1
|
Shi SS, Hu T. Effects of Eurotium Cristatum on soybean ( Glycine max L.) polyphenols and the inhibitory ability of soybean polyphenols on acetylcholinesterase under different conditions. Food Chem X 2024; 23:101526. [PMID: 38933989 PMCID: PMC11200280 DOI: 10.1016/j.fochx.2024.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Most phenolic compounds in beans exist in complex, insoluble binding forms that bind to cell wall components via ether, ester, or glucoside bonds. In the process of solid-state fermentation, Eurotium Cristatum can produce many hydrolase enzymes, such as α-amylase, pectinase, cellulase and β-glucosidase, which can effectively hydrolyze ether, ester or glucoside bond, release bound polyphenols, and increase polyphenol content in soybeans. When the fermentation conditions of soybean were fermentation time 12 days, inoculation amount 15% and initial pH 2, the content of free polyphenols in fermented soybean was 2.79 mg GAE/g d.w, which was 4.98 times that of unfermented soybean. The contents of bound polyphenols and total phenols in fermented soybean were 0.62 mg GAE/g d.w and 3.41 mg GAE/g d.w, respectively, which were 2.38 times and 4.16 times of those in unfermented soybean. At the same time, the inhibitory effect of free polyphenols in fermented soybean on acetylcholinesterase reached 91.51%. Thus, our results demonstrated that solid state fermentation and Eurotium Cristatum can be used as an effective way to increase soybean polyphenol content and combat Alzheimer's disease.
Collapse
Affiliation(s)
- Shuo-shuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
2
|
Luo T, Fan Y, Fan M, Li M, Qiu Z, Du Q, Ma C, Liu C, Peng Y, Zhang S, Liu S, Song B. Physicochemical and Functional Properties of DND358 (A Hypocholesterolemic Soybean) Protein Isolate. Foods 2024; 13:3236. [PMID: 39456296 PMCID: PMC11508184 DOI: 10.3390/foods13203236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The properties and applications of soybean protein isolates (SPIs) have been extensively investigated. In this study, we determined the optimal conditions for the preparation of the DND358 soybean protein isolate (DND358-SPI), assessed its physicochemical and functional properties, and investigated its potential applications in the food industry. According to the results, the highest extraction rate of DND358-SPI was observed when the pH was 9.5, the temperature was 55 °C, the duration was 80 min, and the material-to-liquid ratio was 1:20 (w/v). With regard to the functional properties, the water-holding capacity (WHC) and oil-binding capacity (OBC) of DND358-SPI were higher than those of other varieties, reaching 4.73% and 11.04%, respectively. In addition, the hardness, adhesiveness, chewiness, and resilience of DND358-SPI were higher than those of other varieties, reaching 159.27 g, 186.07 g, 6.78 mj, and 1.88, respectively. These findings indicate that DND358-SPI can reduce cholesterol levels and may be used to produce cholesterol-lowering food products.
Collapse
Affiliation(s)
- Tingting Luo
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Yuanhang Fan
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Fan
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Ming Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Zhendong Qiu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Qiuyan Du
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Chongxuan Ma
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Peng
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Molecular and Cytogenetics, College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
3
|
Rahman U, Younas Z, Ahmad I, Yousaf T, Latif R, Rubab U, Hassan H, Shafi U, Mashwani ZUR. Enhancing health and therapeutic potential: innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front Pharmacol 2024; 15:1397872. [PMID: 39421675 PMCID: PMC11483366 DOI: 10.3389/fphar.2024.1397872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
An extensive examination of the medical uses of soybean bioactive components is provided by this thorough review. It explores the possible health advantages of isoflavones with phytoestrogenic qualities, like genistein, which may lower the risk of cancer. The review highlights the different roles and possible anticancer activities of phenolic compounds, phytic acid, protease inhibitors, lignans, and saponins, among other bioactive components. It also addresses the benefits of dietary fiber and oligosaccharides derived from soybeans for intestinal health, as well as the impact of soy protein on diabetes, obesity, cancer, and cardiovascular health. Conjugated linoleic acid (CLA) has anticancer and cholesterol-lowering properties; its involvement in promoting metabolic processes is also examined. Pinitol is highlighted in the study as a blood sugar regulator with promise for controlling insulin signaling. In this review, we aim to affirm soybeans' potential as a high-functional, well-being food by examining their recently discovered therapeutic and pharmacological capabilities, rather than to improve upon the previous studies on the reported nutritional advantages of soybeans.
Collapse
Affiliation(s)
| | | | - Ilyas Ahmad
- *Correspondence: Zia-ur-Rehman Mashwani, ; Ilyas Ahmad,
| | | | | | | | | | | | | |
Collapse
|
4
|
Ngui ME, Lin YH, Wei IL, Wang CC, Xu YZ, Lin YH. Effects of the combination of biochar and organic fertilizer on soil properties and agronomic attributes of soybean (Glycine max L.). PLoS One 2024; 19:e0310221. [PMID: 39298498 DOI: 10.1371/journal.pone.0310221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
This research aimed to investigate the impacts of a combination of rice husk biochar and organic fertilizer on the physical and chemical properties of soil, the population of soil bacteria, the relative chlorophyll content of leaves, the development of soybean root nodules, and yield components under strongly acid soil conditions. A greenhouse and pot experiment was designed using a randomize complete block design with factorial 2 × 3 treatments and three replications. The experimental treatments comprised two rates of biochar (35 and 70 g/pot) and three rates of organic fertilizer (70, 105, and 140 g/pot). After 100 days of amendment of strongly acidic soils, the results showed that application of treatments B35F70 and B70F140 increased soil pH by 16.80% compared to the control group (CK). On the other hand, treatments B35F140 and B70F105 resulted in an increase of soil electrical conductivity by 66.67% compared to CK. In addition, after 100 days of amendment with treatments B35F105, B35F105, B35F140, B70F105, B70F70, B70F70, and B35F140, organic matter, available phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn), organic matter, available phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn), significantly increased when compared to the control group (CK). Treatment B35F140 increased relative leaf chlorophyll content and soybean seed weight per plant by 60.76% and 100.56%, respectively when compared to the CK. Furthermore, treatment B35F70 produced 125% more root nodules than CK. Moreover, each amended strongly acid soil resulted with a significant upsurge in total soil bacteria compared to the CK. Overall, statistics proved that a combination of biochar and organic fertilizer improved soil properties and soybean agronomic attributes.
Collapse
Affiliation(s)
- Marianus Evarist Ngui
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yong-Hong Lin
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - I-Lang Wei
- Department of Plant Industry, Soil and Fertilizer Laboratory, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chia-Chung Wang
- Department of Plant Industry, Soil and Fertilizer Laboratory, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ya-Zhen Xu
- Department of Plant Medicine, Molecular Plant Medicine Laboratory, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ying-Hong Lin
- Department of Plant Medicine, Molecular Plant Medicine Laboratory, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
5
|
Cao J, Zhu J, Zhao S. Dietary isoflavone intake is inversely associated with remnant cholesterol in US adults: A cross-sectional study. Heart Lung 2024; 67:5-11. [PMID: 38569436 DOI: 10.1016/j.hrtlng.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Several studies have shown that dietary isoflavones are negatively correlated with total cholesterol and low-density lipoprotein cholesterol. However, few studies have investigated the link between dietary isoflavones and remnant cholesterol (RC). OBJECTIVES We used the National Health and Nutrition Examination Survey (NHANES) database to explore the association between dietary isoflavone intake and RC. METHODS A cross-sectional study was conducted with 4731 participants aged ≥ 20 years from the 2007-2008, 2009-2010, and 2017-2018 NHANES databases. We adopted univariate and multiple linear regression analysis and restricted cubic spline (RCS) to assess the relationship between dietary isoflavone intake and RC. Moreover, we conducted stratified and interaction analyses to ensure the stability of the results and identify specific populations. RESULTS The weighted multifactor linear regression model showed a negative correlation between dietary isoflavone intake and remnant cholesterol (Model 2, β = -0.049, 95% CI: (-0.096, -0.002), P = 0.040). The RCS analysis indicated that there was an L-shaped negative correlation between dietary isoflavone intake and RC (P-value for non-linearity was 0.0464). Stratified analyses showed the inverse relationship between dietary isoflavone intake and RC persisted in most subgroups and there was no interaction except for the recreational activity group. CONCLUSIONS Our study found a non-linear and negative association between dietary isoflavone intake and RC in US adults, so we hypothesized that consuming an isoflavone-rich diet may help reduce blood RC and further reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Jing Cao
- Medical Department, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jinqi Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Sue Zhao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO.161 Shaoshan South Road, Changsha, Hunan, 410004, China.
| |
Collapse
|
6
|
Zhou S, Cheng F, He J, Xu T, Zhang X, Wan S, Qi J, He J, Chen F, Luo J, Luo Y, An P. Effects of high-quality protein supplementation on cardiovascular risk factors in individuals with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2024; 43:1740-1750. [PMID: 38924998 DOI: 10.1016/j.clnu.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Uncertainties still existed about the effect of high-quality protein supplementation on cardiovascular disease (CVD) risk factors, although high-quality proteins such as soy and milk proteins have proposed to be beneficial for cardiometabolic health. METHODS A systematic search in PubMed, Web of Science, Cochrane Library, Scopus, and Embase was conducted to quantify the impact of high-quality protein on CVD risk factors. RESULTS 63 RCTs on 4 types of high-quality protein including soy protein, milk protein, whey, and casein were evaluated. Soy protein supplementation decreased systolic blood pressure (SBP, -1.42 [-2.68, -0.17] mmHg), total cholesterol (TC, -0.18 [-0.30, -0.07] mmol/L), and low-density lipoprotein cholesterol (LDL-C, -0.16 [-0.27, -0.05] mmol/L). Milk protein supplementation decreased SBP (-2.30 [-3.45, -1.15] mmHg) and total cholesterol (-0.27 [-0.51, -0.03] mmol/L). Whey supplementation decreased SBP (-2.20 [-3.89, -0.51] mmHg), diastolic blood pressure (DBP, -1.07 [-1.98, -0.16] mmHg), triglycerides (-0.10 [-0.17, -0.03] mmol/L), TC (-0.18 [-0.35, -0.01] mmol/L), LDL-C (-0.09 [-0.16, -0.01] mmol/L) and fasting blood insulin (FBI, -2.02 [-3.75, -0.29] pmol/L). Casein supplementation decreased SBP (-4.10 [-8.05, -0.14] mmHg). In the pooled analysis of four high-quality proteins, differential effects were seen in individuals with different health status. In hypertensive individuals, high-quality proteins decreased both SBP (-2.69 [-3.50, -1.87] mmHg) and DBP (-1.34 [-2.09, -0.60] mmHg). In overweight/obese individuals, high-quality proteins improved SBP (-1.40 [-2.22, -0.59] mmHg), DBP (-2.59 [-3.20, -1.98] mmHg), triglycerides (-0.09 [-0.15, -0.02] mmol/L), TC (-0.14 [-0.22, -0.05] mmol/L), LDL-C (-0.12 [-0.16, -0.07] mmol/L), and HDL-C levels (0.02 [0.01, 0.04] mmol/L). According to the benefits on CVD risks factors, whey ranked top for improving cardiometabolic health in hypertensive or overweight/obese individuals. CONCLUSION Our study supports a beneficial role of high-quality protein supplementation to reduce CVD risk factors. Further studies are still warranted to investigate the effects of different high-quality proteins on CVD risks in individuals with cardiometabolic disorders.
