1
|
Ma Y, Dong T, Luan F, Yang J, Miao F, Wei P. Interaction of major facilitator superfamily domain containing 2A with the blood-brain barrier. Neural Regen Res 2025; 20:2133-2152. [PMID: 39248155 DOI: 10.4103/nrr.nrr-d-24-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment; however, the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood. The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function. It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier, in addition to the transport of lipids, such as docosahexaenoic acid, across the blood-brain barrier. Furthermore, an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases; however, little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier. This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier, including their basic structures and functions, cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier, and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability. This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date. This will not only help to elucidate the pathogenesis of neurological diseases, improve the accuracy of laboratory diagnosis, and optimize clinical treatment strategies, but it may also play an important role in prognostic monitoring. In addition, the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized. This review may contribute to the development of new approaches for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yilun Ma
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Taiwei Dong
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Fei Luan
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Juanjuan Yang
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi'an, Shaanxi Province, China
| | - Feng Miao
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
3
|
Luo Q, Tian S, Qiang Q, Song F, Su W, He H, An Q, Li C. Copper-catalyzed C-C bond cleavage coupling with CN bond formation toward mild synthesis of lignin-based benzonitriles. J Environ Sci (China) 2025; 151:505-515. [PMID: 39481956 DOI: 10.1016/j.jes.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024]
Abstract
N-participated lignin depolymerization is of great importance for the transformation of waste lignin into value-added chemicals. The vast majority of developed strategies employ organic amines as nitrogen source, and considerable methods rely on excessive use of strong base, which suffers severe environmental issues. Herein, benzonitrile derivatives are synthesized from oxidized lignin β-O-4 model compounds in the presence of solid nitrogen source (NH4)2CO3 under mild, base-free conditions over commercially available copper catalyst. Mechanism studies suggest the transformation undergoes a one-pot, highly coupled cascade reaction path involving oxidative C-C bond cleavage and in-situ formation of CN bond. Of which, Cu(OAc)2 catalyzes the transfer of hydrogen from Cβ (Cβ-H) to Cα, leading to the cleavage of Cα-Cβ bonds to offer benzaldehyde derivative, this intermediate then reacts in-situ with (NH4)2CO3 to afford the targeted aromatic nitrile product. Tetrabutylammonium iodide (TBAI), acting as a promoter, plays a key role in breaking the Cα-Cβ bonds to form the intermediate benzaldehyde derivative. With this protocol, the feasibility of the production of value-added syringonitrile from birchwood lignin has been demonstrated. This transformation provides a sustainable approach to benzonitrile chemicals from renewable source of lignin.
Collapse
Affiliation(s)
- Qi Luo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shenglong Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Fei Song
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wentao Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Haiyan He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
4
|
Li S, Liu H, Hu X, Fang Y, Cao X, Chen Q. Selective activation of dioxygen to singlet oxygen over La-Si co-doped TiO 2 microspheres for photocatalytic degradation of formaldehyde. J Environ Sci (China) 2025; 151:594-607. [PMID: 39481965 DOI: 10.1016/j.jes.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 11/03/2024]
Abstract
Volatile Organic Compounds (VOCs) are highly harmful to human beings and other organisms, and thus the elimination of VOCs is extremely urgent. Here, La-Si co-doped TiO2 microsphere photocatalysts, which were prepared by a hydrothermal method, exhibited high photocatalytic activity in the decomposition of formaldehyde compared with TiO2. The improved activity can be attributed to the promoted separation efficiency and density of the charge carriers, as verified by the electrochemical results in combination with density functional theory calculations. In addition, the Si dopant changed the microstructure and surface acidity, while the addition of La promoted the separation efficiency of charge carriers. More interestingly, it was found that singlet oxygen was the key species in the activation of molecular dioxygen, and it played a pivotal role in the photocatalytic decomposition of formaldehyde. This work provides a novel strategy for the selective activation of dioxygen for use in the decomposition of formaldehyde.
