1
|
Andruszewski D, Uhlfelder DC, Desiato G, Regen T, Schelmbauer C, Blanfeld M, Scherer L, Radyushkin K, Pozzi D, Waisman A, Mufazalov IA. Embryo-restricted responses to maternal IL-17A promote neurodevelopmental disorders in mouse offspring. Mol Psychiatry 2024:10.1038/s41380-024-02772-6. [PMID: 39384965 DOI: 10.1038/s41380-024-02772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Prenatal imprinting to interleukin 17A (IL-17A) triggers behavioral disorders in offspring. However, reported models of maternal immune activation utilizing immunostimulants, lack specificity to elucidate the anatomical compartments of IL-17A's action and the distinct behavioral disturbances it causes. By combining transgenic IL-17A overexpression with maternal deficiency in its receptor, we established a novel model of prenatal imprinting to maternal IL-17A (acronym: PRIMA-17 model). This model allowed us to study prenatal imprinting established exclusively through embryo-restricted IL-17A responses. We demonstrated a transfer of transgenic IL-17A across the placental barrier, which triggered the development of selected behavioral deficits in mouse offspring. More specifically, embryonic responses to IL-17A resulted in communicative impairment in early-life measured by reduced numbers of nest retrieval calls. In adulthood, IL-17A-imprinted offspring displayed an increase in anxiety-like behavior. We advocate our PRIMA-17 model as a useful tool to study neurological deficits in mice.
Collapse
Affiliation(s)
- David Andruszewski
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - David C Uhlfelder
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Genni Desiato
- Institute of Neuroscience - National Research Council, Milan, Italy
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Blanfeld
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lena Scherer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Translational Animal Research Center (TARC), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Davide Pozzi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Shams RB, Sayed CJ. Bimekizumab for the treatment of hidradenitis suppurativa. Immunotherapy 2024; 16:1005-1013. [PMID: 39297706 PMCID: PMC11492705 DOI: 10.1080/1750743x.2024.2401308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Hidradenitis suppurativa (HS) is a painful, inflammatory dermatosis involving recurrent abscesses, nodules and tunnels in intertriginous regions. Biologics and other immunomodulators have significantly expanded the treatment options available for HS. Bimekizumab is a monoclonal antibody targeting both interleukin-17A and interleukin-17F, key mediators of inflammation, that is already approved for psoriasis, psoriatic arthritis and axial spondylarthritis. It is currently pending FDA review for HS treatment but has already received marketing authorization for this indication in Europe. This review aims to explore drug-specific characteristics of bimekizumab including its mechanism of action, pharmacokinetics and pharmacodynamics and the current state of the literature regarding its use in HS such as safety, efficacy and dosing, while highlighting its implications in clinical practice. Recent Phase II and III trial data demonstrating positive efficacy and safety profiles in the treatment of HS will also be detailed.
Collapse
Affiliation(s)
- Rayad B Shams
- University of North Carolina Chapel Hill School of Medicine, 321 S Columbia St, Chapel Hill, NC27599, USA
- University of North Carolina Chapel Hill Department of Dermatology, 410 Market Street Suite 400A, Chapel Hill, NC27516, USA
| | - Christopher J Sayed
- University of North Carolina Chapel Hill Department of Dermatology, 410 Market Street Suite 400A, Chapel Hill, NC27516, USA
| |
Collapse
|
3
|
Kong B, Lai Y. IL-17 family cytokines in inflammatory or autoimmune skin diseases. Adv Immunol 2024; 163:21-49. [PMID: 39271258 DOI: 10.1016/bs.ai.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
As potent pro-inflammatory mediators, IL-17 family cytokines play crucial roles in the pathogenesis of various inflammatory and autoimmune skin disorders. Although substantial progress has been achieved in understanding the pivotal role of IL-17A signaling in psoriasis, leading to the development of highly effective biologics, the functions of other IL-17 family members in inflammatory or autoimmune skin diseases remain less explored. In this review, we provide a comprehensive overview of IL-17 family cytokines and their receptors, with a particular focus on the recent advancements in identifying cellular sources, receptors and signaling pathways regulated by these cytokines. At the end, we discuss how the aberrant functions of IL-17 family cytokines contribute to the pathogenesis of diverse inflammatory or autoimmune skin diseases.
Collapse
Affiliation(s)
- Baida Kong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
4
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
5
|
Yuan SSF, Su CW, Chan LP, Nguyen HDH, Chen YK, Du JK, Cheng KH, Wang YY. IL17RB expression is associated with malignant cancer behaviors and poor prognosis in oral cancer. Oral Dis 2024; 30:2027-2038. [PMID: 37448179 DOI: 10.1111/odi.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Previously, we demonstrated that IL17RB plays an essential role in lung cancer progression. This study aimed to determine whether IL17RB correlates with oral cancer and promotes oral cancer progression. SUBJECTS AND METHODS IL17RB expression in oral cancer tissues and normal tissues was determined by immunohistochemistry staining, while the association of IL17RB expression with the clinicopathological characteristics of oral squamous cell carcinoma (OSCC) patients was analyzed and its correlation with progression-free survival and response to radiotherapy and chemotherapy in OSCC patients was also explored. Western blotting was performed to investigate the expression of IL17RB in various OSCC cell lines; moreover, transwell assay was performed to evaluate the effect of IL17RB expression on cell migration ability. RESULTS In this study, we found that IL17RB was expressed higher in OSCC tissues compared to normal oral mucosa tissues and its expression was positively correlated with tumor size, lymph node metastasis, advanced cancer stage, and poor prognosis. In vitro study showed that IL17RB expression in OSCC cell lines as determined by Western blotting, was positively correlated with their migration ability. CONCLUSION Clinical and in vitro studies suggest that IL17RB might serve as an independent risk factor and a therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Shyng-Shiou F Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chang-Wei Su
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hieu D H Nguyen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Je-Kang Du
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024; 25:743-754. [PMID: 38698239 DOI: 10.1038/s41590-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Jean Donadieu
- Trousseau Hospital for Sick Children, Centre de référence des neutropénies chroniques, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
7
|
Fei X, Wang L, Dou YN, Fei F, Zhang Y, Lv W, He X, Wu X, Chao W, Chen H, Wei J, Gao D, Fei Z. Extracellular vesicle encapsulated Homer1a as novel nanotherapeutics against intracerebral hemorrhage in a mouse model. J Neuroinflammation 2024; 21:85. [PMID: 38582897 PMCID: PMC10999083 DOI: 10.1186/s12974-024-03088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Homer1a and A2 astrocytes are involved in the regulation of inflammation induced by intracerebral hemorrhage (ICH). However, there is no anticipated treatment strategy based on the anti-inflammatory effect of Homer1a and A2 astrocytes. Here, we successfully induced A2 astrocytes in vitro, and then we report an efficient method to prepare Homer1a+ EVs derived from A2 astrocytes which making it more stable, safe, and targetable to injured neurons. Homer1a+ EVs promotes the conversion of A1 to A2 astrocytes in ICH mice. Homer1a+ EVs inhibits activation and nuclear translocation of NF-κB, thereby regulating transcription of IL-17A in neurons. Homer1a+ EVs inhibits the RAGE/NF-κB/IL-17 signaling pathway and the binding ability of IL-17A: IL17-AR and RAGE: DIAPH1. In addition, Homer1a+ EVs ameliorates the pathology, behavior, and survival rate in GFAPCreHomer1fl/-Homer1a± and NestinCreRAGEfl/fl ICH mice. Our study provides a novel insight and potential for the clinical translation of Homer1a+ EVs in the treatment of ICH.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Wangshu Chao
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| |
Collapse
|
8
|
Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther 2024; 7:132-156. [PMID: 38617189 PMCID: PMC11011201 DOI: 10.1093/abt/tbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
In calendar year 2023, the United States Food and Drug Administration (US FDA) approved a total of 55 new molecular entities, of which 12 were in the class of therapeutic antibodies. Besides antibody protein drugs, the US FDA also approved another five non-antibody protein drugs, making the broader class of protein drugs about 31% of the total approved drugs. Among the 12 therapeutic antibodies approved by the US FDA, 8 were relatively standard IgG formats, 3 were bivalent, bispecific antibodies and 1 was a trivalent, bispecific antibody. In 2023, no new antibody-drug conjugates, immunocytokines or chimeric antigen receptor-T cells were approved. Of the approved antibodies, two targeted programmed cell death receptor-1 (PD-1) for orphan indications, two targeted CD20 for diffuse large B cell lymphoma, two targeted different receptors (B-cell maturation antigen [BCMA] and G-coupled protein receptor class C, group 5, member D [GPRC5D]) for treatment of multiple myeloma, and one each that targeted amyloid-β protofibrils for Alzheimer's disease, neonatal Fc receptor alpha-chain for myasthenia gravis, complement factor C5 for CD55 deficiency with hyper-activation of complement, angiopathic thrombosis and severe protein-losing enteropathy disease, interleukin (IL)-23p19 for severely active ulcerative colitis, IL-17A-F for plaque psoriasis and respiratory syncytial virus (RSV)-F protein for season-long RSV prophylaxis in infants.
Collapse
Affiliation(s)
- William R Strohl
- Scientific Advisor Department, BiStro Biotechnology Consulting, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA
| |
Collapse
|
9
|
Seki N, Tsujimoto H, Tanemura S, Ishigaki S, Takei H, Sugahara K, Yoshimoto K, Akiyama M, Kaneko Y, Chiba K, Takeuchi T. Th17/IL-17A axis is critical for pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc): SSc patients with high levels of serum IL-17A exhibit reduced lung functions and increased prevalence of PAH. Cytokine 2024; 176:156534. [PMID: 38354516 DOI: 10.1016/j.cyto.2024.156534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND It is thought that systemic sclerosis (SSc) might be a T helper 17 (Th17) cell-driven autoimmune disease. Noticeably, pulmonary arterial hypertension (PAH) is a leading cause of death in patients with SSc. Here, we investigated the association between serum Th17-related cytokines and prevalence of PAH in SSc patients. METHODS This study included 72 SSc patients and 51 healthy controls (HC). We determined clinical manifestations, immunophenotypes including Th subsets in peripheral blood lymphocytes, and the serum levels of interleukin (IL)-17A, IL-17A/F, IL-17B. IL-17C, IL-17D. IL-1β, IL-6, IL-21, IL-22, and IL-23. RESULTS The frequency of Th17 cells was significantly increased in SSc patients compared to HC and was positively correlated with the modified Rodnan skin scores. Furthermore, the serum levels of IL-17A, IL-17D, IL-1β, and IL-6 were significantly increased in SSc patients compared to HC. SSc patients with detected IL-17A showed high levels of IL-17A/F, IL-1β, IL-6, and IL-22, and high frequency of Th17 cells. Interestingly, these patients exhibited the reduced lung functions and increased prevalence of PAH significantly compared to patients with undetected IL-17A. Similarly, SSc patients with detected IL-17A and high IL-6 (≥1.2 pg/mL) exhibited the decreased lung functions and increased prevalence of PAH compared to patients with undetected IL-17A and low IL-6. CONCLUSION We found that SSc patients with high levels of serum IL-17A or both IL-17A and IL-6 show reduced lung functions and high prevalence of PAH. Consequently, it is highly probable that Th17/IL-17A axis is critical for the prevalence of PAH in SSc patients.