Collapse
Affiliation(s)
- Shuaishuai Zhou
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fangxiao Cheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Teng Xu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xu Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Sitong Wan
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingjing He
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fangyan Chen
- Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Petrarca MH, Cunha SC, Fernandes JO. Determination of pesticide residues in soybeans using QuEChERS followed by deep eutectic solvent-based DLLME preconcentration prior to gas chromatography-mass spectrometry analysis. J Chromatogr A 2024; 1727:464999. [PMID: 38788403 DOI: 10.1016/j.chroma.2024.464999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
A reliable and greener alternative to the usual extraction methods is reported for the determination of pesticide residues in soybeans. This novel approach combines the classical QuEChERS extraction method with a DLLME (dispersive liquid-liquid microextraction) step, utilizing a deep eutectic solvent (DES) - camphor: hexanoic acid (1:1 molar ratio) - as the microextraction solvent. This DES has never been employed in pesticide analysis by gas chromatography-mass spectrometry of complex matrices like soybeans. A Plackett-Burman screening design was employed to optimize sample preparation variables of QuEChERS (amount of sodium chloride and magnesium sulfate, and amount of PSA and C18 sorbents) and DLLME (pH of medium, amount of sodium chloride, and volume of microextraction solvent). This design allowed for a systematic evaluation of the impact of each parameter on the method's performance. The optimized method was evaluated using a certified reference material and commercial samples of soybeans. The method exhibited high accuracy and precision for most of the analytes under study, demonstrating its applicability for pesticide residue analysis in soybeans. To assess the greenness and practicality of the developed method, the Analytical Greenness (AGREE) and Blue Applicability Grade Index (BAGI) metric systems were employed, respectively. Overall, the proposed QuEChERS-DLLME method using a DES solvent is a reliable and greener alternative to conventional extraction methods for the determination of pesticide residues in soybeans. Its high performance, coupled with its environmental friendliness, makes it a promising tool for food safety analysis.
Collapse
Affiliation(s)
- Mateus Henrique Petrarca
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Sara Cristina Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal.
| | - José Oliveira Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| |
Collapse
|
8
|
Turnbull N, Nghiep LK, Butsorn A, Khotprom A, Tudpor K. Machine learning models identify micronutrient intake as predictors of undiagnosed hypertension among rural community-dwelling older adults in Thailand: a cross-sectional study. Front Nutr 2024; 11:1411363. [PMID: 39081680 PMCID: PMC11286389 DOI: 10.3389/fnut.2024.1411363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Objective To develop a predictive model for undiagnosed hypertension (UHTN) in older adults based on five modifiable factors [eating behaviors, emotion, exercise, stopping smoking, and stopping drinking alcohol (3E2S) using machine learning (ML) algorithms. Methods The supervised ML models [random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB)] with SHapley Additive exPlanations (SHAP) prioritization and conventional statistics (χ2 and binary logistic regression) were employed to predict UHTN from 5,288 health records of older adults from ten primary care hospitals in Thailand. Results The χ2 analyses showed that age and eating behavior were the predicting features of UHTN occurrence. The binary logistic regression revealed that taking food supplements/vitamins, using seasoning powder, and eating bean products were related to normotensive and hypertensive classifications. The RF, XGB, and SVM accuracy were 0.90, 0.89, and 0.57, respectively. The SHAP identified the importance of salt intake and food/vitamin supplements. Vitamin B6, B12, and selenium in the UHTN were lower than in the normotensive group. Conclusion ML indicates that salt intake, soybean consumption, and food/vitamin supplements are primary factors for UHTN classification in older adults.
Collapse
Affiliation(s)
- Niruwan Turnbull
- Faculty of Public Health, Mahasarakham University, Maha Sarakham, Thailand
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham, Thailand
| | - Le Ke Nghiep
- Vinh Long Department of Health, Vinh Long, Vietnam
| | - Aree Butsorn
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Anuwat Khotprom
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham, Thailand
| | - Kukiat Tudpor
- Faculty of Public Health, Mahasarakham University, Maha Sarakham, Thailand
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
9
|
Onaolapo MC, Alabi OD, Akano OP, Olateju BS, Okeleji LO, Adeyemi WJ, Ajayi AF. Lecithin and cardiovascular health: a comprehensive review. Egypt Heart J 2024; 76:92. [PMID: 39001966 PMCID: PMC11246377 DOI: 10.1186/s43044-024-00523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are one of the prime causes of mortality globally. Therefore, concerted efforts are made to prevent or manage disruptions from normal functioning of the cardiovascular system. Disruption in lipid metabolism is a major contributor to cardiovascular dysfunction. This review examines how lecithin impacts lipid metabolism and cardiovascular health. It emphasizes lecithin's ability to reduce excess low-density lipoproteins (LDL) while specifically promoting the synthesis of high-density lipoprotein (HDL) particles, thus contributing to clearer understanding of its role in cardiovascular well-being. Emphasizing the importance of lecithin cholesterol acyltransferase (LCAT) in the reverse cholesterol transport (RCT) process, the article delves into its contribution in removing surplus cholesterol from cells. This review aims to clarify existing literature on lipid metabolism, providing insights for targeted strategies in the prevention and management of atherosclerotic cardiovascular disease (ASCVD). This review summarizes the potential of lecithin in cardiovascular health and the role of LCAT in cholesterol metabolism modulation, based on articles from 2000 to 2023 sourced from databases like MEDLINE, PubMed and the Scientific Electronic Library Online. MAIN BODY While studies suggest a positive correlation between increased LCAT activities, reduced LDL particle size and elevated serum levels of triglyceride-rich lipoprotein (TRL) markers in individuals at risk of ASCVD, the review acknowledges existing controversies. The precise nature of LCAT's potential adverse effects remains uncertain, with varying reports in the literature. Notably, gastrointestinal symptoms such as diarrhea and nausea have been sporadically documented. CONCLUSIONS The review calls for a comprehensive investigation into the complexities of LCAT's impact on cardiovascular health, recognizing the need for a nuanced understanding of its potential drawbacks. Despite indications of potential benefits, conflicting findings warrant further research to clarify LCAT's role in atherosclerosis.
Collapse
Affiliation(s)
- Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Olubunmi Dupe Alabi
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | | | | | | | - Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria.
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria.
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
| |
Collapse
|
10
|
Tocharus C, Sutheerawattananonda M. Hypoglycemic Ability of Sericin-Derived Oligopeptides (SDOs) from Bombyx mori Yellow Silk Cocoons and Their Physiological Effects on Streptozotocin (STZ)-Induced Diabetic Rats. Foods 2024; 13:2184. [PMID: 39063270 PMCID: PMC11276246 DOI: 10.3390/foods13142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with diabetes require daily medication to maintain blood sugar levels. Nevertheless, the long-term use of antidiabetics can lose efficacy and cause degeneration in some patients. For long-term diabetes care, integrating natural dietary foods and medicine is being considered. This study investigated the impact of SDOs on blood sugar levels and their physiological effects on diabetic rats. We induced diabetes in male Wistar rats with STZ (50 mg/kg) and then administered an oral glucose tolerance test to determine the SDO dosage comparable to glibenclamide. The rats were divided into nine groups: normal, diabetic, and diabetic with insulin (10 U/kg), glibenclamide (0.6 mg/kg), bovine serum albumin (BSA; 200 mg/kg), soy protein isolate (200 mg/kg), or SDOs (50, 100, and 200 mg/kg). Diabetic rats administered SDOs had a higher body weight and serum insulin but a lower blood sugar than diabetic control rats. Biochemical assays indicated lower AST/SGOT, ALT/SGPT, BUN, and triglycerides but higher HDL in the SDO groups. Immunohistochemistry showed that SDOs reduced damaged islet cells, increased beta-cell size, and improved insulin levels while decreasing alpha cell size and glucagon. The vascular effects of SDOs were like those of normal control treatment and insulin treatment in diabetic rats. SDOs, a yellow silk protein, show potential for long-term diabetes care.
