
- Edward Via College of Osteopathic Medicine-Auburn, 910 S Donahue Dr, Auburn, AL 36832, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, 7595 SW 33rd Street, Fourth Floor, Ft Lauderdale, FL 33314, USA; Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125, USA
| | - Aileen M Marty
- Department of Translational Medicine, Florida International University, 885 SW 109th Ave, PG-5, Suite 1313, Miami, FL, 33199, USA
| |
Collapse
|
19
|
Li H, Xiang Q, Ren R, Wang G. Acupuncture as a Complementary Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S503-S520. [PMID: 39422942 DOI: 10.3233/jad-231250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a significant global medical concern due to the aging population. AD is featured by gradual cognitive impairment, impacting daily functioning and causing behavioral and personality changes, causing disruptive psychiatric symptoms. While pharmacological interventions are the primary clinical approach, their efficacy is variable and limited. Acupuncture, with its distinctive theoretical framework and treatment approach, has garnered attention as a non-pharmacological intervention for AD through extensive preclinical and clinical research. Neurobiological investigations into the machinery of acupuncture in AD have provided compelling evidence of its therapeutic efficacy and unique advantages. This review commences with an in-depth exploration of acupuncture's clinical applications, emphasizing its various parameters and its potential combination with first-line drugs and other therapies in the context of AD. Subsequently, we delve into the underlying therapeutic mechanisms of acupuncture in AD. Finally, we summarize these aspects, highlight current study limitations, and offer recommendations for future research. Taken together, in a rapidly aging society, both clinical application and mechanistic exploration of acupuncture in AD treatment have gained momentum. This trajectory suggests that acupuncture will continue to make significant strides in AD therapeutics as research progresses.
Collapse
Affiliation(s)
- Haixia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyao Xiang
- Department of Acupuncture, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rujing Ren
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Salami M, Elahdadi Salmani M, Lashkarbolouki T. Prolonged stress alters the PC1/PC2 ratio in the rat lateral hypothalamus, implicating impaired orexin maturation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1059-1066. [PMID: 38911249 PMCID: PMC11193509 DOI: 10.22038/ijbms.2024.76858.16620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/12/2024] [Indexed: 06/25/2024]
Abstract
Objectives Stress elicits physiological and neuroendocrine responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis and lateral hypothalamus (LH). However, prolonged stress can dysregulate neuropeptide systems like orexin. This study investigated the effects of temporary and prolonged stress on HPA activity and orexin processing in the rat LH. Materials and Methods Male Wistar rats were exposed to various stress repetitions. The stress paradigm is defined as short (acute; 1 day and mild; 3 days) and long (sub-chronic; 10 days and chronic; 21 days)-term 6 hr daily restraint stress. Plasma corticosterone (CORT) served as an index of HPA function. Expression of prepro-orexin and its processing enzymes prohormone convertases (PC) 1 and 2 was measured in LH tissues using semiquantitative RT-PCR. Results The plasma level of CORT was elevated following mild, sub-chronic, and chronic, but not acute stress versus unstressed controls. The expression of prepro-orexin was heightened following all stress exposures. However, PC1 increased and PC2 decreased only after prolonged stress. The PC1/PC2 ratio was also selectively augmented with sub-chronic and chronic stress, implying impaired orexin maturation. Conclusion Together, these data demonstrate that the HPA axis and lateral hypothalamic orexin system respond to stress based on stress repetition. Changes in orexin processing enzyme mRNA, exclusively after chronic stress, imply potential effects on peptide maturation, requiring confirmation of the orexin production at the protein level.
Collapse
|
21
|
Kumar V, Doshi G. Revolutionizing Infertility Management through Novel Peptide-based Targets. Curr Protein Pept Sci 2024; 25:738-752. [PMID: 38778605 DOI: 10.2174/0113892037304433240430144106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Around 48 million couples and 186 million people worldwide have infertility; of these, approximately 85% have an identifiable cause, the most common being ovulatory dysfunctions, male infertility, polycystic ovary syndrome, and tubule disease. The remaining 15% have infertility for unknown reasons, including lifestyle and environmental factors. The regulation of the hypothalamic- pituitary-adrenal axis (HPA) is crucial for the secretion of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH), which are essential for female reproductive functions. GnRH is the primary reproductive axis regulator. The pattern of GnRH, FSH, and LH release is determined by its pulsatile secretion, which in turn controls endocrine function and gamete maturation in the gonads. Peptides called Kisspeptin (KP), Neurokinin-B (NKB), and Orexin influence both positive and negative feedback modulation of GnRH, FSH, and LH secretion in reproduction. This review article mainly focuses on the historical perspective, isoform, and signaling pathways of KP, NKB, and Orexin novel peptide-based targets including clinical and preclinical studies and having a promising effect in the management of infertility.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| |
Collapse
|
22
|
Talwar P, Deantoni M, Van Egroo M, Muto V, Chylinski D, Koshmanova E, Jaspar M, Meyer C, Degueldre C, Berthomier C, Luxen A, Salmon E, Collette F, Dijk DJ, Schmidt C, Phillips C, Maquet P, Sherif S, Vandewalle G. In vivo marker of brainstem myelin is associated to quantitative sleep parameters in healthy young men. Sci Rep 2023; 13:20873. [PMID: 38012207 PMCID: PMC10682495 DOI: 10.1038/s41598-023-47753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
The regional integrity of brain subcortical structures has been implicated in sleep-wake regulation, however, their associations with sleep parameters remain largely unexplored. Here, we assessed association between quantitative Magnetic Resonance Imaging (qMRI)-derived marker of the myelin content of the brainstem and the variability in the sleep electrophysiology in a large sample of 18-to-31 years healthy young men (N = 321; ~ 22 years). Separate Generalized Additive Model for Location, Scale and Shape (GAMLSS) revealed that sleep onset latency and slow wave energy were significantly associated with MTsat estimates in the brainstem (pcorrected ≤ 0.03), with overall higher MTsat value associated with values reflecting better sleep quality. The association changed with age, however (MTsat-by-age interaction-pcorrected ≤ 0.03), with higher MTsat value linked to better values in the two sleep metrics in the younger individuals of our sample aged ~ 18 to 20 years. Similar associations were detected across different parts of the brainstem (pcorrected ≤ 0.03), suggesting that the overall maturation and integrity of the brainstem was associated with both sleep metrics. Our results suggest that myelination of the brainstem nuclei essential to regulation of sleep is associated with inter-individual differences in sleep characteristics during early adulthood. They may have implications for sleep disorders or neurological diseases related to myelin.
