1
|
Gales L. Detection and clearance in Alzheimer's disease: leading with illusive chemical, structural and morphological features of the targets. Neural Regen Res 2024; 19:497-498. [PMID: 37721271 DOI: 10.4103/1673-5374.380897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Luís Gales
- i3S - Instituto de Investigação e Inovação em Saúde; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| |
Collapse
|
2
|
Shi MY, Wang Y, Shi Y, Tian R, Chen X, Zhang H, Wang K, Chen Z, Chen R. SETDB1-mediated CD147-K71 di-methylation promotes cell apoptosis in non-small cell lung cancer. Genes Dis 2024; 11:978-992. [PMID: 37692516 PMCID: PMC10491884 DOI: 10.1016/j.gendis.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 09/12/2023] Open
Abstract
Protein post-translational modifications (PTMs) are at the heart status of cellular signaling events and broadly involved in tumor progression. CD147 is a tumor biomarker with various PTMs, promoting tumor metastasis and metabolism reprogramming. Nevertheless, the relationship between the PTMs of CD147 and apoptosis has not been reported. In our study, we produced a specific anti-CD147-K71 di-methylation (CD147-K71me2) antibody by immunizing with a di-methylated peptide and observed that the level of CD147-K71me2 in non-small cell lung cancer (NSCLC) tissues were lower than that in NSCLC adjacent tissues. SETDB1 was identified as the methyltransferase catalyzing CD147 to generate CD147-K71me2. RNA-seq showed that FOSB was the most significant differentially expressed gene (DEG) between wild-type CD147 (CD147-WT) and K71-mutant CD147 (CD147-K71R) groups. Subsequently, we found that CD147-K71me2 promoted the expression of FOSB by enhancing the phosphorylation of p38, leading to tumor cell apoptosis. In vivo experiments showed that CD147-K71me2 significantly inhibited tumor progression by promoting cell apoptosis. Taken together, our findings indicate the inhibitory role of CD147-K71me2 in tumor progression from the perspective of post-translational modification, which is distinct from the pro-cancer function of CD147 itself, broadening our perspective on tumor-associated antigen CD147.
Collapse
Affiliation(s)
| | | | | | - Ruofei Tian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaohong Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hai Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
3
|
Kilinç Y, Zaman BT, Bakirdere S, Özdoğan N. Dual techniques for trace copper determination: DES/Dithizone based liquid phase microextraction-flame atomic absorption spectrophotometry and digital image based colorimetric probe. Food Chem 2024; 432:137244. [PMID: 37659325 DOI: 10.1016/j.foodchem.2023.137244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
In this study, a sample preparation procedure was developed to preconcentrate copper ions from aqueous samples for determination by flame atomic absorption spectrometry (FAAS) and digital image based colorimetry (DIC) systems. This was achieved by complexing copper ions with dithizone (Cu-DZ) and extracting the complex from aqueous solution in a single step. For the DES/DZ-FAAS system, a low detection limit of 2.3 ng mL-1 was recorded over a broad and linear working range. For the DIC system, the linear relationship between the change in red color intensity of the red-green-blue (RGB) color scale and the concentration of copper in the Cu-DZ complex was utilized for the validation of the method. The DIC system also recorded a broad and linear working range with a satisfactory detection limit of 14.7 ng mL-1. Spike recovery experiments performed with eucalyptus tea extracts yielded high recovery results in the range of 91-107%.