Collapse
Affiliation(s)
- Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Manote Sutheerawattananonda
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
11
|
Yang SH, Yang H, Ahn BM, Lee SY, Lee SJ, Kim JS, Koo YT, Lee CH, Kim JH, Yoon Park JH, Jang YJ, Lee KW. Fermented Yak-Kong using Bifidobacterium animalis derived from Korean infant intestine effectively relieves muscle atrophy in an aging mouse model. Food Funct 2024; 15:7224-7237. [PMID: 38812412 DOI: 10.1039/d3fo04204a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Yak-Kong (YK) is a small black soybean widely cultivated in Korea. It is considered to have excellent health functionality, as it has been reported to have better antioxidant efficacy than conventional black or yellow soybeans. Since YK has been described as good for the muscle health of the elderly in old oriental medicine books, this study sought to investigate the effect of fermented YK with Bifidobacterium animalis subsp. lactis LDTM 8102 (FYK) on muscle atrophy. In C2C12 mouse myoblasts, FYK elevated the expression of MyoD, total MHC, phosphorylated AKT, and PGC1α. In addition, two kinds of in vivo studies were conducted using both an induced and normal aging mouse model. The behavioral test results showed that in the induced aging mouse model, FYK intake alleviated age-related muscle weakness and loss of exercise performance. In addition, FYK alleviated muscle mass decrease and improved the expression of biomarkers including total MHC, myf6, phosphorylated AKT, PGC1α, and Tfam, which are related to myoblast differentiation, muscle protein synthesis, and mitochondrial generation in the muscle. In the normal aging model, FYK consumption did not increase muscle mass, but did upregulate the expression levels of biomarkers related to myoblast differentiation, muscle hypertrophy, and muscle function. Furthermore, it mitigated age-related declines in skeletal muscle force production and functional limitation by enhancing exercise performance and grip strength. Taken together, the results suggest that FYK has the potential to be a new functional food material that can alleviate the loss of muscle mass and strength caused by aging and prevent sarcopenia.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Byeong Min Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Young Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seon Joo Lee
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Jin Soo Kim
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Young Tae Koo
- Kwangdong Pharmaceutical, Seoul, 06650, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science & Biotechnology, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Jin Jang
- Major of Food Science & Biotechnology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Department of Agricultural Biotechnology and Center for Food and Bio convergence, Seoul National. University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Ren HB, Feng BL, Liu HY, Wang YT, Zhang HT, Li ZL, Meng L, Zhang JJ, Bai XS, Gao F, Wang ZP, Luo BW, Chen XL, Song HJ, Yan XX, Zhao JY, Zhang YH. A novel approach has been developed to produce pure plant-based gel soy yogurt by combining soy proteins (7S/11S), high pressure homogenization, and glycation reaction. Food Chem X 2024; 22:101259. [PMID: 38444556 PMCID: PMC10914550 DOI: 10.1016/j.fochx.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
This research sought to examine how the physicochemical characteristics of soy globulins and different processing techniques influence the gel properties of soy yogurt. The goal was to improve these gel properties and rectify any texture issues in soy yogurt, ultimately aiming to produce premium-quality plant-based soy yogurt. In this research study, the investigation focused on examining the impact of 7S/11S, homogenization pressure, and glycation modified with glucose on the gel properties of soy yogurt. A plant-based soy yogurt with superior gel and texture properties was successfully developed using a 7S/11S globulin-glucose conjugate at a 1:3 ratio and a homogenization pressure of 110 MPa. Compared to soy yogurt supplemented with pectin or gelatin, this yogurt demonstrated enhanced characteristics. These findings provide valuable insights into advancing plant protein gels and serve as a reference for cultivating new soybean varieties by soybean breeding experts.
Collapse
Affiliation(s)
- Hai-Bin Ren
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Bao-Long Feng
- Center for Education Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Yao Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Tang Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Hong-Tai Zhang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhi-Lu Li
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150030, China
| | - Jing-Jian Zhang
- CangZhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Xiao-Sen Bai
- CangZhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Fei Gao
- Center for Education Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Peng Wang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Wen Luo
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Lin Chen
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hong-Jie Song
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Xu Yan
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Yong Zhao
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ying-Hua Zhang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
14
|
Liu G, Zhou J, Wu S, Fang S, Bilal M, Xie C, Wang P, Yin Y, Yang R. Novel strategy to raise the content of aglycone isoflavones in soymilk and gel: Effect of germination on the physicochemical properties. Food Res Int 2024; 186:114335. [PMID: 38729717 DOI: 10.1016/j.foodres.2024.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Germination holds the key to nutritional equilibrium in plant grains. In this study, the effect of soybean germination on the processing of soymilk (SM) and glucono-δ-lactone (GDL) induced soymilk gel (SG) was investigated. Germination promoted soybean sprout (SS) growth by activating the energy metabolism system. The energy metabolism was high during the three-day germination and was the most vigorous on the second day of germination. After germination, protein dissolution was improved in SM, and endogenous enzymes produced small molecule proteins. Small molecule proteins were more likely to aggregate to produce SM protein particles. Germination increased the water-holding capacity of SG induced by GDL but weakened the strength. Furthermore, the dynamic fluctuations in isoflavone content were closely monitored throughout the processing of soybean products, including SS, SM, and SG. Although the total amount of isoflavones in SM and SG processed from germinated soybeans decreased, a significant enrichment in the content of aglycone isoflavones was observed. The content of aglycone isoflavones in SG processed from germinated soybeans on the second day of germination was 736.17 ± 28.49 µg/g DW, which was 83.19 % higher than that of the control group. This study demonstrates that germination can enhance the nutritional value of soybean products, providing innovative opportunities for the development of health-promoting soybean-based products.
Collapse
Affiliation(s)
- Guannan Liu
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Zhou
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sijin Wu
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shijie Fang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Muhammad Bilal
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Xie
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China
| | - Pei Wang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Runqiang Yang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China.
| |
Collapse
|
15
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
16
|
Sawicki T, Jabłońska M, Danielewicz A, Przybyłowicz KE. Phenolic Compounds Profile and Antioxidant Capacity of Plant-Based Protein Supplements. Molecules 2024; 29:2101. [PMID: 38731592 PMCID: PMC11085232 DOI: 10.3390/molecules29092101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The study aimed to determine the phenolic content and antioxidant capacity of five protein supplements of plant origin. The content and profile of phenolics were determined using the UHPLC-DAD-MS method, while antioxidant capacity (ABTS and DPPH assays) and total phenolic content (TPC) were evaluated using spectrophotometric tests. In the analyzed proteins, twenty-five polyphenols were detected, including eleven phenolic acids, thirteen flavonoids, and one ellagitannin. Hemp protein revealed the highest individual phenolics content and TPC value (1620 μg/g and 1.79 mg GAE/g, respectively). Also, hemp protein showed the highest antioxidant activity determined via ABTS (9.37 μmol TE/g) and DPPH (9.01 μmol TE/g) assays. The contents of p-coumaric acid, m-coumaric acid, kaempferol, rutin, isorhamnetin-3-O-rutinoside, kaempferol-3-O-rutinoside, and TPC value were significantly correlated with antioxidant activity assays. Our findings indicate that plant-based protein supplements are a valuable source of phenols and can also be used in research related to precision medicine, nutrigenetics, and nutrigenomics. This will benefit future health promotion and personalized nutrition in the prevention of chronic diseases.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| | - Monika Jabłońska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
- College of Medical Sciences in Olsztyn, Nicolaus Copernicus Superior School, Nowogrodzka 47A, 00-695 Warsaw, Poland
| | - Anna Danielewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| |
Collapse
|
17
|
M Zapawi MM, You YX, Shahar S, Shahril MR, Malek Rivan NF, Nik Mohd Fakhruddin NNI, Yap AXW. Development of Malaysian-MIND diet scores for prediction of mild cognitive impairment among older adults in Malaysia. BMC Geriatr 2024; 24:387. [PMID: 38693524 PMCID: PMC11064310 DOI: 10.1186/s12877-024-04966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Mild Cognitive impairment (MCI) is a pre-demented state in the elderly populace. The Mediterranean & Dietary Approaches to Stop Hypertension (DASH) Intervention for Neurodegenerative Delay (MIND) diet has shown promise in reducing the risk of MCI and Alzheimer's disease in older people. Notably, the existing MIND diet is not adapted to the specific needs of older adults in Malaysia, considering distinct food cultures and availability. Consequently, this study aimed to develop the Malaysian version of the MIND diet (MY-MINDD) scores and investigate their association with MCI in the older adult populace of Malaysia. METHODS A comprehensive pooled data analysis was conducted on combined data from 810 participants sourced from the longitudinal Long-Term Research Grant Scheme-Towards Useful Aging (LRGS-TUA) and Fundamental Research Grant Scheme (FRGS) studies. The MY-MINDD scores were developed by incorporating existing MIND diet food groups, their corresponding scoring mechanisms, and consideration of common Malaysian foods which are proven to be beneficial and detrimental to cognitive function. To substantiate the MY-MINDD scoring system, its association with MCI was evaluated using a series of validated neuropsychological test batteries. RESULTS MY-MINDD consists of seven food groups promote brain health and four food groups exert negative cognitive outcomes. The study participants had an average age of 67.9 ± 4.7 years. The collective MY-MINDD score for all participants was 6.4 ± 0.1 (out of a maximum 11 points), revealing a lower score in individuals with MCI at 6.0 ± 1.7 compared to those without MCI at 6.6 ± 1.6 (p < 0.001). According to hierarchical multivariate binary logistic regression analysis, being in the highest tertile of MY-MINDD score was linked to reduced odds of MCI (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.26-0.72, p < 0.001) in the fully adjusted model in comparison to the lowest tertile. CONCLUSION The development of the MY-MINDD scores for Malaysian older population revealed that a stronger adherence to this diet is linked to a reduced risk of MCI. Further substantiation of the MY-MINDD scores using more objective measures, such as neuroimaging approaches and other neuropsychological batteries, is necessary.
Collapse
Affiliation(s)
- Muhamad Mustaqim M Zapawi
- Dietetic Programme, Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Yee Xing You
- Dietetic Programme, Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.
| | - Suzana Shahar
- Dietetic Programme, Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Mohd Razif Shahril
- Nutrition Programme, Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Nurul Fatin Malek Rivan
- Nutrition Programme, Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Nik Nur Izzati Nik Mohd Fakhruddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Anastasia Xin Wei Yap
- Nutrition Programme, Centre for Healthy Ageing and Wellness (HCARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
18
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
19
|
Lee HB, Khan R, Vally M, Orchard A. A scoping review on natural cholesterol lowering supplements sold in South African pharmacies. Health SA 2024; 29:2299. [PMID: 38445038 PMCID: PMC10913186 DOI: 10.4102/hsag.v29i0.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/30/2023] [Indexed: 03/07/2024] Open
Abstract
Background Dyslipidaemia is defined as elevated total or low-density lipoprotein (LDL) levels or low levels of high-density lipoprotein (HDL). Patients may often make use of natural cholesterol lowering supplements (NCLSs) available at the pharmacy; however, limited information on these supplements is readily available. Pharmacists should be knowledgeable about NCLSs to ensure that the use of these supplements is supported by evidence and to provide appropriate advice to patients for desirable therapeutic outcomes. Aim This study aimed to identify the NCLSs being sold in South African pharmacies and review the scientific evidence for each of the ingredients in these NCLSs. Methods Seventeen NCLS products were identified, and the Joanna Briggs Institute (JBI) scoping review methodology was used to conduct a literature review of NCLSs. Results From the ingredients reviewed it is evident that co-enzyme Q10, probiotics and sterols have sufficient evidence supporting their use. However, there is still limited scientific evidence available to validate the remaining ingredients. Conclusion Further research on NCLSs will provide practising pharmacists and practitioners with a guide of the evidence available on the various ingredients in NCLSs. Contribution This study provides a review of the available literature on the NCLSs being sold in the pharmacies across South Africa to provide pharmacists with a collated document of the evidence behind these popular supplements to assist them in making evidence based informed decision regarding natural products for cholesterol.