Collapse
Affiliation(s)
- Puneet Talwar
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Michele Deantoni
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Maxime Van Egroo
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Vincenzo Muto
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Mathieu Jaspar
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Christelle Meyer
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Christian Degueldre
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | | | - André Luxen
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Eric Salmon
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, CHU of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - D-J Dijk
- Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute, University of Surrey, Guildford, UK
| | - Christina Schmidt
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- In Silico Medicine Unit, GIGA-Institute, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
- Department of Neurology, CHU of Liège, Liège, Belgium
| | - Siya Sherif
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium.
| |
Collapse
|
23
|
Cohen H, Matar MA, Todder D, Cohen C, Zohar J, Hawlena H, Abramsky Z. Sounds of danger and post-traumatic stress responses in wild rodents: ecological validity of a translational model of post-traumatic stress disorder. Mol Psychiatry 2023; 28:4719-4728. [PMID: 37674017 PMCID: PMC10914612 DOI: 10.1038/s41380-023-02240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
In the wild, animals face a highly variable world full of predators. Most predator attacks are unsuccessful, and the prey survives. According to the conventional perspective, the fear responses elicited by predators are acute and transient in nature. However, the long-term, non-lethal effects of predator exposure on prey behavioral stress sequelae, such as anxiety and post-traumatic symptoms, remain poorly understood. Most experiments on animal models of anxiety-related behavior or post-traumatic stress disorder have been carried out using commercial strains of rats and mice. A fundamental question is whether laboratory rodents appropriately express the behavioral responses of wild species in their natural environment; in other words, whether behavioral responses to stress observed in the laboratory can be generalized to natural behavior. To further elucidate the relative contributions of the natural selection pressures influences, this study investigated the bio-behavioral and morphological effects of auditory predator cues (owl territorial calls) in males and females of three wild rodent species in a laboratory set-up: Acomys cahirinus; Gerbillus henleyi; and Gerbillus gerbillus. Our results indicate that owl territorial calls elicited not only "fight or flight" behavioral responses but caused PTSD-like behavioral responses in wild rodents that have never encountered owls in nature and could cause, in some individuals, enduring physiological and morphological responses that parallel those seen in laboratory rodents or traumatized people. In all rodent species, the PTSD phenotype was characterized by a blunting of fecal cortisol metabolite response early after exposure and by a lower hypothalamic orexin-A level and lower total dendritic length and number in the dentate gyrus granule cells eight days after predator exposure. Phenotypically, this refers to a significant functional impairment that could affect reproduction and survival and thus fitness and population dynamics.
Collapse
Affiliation(s)
- Hagit Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel.
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Michael A Matar
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Doron Todder
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Carmit Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel & Ministry of Health, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv University, Tel Aviv, 52621, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion Israel, Sde Boker, 8499000, Israel
| | - Zvika Abramsky
- Department of Life Sciences and Ramon Science Center, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
24
|
Corbett J, Young JS, Tipton MJ, Costello JT, Williams TB, Walker EF, Lee BJ, Stevens CE. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci 2023; 73:26. [PMID: 37848829 DOI: 10.1186/s12576-023-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities.
Collapse
Affiliation(s)
- J Corbett
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK.
| | - J S Young
- National Horizons Centre, Teesside University, Darlington, UK
| | - M J Tipton
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - J T Costello
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - T B Williams
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - E F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - C E Stevens
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
25
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide improves food intake and orexinergic neuronal activity in the chronic sleep deprivation induction model in rats by modulating the expression of the CB1 receptor in the lateral hypothalamus. Neuropeptides 2023; 101:102336. [PMID: 37290176 DOI: 10.1016/j.npep.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 06/10/2023]
Abstract
Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
26
|
Lu J, Qin C, Wang C, Sun J, Mao H, Wei J, Shen X, Chen Y, Liu S, Qu X. Lateral hypothalamic orexin neurons mediate electroacupuncture-induced anxiolytic effects in a rat model of post-traumatic stress disorder. Brain Res Bull 2023; 201:110712. [PMID: 37481143 DOI: 10.1016/j.brainresbull.2023.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The lateral hypothalamus' orexinergic system has been associated with anxiety-related behaviors, and electroacupuncture (EA) modifies orexin neurons to control the anti-anxiety process. However, in a rat model of post-traumatic stress disorder (PTSD), the important role of LH orexin neurons (OXNs) in the anxiolytic effects induced by EA has not been explored. In this study, rats underwent modified single prolonged stress (MSPS) for seven days before developing EA. The rats were then subjected to elevated plus maze (EPM) and open field (OFT) tests, and western blot and c-Fos/orexin double labeling investigations were carried out to determine the functional activation of LH orexinergic neurons. Compared to MSPS model rats, it has been demonstrated that EA stimulation enhanced the amount of time spent in the central zone (TSCZ) in OFT and the amount of time spent in the open arm (TSOA) in EPM in MSPS model rats (P < 0.01). After behavioral testing, MSPS model rats had decreased activated c-Fos positive OXNs. Still, EA in SPS rats increased that number and elevated orexin type 1 receptors (OXR1) protein expression in the LH. Furthermore, after administering SB334867 (an OXR1 antagonist) to MSPS model rats, the effects of EA therapy on anxiety-like behaviors (ALBs) were significantly diminished. Additionally, when low-dose orexin-A (LORXA) was administered intracerebroventricularly together with EA stimulation in MSPS rats, the anxiolytic effects of the stimulation were substantially enhanced (P < 0.05). The results of this study reveal the mechanisms by which acupuncture may reduce PTSD and advance our understanding of the function of LH orexin signaling in EA's anxiolytic effects.
Collapse
Affiliation(s)
- Jiaqi Lu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Qin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Can Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Sun
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.
| | - Sheng Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoyi Qu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
27
|
Wang H, Zhao Y, Schrag A. Development of anxiety in early Parkinson's disease: A clinical and biomarker study. Eur J Neurol 2023; 30:2661-2668. [PMID: 37227928 DOI: 10.1111/ene.15890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Anxiety affects approximately 40% of Parkinson's disease (PD) patients. However, little is known about its predictors and development over time. OBJECTIVE To identify the clinical factors and biomarkers associated with development of anxiety in patients with newly diagnosed PD, and to test which risk factors predict increases in anxiety over time. METHODS Data from the Parkinson's Progression Markers Initiative (PPMI) were utilized. The primary outcome was the State-Trait Anxiety Inventory (STAI). Covariates were demographics, motor and non-motor symptoms, cognitive functions, dopamine transporter imaging data, and cerebrospinal fluid (CSF) biomarkers. We examined the association of risk factors at baseline and over 4 years with changes in anxiety scores over time. RESULTS A total of 252 patients met the inclusion criteria (mean age: 61.36 years, SD 9.53). At year 4, 42 patients had developed anxiety. Baseline predictors of increase in anxiety scores were greater autonomic dysfunction, dysexecutive function, CSF t-tau levels, excessive daytime sleepiness, and lower olfactory function scores but not motor scores. Over 4 years, change in anxiety scores correlated with deterioration in overall cognitive function, excessive daytime sleepiness, as well as depression and disability, and to a lesser degree worsening of Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor scores and caudate dopaminergic uptake changes. CONCLUSIONS These findings suggest that development of anxiety in PD is not primarily based on a dopaminergic deficit in the basal ganglia but related to non-dopaminergic or extrastriatal pathology. Early dysexecutive function predicts development of anxiety but increase in anxiety levels correlates most strongly with more global cognitive decline.