Collapse
Affiliation(s)
- Noriyasu Seki
- Research Unit Immunology & Inflammation, Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideto Tsujimoto
- Research Unit Immunology & Inflammation, Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shuhei Tanemura
- Research Unit Immunology & Inflammation, Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Takei
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kunio Sugahara
- Research Unit Immunology & Inflammation, Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji Chiba
- Research Unit Immunology & Inflammation, Innovative Research division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Saitama Medical University, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|
10
|
Jin B, Moududee SA, Ge D, Zhou P, Wang AR, Liu YZ, You Z. SCF FBXW11 Complex Targets Interleukin-17 Receptor A for Ubiquitin-Proteasome-Mediated Degradation. Biomedicines 2024; 12:755. [PMID: 38672111 PMCID: PMC11047997 DOI: 10.3390/biomedicines12040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-17 (IL-17) is a pro-inflammatory cytokine that participates in innate and adaptive immune responses and plays an important role in host defense, autoimmune diseases, tissue regeneration, metabolic regulation, and tumor progression. Post-translational modifications (PTMs) are crucial for protein function, stability, cellular localization, cellular transduction, and cell death. However, PTMs of IL-17 receptor A (IL-17RA) have not been investigated. Here, we show that human IL-17RA was targeted by F-box and WD repeat domain-containing 11 (FBXW11) for ubiquitination, followed by proteasome-mediated degradation. We used bioinformatics tools and biochemical techniques to determine that FBXW11 ubiquitinated IL-17RA through a lysine 27-linked polyubiquitin chain, targeting IL-17RA for proteasomal degradation. Domain 665-804 of IL-17RA was critical for interaction with FBXW11 and subsequent ubiquitination. Our study demonstrates that FBXW11 regulates IL-17 signaling pathways at the IL-17RA level.
Collapse
Affiliation(s)
- Ben Jin
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA; (B.J.); (S.A.M.)
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Sayed Ala Moududee
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA; (B.J.); (S.A.M.)
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Dongxia Ge
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112, USA;
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Alun R. Wang
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Yao-Zhong Liu
- Department of Biostatistics and Data Science, Tulane University, New Orleans, LA 70112, USA;
| | - Zongbing You
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA; (B.J.); (S.A.M.)
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112, USA;
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA 70112, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Greenzaid J, Feldman S. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Moderate-to-Severe Psoriasis. Clin Pharmacokinet 2024; 63:137-153. [PMID: 38280146 DOI: 10.1007/s40262-023-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
Psoriasis is a common inflammatory immune disorder due to chronic activation of the adaptive and innate immune responses. Therapies for psoriasis target reducing inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-17, and interleukin-22. Patients with inflammatory disorders have reduced metabolism by cytochrome P450 enzymes in the liver. The pharmacokinetic and pharmacodynamic changes due to psoriasis also have an impact on reaching therapeutic concentrations of the drug. Pharmacokinetic and pharmacodynamic data help determine the safety and clinical considerations necessary when utilizing drugs for plaque psoriasis. A literature search was performed on PubMed and Ovid MEDLINE for the pharmacokinetic and pharmacodynamic data of oral therapies and biologics utilized for moderate-to-severe plaque psoriasis. The findings from the literature search were organized into two sections: oral therapies and biologics. The pharmacokinetic and pharmacodynamic parameters in healthy patients, patients with psoriasis, and special populations are discussed in each section. The oral therapies described in this review include methotrexate, cyclosporine, apremilast, tofacitinib, and deucravacitinib. Biologics include tumor necrosis factor-alpha inhibitors, interleukin-17 inhibitors, ustekinumab, and interleukin-23 inhibitors. Clinical considerations for these therapies include drug toxicities, dosing frequency, and anti-drug antibodies. Methotrexate and cyclosporine have a risk for hepatoxicity and renal impairment, respectively. Moreover, drugs metabolized via cytochrome P450, including tofacitinib and apremilast have decreased clearance in patients with psoriasis, requiring dose adjustments. Patients treated with therapies such as adalimumab can develop anti-drug antibodies that reduce the long-term efficacy of the drug. Additionally, overweight patients benefit from more frequent dosing to achieve better psoriasis clearance.
Collapse
Affiliation(s)
- Jonathan Greenzaid
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, 475 Vine St, Winston-Salem, NC, 27101, USA.
| | - Steven Feldman
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, 475 Vine St, Winston-Salem, NC, 27101, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
He F, Yu X, Zhang J, Cui J, Tang L, Zou S, Pu J, Ran P. Biomass-related PM 2.5 induced inflammatory microenvironment via IL-17F/IL-17RC axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123048. [PMID: 38036089 DOI: 10.1016/j.envpol.2023.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Biomass exposure is a significant environmental risk factor for COPD, but the underlying mechanisms have not yet been fully elucidated. Inflammatory microenvironment has been shown to drive the development of many chronic diseases. Pollution exposure can cause increased levels of inflammatory factors in the lungs, leading to an inflammatory microenvironment which is prevalent in COPD. Our findings revealed that IL-17F was elevated in COPD, while exposure to biomass led to increased expression of IL-17F in both alveolar epithelial and macrophage cells in mice. Blocking IL-17F could alleviate the lung inflammation induced by seven days of biomass exposure in mice. We employed a transwell co-culture system to simulate the microenvironment and investigate the interactions between MLE-12 and MH-S cells. We demonstrated that anti-IL-17F antibody attenuated the inflammatory responses induced by BRPM2.5 in MLE-12 and MH-S co-cultured with BRPM2.5-MLE-12, which reduced inflammatory changes in microenvironment. We found that IL-17RC, an important receptor for IL-17F, played a key role in the interactions. Knockout of IL-17RC in MH-S resulted in inhibited IL-17F signaling and attenuated inflammatory response after MH-S co-culture with BRPM2.5-MLE-12. Our investigation suggests that BRPM2.5 induces lung epithelial-macrophage interactions via IL-17F/IL-17RC axis regulating the inflammatory response. These results may provide a novel strategy for effective prevention and treatment of biomass-related COPD.
Collapse
Affiliation(s)
- Fang He
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Xiaoyuan Yu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jieda Cui
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China
| | - Lei Tang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Siqi Zou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jinding Pu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
13
|
Munshi AR, Wang T, Takamori Y, Ando T, Yokoyama T, Fuji D, Xu Z, Vedi S, Yamamoto M, Tsukamoto K, Kawakami T. SELEX-discovered aptamer that inhibits cellular interleukin-17/interleukin-17 receptor interaction and antagonizes interleukin-17 signaling. Biosci Biotechnol Biochem 2024; 88:147-153. [PMID: 38031342 DOI: 10.1093/bbb/zbad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
This research is based on a Systematic Evolution of Ligands by EXponential enrichment, also referred to as in vitro selection against the extracellular domain of human interleukin-17 receptor A (IL-17RA). Pull-down assay via quantitative polymerase chain reaction and chemiluminescence detection showed that the cloned RNA with the enriched sequence bound to human IL-17RA and inhibited the interaction between IL-17RA and human interleukin-17A (IL-17A). We also revealed that the newly discovered IL-17RA-binding RNA aptamer bound to cellular IL-17RA, inhibited the cellular IL-17RA/IL-17A interaction, and antagonized cellular IL-17A signaling.
Collapse
Affiliation(s)
- Arifur Rahman Munshi
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Tong Wang
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Yukio Takamori
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Takehiro Ando
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Takumi Yokoyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Daisuke Fuji
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Zhehao Xu
- Department of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Santhana Vedi
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Mizuki Yamamoto
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Keita Tsukamoto
- Department of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Takashi Kawakami
- Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Yamanashi, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| |
Collapse
|
14
|
Pan H, Wang T, Che Y, Li X, Cui Y, Chen Q, Wu Z, Yi J, Wang B. Evaluation of the Effect and Mechanism of Sanhuang Ointment on MRSA Infection in the Skin and Soft Tissue via Network Pharmacology. Infect Drug Resist 2023; 16:7071-7095. [PMID: 37954508 PMCID: PMC10638900 DOI: 10.2147/idr.s424746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Skin and soft tissue infection (SSTI) is a frequently encountered clinical disease, and Sanhuang ointment, a traditional Chinese medicine, is used to treat it. However, the pharmacological effect of Sanhuang ointment on SSTI and its underlying mechanism remains unclear. Here, we investigate the protective effect of Sanhuang ointment on Methicillin-resistant Staphylococcus aureus (MRSA) infection in the skin and soft tissues and the underlying mechanism by network pharmacological analysis, followed by in vivo experimental validation. Methods Via network pharmacology, the active components and disease targets of Sanhuang ointment were screened and intersected for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A rat model of skin and soft tissue infection was established, and pathological features were observed. Large, medium, and small-dose groups (1 g, 0.5 g, and 0.25 g/animal, with the total amount of Vaseline, dispensed 1 g/animal) of Sanhuang ointment were prepared and Mupirocin ointment was used as a positive control (0.5 g/animal, with the total amount of Vaseline, dispensed 1 g/animal). The expressions of key proteins of the IL-17/NF-κB signaling pathway and downstream inflammatory factors were analyzed by histomorphological analysis, enzyme-linked immunosorbent assay, polymerase chain reaction, and Western blotting. Results In all, 119 active components and 275 target genes of Sanhuang ointment were identified and intersected with MRSA infection-related genes via network pharmacology analysis, and 34 target genes of Sanhuang ointment were found to be involved in skin and soft tissue infections with MRSA. Sanhuang ointment (1 g/mouse) could effectively ameliorate histopathological changes and significantly inhibit the expression of key proteins involved in the IL-17/NF-κB signaling pathway and downstream inflammatory factors (p < 0.05). Conclusion Sanhuang ointment has a protective effect on MRSA infection and inhibits inflammation by inhibiting the IL-17/NF-κB signaling pathway. Our findings are important for the secondary development and new drug development of Sanhuang ointment.