Collapse
Affiliation(s)
- Yağmur Kilinç
- Zonguldak Bülent Ecevit University, Institute of Science, Department of Environmental Engineering, 67100 Zonguldak, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Chemistry Department, 34210 İstanbul, Türkiye
| | - Sezgin Bakirdere
- Yıldız Technical University, Chemistry Department, 34210 İstanbul, Türkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670 Çankaya, Ankara, Türkiye.
| | - Nizamettin Özdoğan
- Zonguldak Bülent Ecevit University, Institute of Science, Department of Environmental Engineering, 67100 Zonguldak, Türkiye.
| |
Collapse
|
4
|
Jia J, Zhang S, Ma L, Wang S, Shen C, She Y. Gold nanobipyramid colorimetric sensing array for the differentiation of strong aroma-type baijiu with different geographical origins. Food Chem 2024; 432:137197. [PMID: 37633142 DOI: 10.1016/j.foodchem.2023.137197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
It is of great significance to quickly and effectively distinguish strong aroma-type baijiu (SAB) with the largest baijiu market share and the most extensive production regions. Colorimetric sensor arrays based on gold nanobipyramids (AuNBPs) with extraordinary plasmonic properties were constructed for the differentiation of SAB from different geographical origins. The sensing strategy was based on silver deposition on different morphologies of AuNBPs under different reducing conditions containing amino or hydroxyl groups. The deposition process can be effective for distinguishing differences in baijiu due to the chemical interaction between the trace ingredients in baijiu and reductants. The colorimetric sensor arrays were implemented for the response of the main ingredients and further used for the differentiation of SAB from different regions by linear discriminant analysis. The results showed that the sensing strategy had excellent performance in distinguishing SAB from different origins, and provides a promising application strategy for baijiu quality control.
Collapse
Affiliation(s)
- Junjie Jia
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Suyi Zhang
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China.
| | - Long Ma
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Songtao Wang
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China.
| | - Caihong Shen
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
5
|
Lai Q, Niu Q, Zhang C, Reis NM, Long M, Wang F, Liu Z. Integrated Cu-Au stereo microelectrode arrays and microfluidic channels for the electrochemical detection of glucose. Food Chem 2024; 432:137229. [PMID: 37633136 DOI: 10.1016/j.foodchem.2023.137229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Noble and transition metal nanomaterials are widely used in glucose sensing. However, the fabrication of these sensors still suffers from complex nanomaterial synthesis process and unstable nanomaterial loading on sensing surfaces. Herein, a Cu-Au bimetallic microelectrode array was prepared via local electrochemical deposition and electrochemical reduction without the need for templates and additional nanomaterial preparation processes. Based on the COMSOL computational fluid study, the obtained microelectrode arrays combined with microfluidic channels allow the continuous and rapid detection of glucose. Large number of active sites on the surface of 3D nano-arrays contributes to excellent sensing performance for glucose, with good linear detection ranges in 10 µM to 4 × 102 µM and 4 × 102 µM to 4 × 105 µM, and a low detection limit of 284 nM. The feasibility of sensor in real sample was verified by detecting glucose in beverages with good recoveries ranging from 95.50% to 104.31%.
Collapse
Affiliation(s)
- Qingteng Lai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250033, China
| | - Qibin Niu
- State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Chi Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Claverton Down, Bath BA27AY, UK
| | - Mengqiu Long
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Fuliang Wang
- State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| |
Collapse
|
6
|
Aliakbarpour S, Amjadi M, Hallaj T. A colorimetric assay for H 2O 2 and glucose based on the morphology transformation of Au/Ag nanocages to nanoboxes. Food Chem 2024; 432:137273. [PMID: 37660579 DOI: 10.1016/j.foodchem.2023.137273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Herein, we introduced a sensitive colorimetric platform for hydrogen peroxide (H2O2) assay based on gold/silver (Au/Ag) nanocages with porous structure. In the presence of H2O2, the morphology of hollow Au/Ag nanocages was converted to closed nanoboxes, altering their localized surface plasmon resonance (LSPR) peak position and the solution color from light blue to deep blue. The morphology transformation and LSPR peak position of Au/Ag nanocages were proportional to H2O2 concentration at the range of 0.1 to 50 µM. The limit of detection (LOD) was obtained to be 0.02 µM, and the relative standard deviation (RSD, for 0.2, 2.0, and 20 µM) was 2.7, 2.3, and 2.9%, respectively. Moreover, a smartphone-based colorimetric sensor was developed for H2O2 assay at the concentration range of 0.25-4.0 µM, with LOD of 0.2 µM and RSD of 3.2, 2.5, and 2.9% (for 0.5, 1.0, and 3.0 µM, respectively). We exploited the established sensor for glucose assay by measuring the generated H2O2 from the enzymatic reaction between glucose and glucose oxidase. There was a linear relationship between LSPR peak wavelength variations and the amount of glucose from 1.0 to 50 µM, with LOD of 0.4 µM and RSD of 3.2, 3.1, and 3.8% (for 2.0, 10, and 30 µM, respectively). The sensor was successfully applied to determine H2O2 and glucose in food and human serum samples, respectively.