Collapse
Affiliation(s)
- Shuaitao Li
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, China
| | - Haodi Liu
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, China
| | - Xun Hu
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, China.
| | - Yanfen Fang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Xiaofeng Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qifeng Chen
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
5
|
Liu B, Yang T, Kang S, Wang F, Zhang H, Xu M, Wang W, Bai J, Song S, Dai Q, Feng Y, Hopke PK. Changes in factor profiles deriving from photochemical losses of volatile organic compounds: Insight from daytime and nighttime positive matrix factorization analyses. J Environ Sci (China) 2025; 151:627-639. [PMID: 39481968 DOI: 10.1016/j.jes.2024.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 11/03/2024]
Abstract
Substantial effects of photochemical reaction losses of volatile organic compounds (VOCs) on factor profiles can be investigated by comparing the differences between daytime and nighttime dispersion-normalized VOC data resolved profiles. Hourly speciated VOC data measured in Shijiazhuang, China from May to September 2021 were used to conduct study. The mean VOC concentration in the daytime and at nighttime were 32.8 and 36.0 ppbv, respectively. Alkanes and aromatics concentrations in the daytime (12.9 and 3.08 ppbv) were lower than nighttime (15.5 and 3.63 ppbv), whereas that of alkenes showed the opposite tendency. The concentration differences between daytime and nighttime for alkynes and halogenated hydrocarbons were uniformly small. The reactivities of the dominant species in factor profiles for gasoline emissions, natural gas and diesel vehicles, and liquefied petroleum gas were relatively low and their profiles were less affected by photochemical losses. Photochemical losses produced a substantial impact on the profiles of solvent use, petrochemical industry emissions, combustion sources, and biogenic emissions where the dominant species in these factor profiles had high reactivities. Although the profile of biogenic emissions was substantially affected by photochemical loss of isoprene, the low emissions at nighttime also had an important impact on its profile. Chemical losses of highly active VOC species substantially reduced their concentrations in apportioned factor profiles. This study results were consistent with the analytical results obtained through initial concentration estimation, suggesting that the initial concentration estimation could be the most effective currently available method for the source analyses of active VOCs although with uncertainty.
Collapse
Affiliation(s)
- Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Tao Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Sicong Kang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Fuquan Wang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Haixu Zhang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Man Xu
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Wei Wang
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Jinrui Bai
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
6
|
Mai Y, Cheung V, Louie PKK, Leung K, Fung JCH, Lau AKH, Blake DR, Gu D. Characterization and source apportionment of volatile organic compounds in Hong Kong: A 5-year study for three different archetypical sites. J Environ Sci (China) 2025; 151:424-440. [PMID: 39481950 DOI: 10.1016/j.jes.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024]
Abstract
Initial success has been achieved in Hong Kong in controlling primary air pollutants, but ambient ozone levels kept increasing during the past three decades. Volatile organic compounds (VOCs) are important for mitigating ozone pollution as its major precursors. This study analyzed VOC characteristics of roadside, suburban, and rural sites in Hong Kong to investigate their compositions, concentrations, and source contributions. Here we show that the TVOC concentrations were 23.05 ± 13.24, 12.68 ± 15.36, and 5.16 ± 5.48 ppbv for roadside, suburban, and rural sites between May 2015 to June 2019, respectively. By using Positive Matrix Factorization (PMF) model, six sources were identified at the roadside site over five years: Liquefied petroleum gas (LPG) usage (33%-46%), gasoline evaporation (8%-31%), aged air mass (11%-28%), gasoline exhaust (5%-16%), diesel exhaust (2%-16%) and fuel filling (75-9%). Similarly, six sources were distinguished at the suburban site, including LPG usage (30%-33%), solvent usage (20%-26%), diesel exhaust (14%-26%), gasoline evaporation (8%-16%), aged air mass (4%-11%), and biogenic emissions (2%-5%). At the rural site, four sources were identified, including aged air mass (33%-51%), solvent usage (25%-30%), vehicular emissions (11%-28%), and biogenic emissions (6%-12%). The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site, while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites, respectively. These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
Collapse
Affiliation(s)
- Yuchen Mai
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Vincent Cheung
- Environmental Protection Department, Hong Kong 999077, China
| | - Peter K K Louie
- Environmental Protection Department, Hong Kong 999077, China
| | - Kenneth Leung
- Environment and Ecology Bureau, Hong Kong 999077, China
| | - Jimmy C H Fung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine 92617, USA
| | - Dasa Gu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China.