Collapse
Affiliation(s)
- Hanyuying Wang
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Yibo Zhao
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- School of Pharmacy, UCL, London, UK
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
28
|
Mogavero MP, Godos J, Grosso G, Caraci F, Ferri R. Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite. Nutrients 2023; 15:3679. [PMID: 37686711 PMCID: PMC10489991 DOI: 10.3390/nu15173679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Orexin plays a significant role in the modulation of REM sleep, as well as in the regulation of appetite and feeding. This review explores, first, the current evidence on the role of orexin in the modulation of sleep and wakefulness and highlights that orexin should be considered essentially as a neurotransmitter inhibiting REM sleep and, to a much lesser extent, a wake promoting agent. Subsequently, the relationship between orexin, REM sleep, and appetite regulation is examined in detail, shedding light on their interconnected nature in both physiological conditions and diseases (such as narcolepsy, sleep-related eating disorder, idiopathic hypersomnia, and night eating syndrome). Understanding the intricate relationship between orexin, REM sleep, and appetite regulation is vital for unraveling the complex mechanisms underlying sleep-wake patterns and metabolic control. Further research in this field is encouraged in order to pave the way for novel therapeutic approaches to sleep disorders and metabolic conditions associated with orexin dysregulation.
Collapse
Affiliation(s)
- Maria P. Mogavero
- Department of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (G.G.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (G.G.)
| | - Filippo Caraci
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
29
|
Conde K, Fang S, Xu Y. Unraveling the serotonin saga: from discovery to weight regulation and beyond - a comprehensive scientific review. Cell Biosci 2023; 13:143. [PMID: 37550777 PMCID: PMC10408233 DOI: 10.1186/s13578-023-01091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
The prevalence of obesity is rapidly increasing worldwide, while the development of effective obesity therapies lags behind. Although new therapeutic targets to alleviate obesity are identified every day, and drug efficacy is improving, adverse side effects and increased health risks remain serious issues facing the weight-loss industry. Serotonin, also known as 5-HT, has been extensively studied in relation to appetite reduction and weight loss. As a result, dozens of upstream and downstream neural targets of 5-HT have been identified, revealing a multitude of neural circuits involved in mediating the anorexigenic effect of 5-HT. Despite the rise and fall of several 5-HT therapeutics in recent decades, the future of 5-HT as a therapeutic target for weight-loss therapy looks promising. This review focuses on the history of serotonin, the state of current central serotonin research, previous serotonergic therapies, and the future of serotonin for treating individuals with obesity.
Collapse
Affiliation(s)
- Kristine Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.
| | - Shuzheng Fang
- College of Art and Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA.
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Gnoni V, Zoccolella S, Giugno A, Urso D, Tamburrino L, Filardi M, Logroscino G. Hypothalamus and amyotrophic lateral sclerosis: potential implications in sleep disorders. Front Aging Neurosci 2023; 15:1193483. [PMID: 37465321 PMCID: PMC10350538 DOI: 10.3389/fnagi.2023.1193483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects both motor and non-motor functions, including sleep regulation. Emerging evidence suggests that the hypothalamus, a brain region that plays a critical role in sleep-wake regulation, may be involved in the pathogenesis of ALS-related sleep disturbances. In this review, we have summarized results of studies on sleep disorders in ALS published between 2000 and 2023. Thereafter, we examined possible mechanisms by which hypothalamic dysfunctions may contribute to ALS-related sleep disturbances. Achieving a deeper understanding of the relationship between hypothalamic dysfunction and sleep disturbances in ALS can help improve the overall management of ALS and reduce the burden on patients and their families.
Collapse
Affiliation(s)
- Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Stefano Zoccolella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Neurology Unit, San Paolo Hospital, Azienda Sanitaria Locale (ASL) Bari, Bari, Italy
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ludovica Tamburrino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
31
|
Xia L, Liu HY, Wang BY, Lin HN, Wang MC, Ren JX. A review of physiological functions of orexin: From instinctive responses to subjective cognition. Medicine (Baltimore) 2023; 102:e34206. [PMID: 37390267 PMCID: PMC10313292 DOI: 10.1097/md.0000000000034206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Orexin, also known as hypocretin, is an excitatory neuropeptide secreted by the hypothalamus. Orexin is divided into orexin-A (OXA) and orexin-B (OXB), which are derived from a common precursor secreted by hypothalamic neurons. Orexin acts on orexin receptor-1 (OX1R) and orexin receptor-2 (OX2R). Orexin neurons, as well as receptors, are widely distributed in various regions of the brain as well as in the peripheral system and have a wider range of functions. This paper reviews the latest research results of orexin in the aspects of food intake, sleep, addiction, depression and anxiety. Because orexin has certain physiological functions in many systems, we further explored the possibility of orexin as a new target for the treatment of bulimia, anorexia nervosa, insomnia, lethargy, anxiety and depression. It is precisely because orexin has physiological functions in multiple systems that orexin, as a new target for the treatment of the above diseases, has potential contradictions. For example, it promotes the function of 1 system and may inhibit the function of another system. How to study a new drug, which can not only treat the diseases of this system, but also do not affect other system functions, is what we need to focus on.