Collapse
Affiliation(s)
- Saeid Aliakbarpour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
7
|
Liu S, Rong Y, Chen Q, Ouyang Q. Colorimetric sensor array combined with chemometric methods for the assessment of aroma produced during the drying of tencha. Food Chem 2024; 432:137190. [PMID: 37633147 DOI: 10.1016/j.foodchem.2023.137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The aroma produced during drying is an important indicator of tencha and needs to be monitored. This study constructed an olfactory visualization system for assessing tencha aroma using colorimetric sensor array (CSA) combined with chemometric methods. The 16 chemically responsive dyes were selected to obtain aroma information of tencha samples and extracted image data of aroma information by machine vision algorithms. Subsequently, k-nearest neighbor, support vector machine, classification and regression tree, and random forest (RF), four qualitative models were applied to build the mathematical models. The RF model with nine principal components was preferred, with recognition rate of 100.00% and 91.07% for the training and prediction sets, respectively. The experimental results showed that CSA combined with the RF model can be effectively applied to assess tencha aroma. This study provided a scientific and novel method to maintain the stability of tencha quality in the production process.
Collapse
Affiliation(s)
- Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
8
|
Yan X, Chen K, Jia H, Zhao Q, Du G, Guo Q, Chen H, Yuan Y, Yue T. Infiltration of porcine pancreatic lipase into magnetic hierarchical mesoporous UiO-66-NH 2 metal-organic frameworks for efficient detoxification of patulin from apple juice. Food Chem 2024; 431:137172. [PMID: 37603997 DOI: 10.1016/j.foodchem.2023.137172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Patulin (PAT) is a mycotoxin known to globally contaminate fruits. The economic losses and health hazards caused by PAT desires a safe and efficient strategy for detoxifying PAT. Here, a magnetic core-shell hierarchical mesoporous metal-organic framework (Fe3O4@HMUiO-66-NH2) was synthesized via a salt-assisted nanoemulsion guided assembly method. This mesoporous structure (centered at 4.25 nm) allowed porcine pancreatic lipase (PPL) to infiltrate into the MOF shell at an immobilized amount of 255 mg/g, providing protection for PPL and enabling rapid separation and recovery. Compared with free PPL, PPL/Fe3O4@HMUiO-66-NH2 at 70 °C possessed 4.7 folds improved thermal stability in terms of half-life. The detoxification rates of immobilized enzyme for PAT in neutral water, acidic water, and apple juice were 99.6%, 60.9%, and 52.6%, respectively. Moreover, the so designed PPL/Fe3O4@HMUiO-66-NH2 showed extraordinary storage stability, reusability, and biocompatibility. Crucially, the quality of apple juice did not change significantly after PPL/Fe3O4@HMUiO-66-NH2 treatment, which facilitated its application in apple juice. The magnetic core-shell mesoporous structure along with the revealed mechanism of immobilized enzyme detoxification of PAT provide tremendous opportunity for designing a safe and efficient PAT detoxification method.