| |
Collapse
|
7
|
Chen B, Chen J, Li G, An T. Research progress on secondary formation, photosensitive reaction mechanism and human health effects of chromophoric brown carbon. J Environ Sci (China) 2025; 151:310-330. [PMID: 39481942 DOI: 10.1016/j.jes.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 11/03/2024]
Abstract
Brown carbon (BrC) has attracted widespread attention because of its strong absorption of solar radiation in the ultraviolet-visible wavelength range, which causes adverse impacts on human health. Originally, BrC was a physically defined class of substances. However, current research has gradually shifted towards the identification of its chemical groups, because its light-absorbing capability, chemical properties and health effects mainly depend on the chemical composition of its chromophores. Therefore, this review mainly focuses on the chemical understanding of BrC based on chromophores, and the secondary formation mechanism of chromophores, photosensitized reactions, and human health effects of BrC were detailly summarized. Firstly, BrC chromophores are divided into five categories: nitrogen-heterocycles, nitrogen-chain, aromatic species, oligomers and sulfur-containing organic compounds. Different chromophore precursor species exhibit variations, and their formation mechanisms are also distinct. Secondly, BrC can trigger the production of secondary organic aerosol (SOA) precursors or cause SOA growth because BrC is an important component of light-absorbing particles formed during incomplete combustion of biomass and fossil fuels, potentially exerting adverse effects on human health. Finally, developing sufficiently separated methods for BrC and refining algorithms and machine learning can lead to a more effective understanding of the chemical composition of chromophores, thus enabling better evaluation of the atmospheric effects and health impacts of BrC. In all, this review provides new insights into the categories of BrC chromophores and new advance in secondary formation mechanisms, photosensitized reactions, and human health effects on the basis of chemical structures.
Collapse
Affiliation(s)
- Baihang Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Xu Y, Tong S, Li W, Chen M, Hu L, Zhang H, Wang S, Ge M. Nighttime reactions of a series of unsaturated alcohols with NO 3•: Kinetics, products and mechanisms study. J Environ Sci (China) 2025; 151:331-346. [PMID: 39481943 DOI: 10.1016/j.jes.2024.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 11/03/2024]
Abstract
Unsaturated alcohols are a class of Biogenic volatile organic compounds (BVOCs) emitted in large quantities by plants when damaged or under adverse environmental conditions, and studies on their atmospheric degradation at night are still lacking. We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols, E-2-penten-1-ol, Z-2-hexen-1-ol and Z-3-hepten-1-ol, with NO3 radicals (NO3•) during the night. The rate constants of these reactions were (11.7 ± 1.76) × 10-13, (8.55 ± 1.33) × 10-13 and (6.08 ± 0.47) × 10-13 cm3/(molecule·s) at 298K and 760 Torr, respectively. In contrast, the reaction rate of similar substances with ozone was about 10-18 cm3/(molecule·s), which indicates that the reaction with NO3• is the main oxidation pathway for unsaturated alcohols at night. Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO3•, and the total small molecule aldehydes and ketones yields can reach between 45%-60%. They mainly originate from the breakage of alkoxy radicals, and different breakage sites determine different product distributions. In addition, the SOA yields of the three unsaturated alcohols with NO3• were 7.1% ± 1.0%, 12.5% ± 1.9% and 30.0% ± 4.5%, respectively, which were much higher than those of similarly structured substances with O3 or OH radicals (•OH). The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol (SOA) of the three unsaturated alcohols are dimeric compounds containing several nitrate groups, which are formed through the polymerization of oxyalkyl radicals.
Collapse
Affiliation(s)
- Yanyong Xu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Weiran Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meifang Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Hu
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Hailiang Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Sufan Wang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, China.