Collapse
Affiliation(s)
- LiBo Xia
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Yan Liu
- Department of Medical Section, Changchun Second Hospital, Changchun, China
| | - Bi Yan Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Ning Lin
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Meng Chen Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Ji-Xiang Ren
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| |
Collapse
|
32
|
Sarathi Chakraborty D, Choudhury S, Lahiry S. Daridorexant, a Recently Approved Dual Orexin Receptor Antagonists (DORA) in Treatment of Insomnia. Sleep Sci 2023; 16:256-264. [PMID: 37425970 PMCID: PMC10325868 DOI: 10.1055/s-0043-1770805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Insomnia is one of the major challenges in medical science nowadays as it leads to great socio-economic burden by impairing daytime function as well as the development of exhaustion, depression, and memory disturbance in affected individuals. Several important classes of drugs have been tried, including the BZDs and non-BZD hypnotics. Available drugs to combat this disease have the limitations of abuse potential, tolerance, and cognitive impairment. In some instances, withdrawal symptoms have been observed upon the abrupt cessation of those drugs. The Orexin system has been very recently targeted as a therapeutic option to overcome those limitations. Treatment of insomnia with Daridorexant as a Dual Orexin Receptor Antagonist (DORA) has been evaluated in several preclinical and clinical studies. Available information obtained from those studies has shown a promising future for this drug in the management of insomnia. Beyond its effectiveness in insomnia, it has been successfully used in patients suffering from obstructive sleep apnoea, chronic obstructed airway disease (COAD), Alzheimer's disease (AD), hypertension, and cardiovascular disorders. Larger studies need to address the safety issues as well as obtain robust pharmacovigilance information to safeguard the risk-benefit aspect of this drug in insomniac adults.
Collapse
Affiliation(s)
| | | | - Sandeep Lahiry
- Independent Research Scholar, Barasat, Kolkata, West Bengal, India
| |
Collapse
|
33
|
Fagan HA, Baldwin DS. Pharmacological Treatment of Generalised Anxiety Disorder: Current Practice and Future Directions. Expert Rev Neurother 2023:1-14. [PMID: 37183813 DOI: 10.1080/14737175.2023.2211767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Generalized Anxiety Disorder (GAD) is a common psychiatric condition, characterized by the presence of general apprehensiveness and excessive worry. Current management consists of a range of pharmacological and psychological treatments. However, many patients do not respond to first-line pharmacological treatments and novel anxiolytic drugs are being developed. AREAS COVERED In this review, the authors first discuss the diagnostic criteria and epidemiology of GAD. The effective pharmacological treatments for GAD and their tolerability are addressed. Current consensus guidelines for treatment of GAD are discussed, and maintenance treatment, the management of treatment resistance, and specific management of older adults and children/adolescents are considered. Finally, novel anxiolytics under development are discussed, with a focus on those which have entered clinical trials. EXPERT OPINION A range of effective treatments for GAD are available, particularly duloxetine, escitalopram, pregabalin, quetiapine, and venlafaxine. There is a limited evidence base to support the further pharmacological management of patients with GAD who have not responded to initial treatment. Although many novel anxiolytics have progressed to clinical trials, translation from animal models has been mostly unsuccessful. However, the potential of several compounds including certain psychedelics, ketamine, oxytocin, and agents modulating the orexin, endocannabinoid, and immune systems merits further study.
Collapse
Affiliation(s)
- Harry A Fagan
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- College Keep, Southern Health NHS Foundation Trust, Southampton, UK
| | - David S Baldwin
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- College Keep, Southern Health NHS Foundation Trust, Southampton, UK
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Lim M, Kou R, Esposito G, Jawed A, Dimitriou D, Mangar SA. Exploring the Relationship between Disordered Sleep and Mood in Male Anorexia Nervosa: An Actigraphy Study. Nutrients 2023; 15:2176. [PMID: 37432391 DOI: 10.3390/nu15092176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
Eating disorders (EDs), including anorexia nervosa (AN), are severe psychological disorders that affect individuals' eating behaviours and body perception. Previous research has shown that people with EDs often report poorer sleep. Some literature has suggested that it is mood dysregulation that mediates the link between EDs and sleep. However, the majority of previous studies only focused on females, while male ED patients have been overlooked. Therefore, the present study aimed to investigate the relationships between EDs, mood, and sleep among male ED patients. Using a mixture of actigraphy recordings and self-reported questionnaires, the current study analysed a total 33 adult male participants diagnosed with AN. The participants first wore an actigraphy device for seven continuous days, following which their ED severity and mood were assessed by the Eating Disorder Examination Questionnaire (EDE-Q) and Depression Anxiety Stress Scale (DASS), respectively. The descriptive actigraphy results suggested that, similar to females, males with AN also showed disturbed sleep, including insomnia, sleep fragmentation, low sleep efficiency, and increased napping sessions. However, when ED severity was correlated against actigraphy data and mood, no significant relationships were found between them. Thus, it was suggested that future studies may investigate discrete ED symptoms instead of global ED severity interacting with sleep and mood. Overall, this study represents an initial step in the investigation of EDs and sleep and mood dysregulation among an under-represented sample.
Collapse
Affiliation(s)
- Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore 639818, Singapore
| | - Ruoxin Kou
- Sleep Education and Research Laboratory, UCL Institute of Education, London WC1H 0AA, UK
| | - Gianluca Esposito
- Affiliative Behaviour and Physiology Lab, Department of Psychology and Cognitive Science, University of Trento, 84 Corso Bettini, 38068 Rovereto, Italy
| | - Aisha Jawed
- Sleep Education and Research Laboratory, UCL Institute of Education, London WC1H 0AA, UK
| | - Dagmara Dimitriou
- Sleep Education and Research Laboratory, UCL Institute of Education, London WC1H 0AA, UK
| | - Stephen A Mangar
- Department of Clinical Oncology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK
| |
Collapse
|
35
|
Ziemichód W, Kurowska A, Grabowska K, Kurowska M, Biała G. Characteristics of Seltorexant-Innovative Agent Targeting Orexin System for the Treatment of Depression and Anxiety. Molecules 2023; 28:molecules28083575. [PMID: 37110810 PMCID: PMC10142100 DOI: 10.3390/molecules28083575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Twenty-five years have passed since the discovery of the orexin system, during which time we have learned more and more about it. A number of studies have been conducted showing the role of the orexin system in insomnia, as well as its potential use in the treatment of obesity and depression. In this review, we present the role of the orexin system in the development of depressive illness and show the characteristics of seltorexant, a potential drug for the treatment of depression. This review describes the structure and synthesis of the compound as well as its pharmacodynamics and pharmacokinetics. Pre-clinical and clinical studies are also described, including side effects. There is evidence that the use of seltorexant is considered safe, with no clear or major clinically significant side effects, which makes it a promising candidate for the treatment of depression and anxiety disorders.