Collapse
Affiliation(s)
- Hyeon Bok Lee
- Department of Pharmacy and Pharmacology, Division of Clinical Pharmacy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Razeeya Khan
- Department of Pharmacy and Pharmacology, Division of Clinical Pharmacy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Vally
- Department of Pharmacy and Pharmacology, Division of Clinical Pharmacy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ané Orchard
- Department of Pharmacy and Pharmacology, Division of Clinical Pharmacy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Feng X, Zhu Y, Hua Y. New insights into the off-flavor improvement of soymilk by three grinding processing: Dry-blanching grinding, wet-blanching grinding, and wet-anaerobic grinding. Food Chem X 2023; 20:100892. [PMID: 38144723 PMCID: PMC10740077 DOI: 10.1016/j.fochx.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 12/26/2023] Open
Abstract
Advances in grinding strategies have been beneficial to eliminating the off-flavor of soymilk and improving the quality soy products. Herein, four grinding processing, dry-blanching grinding (D-BG), wet-blanching grinding (W-BG), wet-anaerobic grinding (W-AG) and traditional grinding (TG) were employed and found to impose a significant impact on off-flavor components, accompanied by changes of hydroperoxides and free radicals. The results showed that all three methods could significantly hinder the formation of C6 aldehydes. C8 Alcohols and (E)-2-heptenal could be removed by D-BG, but lipids in dehulled soybean were prefer to be oxidized during storage, resulting in the accumulation of hydroperoxides and radicals. W-BG and W-AG have higher levels of 1-octen-3-ol, and soaking at an alkaline pH and increasing the number of rinses is beneficial for its removal. Gas chromatography-olfaction-mass spectrometry (GC-O-MS) combined with sensory evaluation showed that off-flavor profile of d-BGS, W-BGS and W-AGS was different. D-BG and W-AG possessed better flavor quality.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
21
|
Deng C, Pan J, Zhu H, Chen ZY. Effect of Gut Microbiota on Blood Cholesterol: A Review on Mechanisms. Foods 2023; 12:4308. [PMID: 38231771 DOI: 10.3390/foods12234308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The gut microbiota serves as a pivotal mediator between diet and human health. Emerging evidence has shown that the gut microbiota may play an important role in cholesterol metabolism. In this review, we delve into five possible mechanisms by which the gut microbiota may influence cholesterol metabolism: (1) the gut microbiota changes the ratio of free bile acids to conjugated bile acids, with the former being eliminated into feces and the latter being reabsorbed back into the liver; (2) the gut microbiota can ferment dietary fiber to produce short-chain fatty acids (SCFAs) which are absorbed and reach the liver where SCFAs inhibit cholesterol synthesis; (3) the gut microbiota can regulate the expression of some genes related to cholesterol metabolism through their metabolites; (4) the gut microbiota can convert cholesterol to coprostanol, with the latter having a very low absorption rate; and (5) the gut microbiota could reduce blood cholesterol by inhibiting the production of lipopolysaccharides (LPS), which increases cholesterol synthesis and raises blood cholesterol. In addition, this review will explore the natural constituents in foods with potential roles in cholesterol regulation, mainly through their interactions with the gut microbiota. These include polysaccharides, polyphenolic entities, polyunsaturated fatty acids, phytosterols, and dicaffeoylquinic acid. These findings will provide a scientific foundation for targeting hypercholesterolemia and cardiovascular diseases through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Jingjin Pan
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Hanyue Zhu
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
22
|
Han JS, Joung JY, Kim HW, Kim JH, Choi HS, Bae HJ, Jang JH, Oh NS. Enhanced Cholesterol-Lowering and Antioxidant Activities of Soymilk by Fermentation with Lactiplantibacillus plantarum KML06. J Microbiol Biotechnol 2023; 33:1475-1483. [PMID: 37482800 DOI: 10.4014/jmb.2306.06036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
This study aimed to evaluate the cholesterol-lowering and antioxidant activities of soymilk fermented with probiotic Lactobacillaceae strains and to investigate the production of related bioactive compounds. Lactiplantibacillus plantarum KML06 (KML06) was selected for the fermentation of soymilk because it has the highest antioxidant, cholesterol-lowering, and β-glucosidase activities among the 10 Lactobacillaceae strains isolated from kimchi. The genomic information of strain KML06 was analyzed. Moreover, soymilk fermented with KML06 was evaluated for growth kinetics, metabolism, and functional characteristics during the fermentation period. The number of viable cells, which was similar to the results of radical scavenging activities and cholesterol assimilation, as well as the amount of soy isoflavone aglycones, daidzein, and genistein, was the highest at 12 h of fermentation. These results indicate that soymilk fermented with KML06 can prevent oxidative stress and cholesterol-related problems through the production of soy isoflavone aglycones.
Collapse
Affiliation(s)
- Ji Seung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yeon Joung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hwan Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Hyo Su Choi
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Jin Bae
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Ji Hun Jang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
23
|
Huang X, Li C, Xi J. Dynamic high pressure microfluidization-assisted extraction of plant active ingredients: a novel approach. Crit Rev Food Sci Nutr 2023; 63:12413-12421. [PMID: 35852173 DOI: 10.1080/10408398.2022.2101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The extraction method has a great influence on the yield, quality, chemical structure, and biological activities of active ingredients. Safe and efficient extraction of active ingredients is one of the important problems facing the food and pharmaceutical industry. As a pretreatment approach for the extraction of active ingredients, dynamic high pressure microfluidization (DHPM) is a promising strategy that can not only effectively increase the yield of active ingredients but also strengthen the bioactivities of active ingredients, and take the advantages of mild operating temperature and environmental friendliness. In this review, the research progress of DHPM-assisted extraction of active ingredients from plant materials in recent ten years is overviewed. The DHPM equipment, strengthening mechanism, operating procedure, critical factors and application of DHPM-assisted extraction are introduced in detail, together with the advantages and disadvantages. Furthermore, its future development trend is discussed at the end. DHPM-assisted extraction is considered as the ideal technique of better homogenization effects, less solvent consumption, more reliable operation, and so on, making it a promising method to acquire active ingredients efficiently. Therefore, this technique is worthy of further theoretical research and experimental operation.
Collapse
Affiliation(s)
- Xinyi Huang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Chenyue Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Hermanto FE, Warsito W, Rifa'i M, Widodo N. Understanding hypocholesterolemic activity of soy isoflavones: Completing the puzzle through computational simulations. J Biomol Struct Dyn 2023; 41:9931-9937. [PMID: 36443895 DOI: 10.1080/07391102.2022.2148752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022]
Abstract
The hypocholesterolemic activity of soy isoflavones has been studied, but the exact mechanism underlying the activity remains unclear. This study reveals the proposed mechanism of the cholesterol-lowering effect of soy isoflavones by computational simulations. Daidzin, Glycitin, Genistin, Daidzein, Glycitein, Genistein, Glyceollin I, Glyceollin II, and Glyceollin III were selected to be analyzed their interaction with 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A Reductase (HMGCR) and Sterol Regulatory Element-Binding Protein 2 (SREBP2) as key factors in cholesterol biosynthesis as well as Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) as a common target for hypercholesterolemia. Protein-isoflavones interaction was analyzed using AutoDock. According to binding energy calculations, a total of five out of those nine isoflavones, including Glycitin, Genistin, Genistein, Glyceollin II, and Glyceollin III, were favored to be a HMGCR inhibitor but not with SREBP2 and PCSK9. Those isoflavones were then compared with Simvastatin as known inhibitor of HMGCR. Isoflavone with binding energy lower than Simvastatin then directed to molecular dynamics using YASARA and headed into toxicity estimations. Almost all of those isoflavones could bind with HMGCR with better stability than Simvastatin according to molecular dynamics simulations. Toxicity prediction filtered two out of the five isoflavones mentioned earlier as the proper candidate to be an HMGCR inhibitor. Those isoflavones were Genistin and Genistein. In summary, the hypocholesterolemic activity of soy isoflavones may occur by blocking the cholesterol biosynthesis pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Feri Eko Hermanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Warsito Warsito
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
- Essential Oil Institute, Universitas Brawijaya, Malang, Indonesia
| | - Muhaimin Rifa'i
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
- Biosystem Study Center, Universitas Brawijaya, Malang, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
- Biosystem Study Center, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
25
|
Martínez-García M, Sauceda-Gálvez JN, Codina-Torrella I, Hernández-Herrero MM, Gervilla R, Roig-Sagués AX. Drastic Microbial Count Reduction in Soy Milk Using Continuous Short-Wave Ultraviolet Treatments in a Tubular Annular Thin Film UV-C Reactor. Foods 2023; 12:3813. [PMID: 37893706 PMCID: PMC10606246 DOI: 10.3390/foods12203813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Vegetative cells of Listeria monocytogenes and Escherichia coli and spores of Bacillus subtilis and Aspergillus niger were inoculated in soy milk at an initial concentration of ≈5 log CFU/mL. Inoculated and control (non-inoculated) soy milk samples were submitted to three types of treatments using a tubular annular thin film short-wave ultraviolet (UV-C) reactor with 1 mm of layer thickness. Treatments applied depended on the flow rate and the number of entries to the reactor, with UV-C doses ranging from 20 to 160 J/mL. The number of entries into the reactor tube (NET) was established as the most determining parameter for the efficiency of the UV-C treatments. Conidiospores of A. niger were reported as the most resistant, followed by B. subtilis spores, while vegetative cells were the most sensible to UV-C, with Listeria monocytogenes being more sensible than Escherichia coli. Treatments of just 80 J/mL were needed to achieve a 5 log CFU/mL reduction of L. monocytogenes while 160 J/mL was necessary to achieve a similar reduction for A. niger spores.