Collapse
Affiliation(s)
- Haibang Pan
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Tianming Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
- Gansu Provincial Key Laboratory of Traditional Chinese Medicine Recipe Mining and Innovation Transformation, Gansu Province New Production of Traditional Chinese Medicine Product Creation Engineering Laboratory, Lanzhou, People’s Republic of China
| | - Ying Che
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
- Research Ward, Gansu Provincial People's Hospital, Lanzhou, People's Republic of China
| | - Xiaoli Li
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, People’s Republic of China
| | - Yan Cui
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Quanxin Chen
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhihang Wu
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Jianfeng Yi
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Bo Wang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
15
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
16
|
Cole S, Manghera A, Burns L, Barrett J, Yager N, Rhys H, Skelton A, Cole J, Goodyear CS, Griffiths M, Baeten D, Bertolini M, Shaw S, Al-Mossawi H, Maroof A. Differential regulation of IL-17A and IL-17F via STAT5 contributes to psoriatic disease. J Allergy Clin Immunol 2023; 152:783-798. [PMID: 37244461 DOI: 10.1016/j.jaci.2023.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND IL-17A plays a pivotal pathogenic role in several immune-mediated inflammatory diseases. Despite sharing 50% sequence homology with IL-17A, the role of IL-17F remains less clear. Clinical findings suggest that dual inhibition of IL-17A and IL-17F in psoriatic disease is more efficacious than IL-17A inhibition alone, positing a pathogenic role for IL-17F. OBJECTIVE We characterized the regulation of IL-17A and IL-17F in psoriatic disease. METHODS Using both in vitro systems and lesional skin tissue from patients, we interrogated the chromosomal, transcriptional, and protein expression landscape of IL-17A+ and IL-17F+ TH17 cells. Alongside established assays such as single-cell RNA sequencing, we developed a novel cytokine-capture technique that was combined with chromatin immunoprecipitation sequencing and RNA sequencing. RESULTS We confirm a preferential elevation of IL-17F over IL-17A in psoriatic disease and show that expression of each isoform predominantly occurs in distinct cell populations. The expression of both IL-17A and IL-17F exhibited a high degree of plasticity, with the balance between the 2 isoforms influenced by proinflammatory signaling and by anti-inflammatory drugs such as methylprednisolone. This plasticity was reflected in a broad H3K4me3 region at the IL17A-F locus, while opposing effects of STAT5/IL-2 signaling were observed for each of the 2 genes. Functionally, higher IL17F expression was linked to greater cell proliferation. CONCLUSION There are key differences in the regulation of IL-17A and IL-17F in psoriatic disease, leading to distinct inflammatory cell populations. As such, we propose that both IL-17A and IL-17F neutralization may be required to maximally inhibit IL-17-driven pathology.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Yager
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford
| | | | | | - John Cole
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow
| | - Carl S Goodyear
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow
| | | | | | - Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions, Munster
| | | | - Hussein Al-Mossawi
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford
| | | |
Collapse
|
17
|
Navarro-Compán V, Puig L, Vidal S, Ramírez J, Llamas-Velasco M, Fernández-Carballido C, Almodóvar R, Pinto JA, Galíndez-Aguirregoikoa E, Zarco P, Joven B, Gratacós J, Juanola X, Blanco R, Arias-Santiago S, Sanz Sanz J, Queiro R, Cañete JD. The paradigm of IL-23-independent production of IL-17F and IL-17A and their role in chronic inflammatory diseases. Front Immunol 2023; 14:1191782. [PMID: 37600764 PMCID: PMC10437113 DOI: 10.3389/fimmu.2023.1191782] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023] Open
Abstract
Interleukin-17 family (IL-17s) comprises six structurally related members (IL-17A to IL-17F); sequence homology is highest between IL-17A and IL-17F, displaying certain overlapping functions. In general, IL-17A and IL-17F play important roles in chronic inflammation and autoimmunity, controlling bacterial and fungal infections, and signaling mainly through activation of the nuclear factor-kappa B (NF-κB) pathway. The role of IL-17A and IL-17F has been established in chronic immune-mediated inflammatory diseases (IMIDs), such as psoriasis (PsO), psoriatic arthritis (PsA), axial spondylarthritis (axSpA), hidradenitis suppurativa (HS), inflammatory bowel disease (IBD), multiple sclerosis (MS), and asthma. CD4+ helper T cells (Th17) activated by IL-23 are well-studied sources of IL-17A and IL-17F. However, other cellular subtypes can also produce IL-17A and IL-17F, including gamma delta (γδ) T cells, alpha beta (αβ) T cells, type 3 innate lymphoid cells (ILC3), natural killer T cells (NKT), or mucosal associated invariant T cells (MAIT). Interestingly, the production of IL-17A and IL-17F by innate and innate-like lymphocytes can take place in an IL-23 independent manner in addition to IL-23 classical pathway. This would explain the limitations of the inhibition of IL-23 in the treatment of patients with certain rheumatic immune-mediated conditions such as axSpA. Despite their coincident functions, IL-17A and IL-17F contribute independently to chronic tissue inflammation having somehow non-redundant roles. Although IL-17A has been more widely studied, both IL-17A and IL-17F are overexpressed in PsO, PsA, axSpA and HS. Therefore, dual inhibition of IL-17A and IL-17F could provide better outcomes than IL-23 or IL-17A blockade.
Collapse
Affiliation(s)
| | - Luis Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Immunology-Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Julio Ramírez
- Arthritis Unit, Department of Rheumatology, Hospital Clínic and Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Llamas-Velasco
- Department of Dermatology, Hospital Universitario La Princesa, Madrid, Spain
| | | | - Raquel Almodóvar
- Department of Rheumatology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - José Antonio Pinto
- Department of Rheumatology, Complejo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | | | - Pedro Zarco
- Department of Rheumatology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Beatriz Joven
- Department of Rheumatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jordi Gratacós
- Department of Rheumatology, Medicine Department Autonomus University of Barcelona (UAB), I3PT, University Hospital Parc Taulí Sabadell, Barcelona, Spain
| | - Xavier Juanola
- Department of Rheumatology, University Hospital Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Salvador Arias-Santiago
- Department of Dermatology, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Dermatology, Facultad de Medicina, Universidad de Granada, Spain
| | - Jesús Sanz Sanz
- Department of Rheumatology, Hospital Universitario Puerta del Hierro Majadahonda, Madrid, Spain
| | - Rubén Queiro
- Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Juan D. Cañete
- Arthritis Unit, Department of Rheumatology, Hospital Clínic and Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
18
|
Ponde NO, Shoger KE, Khatun S, Sarkar MK, Dey I, Taylor TC, Cisney RN, Arunkumar SP, Gudjonsson JE, Kolls JK, Gottschalk RA, Gaffen SL. SARS-CoV-2 ORF8 Mediates Signals in Macrophages and Monocytes through MyD88 Independently of the IL-17 Receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:252-260. [PMID: 37265402 PMCID: PMC10330444 DOI: 10.4049/jimmunol.2300110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
SARS-CoV-2 has caused an estimated 7 million deaths worldwide to date. A secreted SARS-CoV-2 accessory protein, known as open reading frame 8 (ORF8), elicits inflammatory pulmonary cytokine responses and is associated with disease severity in COVID-19 patients. Recent reports proposed that ORF8 mediates downstream signals in macrophages and monocytes through the IL-17 receptor complex (IL-17RA, IL-17RC). However, generally IL-17 signals are found to be restricted to the nonhematopoietic compartment, thought to be due to rate-limiting expression of IL-17RC. Accordingly, we revisited the capacity of IL-17 and ORF8 to induce cytokine gene expression in mouse and human macrophages and monocytes. In SARS-CoV-2-infected human and mouse lungs, IL17RC mRNA was undetectable in monocyte/macrophage populations. In cultured mouse and human monocytes and macrophages, ORF8 but not IL-17 led to elevated expression of target cytokines. ORF8-induced signaling was fully preserved in the presence of anti-IL-17RA/RC neutralizing Abs and in Il17ra-/- cells. ORF8 signaling was also operative in Il1r1-/- bone marrow-derived macrophages. However, the TLR/IL-1R family adaptor MyD88, which is dispensable for IL-17R signaling, was required for ORF8 activity yet MyD88 is not required for IL-17 signaling. Thus, we conclude that ORF8 transduces inflammatory signaling in monocytes and macrophages via MyD88 independently of the IL-17R.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | | | | | | | - Ipsita Dey
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | - Tiffany C. Taylor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | - Rylee N. Cisney
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | - Samyuktha P. Arunkumar
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | | | | | | | - Sarah L. Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| |
Collapse
|
19
|
Douglas A, Stevens B, Lynch L. Interleukin-17 as a key player in neuroimmunometabolism. Nat Metab 2023; 5:1088-1100. [PMID: 37488456 PMCID: PMC10440016 DOI: 10.1038/s42255-023-00846-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023]
Abstract
In mammals, interleukin (IL)-17 cytokines are produced by innate and adaptive lymphocytes. However, the IL-17 family has widespread expression throughout evolution, dating as far back as cnidaria, molluscs and worms, which predate lymphocytes. The evolutionary conservation of IL-17 suggests that it is involved in innate defence strategies, but also that this cytokine family has a fundamental role beyond typical host defence. Throughout evolution, IL-17 seems to have a major function in homeostatic maintenance at barrier sites. Most recently, a pivotal role has been identified for IL-17 in regulating cellular metabolism, neuroimmunology and tissue physiology, particularly in adipose tissue. Here we review the emerging role of IL-17 signalling in regulating metabolic processes, which may shine a light on the evolutionary role of IL-17 beyond typical immune responses. We propose that IL-17 helps to coordinate the cross-talk among the nervous, endocrine and immune systems for whole-body energy homeostasis as a key player in neuroimmunometabolism.
Collapse
Affiliation(s)
- Aaron Douglas
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
| | - Brenneth Stevens
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Ma H, Zhang W, Liu K, Xu B, Li M, Meng Q, An Z, Chen B. Generation and characterization of QLS22001, a humanized monoclonal antibody that neutralizes IL-17A and IL-17F with an extended half-life. Int Immunopharmacol 2023; 117:109947. [PMID: 37012892 DOI: 10.1016/j.intimp.2023.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/28/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
Therapeutic intervention to block IL-17A signaling has proven to be an effective treatment for numerous autoimmune diseases, including psoriasis, psoriatic arthritis, and axial spondylarthritis. Among the IL-17 family members, IL-17F, which shares 55% sequence homology with IL-17A, has been reported to functionally overlap with IL-17A in many inflammatory diseases. In this study, we describe the generation and characterization of QLS22001, a humanized monoclonal IgG1 antibody with an extended half-life and high affinity for both IL-17A and IL-17F. QLS22001 effectively blocks IL-17A and IL-17F mediated signaling pathways both in vitro and in vivo. Briefly, the YTE (M225Y/S254T/T256E) modification was introduced into the Fc fragment of QLS22001 WT Fc to prolong its half-life, and the resulting construct was named QLS22001. Functionally, it significantly inhibits IL-17A- and IL-17F-stimulated signaling in cell-based IL-6 release and reporter assays. The dual neutralization of the endogenous IL-17A and IL-17F produced by Th17 cells, as opposed to the selective blockade of IL-17A alone, results in a greater suppression of inflammatory cytokine secretion, according to in vitro blockade assays. Furthermore, in an in vivo mouse pharmacodynamic study, QLS22001 blocked human IL-17A-induced mouse keratinocyte chemoattractant (KC) release. In cynomolgus monkey pharmacokinetics evaluation, QLS22001 showed linear pharmacokinetic characteristics with a mean half-life of 31.2 days, while its parent antibody, QLS22001 WT Fc, had a mean half-life of 17.2 days. In addition, QLS22001 does not induce cytokine release in a human whole-blood assay. Collectively, these data provide a comprehensive preclinical characterization of QLS22001 and support its clinical development.