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Lugo PL, Straccia VG, Rivela CB, Teruel MA, Blanco MB. Atmospheric chemistry of trifluorodicarbonyls initiated by Cl atoms: Reactivity trends, mechanism, and acid formation yields. J Environ Sci (China) 2025; 151:12-25. [PMID: 39481926 DOI: 10.1016/j.jes.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
Rate coefficients of the gas-phase reactions of Cl atoms with a series of fluorinated diketones (FDKs): CF3C(O)CH2C(O)CH3 (TFP), CF3C(O)CH2C(O)CH2CH3 (TFH) and CF3C(O)CH2C(O)CH(CH3)2 (TFMH), have been measured at (298 ± 2) K and under atmospheric pressure. The experiments were performed using the relative-rate method with a GC-FID detection system. From different determinations and references used, the following rate coefficients were obtained (in cm3/(molecule·sec)): k4(TFP + Cl) = (1.75 ± 0.21) × 10-10, k5(TFH + Cl) = (2.05 ± 0.23) × 10-10, k6(TFMH + Cl) = (2.71 ± 0.34) × 10-10. Reactivity trends of FDKs were discussed and Free Energy Relationships analysis was developed. The expression lgkOH = 1.68 lgkCl + 5.71 was obtained for the reactivity of the studied FDKs together with similar unsaturated VOCs with Cl and OH radicals Additionally, acetic acid (CH3C(O)OH) and trifluoroacetic acid (CF3C(O)OH) were positively identified and quantified as degradation products using in situ FTIR spectroscopy. According to the identified products, atmospheric chemical mechanisms were proposed. The atmospheric implications of the studied reactions were assessed by the estimation of the tropospheric lifetimes of TFP, TFH, and TFMH concerning their reaction with Cl atoms to be 48, 41, and 31 hours, respectively. The relatively short residence in the atmosphere of the fluorocarbons studied will have a local/regional impact with restricted transport. Global warming potential (GWP(20yr)) calculated for the studied fluoro diketones were 0.014, 0.003 and 0.001 for TFP, TFH and TFMH, respectively with a negligible contribution to the greenhouse effect.
Collapse
Affiliation(s)
- Pedro L Lugo
- Laboratorio Universitario de Química y Contaminación del Aire (L.U.Q.C.A), Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina; Institute for Atmospheric and Environmental Research, University of Wuppertal, DE-42097 Wuppertal, Germany
| | - Vianni G Straccia
- Laboratorio Universitario de Química y Contaminación del Aire (L.U.Q.C.A), Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Cynthia B Rivela
- Laboratorio Universitario de Química y Contaminación del Aire (L.U.Q.C.A), Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mariano A Teruel
- Laboratorio Universitario de Química y Contaminación del Aire (L.U.Q.C.A), Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María B Blanco
- Laboratorio Universitario de Química y Contaminación del Aire (L.U.Q.C.A), Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Dpto. de Fisicoquímica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
10
|
Zhao R, Gao H, Duan L, Yu R. Synergistic toxic effects of high-strength ammonia and ZnO nanoparticles on biological nitrogen removal systems and role of exogenous C 10-HSL regulation. J Environ Sci (China) 2025; 150:385-394. [PMID: 39306414 DOI: 10.1016/j.jes.2024.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 09/25/2024]
Abstract
The inhibitory effects of zinc oxide nanoparticles (ZnO NPs) and impacts of N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) on biological nitrogen removal (BNR) performance have been well-investigated. However, the effects of ammonia nitrogen (NH4+-N) concentrations on NP toxicity and AHL regulation have seldom been addressed yet. This study consulted on the impacts of ZnO NPs on BNR systems when high NH4+-N concentration was available. The synergistic toxic effects of high-strength NH4+-N (200 mg/L) and ZnO NPs resulted in decreased ammonia oxidation rates and dropped the nitrogen removal efficiencies by 17.5% ± 0.2%. The increased extracellular polymeric substances (EPS) production was observed in response to the high NH4+-N and ZnO NP stress, which indicated the defense mechanism against the toxic effects in the BNR systems was stimulated. Furthermore, the regulatory effects of exogenous N-decanoyl-homoserine lactone (C10-HSL)-mediated QS system on NP-stressed BNR systems were revealed to improve the BNR performance under different NH4+-N concentrations. The C10-HSL regulated the intracellular reactive oxygen species levels, denitrification functional enzyme activities, and antioxidant enzyme activities, respectively. This probably synergistically enhanced the defense mechanism against NP toxicity. However, compared to the low NH4+-N concentration of 60 mg/L, the efficacy of C10-HSL was inhibited at high NH4+-N levels of 200 mg/L. The findings provided the significant application potential of QS system for BNR when facing toxic compound shock threats.