Collapse
Affiliation(s)
- Wojciech Ziemichód
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Antonina Kurowska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Karolina Grabowska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Michalina Kurowska
- Institute of Applied Psychology, Jagiellonian University, 31-007 Warsaw, Poland
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
36
|
Maruyama T, Ueta Y. Internal and external modulation factors of the orexin system (REVIEW). Peptides 2023; 165:171009. [PMID: 37054895 DOI: 10.1016/j.peptides.2023.171009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Orexin-A and -B (identical to hypocretin-1 and -2) are neuropeptides synthesized in the lateral hypothalamus and perifornical area, and orexin neurons project their axon terminals broadly throughout the entire central nervous system (CNS). The activity of orexins is mediated by two specific G protein-coupled receptors (GPCRs), termed orexin type1 receptor (OX1R) and orexin type2 receptor (OX2R). The orexin system plays a relevant role in various physiological functions, including arousal, feeding, reward, and thermogenesis, and is key to human health. Orexin neurons receive various signals related to environmental, physiological, and emotional stimuli. Previous studies have reported that several neurotransmitters and neuromodulators influence the activation or inhibition of orexin neuron activity. In this review, we summarize the modulating factors of orexin neurons in the sleep/wake rhythm and feeding behavior, particularly in the context of the modulation of appetite, body fluids, and circadian signaling. We also describe the effects of life activity, behavior, and diet on the orexin system. Some studies have observed phenomena that have been verified in animal experiments, revealing the detailed mechanism and neural pathway, while their applications to humans is expected in future research.
Collapse
Affiliation(s)
- Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
37
|
Vraka K, Mytilinaios D, Katsenos AP, Serbis A, Baloyiannis S, Bellos S, Simos YV, Tzavellas NP, Konitsiotis S, Vezyraki P, Peschos D, Tsamis KI. Cellular Localization of Orexin 1 Receptor in Human Hypothalamus and Morphological Analysis of Neurons Expressing the Receptor. Biomolecules 2023; 13:592. [PMID: 37189339 PMCID: PMC10135972 DOI: 10.3390/biom13040592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The orexin system is related to food behavior, energy balance, wakefulness and the reward system. It consists of the neuropeptides orexin A and B, and their receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). OX1R has selective affinity for orexin A, and is implicated in multiple functions, such as reward, emotions, and autonomic regulation. This study provides information about the OX1R distribution in human hypothalamus. The human hypothalamus, despite its small size, demonstrates a remarkable complexity in terms of cell populations and cellular morphology. Numerous studies have focused on various neurotransmitters and neuropeptides in the hypothalamus, both in animals and humans, however, there is limited experimental data on the morphological characteristics of neurons. The immunohistochemical analysis of the human hypothalamus revealed that OX1R is mainly found in the lateral hypothalamic area, the lateral preoptic nucleus, the supraoptic nucleus, the dorsomedial nucleus, the ventromedial nucleus, and the paraventricular nucleus. The rest of the hypothalamic nuclei do not express the receptor, except for a very low number of neurons in the mammillary bodies. After identifying the nuclei and neuronal groups that were immunopositive for OX1R, a morphological and morphometric analysis of those neurons was conducted using the Golgi method. The analysis revealed that the neurons in the lateral hypothalamic area were uniform in terms of their morphological characteristics, often forming small groups of three to four neurons. A high proportion of neurons in this area (over 80%) expressed the OX1R, with particularly high expression in the lateral tuberal nucleus (over 95% of neurons). These results were analyzed, and shown to represent, at the cellular level, the distribution of OX1R, and we discuss the regulatory role of orexin A in the intra-hypothalamic areas, such as its special role in the plasticity of neurons, as well as in neuronal networks of the human hypothalamus.
Collapse
Affiliation(s)
- Konstantina Vraka
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Andreas P. Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasios Serbis
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Stavros Baloyiannis
- Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos P. Tzavellas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, University Hospital of Ioannina, University of Ioannina, 45500 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos I. Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of Neurology, University Hospital of Ioannina, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
38
|
Chatterjee O, Gopalakrishnan L, Pullimamidi D, Raj C, Yelamanchi S, Gangadharappa BS, Nair B, Mahadevan A, Raju R, Keshava Prasad TS. A molecular network map of orexin-orexin receptor signaling system. J Cell Commun Signal 2023; 17:217-227. [PMID: 36480100 PMCID: PMC10030760 DOI: 10.1007/s12079-022-00700-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022] Open
Abstract
Orexins are excitatory neuropeptides, which are predominantly associated with feeding behavior, sleep-wake cycle and energy homeostasis. The orexinergic system comprises of HCRTR1 and HCRTR2, G-protein-coupled receptors of rhodopsin family and the endogenous ligands processed from HCRT pro-hormone, Orexin A and Orexin B. These neuropeptides are biosynthesized by the orexin neurons present in the lateral hypothalamus area, with dense projections to other brain regions. The orexin-receptor signaling is implicated in various metabolic as well as neurological disorders, making it a promising target for pharmacological interventions. However, there is limited information available on the collective representation of the signal transduction pathways pertaining to the orexin-orexin receptor signaling system. Here, we depict a compendium of the Orexin A/B stimulated reactions in the form of a basic signaling pathway map. This map catalogs the reactions into five categories: molecular association, activation/inhibition, catalysis, transport, and gene regulation. A total of 318 downstream molecules were annotated adhering to the guidelines of NetPath curation. This pathway map can be utilized for further assessment of signaling events associated with orexin-mediated physiological functions and is freely available on WikiPathways, an open-source pathway database ( https://www.wikipathways.org/index.php/Pathway:WP5094 ).
Collapse
Affiliation(s)
- Oishi Chatterjee
- Institute of Bioinformatics, International Tech Park, 560 066, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, 690 525, Kollam, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), 575 018, Mangalore, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Tech Park, 560 066, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), 575 018, Mangalore, India
- Manipal Academy of Higher Education (MAHE), 576 104, Manipal, India
| | | | - Chinmayi Raj
- Institute of Bioinformatics, International Tech Park, 560 066, Bangalore, India
| | - Soujanya Yelamanchi
- Institute of Bioinformatics, International Tech Park, 560 066, Bangalore, India
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, 690 525, Kollam, India
| | - Anita Mahadevan
- Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 560 029, Bangalore, India
- Department of Neuropathology, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 560 029, Bangalore, India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), 575 018, Mangalore, India.