Collapse
Affiliation(s)
- María Martínez-García
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO CERTA-UAB, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Travessera dels Turons S/N, 08193 Barcelona, Spain; (M.M.-G.); (J.N.S.-G.); (M.M.H.-H.)
| | - Jezer N. Sauceda-Gálvez
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO CERTA-UAB, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Travessera dels Turons S/N, 08193 Barcelona, Spain; (M.M.-G.); (J.N.S.-G.); (M.M.H.-H.)
| | - Idoia Codina-Torrella
- Departament d’Enginyeria Agroalimentària i Biotecnologia, Edifici D4C, Esteve Terradas, 8, 08860 Castelldefels, Spain;
| | - María Manuela Hernández-Herrero
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO CERTA-UAB, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Travessera dels Turons S/N, 08193 Barcelona, Spain; (M.M.-G.); (J.N.S.-G.); (M.M.H.-H.)
| | - Ramón Gervilla
- SPTA-Servei Planta Tecnologia Aliments, Universitat Autònoma de Barcelona, c/de l’Hospital S/N, 08193 Barcelona, Spain;
| | - Artur X. Roig-Sagués
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO CERTA-UAB, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Travessera dels Turons S/N, 08193 Barcelona, Spain; (M.M.-G.); (J.N.S.-G.); (M.M.H.-H.)
| |
Collapse
|
26
|
Urashima Y, Ueno T, Takeda C, Kusaba H, Tanaka R, Noda K, Kawakami K, Murakami T, Kawaguchi A, Suemitsu Y, Urashima K, Suzuki K, Kurachi K, Nishihara M, Neo M, Myotoku M, Kobori T, Obata T. Study on enteral nutrient components causing decreased gastric phenytoin absorption. JPEN J Parenter Enteral Nutr 2023; 47:911-919. [PMID: 37376765 DOI: 10.1002/jpen.2542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Previously, we revealed that coadministration of particular enteral nutrients (ENs) decreases plasma concentrations and gastric absorption of phenytoin (PHT), an antiepileptic drug, in rats; however, the mechanism has not been clarified. METHODS We measured the permeability rate of PHT using a Caco-2 cell monolayer as a human intestinal absorption model with casein, soy protein, simulated gastrointestinal digested casein protein (G-casein or P-casein) or simulated gastrointestinal digested soy protein (G-soy or P-soy), dextrin, sucrose, degraded guar gum, indigestible dextrin, calcium, and magnesium, which are abundant in the ENs, and measured the solution's properties. RESULTS We demonstrated that casein (40 mg/ml), G-soy or P-soy (10 mg/ml), and dextrin (100 mg/ml) significantly decreased the permeability rate of PHT compared with the control. By contrast, G-casein or P-casein significantly increased the permeability rate of PHT. We also found that the PHT binding rate to casein 40 mg/ml was 90%. Furthermore, casein 40 mg/ml and dextrin 100 mg/ml have high viscosity. Moreover, G-casein and P-casein significantly decreased the transepithelial electrical resistance of Caco-2 cell monolayers compared with casein and the control. CONCLUSION Casein, digested soy protein, and dextrin decreased the gastric absorption of PHT. However, digested casein decreased PHT absorption by reducing the strength of tight junctions. The composition of ENs may affect the absorption of PHT differently, and these findings would aid in the selection of ENs for orally administered PHT.
Collapse
Affiliation(s)
- Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tatsuya Ueno
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Chiyuki Takeda
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Hiroshi Kusaba
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Rina Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Karin Noda
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kanako Kawakami
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takuo Murakami
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Aoi Kawaguchi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Yuka Suemitsu
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kazuya Urashima
- Department of Pharmacy, Japan Community Health Care Organization Hoshigaoka Medical Center, Osaka, Japan
| | - Kaoru Suzuki
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Kazumi Kurachi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Masami Nishihara
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Masashi Neo
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Michiaki Myotoku
- Laboratory of Practical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| |
Collapse
|
27
|
Olías R, Delgado-Andrade C, Padial M, Marín-Manzano MC, Clemente A. An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods 2023; 12:2665. [PMID: 37509757 PMCID: PMC10379384 DOI: 10.3390/foods12142665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The global market for plant-based drinks is experiencing rapid growth driven by consumer demand for more sustainable diets, including vegetarian and vegan options. Soy beverages in particular are gaining popularity among individuals with lactose intolerance and milk protein allergies. They are considered an excellent source of high-quality protein, vitamin B, unsaturated fatty acids, and beneficial phytochemicals such as phytosterols, soy lecithins, and isoflavones. This review presents a comprehensive market survey of fifty-two soy beverages available in Spain and other European countries. The predominant category among those evaluated was calcium and vitamin-fortified drinks, accounting for 60% of the market. This reflects the need to address the nutritional gap compared to cow's milk and meet essential dietary requirements. The review covers the technological aspects of industrial soy milk production, including both traditional methods and innovative processing techniques. Additionally, it analyzes multiple studies and meta-analyses, presenting compelling evidence for the positive effects of soy beverages on various aspects of health. The review specifically examines the contributions of different components found in soy beverages, such as isoflavones, proteins, fiber, and oligosaccharides. Moreover, it explores controversial aspects of soy consumption, including its potential implications for growth, puberty, fertility, feminization, and the thyroid gland.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Clemente
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, San Miguel 101, Armilla, E-18100 Granada, Spain
| |
Collapse
|
28
|
Lee SH, Kim HR, Noh EM, Park JY, Kwak MS, Jung YJ, Yang HJ, Ryu MS, Seo HY, Jang H, Kim SY, Park MH. Anti-Inflammatory Effect and Signaling Mechanism of Glycine max Hydrolyzed with Enzymes from Bacillus velezensis KMU01 in a Dextran-Sulfate-Sodium-Induced Colitis Mouse Model. Nutrients 2023; 15:3029. [PMID: 37447355 DOI: 10.3390/nu15133029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to investigate the effect that Glycine max hydrolyzed with enzymes from Bacillus velezensis KMU01 has on dextran-sulfate-sodium (DSS)-induced colitis in mice. Hydrolysis improves functional health through the bioconversion of raw materials and increase in intestinal absorption rate and antioxidants. Therefore, G. max was hydrolyzed in this study using a food-derived microorganism, and its anti-inflammatory effect was observed. Enzymatically hydrolyzed G. max (EHG) was orally administered once daily for four weeks before DSS treatment. Colitis was induced in mice through the consumption of 5% (w/v) DSS in drinking water for eight days. The results showed that EHG treatment significantly alleviated DSS-induced body weight loss and decreased the disease activity index and colon length. In addition, EHG markedly reduced tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 production, and increased that of IL-10. EHG improved DSS-induced histological changes and intestinal epithelial barrier integrity in mice. Moreover, we found that the abundance of 15 microorganisms changed significantly; that of Proteobacteria and Escherichia coli, which are upregulated in patients with Crohn's disease and ulcerative colitis, decreased after EHG treatment. These results suggest that EHG has a protective effect against DSS-induced colitis and is a potential candidate for colitis treatment.
Collapse
Affiliation(s)
- Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Eun-Mi Noh
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Mi-Sun Kwak
- Kookmin Bio Co., Ltd., 303, Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea
| | - Ye-Jin Jung
- Kookmin Bio Co., Ltd., 303, Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Minsokmaeul-gil 61-27, Sunchang 56048, Jeollabuk-do, Republic of Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry, Minsokmaeul-gil 61-27, Sunchang 56048, Jeollabuk-do, Republic of Korea
| | - Hyang-Yim Seo
- Jeonbuk Institute for Food-Bioindustry, Wonjangdong-gil 111-18, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Hansu Jang
- Jeonbuk Institute for Food-Bioindustry, Wonjangdong-gil 111-18, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| |
Collapse
|
29
|
Li M, Gao L, White JC, Haynes CL, O'Keefe TL, Rui Y, Ullah S, Guo Z, Lynch I, Zhang P. Nano-enabled strategies to enhance biological nitrogen fixation. NATURE NANOTECHNOLOGY 2023; 18:688-691. [PMID: 37165029 DOI: 10.1038/s41565-023-01392-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Mingshu Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Tana L O'Keefe
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Yukui Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences, Edgbaston, Birmingham, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, Edgbaston, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, Edgbaston, Birmingham, UK
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
- School of Geography, Earth and Environmental Sciences, Edgbaston, Birmingham, UK.
| |
Collapse
|
30
|
Yin L, Dong X, Liao W, Liu X, Zheng Z, Liu D, Wang C, Liu Z. Relationships of beans intake with chronic kidney disease in rural adults: A large-scale cross-sectional study. Front Nutr 2023; 10:1117517. [PMID: 37081921 PMCID: PMC10111024 DOI: 10.3389/fnut.2023.1117517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Background and aimsDietary factors play an important role in the development of chronic kidney disease (CKD). However, evidence on the relationship of beans consumption with CKD remains limited and inconclusive, especially in the middle-and low-income populations. The current study aimed to investigate the relationships of beans intake with indicators of kidney injury and CKD prevalence in rural adults.MethodsA total of 20,733 rural adults from the Henan Rural Cohort Study in 2018–2022 were included. The total beans intake was collected using a validated food frequency questionnaire. Indicators of kidney injury and CKD was determined by the estimated glomerular filtration rate and the urinary albumin to creatinine ratio. Generalized linear regression and logistic regression models were applied to estimate the relationship of beans intake with continuous and dichotomized indicators of renal function, respectively.ResultsOf the 20,733 participants, 2,676 (12.91%) subjects were identified as CKD patients. After adjusting for potential confounders, participants in the higher quartiles of beans intake had a lower prevalence of CKD (odds ratio and 95% confidence interval, OR (95%CI); Q2: 0.968(0.866–1.082); Q3: 0.836(0.744–0.939); Q4: 0.854(0.751–0.970)) and albuminuria (Q2: 0.982(0.875–1.102); Q3: 0.846(0.750–0.954); Q4: 0.852 (0.746–0.973)), compared with the Q1. Per 50 g/day increment in beans intake was significantly associated with a 5 and 4% decreased prevalence of albuminuria and CKD, respectively. These inverse relationships were also significant in the subgroups of men, elder, and high-income participants (p < 0.05).ConclusionDietary beans intake was inversely associated with the prevalence of albuminuria and CKD in rural adults, suggesting that promoting soy food intake might help reduce the occurrence of CKD in rural adults.