Collapse
Affiliation(s)
- Huimin Ma
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China
| | - Wei Zhang
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China
| | - Ke Liu
- Nonclinical Development Department, Qilu Pharmaceutical R&D Center Ltd, Jinan, China
| | - Baoxin Xu
- Nonclinical Development Department, Qilu Pharmaceutical R&D Center Ltd, Jinan, China
| | - Minyu Li
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Qingyun Meng
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Zhenming An
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Bo Chen
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China.
| |
Collapse
|
21
|
Asahina A, Okubo Y, Morita A, Tada Y, Igarashi A, Langley RG, Deherder D, Matano M, Vanvoorden V, Wang M, Ohtsuki M, Nakagawa H. Bimekizumab Efficacy and Safety in Japanese Patients with Plaque Psoriasis in BE VIVID: A Phase 3, Ustekinumab and Placebo-Controlled Study. Dermatol Ther (Heidelb) 2023; 13:751-768. [PMID: 36648594 PMCID: PMC9984664 DOI: 10.1007/s13555-022-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Bimekizumab treatment resulted in improved clinical outcomes in patients with moderate-to-severe plaque psoriasis in BE VIVID, a 52-week, phase 3, randomized, ustekinumab and placebo-controlled study. We present data from the BE VIVID Japan patient subpopulation. METHODS Globally, patients were randomized to receive bimekizumab 320 mg every 4 weeks (Q4W), ustekinumab (45/90 mg weight-based at baseline and week 4, then every 12 weeks), or placebo (Q4W through week 16, then bimekizumab 320 mg Q4W). Efficacy endpoints included week 16 Psoriasis Area and Severity Index (PASI) 90 and Investigator's Global Assessment (IGA) 0/1, and other outcomes [PASI 100, PASI 75, IGA 0, Dermatology Life Quality Index (DLQI) 0/1, absolute PASI, scalp IGA, Psoriasis Symptoms and Impacts Measure (P-SIM) responses]. Safety analyses were conducted. RESULTS There were 108 Japanese randomized patients (bimekizumab: 62; ustekinumab: 29; placebo: 17). At week 16, bimekizumab-treated patients had a higher clinical response versus ustekinumab and placebo (PASI 90: 85.5% versus 51.7% and 5.9%; IGA 0/1: 82.3% versus 48.3% and 0.0%). Over 52 weeks, improved clinical response was maintained with bimekizumab, including patients switching from placebo at week 16. Overall, the safety profile in Japanese patients was consistent with that observed in the global population. CONCLUSION Bimekizumab resulted in improved clinical response versus ustekinumab and placebo, and was well-tolerated in Japanese patients. TRIAL REGISTRATION NCT03370133.
Collapse
Affiliation(s)
- Akihiko Asahina
- grid.411898.d0000 0001 0661 2073Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yukari Okubo
- grid.410793.80000 0001 0663 3325Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Akimichi Morita
- grid.260433.00000 0001 0728 1069Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yayoi Tada
- grid.264706.10000 0000 9239 9995Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsuyuki Igarashi
- grid.414992.3Department of Dermatology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Richard G. Langley
- grid.55602.340000 0004 1936 8200Division of Clinical Dermatology and Cutaneous Science, Department of Medicine, Dalhousie University, Halifax, NS Canada
| | - Delphine Deherder
- grid.421932.f0000 0004 0605 7243UCB Pharma, Braine L’alleud, Belgium
| | - Mizuho Matano
- UCB Pharma, UCB Japan Co., Ltd, 8-17-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| | - Veerle Vanvoorden
- grid.421932.f0000 0004 0605 7243UCB Pharma, Braine L’alleud, Belgium
| | | | - Mamitaro Ohtsuki
- grid.410804.90000000123090000Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Hidemi Nakagawa
- grid.411898.d0000 0001 0661 2073Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Jrad AIS, Trad M, Bzeih W, El Hasbani G, Uthman I. Role of pro-inflammatory interleukins in osteoarthritis: a narrative review. Connect Tissue Res 2022; 64:238-247. [PMID: 36541851 DOI: 10.1080/03008207.2022.2157270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE This manuscript will summarize the role of pro-inflammatory cytokines and tackle newly discussed ones within the scope of OA pathogenesis as mentioned in the recent literature. This will allow for a better understanding of the mechanisms behind such a complicated disease. MATERIAL AND METHODS Relevant articles were obtained by searching key terms including "pro-inflammatory cytokines," "inflammation," "pathophysiology," "cartilage damage," and "OA" in PubMed and Google Scholar databases. The year ranges set for the selection of the articles was between 2015 -2021. Inclusion criteria was based on the relevance and contribution to the field of the study. RESULTS Osteoarthritis (OA) has a complex multifactorial pathophysiology which is attributed to molecular and biomechanical changes that disrupt the normal balance of synthesis and degradation of articular cartilage and subchondral bone. Pro-inflammatory cytokines, with their wide range of action and intricate signaling pathways, are the constant subject of new discoveries revolving around this inflammatory disease. The available literature indicates that some of these cytokines such as IL-33, IL-17, IL-6, and IL-22 have a direct relation to cartilage degradation, while others like IL-15, IL-1, IL-7, and IL-34 have an indirect one. CONCLUSIONS Inflammation has an essential role in the manifestation of osteoarthritis clinical events. Specifically, certain cytokines exhibit pro-inflammatory properties that are markedly activated during the course of the disease and notably alter the homeostasis of the joint environment. However, clinical trials and observational studies remain insufficient to navigate the varying nature of this disease in humans.
Collapse
Affiliation(s)
| | - Maha Trad
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Wafaa Bzeih
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Georges El Hasbani
- Department of Internal Medicine, St. Vincent's Medical Center, Bridgeport, CT, USA
| | - Imad Uthman
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
23
|
Altieri A, Piyadasa H, Hemshekhar M, Osawa N, Recksiedler B, Spicer V, Hiemstra PS, Halayko AJ, Mookherjee N. Combination of IL-17A/F and TNF-α uniquely alters the bronchial epithelial cell proteome to enhance proteins that augment neutrophil migration. J Inflamm (Lond) 2022; 19:26. [PMCID: PMC9749191 DOI: 10.1186/s12950-022-00323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background The heterodimer interleukin (IL)-17A/F is elevated in the lungs in chronic respiratory disease such as severe asthma, along with the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Although IL-17A/F and TNF-α are known to functionally cooperate to exacerbate airway inflammation, proteins altered by their interaction in the lungs are not fully elucidated. Results We used Slow Off-rate Modified Aptamer-based proteomic array to identify proteins that are uniquely and/or synergistically enhanced by concurrent stimulation with IL-17A/F and TNF-α in human bronchial epithelial cells (HBEC). The abundance of 38 proteins was significantly enhanced by the combination of IL-17A/F and TNF-α, compared to either cytokine alone. Four out of seven proteins that were increased > 2-fold were those that promote neutrophil migration; host defence peptides (HDP; Lipocalin-2 (LCN-2) and Elafin) and chemokines (IL-8, GROα). We independently confirmed the synergistic increase of these four proteins by western blots and ELISA. We also functionally confirmed that factors secreted by HBEC stimulated with the combination of IL-17A/F and TNF-α uniquely enhances neutrophil migration. We further showed that PI3K and PKC pathways selectively control IL-17A/F + TNF-α-mediated synergistic production of HDPs LCN-2 and Elafin, but not chemokines IL-8 and GROα. Using a murine model of airway inflammation, we demonstrated enhancement of IL-17A/F, TNF-α, LCN-2 and neutrophil chemokine KC in the lungs, thus corroborating our findings in-vivo. Conclusion This study identifies proteins and signaling mediated by concurrent IL-17A/F and TNF-α exposure in the lungs, relevant to respiratory diseases characterized by chronic inflammation, especially neutrophilic airway inflammation such as severe asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00323-w.