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), 575 018, Mangalore, India.
| |
Collapse
|
39
|
Haddad M, Khazali H, Janahmadi M, Ghanbarian H. Inhibition of the retinal orexin receptors affects the hypothalamic-pituitary-gonadal axis through retinal pituitary adenylate cyclase activating polypeptide (PACAP) in male Wistar rats. Gen Comp Endocrinol 2023; 337:114242. [PMID: 36801394 DOI: 10.1016/j.ygcen.2023.114242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Orexins A and B (OXA and OXB) and their receptors are expressed in the retina of both human and rodents and play a vital role in regulating signal transmission circuits in the retina. There is an anatomical-physiological relationship between the retinal ganglion cells and suprachiasmatic nucleus (SCN) through glutamate as a neurotransmitter and retinal pituitary adenylate cyclase-activating polypeptide (PACAP) as a co-transmitter. SCN is the main brain center for regulating the circadian rhythm, which governs the reproductive axis. The impact of retinal orexin receptors on the hypothalamic-pituitary-gonadal axis has not been investigated. Retinal OX1R or/and OX2R in adult male rats by 3 µl of SB-334867 (1 µg) or/and 3 µl of JNJ-10397049 (2 µg) were antagonized via intravitreal injection (IVI). Four time-periods were considered (3, 6, 12, and 24 h) for the controls without any treatment, SB-334867, JNJ-10397049, and SB-334867 + JNJ-10397049 groups. Antagonizing retinal OX1R or/and OX2R resulted in a significant elevation of retinal PACAP expression compared to control animals. In addition, expression of GnRH increased non-significantly in the hypothalamus over the 6 h of the study, and the serum concentration of LH decreased significantly in the SB-334867 group after 3 h of injection. Furthermore, testosterone serum levels declined significantly, especially within 3 h of injection; serum levels of progesterone were also exposed to a significant rise at least within 3 h of injection. However, the retinal PACAP expression changes were mediated by OX1R more effectively than by OX2R. In this study, we report the retinal orexins and their receptors as light-independent factors by which the retina affects the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Muhammad Haddad
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Palagini L, Geoffroy PA, Balestrieri M, Miniati M, Biggio G, Liguori C, Menicucci D, Ferini-Strambi L, Nobili L, Riemann D, Gemignani A. Current models of insomnia disorder: a theoretical review on the potential role of the orexinergic pathway with implications for insomnia treatment. J Sleep Res 2023:e13825. [PMID: 36786121 DOI: 10.1111/jsr.13825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 02/15/2023]
Abstract
Insomnia disorder is considered as a stress-related disorder associated with hyperarousal, stress and emotion dysregulation and the instability of the 'flip-flop' switch system. The orexinergic system is well known for its key role in sleep and arousal processes but also in the allostatic system regulating stress and emotions and may thus be of major interest for insomnia and its treatment. Accordingly, we discuss the potential role of orexins on sleep processes, brain systems modulating stress and emotions with potential implications for insomnia pathophysiology. We reviewed available data on the effect of dual orexin receptor antagonists (DORAs) on sleep and brain systems modulating stress/emotions with implications for insomnia treatment. We present our findings as a narrative review. Few data in animals and humans have reported that disrupted sleep and insomnia may be related to the overactivation of orexinergic system, while some more consistent data in humans and animals reported the overactivation of orexins in response to acute stress and in stress-related disorders. Taken together these findings may let us hypothesise that an orexins overactivation may be associated with stress-related hyperarousal and the hyperactivation of arousal-promoting systems in insomnia. On the other hand, it is possible that by rebalancing orexins with DORAs we may regulate both sleep and allostatic systems, in turn, contributing to a 'switch off' of hyperarousal in insomnia. Nevertheless, more studies are needed to clarify the role of the orexin system in insomnia and to evaluate the effects of DORAs on sleep, stress and emotions regulating systems.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France.,GHU Paris - Psychiatry and Neurosciences, Paris, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Giovanni Biggio
- Department of Life and Environmental Sciences, Institute of Neuroscience, University of Cagliari, National Research Council (C.N.R.), Cagliari, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology Sleep Disorders Centre, RCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lino Nobili
- Sleep Medicine Center, Department of Neuroscience, Niguarda Hospital, Milan, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, Child Neuropsychiatry Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Jahromi SR, Martami F, Morad Soltani K, Togha M. Migraine and obesity: what is the real direction of their association? Expert Rev Neurother 2023; 23:75-84. [PMID: 36714917 DOI: 10.1080/14737175.2023.2173575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION In recent decades, studies have addressed the issue of how migraine and obesity are related and have suggested obesity as a risk factor for migraine headache. However, the exact direction of this relationship remains under debate. In this review, the authors summarize the evidence that have suggested migraine as a risk factor for obesity and overweightness. AREAS COVERED This article reviews the results of the previous research published on PubMed and Scopus databases (from 2000 to 2020) concerning the association between migraine and obesity to determine the actual direction of their association. Special attention has been given to the common mechanistic pathways involved in the pathophysiology of migraine and obesity. EXPERT OPINION The majority of research conducted thus far has considered obesity as a risk factor for migraine. However, because of the cross-sectional design of available research, we cannot be certain of the proposed direction of this association. There is evidence supporting the hypothesis that obesity can serve as a consequence of migraine through the effects of neuropeptides, inflammatory mediators, adipokines, gut microbiota and modifications in eating behavior and lifestyle. However, the real direction of the relationship between migraine and obesity should be further investigated in large prospective studies.
Collapse
Affiliation(s)
- Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Martami
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Morad Soltani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Orexin Receptor Antagonists in the Treatment of Depression: A Leading Article Summarising Pre-clinical and Clinical Studies. CNS Drugs 2023; 37:1-12. [PMID: 36436175 DOI: 10.1007/s40263-022-00974-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/28/2022]
Abstract
The orexin (hypocretin) system comprises two neuropeptides (orexin-A and orexin-B) and two G-protein coupled receptors (the orexin type 1 and the orexin type 2 receptor). The system regulates several biological functions including appetite, the sleep-wake cycle, the stress response, and motivation and reward processing. Dysfunction of the orexin system has been implicated in the pathophysiology of depression in human and animal studies, although the exact nature of this dysfunction remains unclear. Orexin receptor antagonists (ORAs) are a class of compounds developed for the treatment of insomnia and have demonstrated efficacy in this area. Three dual orexin receptor antagonists (DORAs) have received licences for treatment of primary insomnia and some ORAs have since been investigated as potential treatments for major depressive disorder (MDD). In this leading article, we summarise the existing literature on use of ORAs in depression, in pre-clinical and clinical studies. In rodent models of depression, investigated ORAs have included the DORA almorexant and TCS1102, the selective orexin 1 receptor antagonists SB334867 and SB674042 and the selective orexin 2 receptor antagonists LSN2424100, MK-1064 and TCS-OX2-29. These pre-clinical studies suggest a possible antidepressant effect of systemic DORA treatment, however the evidence from selective ORAs is conflicting. To date, four published RCTs (one with the DORA filorexant and three with the selective orexin 2 receptor antagonist seltorexant), have compared an ORA with placebo in the treatment of MDD. Only one of these demonstrated a statistically significant difference relative to placebo.