Collapse
Affiliation(s)
- Lei Yin
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaohui Zheng
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Chongjian Wang,
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhangsuo Liu,
| |
Collapse
|
31
|
Associations between Dietary Patterns and Physical Activity with Physical Fitness among Adolescents in Shandong Province, China: A Cross-Sectional Study. Nutrients 2023; 15:nu15061425. [PMID: 36986154 PMCID: PMC10051977 DOI: 10.3390/nu15061425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Background: The trend of physical fitness (PF) and physical activity (PA) among Chinese adolescents is not optimistic, and unhealthy dietary behaviors are common. PA and dietary patterns (DPs) have been linked to PF in adolescents, but the associations between DPs and PF with PF in Chinese adolescents are rarely discussed. Methods: A total of 8796 adolescents aged 11–18 were enrolled from Shandong Province, China. The CNSPFS battery was applied to assess PF. PA levels and diet quality were determined using the Physical Activity Questionnaire for Adolescents and the modified Chinese Diet Quality Questionnaire, respectively. This study used factor analysis to identify DPs and linear regression models to investigate the association between PF and related factors. Results: The average PF score of the participants was 75.67. Adolescents who were girls, lived in rural areas and were active in PA performed better on the PF test (p < 0.05). Boys whose fathers were university educated or above had a higher probability of achieving higher PF scores (OR 4.36, 95% CI 1.32–14.36); however, if their mothers were university educated or above, they had a lower probability of achieving higher PF scores (OR 0.22, 95% CI 0.063–0.76). Unhealthy dietary pattern was negatively correlated with cardiorespiratory fitness in boys (OR 0.56, 95% CI 0.31–0.98). The association between unhealthy dietary pattern and girls’ BMI became significant after adjustment for PA (p < 0.05). Conclusions: Girls performed better in PF than boys. Highly educated fathers could contribute to improve the PF performance in boys. There were four DPs among adolescents in Shandong Province, and different DPs may have different effects on PF in boys and girls.
Collapse
|
32
|
Mantzouranis E, Kakargia E, Kakargias F, Lazaros G, Tsioufis K. The Impact of High Protein Diets on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Nutrients 2023; 15:1372. [PMID: 36986102 PMCID: PMC10058321 DOI: 10.3390/nu15061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
High protein diets have gained increased popularity as a means of losing weight, increasing muscle mass and strength, and improving cardiometabolic parameters. Only a few meta-analyses have addressed their impact on cardiovascular morbidity and mortality and failed to show any significant associations without applying strict values to define high protein intake. Due to the conflicting research background, we conducted a meta-analysis to assess the impact of high protein diets compared to normal protein consumption on cardiovascular outcomes in adults without established cardiovascular disease. Fourteen prospective cohort studies were included. A total of 6 studies, including 221,583 participants, reported data about cardiovascular death, without showing a statistically significant difference in the random effect model (odds ratio: 0.94; confidence interval: 0.60-1.46; I2 = 98%; p = 0.77). Analysis of three studies, which included 90,231 participants showed that a high protein diet was not associated with a lower risk of stroke (odds ratio: 1.02; confidence interval: 0.94-1.10; I2 = 0%; p = 0.66). Regarding the secondary outcome of non-fatal myocardial infarction, stroke, or cardiovascular death, 13 studies that included 525,047 participants showed no statistically significant difference (odds ratio; 0.87; confidence interval: 0.70-1.07; I2 = 97%; p = 0.19). In conclusion, according to our study results, high protein consumption does not affect cardiovascular prognosis.
Collapse
Affiliation(s)
- Emmanouil Mantzouranis
- 1st Cardiology Clinic, Hippokration Hospital, University of Athens, 115 27 Athens, Greece
| | - Eleftheria Kakargia
- Internal Medicine Clinic, 401 General Military Hospital, 115 25 Athens, Greece
| | - Fotis Kakargias
- Internal Medicine Clinic, 401 General Military Hospital, 115 25 Athens, Greece
| | - George Lazaros
- 1st Cardiology Clinic, Hippokration Hospital, University of Athens, 115 27 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Clinic, Hippokration Hospital, University of Athens, 115 27 Athens, Greece
| |
Collapse
|
33
|
Soy Consumption and the Risk of Type 2 Diabetes and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15061358. [PMID: 36986086 PMCID: PMC10058927 DOI: 10.3390/nu15061358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Soy is rich in plant protein, isoflavones, and polyunsaturated fatty acids. To clarify the associations between soy intake and type 2 diabetes (T2D) and cardiovascular diseases (CVDs) events, we performed a meta-analysis and review. A total of 1963 studies met the inclusion criteria, and 29 articles with 16,521 T2D and 54,213 CVDs events were identified by the eligibility criteria. During a follow-up of 2.5–24 years, the risk of T2D, CVDs, coronary heart disease, and stroke in participants with the highest soy consumption decreased by 17% (total relative risk (TRR) = 0.83, 95% CI: 0.74–0.93), 13% (TRR = 0.87, 95% CI: 0.81–0.94), 21% (TRR = 0.79, 95% CI: 0.71–0.88), and 12% (TRR = 0.88, 95% CI: 0.79–0.99), respectively, compared to the lowest sot consumption. A daily intake of 26.7 g of tofu reduced CVDs risk by 18% (TRR = 0.82, 95% CI: 0.74–0.92) and 11.1 g of natto lowered the risk of CVDs by 17% (TRR = 0.83, 95% CI: 0.78–0.89), especially stroke. This meta-analysis demonstrated that soy consumption was negatively associated with the risks of T2D and CVDs and a specific quantity of soy products was the most beneficial for the prevention of T2D and CVDs. This study has been registered on PROSPERO (registration number: CRD42022360504).
Collapse
|
34
|
Li H, Wang X, Li X, Zhou X, Wang X, Li T, Xiao R, Xi Y. Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination. Nutr Res Pract 2023; 17:371-385. [PMID: 37009142 PMCID: PMC10042711 DOI: 10.4162/nrp.2023.17.2.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND/OBJECTIVES Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 μM of Gen were used, while the 25, 50, or 100 μM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.
Collapse
Affiliation(s)
- Hongrui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xianyun Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Li
- Cadre Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xueyang Zhou
- Medical Department, Beijing Shunyi Maternal and Child Health Hospital, Beijing 101300, China
| | - Xuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tiantian Li
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Rong Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuandi Xi
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
35
|
Smith E, Condict L, Ashton J, Kasapis S. Molecular interactions between soybean glycinin (11S) and genistein using spectroscopic and in silico analyses. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Jeong EW, Dhungana SK, Yang YS, Baek Y, Seo JH, Kang BK, Jung CS, Han SI, Lee HG. Black and Yellow Soybean Consumption Prevents High-Fat Diet-Induced Obesity by Regulating Lipid Metabolism in C57BL/6 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6139667. [PMID: 37114142 PMCID: PMC10129420 DOI: 10.1155/2023/6139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
To evaluate the antiobesity effects of yellow and black soybean, C57BL/6 mice were provided with a normal diet, high-fat diet, HFD-containing yellow soybean powder (YS), and black soybean powder (BS) for six weeks. Compared with the HFD group, both YS and BS decreased body weight by 30.1% and 37.2% and fat in tissue by 33.3% and 55.8%, respectively. Simultaneously, both soybeans significantly reduced the serum triglyceride and total cholesterol levels and regulated the lipogenic mRNA expressions of Pparγ, Acc, and Fas genes in the liver, supporting reduced body adiposity. Furthermore, BS significantly increased Pgc-1α and Ucp1 mRNA expression levels in epididymal adipose tissue, indicating thermogenesis is the key mechanism of BS. Taken together, our findings suggest that both soybeans prevent high-fat diet-induced obesity in mice by regulating lipid metabolism, and BS, in particular, has a greater antiobesity potential than YS.
Collapse
Affiliation(s)
- Eun Woo Jeong
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Sanjeev Kumar Dhungana
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Yun Sun Yang
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeong-Hyun Seo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Beom-Kyu Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Chan-Sik Jung
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Sang-Ik Han
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
37
|
Thomas MS, Calle M, Fernandez ML. Healthy plant-based diets improve dyslipidemias, insulin resistance, and inflammation in metabolic syndrome. A narrative review. Adv Nutr 2023; 14:44-54. [PMID: 36811593 PMCID: PMC10103000 DOI: 10.1016/j.advnut.2022.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
Plant-based diets (PBDs) have become very popular in recent years and have been identified as a dietary strategy associated with protection against chronic disease. However, the classifications of PBDs vary depending on the type of diet. Some PBDs have been recognized as healthful for their high content of vitamins, minerals, antioxidants, and fiber, or unhealthful if they are high in simple sugars and saturated fat. Depending on this classification, the type of PBD impacts its protective effects against disease dramatically. Metabolic syndrome (MetS), characterized by the presence of high plasma triglycerides and low HDL cholesterol, impaired glucose metabolism, elevated blood pressure, and increased concentrations of inflammatory biomarkers, also increases the risk for heart disease and diabetes. Thus, healthful plant-based diets could be considered favorable for individuals having MetS. The different types of plant-based diets (vegan, lacto-vegetarian, lacto-ovo-vegetarian, or pescatarian) are discussed with a focus on specific effects of dietary components in maintaining a healthy weight, protecting against dyslipidemias, insulin resistance, hypertension, and low-grade inflammation.
Collapse
Affiliation(s)
- Minu S Thomas
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Mariana Calle
- Department of Health Sciences, Worcester State University, Worcester, MA, USA
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
38
|
Rebollo-Hernanz M, Bringe NA, Gonzalez de Mejia E. Selected Soybean Varieties Regulate Hepatic LDL-Cholesterol Homeostasis Depending on Their Glycinin:β-Conglycinin Ratio. Antioxidants (Basel) 2022; 12:20. [PMID: 36670883 PMCID: PMC9855081 DOI: 10.3390/antiox12010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Clinical studies indicate that the consumption of soybean protein might reduce cholesterol and LDL levels preventing the development of atherosclerotic cardiovascular diseases. However, soybean variety can influence soybean protein profile and therefore affect soybean protein health-promoting properties. This study investigated the composition and effects of nineteen soybean varieties digested under simulated gastrointestinal conditions on hepatic cholesterol metabolism and LDL oxidation in vitro. Soybean varieties exhibited a differential protein hydrolysis during gastrointestinal digestion. Soybean varieties could be classified according to their composition (high/low glycinin:β-conglycinin ratio) and capacity to inhibit HMGCR (IC50 from 59 to 229 µg protein mL−1). According to multivariate analyses, five soybean varieties were selected. These soybean varieties produced different peptide profiles and differently reduced cholesterol concentration (43−55%) by inhibiting HMGCR in fatty-acid-stimulated HepG2 hepatocytes. Selected digested soybean varieties inhibited cholesterol esterification, triglyceride production, VLDL secretion, and LDL recycling by reducing ANGPTL3 and PCSK9 and synchronously increasing LDLR expression. In addition, selected soybean varieties hindered LDL oxidation, reducing the formation of lipid peroxidation early (conjugated dienes) and end products (malondialdehyde and 4-hydroxynonenal). The changes in HMGCR expression, cholesterol esterification, triglyceride accumulation, ANGPTL3 release, and malondialdehyde formation during LDL oxidation were significantly (p < 0.05) correlated with the glycinin:β-conglycinin ratio. Soybean varieties with lower glycinin:β-conglycinin exhibited a better potential in regulating cholesterol and LDL homeostasis in vitro. Consumption of soybean flour with a greater proportion of β-conglycinin may, consequently, improve the potential of the food ingredient to maintain healthy liver cholesterol homeostasis and cardiovascular function.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
39
|
Maternal soybean diet on prevention of obesity-related breast cancer through early-life gut microbiome and epigenetic regulation. J Nutr Biochem 2022; 110:109119. [PMID: 35933021 PMCID: PMC9792070 DOI: 10.1016/j.jnutbio.2022.109119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 01/13/2023]
Abstract
Overnutrition-induced obesity and metabolic dysregulation are considered major risk factors contributing to breast cancer. The origin of both obesity and breast cancer can retrospect to early development in human lifespan. Genistein (GE), a natural isoflavone enriched in soybean products, has been proposed to associate with a lower risk of breast cancer and various metabolic disorders. Our study aimed to determine the effects of maternal exposure to soybean dietary GE on prevention of overnutrition-induced breast cancer later in life and explore potential mechanisms in different mouse models. Our results showed that maternal dietary GE treatment improved offspring metabolic functions by significantly attenuating high-fat diet-induced body fat accumulation, lipid panel abnormalities and glucose intolerance in mice offspring. Importantly, maternal dietary GE exposure effectively delayed high-fat diet-simulated mammary tumor development in female offspring. Mechanistically, we found that maternal dietary GE may exert its chemopreventive effects through affecting essential regulatory gene expression in control of metabolism, inflammation and tumor development via, at least in part, regulation of offspring gut microbiome, bacterial metabolites and epigenetic profiles. Altogether, our findings indicate that maternal GE consumption is an effective intervention approach leading to early-life prevention of obesity-related metabolic disorders and breast cancer later in life through dynamically influencing the interplay between early-life gut microbiota, key microbial metabolite profiles and offspring epigenome.