Collapse
Affiliation(s)
- Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210009, China
| | - Lijie Duan
- Guangdong Institute of Socialism, Guangzhou 510400, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210009, China.
| |
Collapse
|
11
|
Liu Y, Liu J, Xiao J, Ye J, Guo L, Yan C. Metrological traceable calibration of organic carbon and elemental carbon based on laboratory-generated reference materials. J Environ Sci (China) 2025; 149:524-534. [PMID: 39181664 DOI: 10.1016/j.jes.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 08/27/2024]
Abstract
Carbonaceous aerosol, including organic carbon (OC) and elemental carbon (EC), has significant influence on human health, air quality and climate change. Accurate measurement of carbonaceous aerosol is essential to reduce the uncertainty of radiative forcing estimation and source apportionment. The accurate separation of OC and EC is controversial due to the charring of OC. Therefore, the development of reference materials (RM) for the validation of OC/EC separation is an important basis for further study. Previous RMs were mainly based on ambient air sampling, which could not provide traceability of OC and EC concentration. To develop traceable RMs with known OC/EC contents, our study applied an improved aerosol generation and mixing technique, providing uniform deposition of particles on quartz filters. To generate OC aerosol with similar pyrolytic property of ambient aerosol, both water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC) were used, and amorphous carbon was selected for EC surrogate. The RMs were analyzed using different protocols. The homogeneity within the filter was validated, reaching below 2%. The long-term stability of RMs has been validated with RSD ranged from 1.7%-3.2%. Good correlation was observed between nominal concentration of RMs with measured concentration by two protocols, while the difference of EC concentration was within 20%. The results indicated that the newly developed RMs were acceptable for the calibration of OC and EC, which could improve the accuracy of carbonaceous aerosol measurement. Moreover, the laboratory-generated EC-RMs could be suitable for the calibration of equivalent BC concentration by Aethalometers.
Collapse
Affiliation(s)
- Yue Liu
- Center for Environmental Metrology, National Institute of Metrology China, Beijing 100029, China
| | - Junjie Liu
- Center for Environmental Metrology, National Institute of Metrology China, Beijing 100029, China.
| | - Ji Xiao
- Center for Environmental Metrology, National Institute of Metrology China, Beijing 100029, China
| | - Jing Ye
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lixu Guo
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Zhang G, Wang T, Lin Q, Liu K, Sun W, Chen D, Li L, Wang X, Bi X. A comparative study on the formation of nitrogen-containing organic compounds in cloud droplets and aerosol particles. J Environ Sci (China) 2025; 149:456-464. [PMID: 39181657 DOI: 10.1016/j.jes.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 08/27/2024]
Abstract
Nitrogen-containing organic compounds (NOCs) may potentially contribute to aqueous secondary organic aerosols, yet the different formation of NOCs in aerosol particles and cloud droplets remains unclear. With the in-situ measurements performed at a mountain site (1690 m a.s.l.) in southern China, we investigated the formation of NOCs in the cloud droplets and the cloud-free particles, based on their mixing state information of NOCs-containing particles by single particle mass spectrometry. The relative abundance of NOCs in the cloud-free particles was significantly higher than those in cloud residual (cloud RES) particles. NOCs were highly correlated with carbonyl compounds (including glyoxalate and methylglyoxal) in the cloud-free particles, however, limited correlation was observed for cloud RES particles. Analysis of their mixing state and temporal variations highlights that NOCs was mainly formed from the carbonyl compounds and ammonium in the cloud-free particles, rather than in the cloud RES particles. The results support that the formation of NOCs from carbonyl compounds is facilitated in concentrated solutions in wet aerosols, rather than cloud droplets. In addition, we have identified the transport of biomass burning particles that facilitate the formation of NOCs, and that the observed NOCs is most likely contributed to the light absorption. These findings have implications for the evaluation of NOCs formation and their contribution to light absorption.