Collapse
Affiliation(s)
- Anthony Altieri
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Hadeesha Piyadasa
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada ,grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA USA
| | - Mahadevappa Hemshekhar
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Natasha Osawa
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Breann Recksiedler
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Victor Spicer
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Pieter S Hiemstra
- grid.10419.3d0000000089452978Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J Halayko
- grid.21613.370000 0004 1936 9609Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| | - Neeloffer Mookherjee
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
24
|
Paroli M, Spadea L, Caccavale R, Spadea L, Paroli MP, Nante N. The Role of Interleukin-17 in Juvenile Idiopathic Arthritis: From Pathogenesis to Treatment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1552. [PMID: 36363508 PMCID: PMC9696590 DOI: 10.3390/medicina58111552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 04/12/2024]
Abstract
Background and Objectives: Interleukin-17 (IL-17) is a cytokine family consisting of six members and five specific receptors. IL-17A was the first member to be identified in 1993. Since then, several studies have elucidated that IL-17 has predominantly pro-inflammatory activity and that its production is involved in both the defense against pathogens and the genesis of autoimmune processes. Materials and Methods: In this review, we provide an overview of the role of interleukin-17 in the pathogenesis of juvenile idiopathic arthritis (JIA) and its relationship with IL-23, the so-called IL-23-IL-17 axis, by reporting updated findings from the scientific literature. Results: Strong evidence supports the role of interleukin-17A in the pathogenesis of JIA after the deregulated production of this interleukin by both T helper 17 (Th17) cells and cells of innate immunity. The blocking of IL-17A was found to improve the course of JIA, leading to the approval of the use of the human anti-IL17A monoclonal antibody secukinumab in the treatment of the JIA subtypes juvenile psoriatic arthritis (JPsA) and enthesitis-related arthritis (ERA). Conclusions: IL-17A plays a central role in the pathogenesis of JIA. Blocking its production with specific biologic drugs enables the effective treatment of this disabling childhood rheumatic disease.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Faculty of Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Faculty of Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Leopoldo Spadea
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicola Nante
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
25
|
Knizkova D, Pribikova M, Draberova H, Semberova T, Trivic T, Synackova A, Ujevic A, Stefanovic J, Drobek A, Huranova M, Niederlova V, Tsyklauri O, Neuwirth A, Tureckova J, Stepanek O, Draber P. CMTM4 is a subunit of the IL-17 receptor and mediates autoimmune pathology. Nat Immunol 2022; 23:1644-1652. [PMID: 36271145 DOI: 10.1038/s41590-022-01325-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Knizkova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Pribikova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Helena Draberova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tereza Semberova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tijana Trivic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Alzbeta Synackova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Andrea Ujevic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Jana Stefanovic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ales Neuwirth
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jolana Tureckova
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Peter Draber
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic. .,Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
26
|
Yu Y, Weiss RM, Wei SG. Brain Interleukin-17A contributes to neuroinflammation and cardiac dysfunction in rats with myocardial infarction. Front Neurosci 2022; 16:1032434. [PMID: 36312009 PMCID: PMC9606756 DOI: 10.3389/fnins.2022.1032434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Proinflammatory cytokines produced outside the central nervous system can act in the brain to promote sympathetic activation that contributes to the progression of heart failure (HF). Interleukin (IL)-17A, a key inflammatory regulator which orchestrates immune responses to promote chronic inflammation, has been implicated in the pathophysiology of HF. We previously reported that IL-17A acts within the brain, particularly in the hypothalamic paraventricular nucleus (PVN), to increase expression of inflammatory mediators and, consequently, sympathetic outflow. The present study sought to determine whether IL-17A levels are elevated in a rat model of HF induced by myocardial infarction and, if so, whether increased expression of IL-17A in the brain itself contributes to neuroinflammation and cardiac dysfunction in this disease setting. Male SD rats underwent coronary artery ligation (CL) to induce HF or sham operation (SHAM). Compared with SHAM rats, HF rats exhibited significantly increased IL-17A levels in plasma, beginning within 1 week with a peak increase at 4 weeks after CL. IL-17A levels in cerebrospinal fluid (CSF) were also increased in HF rats and correlated with IL-17A levels in the plasma. The mRNA expression of IL-17A and its receptor IL-17RA, but not IL-17RC, was markedly upregulated in the PVN of HF when compared with SHAM rats. Genetic knockdown of IL-17RA by bilateral PVN microinjections of an IL-17RA siRNA AAV virus attenuated mRNA expression of proinflammatory cytokines and chemokines, and ameliorated sympathetic activation and cardiac function in HF rats. These data indicate that elevated expression of IL-17A in the brain in HF contributes to the excessive central inflammatory state and cardiac dysfunction in HF. Interventions to suppress IL-17A/IL-17RA axis in the brain have the potential for treating HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
27
|
Tam HKJ, Robinson PC, Nash P. Inhibiting IL-17A and IL-17F in Rheumatic Disease: Therapeutics Help to Elucidate Disease Mechanisms. Curr Rheumatol Rep 2022; 24:310-320. [PMID: 35861937 PMCID: PMC9470681 DOI: 10.1007/s11926-022-01084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE OF REVIEW Psoriatic arthritis and ankylosing spondylitis belong to a family of rheumatological diseases that lead to painful joint inflammation that impacts on patient function and quality of life. Recent studies have shown that the pro-inflammatory cytokine IL-17 is involved in the inflammatory joint changes in spondyloarthritides. We will review the pathophysiology of IL-17 and review the biological therapies targeting IL-17. RECENT FINDINGS IL-17 is produced and released from T cells and is dependent on multiple upstream cytokines, which include IL-23. There are six members of the IL-17 family that are secreted from multiple populations of T cells. The initial biologic medications have been developed against IL-17A, which is the best-studied member of this family. These medications appear to be effective in controlling joint inflammation, improving patient quality of life, and are generally well tolerated. More recently, medications have been developed that target both IL-17A and IL-17F. In addition, brodalumab, an antibody targeting the IL-17 receptor, has had a resurgence after initial concerns for an increased risk of suicide. IL-17 is an inflammatory cytokine that is critical in the pathobiology of axial spondyloarthritides. Recent biological therapies targeting IL-17A are effective and well tolerated in patients with axial spondyloarthritis. Specific targeting of the Il-17A/F heterodimer is also effective and provides another viable option in the clinician's armamentarium.
Collapse
Affiliation(s)
| | - Philip C. Robinson
- The University of Queensland, Herston, QLD 4006 Australia
- Department of Rheumatology, Royal Brisbane & Women’s Hospital, Herston, QLD Australia
| | - Peter Nash
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
28
|
Differential Spleen miRNA Expression Profile of Beagle Dogs Infected with Toxocara canis. Animals (Basel) 2022; 12:ani12192638. [PMID: 36230377 PMCID: PMC9558963 DOI: 10.3390/ani12192638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Toxocara canis is an unnoticed zoonotic helminth that causes severe disease in animals and humans. The spleen has a wide range of immunological functions in protecting the host against infection by many pathogens, but the function of the spleen in T. canis infection is still to be clarified, especially for the role of spleen microRNAs (miRNAs). In this study, deep sequencing of spleen RNA samples of 18 Beagle puppies was conducted to uncover the miRNAs expression profiling at 24 h post-infection (hpi), 96 hpi, and 36 days post infection (dpi). A total of 20, 34, and 19 differentially expressed miRNAs (DEmiRNAs) were identified at 24 hpi, 96 hpi, and 36 dpi, respectively. These DEmiRNAs (e.g., cfa-miR-206, cfa-miR-331, and cfa-miR-339) could play critical roles in Beagle puppies against T. canis infection, such as influencing inflammatory and immune-related cells and cytokines, by regulating target genes that are tightly associated with host immune function and enriched in immune response and immune pathways based on GO annotation and KEGG enrichment analysis. The current study discovered marked alterations of spleen miRNAs after T. canis infection, with potential effects on the pathogenesis of toxocariasis.
Collapse
|
29
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
30
|
Wilson SC, Caveney NA, Yen M, Pollmann C, Xiang X, Jude KM, Hafer M, Tsutsumi N, Piehler J, Garcia KC. Organizing structural principles of the IL-17 ligand-receptor axis. Nature 2022; 609:622-629. [PMID: 35863378 PMCID: PMC9477748 DOI: 10.1038/s41586-022-05116-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
Abstract
The IL-17 family of cytokines and receptors have central roles in host defence against infection and development of inflammatory diseases1. The compositions and structures of functional IL-17 family ligand-receptor signalling assemblies remain unclear. IL-17E (also known as IL-25) is a key regulator of type 2 immune responses and driver of inflammatory diseases, such as allergic asthma, and requires both IL-17 receptor A (IL-17RA) and IL-17RB to elicit functional responses2. Here we studied IL-25-IL-17RB binary and IL-25-IL-17RB-IL-17RA ternary complexes using a combination of cryo-electron microscopy, single-molecule imaging and cell-based signalling approaches. The IL-25-IL-17RB-IL-17RA ternary signalling assembly is a C2-symmetric complex in which the IL-25-IL-17RB homodimer is flanked by two 'wing-like' IL-17RA co-receptors through a 'tip-to-tip' geometry that is the key receptor-receptor interaction required for initiation of signal transduction. IL-25 interacts solely with IL-17RB to allosterically promote the formation of the IL-17RB-IL-17RA tip-to-tip interface. The resulting large separation between the receptors at the membrane-proximal level may reflect proximity constraints imposed by the intracellular domains for signalling. Cryo-electron microscopy structures of IL-17A-IL-17RA and IL-17A-IL-17RA-IL-17RC complexes reveal that this tip-to-tip architecture is a key organizing principle of the IL-17 receptor family. Furthermore, these studies reveal dual actions for IL-17RA sharing among IL-17 cytokine complexes, by either directly engaging IL-17 cytokines or alternatively functioning as a co-receptor.
Collapse
Affiliation(s)
- Steven C Wilson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathanael A Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Yen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Pollmann
- Divison of Biophysics, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Xinyu Xiang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Maximillian Hafer
- Divison of Biophysics, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob Piehler
- Divison of Biophysics, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Wu X, Xia T, Shin WJ, Yu KM, Jung W, Herrmann A, Foo SS, Chen W, Zhang P, Lee JS, Poo H, Comhair SAA, Jehi L, Choi YK, Ensser A, Jung JU. Viral Mimicry of Interleukin-17A by SARS-CoV-2 ORF8. mBio 2022; 13:e0040222. [PMID: 35343786 PMCID: PMC9040823 DOI: 10.1128/mbio.00402-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers cytokine-mediated inflammation, leading to a myriad of clinical presentations in COVID-19. The SARS-CoV-2 open reading frame 8 (ORF8) is a secreted and rapidly evolving glycoprotein. Patients infected with SARS-CoV-2 variants with ORF8 deleted are associated with mild disease outcomes, but the molecular mechanism behind this is unknown. Here, we report that SARS-CoV-2 ORF8 is a viral cytokine that is similar to but distinct from interleukin 17A (IL-17A) as it induces stronger and broader human IL-17 receptor (hIL-17R) signaling than IL-17A. ORF8 primarily targeted blood monocytes and induced the heterodimerization of hIL-17RA and hIL-17RC, triggering a robust inflammatory response. Transcriptome analysis revealed that besides its activation of the hIL-17R pathway, ORF8 upregulated gene expression for fibrosis signaling and coagulation dysregulation. A naturally occurring ORF8 L84S variant that was highly associated with mild COVID-19 showed reduced hIL-17RA binding and attenuated inflammatory responses. This study reveals how SARS-CoV-2 ORF8 by a viral mimicry of the IL-17 cytokine contributes to COVID-19 severe inflammation. IMPORTANCE Patients infected with SARS-CoV-2 variants lacking open reading frame 8 (ORF8) have been associated with milder infection and disease outcome, but the molecular mechanism behind how this viral accessory protein mediates disease pathogenesis is not yet known. In our study, we revealed that secreted ORF8 protein mimics host IL-17 to activate IL-17 receptors A and C (IL-17RA/C) and induces a significantly stronger inflammatory response than host IL-17A, providing molecular insights into the role of ORF8 in COVID-19 pathogenesis and serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Xin Wu
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tian Xia
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Woo-Jin Shin
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Florida Research & Innovation Center, Port St. Lucie, Florida, USA
| | - Kwang-Min Yu
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Wooram Jung
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alexandra Herrmann
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suan-Sin Foo
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Weiqiang Chen
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pengfei Zhang
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Suzy A. A. Comhair
- Respiratory Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lara Jehi
- Department of Neurology, Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jae U. Jung
- Cancer Biology Department, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Roberts JL, Mella-Velazquez G, Dar HY, Liu G, Drissi H. Deletion of IL-17ra in osteoclast precursors increases bone mass by decreasing osteoclast precursor abundance. Bone 2022; 157:116310. [PMID: 34973492 PMCID: PMC10084774 DOI: 10.1016/j.bone.2021.116310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
Metabolic bone diseases, such as osteoporosis, typically reflect an increase in the number and activity of bone-resorbing osteoclasts that result in a loss of bone mass. Inflammatory mediators have been identified as drivers of both osteoclast formation and activity. The IL-17 family of inflammatory cytokines has gained attention as important contributors to both bone formation and resorption. The majority of IL-17 cytokines signal through receptor complexes containing IL-17a receptor (IL-17ra); however, the role of IL-17ra signaling in osteoclasts remains elusive. In this study, we conditionally deleted Il17ra in osteoclast precursors using LysM-Cre and evaluated the phenotypes of skeletally mature male and female conditional knockout and control mice. The conditional knockout mice displayed an increase in trabecular bone microarchitecture in both the appendicular and axial skeleton. Assessment of osteoclast formation in vitro revealed that deletion of Il17ra decreased osteoclast number, which was confirmed in vivo using histomorphometry. This phenotype was likely driven by a lower abundance of osteoclast precursors in IL-17ra conditional knockout mice. This study suggests that IL-17ra signaling in preosteoclasts can contribute to osteoclast formation and subsequent bone loss.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | | | - Hamid Y Dar
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Guanglu Liu
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
33
|
Li Y, Li M, Qu C, Li Y, Tang Z, Zhou Z, Yu Z, Wang X, Xin L, Shi T. The Polygenic Map of Keloid Fibroblasts Reveals Fibrosis-Associated Gene Alterations in Inflammation and Immune Responses. Front Immunol 2022; 12:810290. [PMID: 35082796 PMCID: PMC8785650 DOI: 10.3389/fimmu.2021.810290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Due to many inconsistencies in differentially expressed genes (DEGs) related to genomic expression changes during keloid formation and a lack of satisfactory prevention and treatment methods for this disease, the critical biomarkers related to inflammation and the immune response affecting keloid formation should be systematically clarified. Normal skin/keloid scar tissue-derived fibroblast genome expression data sets were obtained from the Gene Expression Omnibus (GEO) and ArrayExpress databases. Hub genes have a high degree of connectivity and gene function aggregation in the integration network. The hub DEGs were screened by gene-related protein–protein interactions (PPIs), and their biological processes and signaling pathways were annotated to identify critical biomarkers. Finally, eighty-one hub DEGs were selected for further analysis, and some noteworthy signaling pathways and genes were found to be closely related to keloid fibrosis. For example, IL17RA is involved in IL-17 signal transduction, TIMP2 and MMP14 activate extracellular matrix metalloproteinases, and TNC, ITGB2, and ITGA4 interact with cell surface integrins. Furthermore, changes in local immune cell activity in keloid tissue were detected by DEG expression, immune cell infiltration, and mass CyTOF analyses. The results showed that CD4+ T cells, CD8+ T cells and NK cells were abnormal in keloid tissue compared with normal skin tissue. These findings not only support the key roles of fibrosis-related pathways, immune cells and critical genes in the pathogenesis of keloids but also expand our understanding of targets that may be useful for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Caijie Qu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yongxi Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhike Zhou
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zengzhao Yu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xu Wang
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Linlin Xin
- Department of Dermatology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Tongxin Shi
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Structural and functional insights into a novel pre-clinical-stage antibody targeting IL-17A for treatment of autoimmune diseases. Int J Biol Macromol 2022; 202:529-538. [DOI: 10.1016/j.ijbiomac.2022.01.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
|
35
|
Th17 cells in the liver: balancing autoimmunity and pathogen defense. Semin Immunopathol 2022; 44:509-526. [PMID: 35211777 DOI: 10.1007/s00281-022-00917-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
In addition to carcinogenesis, T helper 17 (Th17) cells (a subtype of CD4 + T lymphocytes) are involved in the acute, chronic, and cirrhotic phases of liver diseases; however, their role in the development and progression of liver diseases remains unclear. It is difficult to elucidate the role of Th17 cells in liver diseases due to their dichotomous nature, i.e., plasticity in terms of pathogenic or host protective function depending on environmental and time phase factors. Moreover, insufficient depletion of Th17 cells by inhibiting the cytokines and transcription factors involved in their production causes difficulties in analyzing their specific role in vitro and in vivo murine models, partially due to complex interaction. This review summarizes the recent progress in understanding the plasticity and function of hepatic Th17 cells and type 3 cytokines.