Collapse
|
40
|
Guo B, Sun L, Jiang S, Ren H, Sun R, Wei Z, Hong H, Luan X, Wang J, Wang X, Xu D, Li W, Guo C, Qiu LJ. Soybean genetic resources contributing to sustainable protein production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4095-4121. [PMID: 36239765 PMCID: PMC9561314 DOI: 10.1007/s00122-022-04222-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/10/2022] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Genetic resources contributes to the sustainable protein production in soybean. Soybean is an important crop for food, oil, and forage and is the main source of edible vegetable oil and vegetable protein. It plays an important role in maintaining balanced dietary nutrients for human health. The soybean protein content is a quantitative trait mainly controlled by gene additive effects and is usually negatively correlated with agronomic traits such as the oil content and yield. The selection of soybean varieties with high protein content and high yield to secure sustainable protein production is one of the difficulties in soybean breeding. The abundant genetic variation of soybean germplasm resources is the basis for overcoming the obstacles in breeding for soybean varieties with high yield and high protein content. Soybean has been cultivated for more than 5000 years and has spread from China to other parts of the world. The rich genetic resources play an important role in promoting the sustainable production of soybean protein worldwide. In this paper, the origin and spread of soybean and the current status of soybean production are reviewed; the genetic characteristics of soybean protein and the distribution of resources are expounded based on phenotypes; the discovery of soybean seed protein-related genes as well as transcriptomic, metabolomic, and proteomic studies in soybean are elaborated; the creation and utilization of high-protein germplasm resources are introduced; and the prospect of high-protein soybean breeding is described.
Collapse
Affiliation(s)
- Bingfu Guo
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Sun
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Siqi Jiang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rujian Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongyan Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agriculture University, Harbin, China
| | - Xiaoyan Luan
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jun Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Donghe Xu
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Wenbin Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agriculture University, Harbin, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
41
|
Imai H, Nishikawa H, Suzuki A, Kodama E, Iida T, Mikura K, Hashizume M, Kigawa Y, Tadokoro R, Sugisawa C, Endo K, Iizaka T, Otsuka F, Nagasaka S. Secondary Hypogonadism due to Excessive Ingestion of Isoflavone in a Man. Intern Med 2022; 61:2899-2903. [PMID: 35228414 PMCID: PMC9593161 DOI: 10.2169/internalmedicine.8578-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A 54-year-old man had been drinking approximately 1.2 L of soy milk (equivalent to approximately 310 mg of isoflavones) per day for the previous 3 years. He then developed erectile dysfunction and gynecomastia. On an examination in our department in May, blood tests showed low gonadotropin and testosterone levels, indicative of secondary hypogonadism. He stopped drinking soy milk on his own in June of that year. When he was admitted in August, blood tests showed an improved gonadal function. Secondary hypogonadism caused by the excessive intake of isoflavones in soy milk was diagnosed. In men, an excessive intake of isoflavones may cause feminization and secondary hypogonadism.
Collapse
Affiliation(s)
- Hideyuki Imai
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Hiroto Nishikawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Asami Suzuki
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Eriko Kodama
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Tatsuya Iida
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Kentaro Mikura
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Mai Hashizume
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Yasuyoshi Kigawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Rie Tadokoro
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Chiho Sugisawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Kei Endo
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Toru Iizaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Fumiko Otsuka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Japan
| |
Collapse
|
42
|
Dharmalingam M, Das R, Jain S, Gupta S, Gupta M, Kudrigikar V, Bachani D, Mehta S, Joglekar S. Impact of Partial Meal Replacement on Glycemic Levels and Body Weight in Indian Patients with Type 2 Diabetes (PRIDE): A Randomized Controlled Study. Diabetes Ther 2022; 13:1599-1619. [PMID: 35834107 PMCID: PMC9281377 DOI: 10.1007/s13300-022-01294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Partial meal replacement (PMR) offers potential glycemic and weight control benefits in type 2 diabetes mellitus (T2DM) patients. We evaluated the clinical impact of PMR (diabetes-specific nutritional supplement [DSNS]) in overweight/obese Indian patients with T2DM. METHODS PRIDE, a 12-week, phase IV, open-label, multicenter study randomized (1:1) newly diagnosed T2DM patients (≤ 1 year) to either DSNS plus standard of care (SOC; diabetes treatment with dietary counseling) group (PMR) or SOC alone group (SOC). The primary endpoint was mean change in glycated hemoglobin (HbA1c) from baseline to week 12. Secondary endpoints were changes in glucose profiles, body weight, waist circumference, lipid profile, and factors impacting quality-of-life (QoL) at week 6 and 12 from baseline. Safety was assessed throughout the study. RESULTS Of the 176 patients enrolled, 171 (n = 85 in PMR group; n = 86 in SOC group) were included in the modified intent-to-treat population. The mean reduction in HbA1c at week 12 from baseline in PMR group was significant compared to the SOC group (- 0.59 vs. - 0.21%, p = 0.002). At week 12, the PMR group showed significant reduction in mean body weight (- 2.19 vs. - 0.22 kg; p = 0.001) and waist circumference (- 2.34 vs. - 0.48 cm; p = 0.001) compared to SOC group. Mean fasting plasma glucose and post-prandial glucose significantly reduced from baseline at week 6 and 12 in each group (p < 0.05). No significant change was observed in lipid profile. QoL parameters (treatment adherence, general well-being, and energy fulfilment) in the PMR were significantly better than SOC group (p < 0.05). Patients were satisfied with the taste of DSNS. No serious adverse events were reported. CONCLUSIONS DSNS is an encouraging option for PMR strategy, as it significantly improved HbA1c, body weight, waist circumference, and overall well-being among overweight/obese Indian T2DM patients. TRIAL IDENTIFICATION NO CTRI/2019/10/021595.
Collapse
Affiliation(s)
- Mala Dharmalingam
- Endocrinology and Diabetes Research Center and Laboratory, Bangalore, 560003, India
| | - Rupam Das
- Downtown Hospital, Guwahati, 781006, India
| | - Sandeep Jain
- Marudhar Hospital, Jaipur, Rajasthan, 302012, India
| | - Sachin Gupta
- Shubham Multispeciality Hospital, Amraiwadi, Ahmedabad, 380026, India
| | - Manoj Gupta
- Health Point Hospital, Kolkata, 700025, India
| | - Vinay Kudrigikar
- India Medical Affairs, Sun Pharma Laboratories Ltd., Sun House, Plot No. 201 8/1, Western Express Highway, Goregaon (E), Mumbai, Maharashtra, 400063, India.