Collapse
|
43
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Del Bianco C, Ulivi M, Liguori C, Pisani A, Mercuri NB, Placidi F, Izzi F. Alexithymia, impulsiveness, emotion, and eating dyscontrol: similarities and differences between narcolepsy type 1 and type 2. Sleep Biol Rhythms 2023; 21:39-50. [PMID: 38468909 PMCID: PMC10900009 DOI: 10.1007/s41105-022-00414-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/30/2022] [Indexed: 10/14/2022]
Abstract
Non-sleep symptoms, as depression, anxiety and overweight, are often encountered in narcoleptic patients. The purposes of this study are to evaluate mood, impulsiveness, emotion, alexithymia, and eating behavior in patients with narcolepsy type 1 (NT1) and narcolepsy type 2 (NT2) compared to healthy controls and to investigate possible correlations between clinical-demographic data, polysomnographic parameters, and subjective questionnaires. Consecutive patients affected by NT1 and NT2 underwent to Patient Health Questionnaire-9, Generalized Anxiety Disorder-7 Scale, Barratt Impulsivity Scale-11, Difficulties in Emotion Regulation Scale, Toronto Alexithymia Scale, and Eating Disorder Evaluation Questionnaire. Daytime sleepiness was assessed using Epworth sleepiness score. Data were compared with controls. Fourteen NT1, 10 NT2, and 24 healthy subjects were enrolled. Toronto Alexithymia Scale total score was significantly higher in NT1 than NT2. Compared to controls, NT1 patients exhibited significantly higher scores at Patient Health Questionnaire-9 and Difficulties in Emotion Regulation Scale. A positive correlation between hypnagogic hallucinations and Difficulties in emotion regulation was found. NT1 and NT2 share several psycho-emotional aspects, but whereas NT1 patients exhibit more depressive mood and emotion dysregulation compared to controls, alexithymic symptoms are more prominent in NT1 than NT2. Hypnagogic hallucinations, emotion dysregulation, and alexithymia appear to be correlated, supporting the hypothesis of mutual interaction of the above areas in narcolepsy.
Collapse
Affiliation(s)
- Chiara Del Bianco
- Sleep Medicine Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
| | - Martina Ulivi
- Sleep Medicine Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
| | - Claudio Liguori
- Sleep Medicine Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
| | - Antonio Pisani
- Sleep Medicine Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Sleep Medicine Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
45
|
Muacevic A, Adler JR. Physiological Role of Orexin/Hypocretin in the Human Body in Motivated Behavior: A Comprehensive Review. Cureus 2023; 15:e34009. [PMID: 36814741 PMCID: PMC9939734 DOI: 10.7759/cureus.34009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Neurohormones are neurosecretory materials released by neurosecretory cells that serve both as neuromodulators in the brain and spinal cord and as circulating regulatory hormones. They serve a wide range of functions, including homeostasis, development, and modulation of neuronal and muscle activity. In the hypothalamus, neurohormones called hypocretins are created that were discovered in the late nineties. Orexin receptors (OXRs) have been shown to enhance synaptic signaling in the central nervous system at the cellular level. The orexins improve stimulated neural activity in the hippocampus, which, in turn, aids with spatial memory, learning, and mood. They present themselves as mediators for the hypothalamic functions. They have been shown to regulate sleep-wake cycles, arousal mechanisms, addiction, sympathetic nerve activity (SNA), blood pressure, and thermogenesis. Its role in storing brown adipose tissue has implications for thermal homeostasis. The significant role of orexins is seen in tumorigenesis when orexin A (OrxA) and orexin B (OrxB) induce apoptosis in fast-growing tumor cells. Orexin-null subjects show clinical narcolepsy, indicating that orexins were responsible for keeping them awake. Orexin microinjections in mice brains stimulated increased physical activity, thus possibly countering diet-induced obesity. Physical activity significantly increased plasma orexin-A levels, which facilitated the process of energy homeostasis. The amount of adrenocorticotropic hormone (ACTH) increases in stress conditions, which further facilitates the release of the stress hormone cortisol. No increase in the ACTH hormone is seen in stressed mice administered with orexin receptor 2 (OX2R) antagonists thus showing orexin's role in stress reaction. As a result of linking hypocretin/orexin to various physiological procedures, increased research into the medicinal potential of drugs targeting these receptors is emerging. We summed up in this review the recent advances in our understanding of how orexin and its receptor system play an essential role in clinical and pathological functions. This research summarizes a new area for research in human medicine, providing the possibility of controlling a vast array of physiological functions through intra-cerebroventricular injections of a single neuropeptide.
Collapse
|
46
|
Obstructive Sleep Apnea, Circadian Clock Disruption, and Metabolic Consequences. Metabolites 2022; 13:metabo13010060. [PMID: 36676985 PMCID: PMC9863434 DOI: 10.3390/metabo13010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic disorder characterized by recurrent episodes of apnea and hypopnea during sleep. It is associated with various cardiovascular and metabolic complications, including type 2 diabetes mellitus (T2DM) and obesity. Many pathways can be responsible for T2DM development in OSA patients, e.g., those related to HIF-1 and SIRT1 expression. Moreover, epigenetic mechanisms, such as miRNA181a or miRNA199, are postulated to play a pivotal role in this link. It has been proven that OSA increases the occurrence of circadian clock disruption, which is also a risk factor for metabolic disease development. Circadian clock disruption impairs the metabolism of glucose, lipids, and the secretion of bile acids. Therefore, OSA-induced circadian clock disruption may be a potential, complex, underlying pathway involved in developing and exacerbating metabolic diseases among OSA patients. The current paper summarizes the available information pertaining to the relationship between OSA and circadian clock disruption in the context of potential mechanisms leading to metabolic disorders.
Collapse
|
47
|
Saidi O, Rochette E, Del Sordo G, Peyrel P, Salles J, Doré E, Merlin E, Walrand S, Duché P. Isocaloric Diets with Different Protein-Carbohydrate Ratios: The Effect on Sleep, Melatonin Secretion and Subsequent Nutritional Response in Healthy Young Men. Nutrients 2022; 14:nu14245299. [PMID: 36558458 PMCID: PMC9782994 DOI: 10.3390/nu14245299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
This study aimed to determine the short-term effect of two isocaloric diets differing in the ratio of protein−carbohydrate on melatonin levels, sleep, and subsequent dietary intake and physical activity in healthy young men. Twenty-four healthy men took part in a crossover design including two sessions of three days on isocaloric diets whether high-protein, low-carbohydrate (HPLC) or low-protein, high-carbohydrate (LPHC) followed by 24-h free living assessments. Sleep was measured by ambulatory polysomnography pre-post-intervention. Melatonin levels were assessed on the third night of each session on eight-point salivary sampling. Physical activity was monitored by accelerometry. On day 4, participants reported their 24-h ad-libitum dietary intake. LPHC resulted in better sleep quality and increased secretion of melatonin compared to HPLC. A significant difference was noted in sleep efficiency (p < 0.05) between the two sessions. This was mainly explained by a difference in sleep onset latency (p < 0.01) which was decreased during LPHC (PRE: 15.8 ± 7.8 min, POST: 11.4 ± 4.5 min, p < 0.001). Differences were also noted in sleep staging including time spent on REM (p < 0.05) and N1 (p < 0.05). More importantly, REM latency (PRE: 97.2 ± 19.9 min, POST 112.0 ± 20.7 min, p < 0.001) and cortical arousals (PRE: 7.2 ± 3.9 event/h, POST 8.5 ± 3.3 event/h) increased in response to HPLC diet but not LPHC. On day 4, 24-h ad-libitum energy intake was higher following HPLC compared to LPHC (+64 kcal, p < 0.05) and explained by increased snacking behavior (p < 0.01) especially from carbohydrates (p < 0.05). Increased carbohydrates intake was associated with increased cortical arousals.