Collapse
|
36
|
Navrazhina K, Frew JW, Grand D, Williams SC, Hur H, Gonzalez J, Garcet S, Krueger JG. IL-17RA blockade by brodalumab decreases inflammatory pathways in hidradenitis suppurativa skin and serum. Br J Dermatol 2022; 187:223-233. [PMID: 35191018 PMCID: PMC9356983 DOI: 10.1111/bjd.21060] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/26/2021] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is an inflammatory skin disease with dysregulation of the IL-17 axis. Recently we reported clinical benefit of brodalumab, a human anti-IL-17 receptor A (IL-17RA) monoclonal antibody, in moderate-to-severe HS. OBJECTIVES To characterize the molecular response to brodalumab in HS skin and serum, and to identify biomarkers of treatment response. METHODS Ten participants that received 210 mg/1.5mL brodalumab subcutaneously at week 0, 1, 2, 4 and every 2 weeks after were included in this molecular profiling study (NCT03960268). RNA-sequencing and immunohistochemistry of nonlesional, perilesional and lesional HS skin biopsies, and Olink high throughput proteomics of serum at baseline, week 4 and week 12 were assessed. RESULTS At week 12, brodalumab led to a decrease of overall inflammation, and improvement of psoriasis-, keratinocyte- and neutrophil-related pathways. Despite perilesional and lesional skin having no differentially expressed genes at baseline, treatment response was best assessed in perilesional skin. In serum, brodalumab treatment decreased pathways involved in neutrophil inflammation. Patients with higher baseline expression of neutrophil-associated Lipocalin-2 (LCN2) in the skin and IL-17A in the serum demonstrated greater decreases of HS-related inflammatory cytokines as measured in skin biopsies at week 12. CONCLUSIONS IL-17RA inhibition by brodalumab impacts several pathogenic inflammatory axes in HS. Perilesional skin provides a valid and robust assessment of treatment response. Expression of LCN2 in skin and IL-17A in serum may be used as biomarkers to stratify patients that may have a superior molecular response to brodalumab =.
Collapse
Affiliation(s)
- Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - David Grand
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Samuel C Williams
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - Hong Hur
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY, USA
| | - Juana Gonzalez
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
37
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
38
|
Li Y, Liu Y, Sun Y, Ma S, Ma C, Zhou H, Chen G, Liu L, Cai D. Study on the mechanism of Yupingfeng powder in the treatment of immunosuppression based on UPLC⁃QTOF⁃MS, network pharmacology and molecular biology verification. Life Sci 2022; 289:120211. [PMID: 34875251 DOI: 10.1016/j.lfs.2021.120211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
AIMS The current study aims to investigate the effect of Yupingfeng (YPF) powder on immunosuppression, and explore the possible mechanisms. MAIN METHODS Firstly, the monomer components of YPF powder were analyzed by UPLC-QTOF-MS combined with UNIFI automatic analysis platform, then the mechanism of YPF on immunosuppressive treatment was investigated using network pharmacological method, and finally the prediction was verified in a Candida albicans (Can)-induced immunosuppressive BALB/c mouse model. KEY FINDINGS 98 monomer compounds in YPF were obtained. Through virtual analysis and screening on the oral utilization and drug likeness properties of the components, 47 effective components were got. 9 core targets obtained were enriched in IL-17 signaling pathway. In the mouse model, YPF could reduce the number of Can and alleviate Can-induced inflammation in the kidney effectively, upregulate Can-induced low proportion of CD4+/CD8+ of splenic lymphocytes, and increase Can-induced low activity of IL-17 pathway. SIGNIFICANCE These results demonstrate that YPF could improve the immunity of Can-induced immunosuppression in BALB/c mice through upregulating the activity of IL-17 pathway.
Collapse
Affiliation(s)
- Yuhua Li
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, PR China; Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang 524005, Guangdong, PR China
| | - Yongsheng Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Shumei Ma
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, PR China
| | - Chunmei Ma
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, PR China
| | - Huiping Zhou
- Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang 524005, Guangdong, PR China
| | - Gui'e Chen
- Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang 524005, Guangdong, PR China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, PR China.
| | - De Cai
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, PR China.
| |
Collapse
|
39
|
Carter M, Casey S, O'Keeffe GW, Gibson L, Gallagher L, Murray DM. Maternal Immune Activation and Interleukin 17A in the Pathogenesis of Autistic Spectrum Disorder and Why It Matters in the COVID-19 Era. Front Psychiatry 2022; 13:823096. [PMID: 35250672 PMCID: PMC8891512 DOI: 10.3389/fpsyt.2022.823096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is the commonest neurodevelopmental disability. It is a highly complex disorder with an increasing prevalence and an unclear etiology. Consensus indicates that ASD arises as a genetically modulated, and environmentally influenced condition. Although pathogenic rare genetic variants are detected in around 20% of cases of ASD, no single factor is responsible for the vast majority of ASD cases or that explains their characteristic clinical heterogeneity. However, a growing body of evidence suggests that ASD susceptibility involves an interplay between genetic factors and environmental exposures. One such environmental exposure which has received significant attention in this regard is maternal immune activation (MIA) resulting from bacterial or viral infection during pregnancy. Reproducible rodent models of ASD are well-established whereby induction of MIA in pregnant dams, leads to offspring displaying neuroanatomical, functional, and behavioral changes analogous to those seen in ASD. Blockade of specific inflammatory cytokines such as interleukin-17A during gestation remediates many of these observed behavioral effects, suggesting a causative or contributory role. Here, we review the growing body of animal and human-based evidence indicating that interleukin-17A may mediate the observed effects of MIA on neurodevelopmental outcomes in the offspring. This is particularly important given the current corona virus disease-2019 (COVID-19) pandemic as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy is a potent stimulator of the maternal immune response, however the long-term effects of maternal SARS-CoV-2 infection on neurodevelopmental outcomes is unclear. This underscores the importance of monitoring neurodevelopmental outcomes in children exposed to SARS-CoV-2-induced MIA during gestation.
Collapse
Affiliation(s)
- Michael Carter
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Louise Gibson
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Mimpen JY, Snelling SJB, Carr AJ, Dakin SG. Interleukin-17 Cytokines and Receptors: Potential Amplifiers of Tendon Inflammation. Front Bioeng Biotechnol 2021; 9:795830. [PMID: 35004653 PMCID: PMC8733930 DOI: 10.3389/fbioe.2021.795830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Interleukin (IL)-17A, a pro-inflammatory cytokine that is linked to the pathology of several inflammatory diseases, has been shown to be upregulated in early human tendinopathy and to mediate inflammatory and tissue remodelling events. However, it remains unclear which cells in tendons can respond to IL-17A, and how IL-17A, and its family members IL-17F and IL-17AF, can affect intracellular signalling activation and mRNA expression in healthy and diseased tendon-derived fibroblasts. Using well-phenotyped human tendon samples, we show that IL-17A and its receptors IL-17RA and IL-17RC are present in healthy hamstring, and tendinopathic and torn supraspinatus tendon tissue. Next, we investigated the effects of IL-17A, IL-17F, or IL-17AF on cultured patient-derived healthy and diseased tendon-derived fibroblasts. In these experiments, IL-17A treatment significantly upregulated IL6, MMP3, and PDPN mRNA expression in diseased tendon-derived fibroblasts. IL-17AF treatment induced moderate increases in these target genes, while little change was observed with IL-17F. These trends were reflected in the activation of intracellular signalling proteins p38 and NF- κ B p65, which were significantly increased by IL-17A, modestly increased by IL-17AF, and not increased by IL-17F. In combination with TNF-α, all three IL-17 cytokines induced IL6 and MMP3 mRNA expression to similar levels. Therefore, this study confirms that healthy and diseased tendon-derived fibroblasts are responsive to IL-17 cytokines and that IL-17A induces the most profound intracellular signalling activation and mRNA expression of inflammatory genes, followed by IL-17AF, and finally IL-17F. The ability of IL-17 cytokines to induce a direct response and activate diverse pro-inflammatory signalling pathways through synergy with other inflammatory mediators suggests a role for IL-17 family members as amplifiers of tendon inflammation and as potential therapeutic targets in tendinopathy.