| | - Deepak Bachani
- India Medical Affairs, Sun Pharma Laboratories Ltd., Sun House, Plot No. 201 8/1, Western Express Highway, Goregaon (E), Mumbai, Maharashtra, 400063, India
| | - Suyog Mehta
- India Medical Affairs, Sun Pharma Laboratories Ltd., Sun House, Plot No. 201 8/1, Western Express Highway, Goregaon (E), Mumbai, Maharashtra, 400063, India
| | - Sadhna Joglekar
- India Medical Affairs, Sun Pharma Laboratories Ltd., Sun House, Plot No. 201 8/1, Western Express Highway, Goregaon (E), Mumbai, Maharashtra, 400063, India
| |
Collapse
|
43
|
Shi J, Fang H, Guo Q, Yu D, Ju L, Cheng X, Piao W, Xu X, Li Z, Mu D, Zhao L, He L. Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017. Nutrients 2022; 14:nu14173524. [PMID: 36079782 PMCID: PMC9460434 DOI: 10.3390/nu14173524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study aims to determine the associations of dietary patterns with metabolic syndrome (MetS) and its components in Chinese children and adolescents aged 7–17 in 2016–2017. Using the data from the China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017, the sociodemographic information, diet, anthropometric measurements and clinical examinations of subjects were obtained, and a total of 13,071 school-aged children and adolescents were included in this study. The Cook criteria were used to define MetS and its components. Dietary intake was derived from 24-h dietary records for three consecutive days, combined with the weighing method. Factor analysis was used to identify major dietary patterns. The associations of dietary patterns with MetS and its components were examined by logistic regression analysis. Consequently, five distinct dietary patterns were identified by factor analysis, and the relationships between dietary patterns with MetS and its components were observed. After adjusting for covariates, the animal product and vegetable patterns may have a positive association with MetS; the condiment pattern was positively associated with low HDL-C; the fruit and junk food patterns had positive relationships with MetS, abdominal obesity and high TG; the cereals and tubers pattern was positively associated with MetS, abdominal obesity, high TG and low HDL-C; the beans pattern was positively associated with high TG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Li He
- Correspondence: ; Tel.: +86-010-6623-7033
| |
Collapse
|
44
|
Zhang YJ, Pang YB, Wang XY, Jiang YH, Herrera-Balandrano DD, Jin Y, Wang SY, Laborda P. Exogenous genistein enhances soybean resistance to Xanthomonas axonopodis pv. glycines. PEST MANAGEMENT SCIENCE 2022; 78:3664-3675. [PMID: 35611815 DOI: 10.1002/ps.7009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xanthomonas axonopodis pv. glycines (Xag) is the causal agent of bacterial pustule disease and results in enormous losses in soybean production. Although isoflavones are known to be involved in soybean resistance against pathogen infection, the effects of exogenous isoflavones on soybean plants remain unexplored. RESULTS Irrigation of soybean plants with isoflavone genistein inhibited plant growth for short periods, probably by inhibiting the tyrosine (brassinosteroids) kinase pathway, and increased disease resistance against Xag. The number of lesions was reduced by 59%-63% when applying 50 μg ml-1 genistein. The effects on disease resistance were observed for 15 days after treatment. Genistein also enhanced the disease resistance of soybean against the fungal pathogen Sclerotinia sclerotiorum. Exogenous genistein increased antioxidant capacity, decreased H2 O2 level and promoted the accumulation of phenolics in Xag-infected soybean leaves. Exogenous genistein reduced the amounts of endogenous daidzein, genistein and glycitein and increased the concentration of genistin, which was found to show strong antibacterial activity against the pathogen and to reduce the expression of virulence factor yapH, and flagella formation gene flgK. The expression of several soybean defense genes, such as chalcone isomerase, glutathione S-transferase and 1-aminocyclopropane-1-carboxylate oxidase 1, was upregulated after genistein treatment. CONCLUSIONS The effects of exogenous genistein on soybean plants were examined for the first time, revealing new insights into the roles of isoflavones in soybean defense and demonstrating that irrigation with genistein can be a suitable method to induce disease resistance in soybean plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Xin-Yi Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | | | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
45
|
Wu E, Ni J, Zhou W, You L, Tao L, Xie T. Consumption of fruits, vegetables, and legumes are associated with overweight/obesity in the middle- and old-aged Chongqing residents: A case-control study. Medicine (Baltimore) 2022; 101:e29749. [PMID: 35801775 PMCID: PMC9259125 DOI: 10.1097/md.0000000000029749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study aimed to investigate the association of dietary habits with the risk of overweight/obesity among middle-and-old-aged Chongqing residents and also to examine the joint effects of behavioral lifestyles, dietary habits, and overweight/obesity. In this case-control study, age (±3 years), sex, and time of physical exercise matched 979 overweight/obesity residents, and 979 normal weight residents were recruited. A validated questionnaire was used to collect participants' information. Conditional logistic regression analysis was performed to determine the adjusted odds ratios (ORs) and 95% CIs of dietary habits and lifestyles associated with overweight/obesity risk. Overweight/obesity was defined as body mass index (BMI) ≥ 24 kg·m-2, and normal weight was defined as 18.5 ≤ BMI < 24 kg·m-2. The multivariate-adjusted models showed the weekly intake frequency of fruits 0-1 (day/week) (OR = 1.79, 95% CI = 1.04-3.10), and legumes 0-1 (day/week) (OR = 2.45, 95% CI = 1.28-4.67), as well as the weekly intake percentage of vegetables ≥ 15% (OR = 2.44, 95% CI = 1.04-5.71) were associated with a higher risk of overweight/obesity. Besides, there were joint effects of lifestyles (smoking or drinking) and dietary habits on overweight/obesity risk (P for interaction < 0.05). The consumption of vegetables, fruits, legumes, and the joint effects of behavioral habits (smoking or drinking) may modify the risk of being overweight/obese. It is essential to consume fruits and legumes at least 2 days/week, quit smoking, and stop consuming alcohol to avoid overweight/obesity among middle-aged and elderly people in Chongqing, China.
Collapse
Affiliation(s)
- E Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Juntao Ni
- Women’s Hospital School of medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhou
- The Second People’s Hospital of Banan District, Chongqing, China
| | - Leiying You
- The Second People’s Hospital of Banan District, Chongqing, China
| | - Lin Tao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- *Correspondence: e-mail: (T.X.)
| |
Collapse
|
46
|
Wang SY, Zhang YJ, Zhu GY, Shi XC, Chen X, Herrera-Balandrano DD, Liu FQ, Laborda P. Occurrence of isoflavones in soybean sprouts and strategies to enhance their content: A review. J Food Sci 2022; 87:1961-1982. [PMID: 35411587 DOI: 10.1111/1750-3841.16131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 12/22/2022]
Abstract
Sprouting is a common strategy to enhance the nutritional value of seeds. Here, all the reports regarding the occurrence of isoflavones in soybean sprouts have been covered for the first time. Isoflavones were detected with concentrations ranging from 1 × 10-2 to 1 × 101 g/kg in soybean sprouts. Isoflavone concentration depends on the cultivar, germination time, part of the sprout, light, and temperature. Aglycon isoflavones increased during germination, especially in the hypocotyl, while 6″-O-malonyl-7-O-β-glucoside isoflavones decreased in the hypocotyl and increased in the cotyledon and root. Cooking reduced total isoflavone content. Regarding the strategies to enhance isoflavone contents, fermentation with Aspergillus sojae and external irradiation with UV-A or far-infrared were the methods that caused the greatest increases in aglycon, 7-O-β-glucoside, and total isoflavones. However, the largest increases in 6″-O-malonyl-7-O-β-glucoside and 6″-O-acetyl-7-O-β-glucosides isoflavones were detected after treatment with chitohexaose and calcium chloride, respectively. PRACTICAL APPLICATION: Soybean sprouts are widely consumed and provide essential proteins, antioxidants, and minerals. They are rich in isoflavones, which exhibit numerous health benefits, and have been studied as alternative therapies for a range of hormone-dependent conditions, such as cancer, menopausal symptoms, cardiovascular disease, and osteoporosis. Despite numerous reports being published to date regarding the occurrence of isoflavones in soybean sprouts, the publications in this field are highly dispersed, and a review has not yet been published. This review aims to (1) highlight the particular isoflavones that have been detected in soybean sprouts and their concentrations, (2) compared the effects of temperature, light, cooking and soybean cultivar affect the isoflavone levels on the different parts of the sprout, and (3) discuss the efficacy of the methods to enhance isoflavone contents. This review will provide a better understanding of the current state of this field of research by comparing the general trends and the different treatments for soybean sprouts.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
47
|
Koonyosying P, Kusirisin W, Kusirisin P, Kasempitakpong B, Sermpanich N, Tinpovong B, Salee N, Pattanapanyasat K, Srichairatanakool S, Paradee N. Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients 2022; 14:1721. [PMID: 35565689 PMCID: PMC9103900 DOI: 10.3390/nu14091721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Winthana Kusirisin
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Boonsong Kasempitakpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Nipon Sermpanich
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.K.); (B.K.); (N.S.)
| | - Bow Tinpovong
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Nuttinee Salee
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand; (B.T.); (N.S.)
| | - Kovit Pattanapanyasat
- Office of Research and Development, Faculty of Medicine and Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Narisara Paradee
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
48
|
Current perspectives on the beneficial effects of soybean isoflavones and their metabolites on plants. Food Sci Biotechnol 2022; 31:515-526. [PMID: 35529690 PMCID: PMC9033921 DOI: 10.1007/s10068-022-01070-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022] Open
Abstract
Soybeans have traditionally been a staple part of the human diet being highly rich in protein and lipid content. In an addition to the high nutritional components, soybeans have several functional components, like isoflavones, saponins, lecithin, and oligosaccharides. Soybeans emerge as a healthy functional food option. Isoflavones are most notable functional component of soybeans, exhibiting antioxidant activity while preventing plant-related diseases (e.g., antimicrobial and antiherbivore activities) and having positive effects on the life quality of plants. Isoflavones are thus sometimes referred to as phytochemicals. The latest research trends evince substantial interest in the biological efficacy of isoflavones in the human body as well as in plants and their related mechanisms. However, there is little information on the relationship between isoflavones and plants than beneficial human effects. This review discusses what is known about the physiological communication (transport and secretion) between isoflavones and plants, especially in soybeans.
Collapse
|
49
|
Song B, Qiu Z, Li M, Luo T, Wu Q, Krishnan HB, Wu J, Xu P, Zhang S, Liu S. Breeding of ‘DND358’: A new soybean cultivar for processing soy protein isolate with a hypocholesterolemic effect similar to that of fenofibrate. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
50
|
Wang X, Wang Y, Xu W, Lan L, Li Y, Wang L, Sun X, Yang C, Jiang Y, Feng R. Dietary isoflavones intake is inversely associated with non-alcoholic fatty liver disease, hyperlipidaemia and hypertension. Int J Food Sci Nutr 2022; 73:60-70. [PMID: 33899670 DOI: 10.1080/09637486.2021.1910630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
This study investigated associations between total isoflavones and their categories (daidzein, genistein, glycitein) intake and the risks for metabolic disorders. We used the data of 6786 Chinese adults from the Nutrition Health Atlas Project. We performed multiple logistic regression and restricted cubic spline models assessing the risks for metabolic disorders (non-alcoholic fatty liver disease (NAFLD), hyperlipidaemia, hypertension, diabetes and overweight/obesity) in each category of isoflavones. Higher total isoflavones, daidzein and genistein intake were inversely associated with NAFLD (p < .05). Higher total isoflavones, daidzein, genistein and glycitein intake were also inversely associated with hyperlipidaemia (p < .01) and hypertension (p < .01). Dose-response analyses revealed that total isoflavones, daidzein, genistein and glycitein intakes were associated with the risks of metabolic disorders in a nonlinear trend. In conclusion, total isoflavones, daidzein and genistein intake were inversely associated with NAFLD, hyperlipidaemia and hypertension. Glycitein was inversely associated with hyperlipidaemia and hypertension.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Weili Xu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Li Lan
- Noninfectious Chronic Disease Prevention and Control Department, Harbin Center for Disease Control and Prevention, Harbin, China
| | - Yuzheng Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- Beijing Institute of Public Health Drinking Water, Beijing, China
| | - Liang Wang
- Medical Administration Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowei Sun
- Medical Administration Department, Harbin First Hospital, Harbin, China
| | - Chao Yang
- Department of Chronic Disease Prevention and Control, Harbin Center for Disease Control and Prevention, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|