Collapse
Affiliation(s)
- Oussama Saidi
- Laboratory Impact of Physical Activity on Health (IAPS), Toulon University, F-83041 Toulon, France
- Laboratory of Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, F-63000 Clermont-Ferrand, France
- Center for Research in Human Nutrition Auvergne, F-63000 Clermont-Ferrand, France
| | - Emmanuelle Rochette
- Laboratory Impact of Physical Activity on Health (IAPS), Toulon University, F-83041 Toulon, France
- Department of Pediatrics, Clermont-Ferrand University Hospital, F-63000 Clermont-Ferrand, France
- INSERM, CIC 1405, CRECHE Unit, Clermont Auvergne University, F-63000 Clermont-Ferrand, France
| | - Giovanna Del Sordo
- Laboratory Impact of Physical Activity on Health (IAPS), Toulon University, F-83041 Toulon, France
| | - Paul Peyrel
- Laboratory of Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, F-63000 Clermont-Ferrand, France
- Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada
- Quebec Heart and Lung Institute, Laval University, Quebec, QC G1V 4G5, Canada
| | - Jérôme Salles
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, F-63000 Clermont-Ferrand, France
| | - Eric Doré
- Laboratory of Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, F-63000 Clermont-Ferrand, France
- Center for Research in Human Nutrition Auvergne, F-63000 Clermont-Ferrand, France
| | - Etienne Merlin
- Department of Pediatrics, Clermont-Ferrand University Hospital, F-63000 Clermont-Ferrand, France
- INSERM, CIC 1405, CRECHE Unit, Clermont Auvergne University, F-63000 Clermont-Ferrand, France
| | - Stéphane Walrand
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, F-63000 Clermont-Ferrand, France
| | - Pascale Duché
- Laboratory Impact of Physical Activity on Health (IAPS), Toulon University, F-83041 Toulon, France
- Correspondence: ; Tel.: +33-(0)652-1838-91
| |
Collapse
|
48
|
Knez R, Stevanovic D, Fernell E, Gillberg C. Orexin/Hypocretin System Dysfunction in ESSENCE (Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations). Neuropsychiatr Dis Treat 2022; 18:2683-2702. [PMID: 36411777 PMCID: PMC9675327 DOI: 10.2147/ndt.s358373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations (ESSENCE) is an umbrella term covering a wide range of neurodevelopmental difficulties and disorders. Thus, ESSENCE includes attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and other neurodevelopmental disorders (NDDs) and difficulties, with a variety of symptoms in cognitive, motor, sensory, social, arousal, regulatory, emotional, and behavioral developmental domains, frequently co-occurring and likely having partly common neurobiological substrates. The ESSENCE concept is a clinical paradigm that promotes organizing NDDs in everyday clinical practice according to their coexistence, symptom dimensions overlapping, and treatment possibilities. Despite increased knowledge regarding NDDs, the neurobiological mechanisms that underlie them and other ESSENCE-related problems, are not well understood. With its wide range of neural circuits and interactions with numerous neurotransmitters, the orexin/hypocretin system (Orx-S) is possibly associated with a variety of neurocognitive, psychobiological, neuroendocrine, and physiological functions and behaviors. Dysfunction of Orx-S has been implicated in various psychiatric and neurological disorders. This article provides an overview of Orx-S dysfunctions' possible involvement in the development, presentation, and maintenance of ESSENCE. We provide a focused review of current research evidence linking orexin neuropeptides with specific clinical NDDs symptoms, mostly in ADHD and ASD, within the Research Domain Criteria (RDoC) framework. We propose that Orx-S dysfunction might have an important role in some of these neurodevelopmental symptom domains, such as arousal, wakefulness, sleep, motor and sensory processing, mood and emotional regulation, fear processing, reward, feeding, attention, executive functions, and sociability. Our perspective is presented from a clinical point of view. Further, more thorough systematic reviews are needed as well as planning of extensive new research into the Orx-S's role in ESSENCE, especially considering RDoC elements.
Collapse
Affiliation(s)
- Rajna Knez
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Skaraborg Hospital, Skövde, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Dejan Stevanovic
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Preskorn SH. Comparative Pharmacology of the 3 Marketed Dual Orexin Antagonists-Daridorexant, Lemborexant, and Suvorexant: Part 1: Pharmacokinetic Profiles. J Psychiatr Pract 2022; 28:478-480. [PMID: 36355586 DOI: 10.1097/pra.0000000000000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This first column in a 2-part series focuses on the pharmacokinetics of the 3 Food and Drug Administration-approved dual orexin receptor antagonists, daridorexant, lemborexant, and suvorexant, specifically as they relate to their use as sleep medications. Although other classes of sleep medications are not discussed, the same pharmacokinetic principles also apply to them.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW We review recent evidence on the use of orexin receptor antagonists (ORAs) for treating insomnia. We evaluate studies on five dual ORAs and one selective ORA. RECENT FINDINGS Research on suvorexant in recent years gradually focus on comorbid insomnia, while lemborexant and daridorexant were still being validated in primary insomnia. Almorexant is now mainly used as a commercial specific inhibitor of the orexin system in animal studies due to safety issues. Although filorexant has also shown a certain sleep-promoting effect, there are few clinical or experimental studies on sleep-related aspects of filorexant in recent years. As for selective ORAs, orexin receptor 2 antagonist seltorexant still has not yet reached phase 3. High-quality clinical trials in insomnia populations are needed which directly compare authorized ORAs and investigate non-approved ORAs, the use of ORAs in comorbid insomnia, and the orexin signaling system pathophysiology in insomnia.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurosurgery & Brain, Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou, 215006, China.,Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain, Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain, Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain, Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou, 215006, China
| |
Collapse
|