Collapse
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qiannan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710067, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710067, China.
| |
Collapse
|
9
|
Xu X, Gao J, Ran M, Guo Y, Feng D, Zhang L. Nanoconfinement of functionalized ionic liquid for enhanced adsorption and rapid sensitive detection of phenylurea herbicides in food and environmental samples. Food Chem 2024; 431:137149. [PMID: 37598653 DOI: 10.1016/j.foodchem.2023.137149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The novel ILs@CNTs was synthesized by encapsulating task-specific ionic liquids (ILs) within carbon nanotubes (CNTs) derived from ZIF-67. These hybrid materials served as multifunctional adsorbents enabling simultaneous sorptive removal, sensitive detection, molecular sieve selection, and magnetic separation. In contrast to pristine CNTs, ILs@CNTs demonstrate significantly enhanced adsorption of phenylurea herbicides (PUHs). The complex interactions between ILs@CNTs and PUHs were comprehensively analyzed using a combination of experimental results and theoretical calculations. Furthermore, a magnetic solid phase extraction-high performance liquid chromatography (MSPE-HPLC) method was developed for the determination of multiple trace PUHs in real samples. The method exhibited lower detection limits (0.02-0.03 μg L-1) and higher enrichment factors (131 < EFs < 185). Interestingly, a portable lab-in-a-syringe device was developed to facilitate rapid on-site extraction and enrichment of PUHs. Additionally, the developed methods successfully applied in river water, tea drinks, and cucumber samples, highlighting its substantial potential for rapid PUH detection.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China.
| | - Jiaxin Gao
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Min Ran
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yuhan Guo
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Daming Feng
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
10
|
Hua Y, Liu G, Lin Z, Jie Z, Zhao C, Han J, Chen G, Li L, Huang X, Liu Z, Lv J, Xu D. Engineering of zeolitic imidazolate frameworks based on magnetic three-dimensional graphene as effective and reusable adsorbent to enhance the adsorption and removal of caffeine from tea samples. Food Chem 2024; 431:137143. [PMID: 37604003 DOI: 10.1016/j.foodchem.2023.137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
As more and more adverse health effects of caffeine are being discovered, decaffeinated drinks are receiving increasing attention. In this work, a magnetic imidazole zeolite backbone compounded with three-dimensional graphene was successfully synthesized as a solid adsorbent using a layer-by-layer self-assembly technique, which can rapidly and effectively adsorb caffeine from tea. Meanwhile, the structure and properties of caffeine in tea were investigated by various physicochemical characterization tools. The analytical data showed that Fe3O4@3DGA@ZIF-8 had a specific surface area of 162.9754 m2/g and an adsorption capacity of up to 19.57 mg/g with a maximum adsorption rate of 96.55%, which could be maintained with good adsorption repeated utilization three times. The adsorption isotherm and the adsorption kinetic better fit with the Langmuir model and the preudo-second order kinetic model, respectively. Therefore, Fe3O4@3DGA@ZIF-8 is a good magnetic adsorbent for the separation and the effective removal of caffeine from tea sample.
Collapse
Affiliation(s)
- Yuwei Hua
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Zhou Jie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Chenxi Zhao
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiatong Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Linyun Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Zhongxiao Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| |
Collapse
|
11
|
He S, Ho Row K, Tang W. Deep eutectic solvents based in situ isolation technique for extractive deterpenation of essential oils. Food Chem 2024; 431:137153. [PMID: 37603995 DOI: 10.1016/j.foodchem.2023.137153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Essential oils, intricate blends of volatile compounds obtained from a variety of sources, play a crucial role in numerous industries. To elevate product quality, deterpenation becomes an indispensable step. This study proposes an in situ isolation technique based on deep eutectic solvents (DESs) for the deterpenation of essential oil. Salient features of relevant compounds were obtained using conductor-like screening model for real solvents (COSMO-RS) and density functional theory (DFT) methods to predict deterpenation performance. Tetrabutylammonium chloride (TBAC) was chosen based on the results of theoretical analysis and experiment to extract hydroxy-terpenoids. COSMO-RS was employed to evaluate the extraction performance at different molar ratios, and then combined with experimental analysis to determine the optimal conditions. The σ-profiles of organic solvents and their interactions with terpene revealed n-hexane to be the best solvent for purifying DES. TBAC and terpenoids were obtained through the re-extraction procedure, with a recovery of 81.8-84.4%.