Collapse
Affiliation(s)
- Jolet Y. Mimpen
- The Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
41
|
Zhou C, Wu D, Jawale C, Li Y, Biswas PS, McGeachy MJ, Gaffen SL. Divergent functions of IL-17-family cytokines in DSS colitis: Insights from a naturally-occurring human mutation in IL-17F. Cytokine 2021; 148:155715. [PMID: 34587561 PMCID: PMC8627693 DOI: 10.1016/j.cyto.2021.155715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/06/2023]
Abstract
The IL-17 family is structurally distinct from other cytokine subclasses. IL-17A and IL-17F, the most closely related of this family, form homodimers and an IL-17AF heterodimer. While IL-17A and IL-17F exhibit similar activities in many settings, in others their functions are divergent. To better understand the function of IL-17F in vivo, we created mice harboring a mutation in Il17f originally described in humans with unexplained chronic mucosal candidiasis (Ser-65-Leu). We evaluated Il17fS65L/S65L mice in DSS-colitis, as this is one of the few settings where IL-17A and IL-17F exhibit opposing activities. Specifically, IL-17A is protective of the gut epithelium, a finding that was revealed when trials of anti-IL-17A biologics in Crohn's disease failed and recapitulated in many mouse models of colitis. In contrast, mice lacking IL-17F are resistant to DSS-colitis, partly attributable to alterations in intestinal microbiota that mobilize Tregs. Here we report that Il17fS65L/S65L mice do not phenocopy Il17f-/- mice in DSS colitis, but rather exhibited a worsening disease phenotype much like Il17a-/- mice. Gut inflammation in Il17fS65L/S65L mice correlated with reduced Treg accumulation and lowered intestinal levels of Clostridium cluster XIV. Unexpectedly, the protective DSS-colitis phenotype in Il17f-/- mice could be reversed upon co-housing with Il17fS65L/S65L mice, also correlating with Clostridium cluster XIV levels in gut. Thus, the Il17fS65L/S65L phenotype resembles an IL-17A deficiency more closely than IL-17F deficiency in the setting of DSS colitis.
Collapse
Affiliation(s)
- Chunsheng Zhou
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongwen Wu
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA; The Xiangya Hospital, Gastrointestinal Department, Central South University, Changsha, Hunan, PR China
| | - Chetan Jawale
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Li
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha S Biswas
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mandy J McGeachy
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah L Gaffen
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Lücke J, Shiri AM, Zhang T, Kempski J, Giannou AD, Huber S. Rationalizing heptadecaphobia: T H 17 cells and associated cytokines in cancer and metastasis. FEBS J 2021; 288:6942-6971. [PMID: 33448148 DOI: 10.1111/febs.15711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the leading causes of death worldwide. When cancer patients are diagnosed with metastasis, meaning that the primary tumor has spread to at least one different site, their life expectancy decreases dramatically. In the past decade, the immune system´s role in fighting cancer and metastasis has been studied extensively. Importantly, immune cells and inflammatory reactions generate potent antitumor responses but also contribute to tumor development. However, the molecular and cellular mechanisms underlying this dichotomic interaction between the immune system and cancer are still poorly understood. Recently, a spotlight has been cast on the distinct subsets of immune cells and their derived cytokines since evidence has implicated their crucial impact on cancer development. T helper 17 cell (TH 17) cells, which express the master transcriptional factor Retinoic acid-receptor-related orphan receptor gamma t, are among these critical cell subsets and are defined by their production of type 3 cytokines, such as IL-17A, IL-17F, and IL-22. Depending on the tumor microenvironment, these cytokines can also be produced by other immune cell sources, such as T cytotoxic 17 cell, innate lymphoid cells, NKT cells, or γδ T cells. To date, a lot of data have been collected describing the divergent functions of IL-17A, IL-17F, and IL-22 in malignancies. In this comprehensive review, we discuss the role of these TH 17- and non-TH 17-derived type 3 cytokines in different tumor entities. Furthermore, we will provide a structured insight into the strict regulation and subsequent downstream mechanisms of these cytokines in cancer and metastasis.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
43
|
Qiu AW, Huang DR, Li B, Fang Y, Zhang WW, Liu QH. IL-17A injury to retinal ganglion cells is mediated by retinal Müller cells in diabetic retinopathy. Cell Death Dis 2021; 12:1057. [PMID: 34750361 PMCID: PMC8575984 DOI: 10.1038/s41419-021-04350-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
Diabetic retinopathy (DR), the most common and serious ocular complication, recently has been perceived as a neurovascular inflammatory disease. However, role of adaptive immune inflammation driven by T lymphocytes in DR is not yet well elucidated. Therefore, this study aimed to clarify the role of interleukin (IL)-17A, a proinflammatory cytokine mainly produced by T lymphocytes, in retinal pathophysiology particularly in retinal neuronal death during DR process. Ins2Akita (Akita) diabetic mice 12 weeks after the onset of diabetes were used as a DR model. IL-17A-deficient diabetic mice were obtained by hybridization of IL-17A-knockout (IL-17A-KO) mouse with Akita mouse. Primarily cultured retinal Müller cells (RMCs) and retinal ganglion cells (RGCs) were treated with IL-17A in high-glucose (HG) condition. A transwell coculture of RGCs and RMCs whose IL-17 receptor A (IL-17RA) gene had been silenced with IL-17RA-shRNA was exposed to IL-17A in HG condition and the cocultured RGCs were assessed on their survival. Diabetic mice manifested increased retinal microvascular lesions, RMC activation and dysfunction, as well as RGC apoptosis. IL-17A-KO diabetic mice showed reduced retinal microvascular impairments, RMC abnormalities, and RGC apoptosis compared with diabetic mice. RMCs expressed IL-17RA. IL-17A exacerbated HG-induced RMC activation and dysfunction in vitro and silencing IL-17RA gene in RMCs abolished the IL-17A deleterious effects. In contrast, RGCs did not express IL-17RA and IL-17A did not further alter HG-induced RGC death. Notably, IL-17A aggravated HG-induced RGC death in the presence of intact RMCs but not in the presence of RMCs in which IL-17RA gene had been knocked down. These findings establish that IL-17A is actively involved in DR pathophysiology and particularly by RMC mediation it promotes RGC death. Collectively, we propose that antagonizing IL-17RA on RMCs may prevent retinal neuronal death and thereby slow down DR progression.
Collapse
Affiliation(s)
- Ao-Wang Qiu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Da-Rui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Bin Li
- Women & Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Yuan Fang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Wei-Wei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
| |
Collapse
|
44
|
Harada N, Okamura Y, Kono T, Sakai M, Hikima JI. Identification of two interleukin 17 receptor C (IL-17RC) genes and their binding activities to three IL-17A/F ligands in the Japanese medaka, Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104179. [PMID: 34171369 DOI: 10.1016/j.dci.2021.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
In mammals, interleukin (IL)-17 receptor C (IL-17RC) and IL-17RA mediate IL-17A and IL-17F signaling to produce mucin, antimicrobial peptides, and maintain healthy intestinal flora. However, IL-17RC signaling in fish remains unclear. In this study, three il17rc transcripts (il17rca1, il17rca2, and il17rcb) from the Japanese medaka (Oryzias latipes) were cloned; il17rca1 and il17rca2 mRNAs were alternatively spliced from il17rca pre-mRNA as transcript variants. The il17rca and il17rcb genes were located on chromosomes 7 and 5, respectively. Teleost clades containing medaka il17rca and il17rcb clustered separately from the tetrapod clade. In adult tissues, il17rca1 expression was significantly higher than il17rca2 and il17rcb. Conversely, il17rcb expression was significantly higher in embryos and larvae. These expression patterns changed following infection with Edwardsiella piscicida and Aeromonas hydrophila. Furthermore, an immunoprecipitation assay using recombinant IL-17RCs and rIL-17A/Fs suggested that, in teleosts, three ligands could function in signaling through two IL-17RCs.
Collapse
Affiliation(s)
- Nanaki Harada
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
45
|
Oliver R, Krueger JG, Glatt S, Vajjah P, Mistry C, Page M, Edwards H, Garcet S, Li X, Dizier B, Maroof A, Watling M, El Baghdady A, Baeten D, Ionescu L, Shaw S. Bimekizumab for the treatment of moderate-to-severe plaque psoriasis: efficacy, safety, pharmacokinetics, pharmacodynamics and transcriptomics from a phase IIa, randomized, double-blind multicentre study. Br J Dermatol 2021; 186:652-663. [PMID: 34687214 PMCID: PMC9303624 DOI: 10.1111/bjd.20827] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Bimekizumab is a monoclonal antibody that selectively inhibits both interleukin (IL)-17A and IL-17F, which is currently under investigation for treatment of moderate-to-severe plaque psoriasis. Maintenance dosing every 4 weeks is well established with IL-17 inhibitors for psoriasis. OBJECTIVES To investigate the possible dosing interval during bimekizumab maintenance therapy to maintain clear skin, to inform phase III studies. METHODS Forty-nine patients with moderate-to-severe plaque psoriasis received bimekizumab 320 mg at weeks 0/4, followed at week 16 by bimekizumab 320 mg (n = 17) or placebo (n = 32). Efficacy, safety, pharmacokinetics, immunogenicity and biopsy transcriptomic analyses were assessed to week 28. RESULTS At week 8, 47% of patients achieved a 100% improvement from baseline in Psoriasis Area and Severity Index (PASI 100), increasing to 57% at week 12 (8 weeks after the second dose) before decreasing. In those who received bimekizumab at week 16, PASI 100 rate increased to comparable peak levels at week 20, but reduced by week 28 to 41% (12 weeks after the third dose). The week 8 transcriptional signature observed in lesional psoriatic skin rapidly normalized to levels consistent with nonlesional skin, resulting in molecular remission. Keratinocyte-related gene products such as CXCL1 (C-X-C motif chemokine ligand 1), IL-8 (encoded by the CXCL8 gene), CCL20 (C-C motif chemokine 20), IL-36γ and IL-17C were profoundly normalized to levels associated with nonlesional skin. CONCLUSIONS Here, inhibition of IL-17F in addition to IL-17A resulted in rapid, deep clinical responses. Additionally, profound normalization of keratinocyte biology and the psoriatic transcriptome was observed, including normalization of both IL17 and IL23 gene expression by week 8. These data provide evidence to support evaluation of bimekizumab maintenance dosing both every 8 and every 4 weeks in phase III clinical trials.