Collapse
Affiliation(s)
- Sile He
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 402-701, Republic of Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 402-701, Republic of Korea.
| | - Weiyang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| |
Collapse
|
12
|
Liu T, Wang ZJ, Shi YZ, Tao R, Huang H, Zhao YL, Luo XD. Curcusinol from the fruit of Carex baccans with antibacterial activity against multidrug-resistant strains. J Ethnopharmacol 2024; 318:116892. [PMID: 37460030 DOI: 10.1016/j.jep.2023.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carex baccans, known as Shan-Bai-Zi or Ye-Gao-Liang in China, is a traditional medicinal herb used by several ethnic groups in Yunnan Province. It is utilized for the treatment of wound infections, ulcers, and dysentery. However, there is currently a dearth of research reports on its antimicrobial potential. AIM OF THE STUDY The substance basis of the antimicrobial activity of C. baccans will be unveiled, and the in vitro and in vivo antibacterial activities against multidrug-resistant bacteria of its major active compounds, as well as their preliminary mechanisms of action, will be investigated. MATERIALS AND METHODS An antibacterial bioactivity-guided isolation method was used to isolate and identify the active compound curcusinol from C. baccans. UPLC-DAD-MS was employed for the quantitative analysis of curcusinol. The antibacterial activity, resistance profile, synergistic effects, anti-biofilm activity, and potential mechanisms of action of curcusinol against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and other multidrug-resistant bacteria (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii) were investigated using various methods, including the broth microdilution method, scanning electron microscopy, time kill assay, multi-generational resistance induction assay, checkerboard synergy assay, anti-biofilm assay, and metabolomics. Furthermore, the therapeutic efficacy of curcusinol was assessed in vivo by establishing an animal skin wound infection model of MRSA. RESULTS Curcusinol was isolated from the fruit of C. baccans, which accounts for 3.1% of the dry weight of the fruit. Curcusinol exhibited significant bactericidal and anti-biofilm activities against antibiotic-resistant Gram-positive bacteria in vitro. Furthermore, curcusinol acted as an antibiotic adjuvant to enhance the activity of various commonly used antibiotics against both Gram-positive and Gram-negative antibiotic-resistant bacteria without cytotoxicity to mammalian cells (A549 and RAW264.7) at 64 μM. Moreover, curcusinol affected arginine biosynthesis, cysteine and methionine metabolism, and alanine, aspartate, and glutamate metabolism significantly in MRSA cells under stress. Additionally, curcusinol effectively treated MRSA-infected mouse skin wounds and accelerated wound healing in vivo. CONCLUSIONS The results of this study not only support the traditional uses of C. baccans but also demonstrate that its major active compound, curcusinol, is an effective plant-derived bactericidal agent and antibacterial adjuvant with potential applications in the treatment of skin infections.
Collapse
Affiliation(s)
- Tie Liu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Yang-Zhu Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Ran Tao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Huan Huang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
13
|
Nazarzadeh Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S, Mohammadinejad R, Ozdemir F, Sahin O, Adiguzel S, Khan H, Zarrabi A, Sharifi E, Kumar A, Mostafavi E, Kouchehbaghi NH, Mattoli V, Zhang F, Jucaud V, Najafabadi AH, Khademhosseini A. Biomedical applications of engineered heparin-based materials. Bioact Mater 2024; 31:87-118. [PMID: 37609108 PMCID: PMC10440395 DOI: 10.1016/j.bioactmat.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Heparin is a negatively charged polysaccharide with various chain lengths and a hydrophilic backbone. Due to its fascinating chemical and physical properties, nontoxicity, biocompatibility, and biodegradability, heparin has been extensively used in different fields of medicine, such as cardiovascular and hematology. This review highlights recent and future advancements in designing materials based on heparin for various biomedical applications. The physicochemical and mechanical properties, biocompatibility, toxicity, and biodegradability of heparin are discussed. In addition, the applications of heparin-based materials in various biomedical fields, such as drug/gene delivery, tissue engineering, cancer therapy, and biosensors, are reviewed. Finally, challenges, opportunities, and future perspectives in preparing heparin-based materials are summarized.