Collapse
Affiliation(s)
| | - J G Krueger
- The Rockefeller University, New York, NY, USA
| | | | | | - C Mistry
- UCB Pharma, Slough, UK.,Veramed, London, UK
| | | | | | - S Garcet
- The Rockefeller University, New York, NY, USA
| | - X Li
- The Rockefeller University, New York, NY, USA
| | - B Dizier
- UCB Pharma, Braine-l'Alleud, Belgium
| | | | | | - A El Baghdady
- Institute of Pharmaceutical Science, King's College London, London, UK
| | | | | | | |
Collapse
|
46
|
Oikonomou V, Break TJ, Gaffen SL, Moutsopoulos NM, Lionakis MS. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol 2021; 72:286-297. [PMID: 34418591 PMCID: PMC8578378 DOI: 10.1016/j.coi.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh PA, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
47
|
Break TJ, Oikonomou V, Dutzan N, Desai JV, Swidergall M, Freiwald T, Chauss D, Harrison OJ, Alejo J, Williams DW, Pittaluga S, Lee CCR, Bouladoux N, Swamydas M, Hoffman KW, Greenwell-Wild T, Bruno VM, Rosen LB, Lwin W, Renteria A, Pontejo SM, Shannon JP, Myles IA, Olbrich P, Ferré EMN, Schmitt M, Martin D, Barber DL, Solis NV, Notarangelo LD, Serreze DV, Matsumoto M, Hickman HD, Murphy PM, Anderson MS, Lim JK, Holland SM, Filler SG, Afzali B, Belkaid Y, Moutsopoulos NM, Lionakis MS. Response to Comments on "Aberrant type 1 immunity drives susceptibility to mucosal fungal infections". Science 2021; 373:eabi8835. [PMID: 34529475 PMCID: PMC10120387 DOI: 10.1126/science.abi8835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Puel and Casanova and Kisand et al. challenge our conclusions that interferonopathy and not IL-17/IL-22 autoantibodies promote candidiasis in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. We acknowledge that conclusive evidence for causation is difficult to obtain in complex human diseases. However, our studies clearly document interferonopathy driving mucosal candidiasis with intact IL-17/IL-22 responses in Aire-deficient mice, with strong corroborative evidence in patients.
Collapse
Affiliation(s)
- Timothy J. Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicolas Dutzan
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Oliver J. Harrison
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Julie Alejo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Drake W. Williams
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Chyi-Chia R. Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevin W. Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Wint Lwin
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Andy Renteria
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sergio M. Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD, USA
| | - John P. Shannon
- Viral Immunity and Pathogenesis Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
| | - Ian A. Myles
- Epithelial Therapeutics Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
| | - Peter Olbrich
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, MD, USA
| | - Elise M. N. Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Monica Schmitt
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, NIDCR, NIH, Bethesda, Maryland, USA
| | | | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Norma V. Solis
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | | | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Scott G. Filler
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Niki M. Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
48
|
Tran A, He W, Chen JTC, Wellhauser L, Hopperton KE, Bazinet RP, Belsham DD. Palmitate-mediated induction of neuropeptide Y expression occurs through intracellular metabolites and not direct exposure to proinflammatory cytokines. J Neurochem 2021; 159:574-589. [PMID: 34482548 DOI: 10.1111/jnc.15504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022]
Abstract
A contributing factor to the development of obesity is the consumption of a diet high in saturated fatty acids, such as palmitate. These fats induce hypothalamic neuroinflammation, which dysregulates neuronal function and induces orexigenic neuropeptide Y (Npy) to promote food intake. An inflammatory cytokine array identified multiple candidates that could mediate palmitate-induced up-regulation of Npy mRNA levels. Of these, visfatin or nicotinamide phosphoribosyltransferase (NAMPT), macrophage migratory inhibitory factor (MIF), and IL-17F were chosen for further study. Direct treatment of the neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing mHypoE-46 neuronal cell line with the aforementioned cytokines demonstrated that visfatin could directly induce Npy mRNA expression. Preventing the intracellular metabolism of palmitate through long-chain acyl-CoA synthetase (ACSL) inhibition was sufficient to block the palmitate-mediated increase in Npy gene expression. Furthermore, thin-layer chromatography revealed that in neurons, palmitate is readily incorporated into ceramides and defined species of phospholipids. Exogenous C16 ceramide, dipalmitoyl-phosphatidylcholine, and dipalmitoyl-phosphatidylethanolamine were sufficient to significantly induce Npy expression. This study suggests that the intracellular metabolism of palmitate and elevation of metabolites, including ceramide and phospholipids, are responsible for the palmitate-mediated induction of the potent orexigen Npy. Furthermore, this suggests that the regulation of Npy expression is less reliant on inflammatory cytokines per se than palmitate metabolites in a model of NPY/AgRP neurons. These lipid species likely induce detrimental downstream cellular signaling events ultimately causing an increase in feeding, resulting in an overweight phenotype and/or obesity.
Collapse
Affiliation(s)
- Andy Tran
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Wenyuan He
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Jim T C Chen
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Leigh Wellhauser
- Department of Physiology, University of Toronto, Ontario, Canada
| | | | | | - Denise D Belsham
- Department of Physiology, University of Toronto, Ontario, Canada.,Medicine, University of Toronto, Ontario, Canada.,Obstetrics and Gynaecology, University of Toronto, Ontario, Canada
| |
Collapse
|
49
|
Ali Z, Matthews R, Al-Janabi A, Warren RB. Bimekizumab: a dual IL-17A and IL-17F inhibitor for the treatment of psoriasis and psoriatic arthritis. Expert Rev Clin Immunol 2021; 17:1073-1081. [PMID: 34384327 DOI: 10.1080/1744666x.2021.1967748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Interleukin (IL)-17 is critical in the pathogenesis of psoriasis and psoriatic arthritis (PsA) with most data suggesting that IL-17A alone was the key cytokine. However, in vitro and in vivo studies have suggested dual blockade of IL-17A and IL-17 F may be more effective than IL-17 A blockade alone. Bimekizumab is the first human monoclonal antibody to exert simultaneous specific inhibition of IL-17A and IL-17 F, and has been studied in several phase II/III trials for psoriasis and PsA. AREAS COVERED Bimekizumab is not currently licensed for use. A literature search identified clinical trials examining the efficacy and safety of bimekizumab for psoriasis and PsA, and these were critically appraised. EXPERT OPINION Clinical trials of bimekizumab have been promising, demonstrating a rapid onset of response and superior efficacy compared to three currently licensed biologics: secukinumab, ustekinumab, and adalimumab. Bimekizumab maintains a high level of efficacy with maintenance dosing intervals of 8 weeks, compared with 4 weeks for currently licensed IL-17A antagonists. No unexpected adverse events have been identified, although mild-to-moderate fungal infections occur in approximately 10%. Studies over longer time periods involving additional active comparators would be valuable in further defining the role of bimekizumab amongst currently available treatments.
Collapse
Affiliation(s)
- Zara Ali
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, the University of Manchester, UK
| | | | - Ali Al-Janabi
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, the University of Manchester, UK
| | - Richard B Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, the University of Manchester, UK
| |
Collapse
|
50
|
Reich K, Warren RB, Lebwohl M, Gooderham M, Strober B, Langley RG, Paul C, De Cuyper D, Vanvoorden V, Madden C, Cioffi C, Peterson L, Blauvelt A. Bimekizumab versus Secukinumab in Plaque Psoriasis. N Engl J Med 2021; 385:142-152. [PMID: 33891380 DOI: 10.1056/nejmoa2102383] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bimekizumab is a monoclonal IgG1 antibody that selectively inhibits both interleukin-17A and interleukin-17F. The efficacy and safety of bimekizumab as compared with secukinumab, which selectively inhibits interleukin-17A alone, in patients with moderate-to-severe plaque psoriasis have not been extensively examined. METHODS In this phase 3b trial, we randomly assigned patients with moderate-to-severe plaque psoriasis, in a 1:1 ratio, to receive bimekizumab subcutaneously at a dose of 320 mg every 4 weeks or secukinumab subcutaneously at a dose of 300 mg weekly to week 4, followed by every 4 weeks to week 48. At week 16, patients receiving bimekizumab underwent rerandomization, in a 1:2 ratio, to receive maintenance dosing every 4 weeks or every 8 weeks to week 48. The primary end point was 100% reduction from baseline in the Psoriasis Area and Severity Index (PASI) score at week 16. The primary analysis was first tested for the noninferiority of bimekizumab to secukinumab at a margin of -10 percentage points and then tested for superiority. RESULTS A total of 1005 patients were screened and 743 were enrolled; 373 patients were assigned to receive bimekizumab and 370 to receive secukinumab. At week 16, a total of 230 patients (61.7%) in the bimekizumab group and 181 (48.9%) in the secukinumab group had a 100% reduction from baseline in the PASI score (PASI 100) (adjusted risk difference, 12.7 percentage points; 95% confidence interval [CI], 5.8 to 19.6); bimekizumab was shown to be noninferior and superior to secukinumab (P<0.001 for noninferiority and superiority). At week 48, a total of 250 patients (67.0%) treated with bimekizumab had a PASI 100 response, as compared with 171 patients (46.2%) treated with secukinumab (adjusted risk difference, 20.9 percentage points; 95% CI, 14.1 to 27.7; P<0.001). At the week 4 time point, 265 patients (71.0%) in the bimekizumab group had 75% or greater reduction from baseline in the PASI score, as compared with 175 patients (47.3%) in the secukinumab group (adjusted risk difference, 23.7; 95% CI, 17.0 to 30.4; P<0.001). Oral candidiasis occurred more often with bimekizumab (72 patients, 19.3%) than with secukinumab (11 patients, 3.0%). CONCLUSIONS In patients with moderate-to-severe psoriasis, treatment with bimekizumab resulted in greater skin clearance than treatment with secukinumab over 16 and 48 weeks but was associated with oral candidiasis (predominantly mild or moderate as recorded by the investigator). Longer and larger trials are required to determine the comparative effect and risks of interleukin-17 inhibitors in psoriasis. (Funded by UCB Pharma; BE RADIANT ClinicalTrials.gov number, NCT03536884.).
Collapse
Affiliation(s)
- Kristian Reich
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Richard B Warren
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Mark Lebwohl
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Melinda Gooderham
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Bruce Strober
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Richard G Langley
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Carle Paul
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Dirk De Cuyper
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Veerle Vanvoorden
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Cynthia Madden
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Christopher Cioffi
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Luke Peterson
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| | - Andrew Blauvelt
- From the Center for Translational Research in Inflammatory Skin Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (K.R.); the Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, United Kingdom (R.B.W.); the Icahn School of Medicine at Mount Sinai, New York (M.L.); the SKiN Centre for Dermatology, Probity Medical Research, Peterborough, and Queen's University, Kingston, ON (M.G.), and Dalhousie University, Halifax, NS (R.G.L.) - all in Canada; Yale University, New Haven, and Central Connecticut Dermatology Research, Cromwell - both in Connecticut (B.S.); Paul Sabatier University, Toulouse, France (C.P.); UCB Pharma, Brussels (D.D.C., V.V.); UCB Pharma, Raleigh, NC (C.M., C.C., L.P.); and the Oregon Medical Research Center, Portland (A.B.)
| |
Collapse
|