Collapse
Affiliation(s)
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Hulya Yilmaz
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatma Ozdemir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Onur Sahin
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D'Oltremare pad. 20, 80125, Naples, Italy
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| |
Collapse
|
14
|
Li S, Wu Y, Ma X, Pang C, Wang M, Xu Z, Li B. Monitoring levamisole in food and the environment with high selectivity using an electrochemical chiral sensor comprising an MOF and molecularly imprinted polymer. Food Chem 2024; 430:137105. [PMID: 37562261 DOI: 10.1016/j.foodchem.2023.137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
We used an enhanced recognition strategy to fabricate a novel levamisole-detecting chiral electrochemical sensor featuring a metal-organic framework (MOF) combined with a molecularly imprinted polymer (MIP). We first synthesised a Cu/Zn-[benzene-1,3,5-tricarboxylic acid] (Cu/Zn-BTC) MOF as the molecular immobilisation and signal-amplifying unit, and then prepared the MIP (molecular recognition unit) using levamisole as the template on a glassy carbon electrode modified with Cu/Zn-BTC. We obtained a composite chiral sensor with enhanced recognition capability for levamisole after template removal. Using the templated sites as the switch and K3[Fe(CN)6]/K4[Fe(CN)6] as a probe, we established a new method for detecting levamisole in meat products and water bodies. The linear detection range and detection limit of our chiral sensor are 5 to 6000 × 10-11 mol/L and 1.65 × 10-12 mol/L, respectively. Moreover, the sensor exhibited 93.8-109.0% recovery in the detection of levamisole in chicken and other real samples.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China.
| | - Yuwei Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Xionghui Ma
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Chaohai Pang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China.
| | - Zhi Xu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China.
| | - Bei Li
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| |
Collapse
|
15
|
Pang S, Yu H, Zhang Y, Jiao Y, Zheng Z, Wang M, Zhang H, Liu A. Bioscreening specific peptide-expressing phage and its application in sensitive dual-mode immunoassay of SARS-CoV-2 spike antigen. Talanta 2024; 266:125093. [PMID: 37611368 DOI: 10.1016/j.talanta.2023.125093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Biorecognition components with high affinity and selectivity are vital in bioassay to diagnose and treat epidemic disease. Herein a phage display strategy of combining single-amplification-panning with non-amplification-panning was developed, by which a phage displaying cyclic heptapeptide ACLDWLFNSC (peptide J4) with good affinity and specificity to SARS-CoV-2 spike protein (SP) was identified. Molecular docking suggests that peptide J4 binds to S2 subunit by hydrogen bonding and hydrophobic interaction. Then the J4-phage was used as the capture antibody to establish phage-based chemiluminescence immunoassay (CLIA) and electrochemical impedance spectroscopy (EIS) analytical systems. The as-proposed dual-modal immunoassay platform exhibited good sensitivity and reliability in SARS-CoV-2 SP and pseudovirus assay. The limit of detection for SARS-CoV-2 SP by EIS immunoassay is 0.152 pg/mL, which is dramatically lower than that of 42 pg/mL for J4-phage based CLIA. Further, low to 40 transducing units (TU)/mL, 10 TU/mL SARS-CoV-2 pseudoviruses can be detected by the proposed J4-phage based CLIA and electrochemical immunosensor, respectively. Therefore, the as-developed dual mode immunoassays are potential methods to detect SARS-CoV-2. It is also expected to explore various phages with specific peptides to different targets for bioanalysis.
Collapse
Affiliation(s)
- Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yaru Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Yiming Jiao
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China; Qingdao Hightop Biotech Co., Ltd, 369 Hedong Road, Hi-tech Industrial Development Zone, Qingdao, 266112, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Haohan Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, 266071, China.
| |
Collapse
|
16
|
Liu X, Cheng H, Zhao Y, Wang Y, Ge L, Huang Y, Li F. Immobilization-free dual-aptamer-based photoelectrochemical platform for ultrasensitive exosome assay. Talanta 2024; 266:125001. [PMID: 37517342 DOI: 10.1016/j.talanta.2023.125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Exosomes, involved in cancer-specific biological processes, are promising noninvasive biomarkers for early diagnosis of cancer. Herein, an immobilization-free dual-aptamer-based photoelectrochemical (PEC) biosensor was proposed for the enrichment and quantification of cancer exosome based on photoactive bismuch oxyiodide/gold/cadmium sulfide (BiOI/Au/CdS) composites, nucleic acid-based recognition and signal amplification. In this biosensor, the recognition of exosome by two aptamers would trigger the deoxyribonucleotidyl transferase (TdT) enzyme-aided polymerization, leading to the enrichment of alkaline phosphatase (ALP) on Fe3O4 surface. After magnetic separation, ALP could catalyze the generation of ascorbic acid (AA) as electron donor and initiate the following redox cycle reaction for further signal amplification. Furthermore, all the above processes were performed in solution, the recognition and signal amplification efficiency would be superior than the heterogeneous strategy owing to the avoidance of steric hindrance effect. As a result, the proposed PEC biosensor was capable of enriching and detecting of cancer exosomes with high sensitivity and selectivity. The linear range of the biosensor was from 1.0 × 102 particles·μL-1 to 1.0 × 106 particles·μL-1 and the detection limit was estimated to be 21 particles·μL-1. Therefore, the proposed PEC biosensor holds great promise in quantifying tumor exosome for nondestructive early clinical cancer diagnosis and various other bioassay applications.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Hao Cheng
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yiping Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
17
|
Wali S, Zahra M, Okla MK, Wahidah HA, Tauseef I, Haleem KS, Farid A, Maryam A, AbdElgawad H, Adetunji CO, Akhtar N, Akbar S, Rehman W, Yasir H, Shakira G. Brassica oleracea L. (Acephala Group) based zinc oxide nanoparticles and their efficacy as antibacterial agent. BRAZ J BIOL 2024; 84:e259351. [DOI: 10.1590/1519-6984.259351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/26/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Zinc oxide nanoparticles were synthesized from the leaf extract of Brassica oleracea L. Acephala group (collard green) followed by their characterization using Scanning Electron Microscope (SEM), and Energy Dispersive X-ray (EDX). The antibacterial properties of zinc nanoparticles were tested against Gram-negative bacteria, Pseudomonas aeruginosa (ATCC ® 9027™), Escherichia coli (ATCC ® 8739™), Klebsiella pneumoniae (ATCC® BAA-1705™) and Gram-positive bacteria, Staphylococcus aureus (ATCC ® 6538™) and Listeria monocytogenes (ATCC ® 13932™), at four different concentrations (50.00 µg/ml, 100.00 µg/ml, 500.00 µg/ml and 1 mg/ml) of zinc oxide nanoparticles suspension. Results revealed that the synthesized nanoparticles exhibit strong antibacterial effects against Pseudomonas aeruginosa, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli at 500.00 µg/ml-1 mg/ml concentrations. An increase in efficacy of nanoparticles with the decrease of their size was also evident. This is a first ever report on Brassica oleracea, L. based nanoparticles which demonstrates that 500.00 µg-1 mg/ml conc. of zinc oxide nanoparticles have antibacterial activity against both Gram -ve and Gram +ve bacteria and have the potential to be considered as an antibacterial agent in future.
Collapse
Affiliation(s)
| | - M. Zahra
- University of Peshawar, Pakistan
| | | | | | | | | | | | | | | | | | - N. Akhtar
- National University of Medical Science, Pakistan
| | | | | | - H. Yasir
- The Islamia University of Bahawalpur, Pakistan
| | - G. Shakira
- National Institute for Genomics Advanced Biotechnology, Pakistan
| |
Collapse
|
18
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
|