Collapse
Affiliation(s)
- Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China.
| | - Tao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinhao Lin
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China
| | - Duohong Chen
- State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Monitoring Center, Guangzhou 510308, China
| | - Lei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China
| |
Collapse
|
13
|
Li W, Chen J, Lin Q, Ji Y, An T. Carbonyl-amine condensation coupled ozonolysis of dipropylamine and styrene: Decay kinetics, reaction mechanism, secondary organic aerosol formation and cytotoxicity. J Environ Sci (China) 2025; 149:444-455. [PMID: 39181656 DOI: 10.1016/j.jes.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 08/27/2024]
Abstract
Oxidation of organic amines (OAs) or aromatic hydrocarbons (AHs) produces carbonyls, which further react with OAs to form carbonyl-amine condensation products, threatening environmental quality and human health. However, there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs, and subsequent environmental health impact. This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics, reaction mechanism, secondary organic aerosol (SOA) formation and cytotoxicity from the mixture of dipropylamine (DPA) and styrene (STY) by a combined method of product mass spectrometry identification, particle property analysis and cell exposure evaluation. The results from ozonolysis of DPA and STY mixture revealed that STY inhibited the ozonolysis of DPA to different degrees to accelerate its own decay rate. The barycenter of carbonyl-amine condensation reactions was shifted from inside of DPA to between DPA and STY, which accelerated STY ozonolysis, but slowed down DPA ozonolysis. For the first time, ozonolysis of DPA and STY mixture to complex carbonyl-amine condensation products through the reactions of DPA with its carbonyl products, DPA with STY's carbonyl products and DPA's bond breakage product with STY's carbonyl products was confirmed. These condensation products significantly contributed to the formation and growth of SOA. The SOA containing particulate carbonyl-amine condensation products showed definite cytotoxicity. These findings are helpful to deeply and comprehensively understand the transformation, fate and environmental health effects of mixed organics in atmospheric environment.
Collapse
Affiliation(s)
- Wanying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qinhao Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Wang Y, Xu H, Zhao X, Kang L, Qiu Y, Paerl H, Zhu G, Li H, Zhu M, Qin B, Zhang Y, Liu M. Rainfall impacts on nonpoint nitrogen and phosphorus dynamics in an agricultural river in subtropical montane reservoir region of southeast China. J Environ Sci (China) 2025; 149:551-563. [PMID: 39181666 DOI: 10.1016/j.jes.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 08/27/2024]
Abstract
The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers. However, little information is available on how the rainfall affect nutrient dynamics in subtropical montane rivers with complex land use. This study conducted high-frequency monitoring to study the effects of rainfall on nutrients dynamics in an agricultural river draining to Lake Qiandaohu, a montane reservoir of southeast China. The results showed that riverine total nitrogen (TN) and total phosphorus (TP) concentrations increased continuously with increasing rainfall intensity, while TN:TP decreased. The heavy rainfall and rainstorm drove more than 30% of the annual N and P loading in only 5.20% of the total rainfall period, indicating that increased storm runoff is likely to exacerbate eutrophication in montane reservoirs. NO3--N is the primary nitrogen form lost, while particulate phosphorus (PP) dominated phosphorus loss. The main source of N is cropland, and the main source of P is residential area. Spatially, forested watersheds have better drainage quality, while it is still a potential source of nonpoint pollution during rainfall events. TN and TP concentrations were significantly higher at sites dominated by cropland and residential area, indicating their substantial contributions to deteriorating river water quality. Temporally, TN and TP concentrations reached high values in May-August when rainfall was most intense, while they were lower in autumn and winter than that in spring and summer under the same rainfall intensities. The results emphasize the influence of rainfall-runoff and land use on dynamics of riverine N and P loads, providing guidance for nutrient load reduction planning for Lake Qiandaohu.
Collapse
Affiliation(s)
- Yuanyi Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingchen Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Lijuan Kang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Qiu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hans Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, NC 28557, USA
| | - Guangwei Zhu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huiyun Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengyuan Zhu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Boqiang Qin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yunlin Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingliang Liu
- Hangzhou Institute of Ecological and Environmental Sciences, Hangzhou 310005, China
| |
Collapse
|
15
|
Li G, Li X, Hao X, Li Q, Zhang M, Jia H. Ti 3+/Ti 4+ and Co 2+/Co 3+ redox couples in Ce-doped Co-Ce/TiO 2 for enhancing photothermocatalytic toluene oxidation. J Environ Sci (China) 2025; 149:164-176. [PMID: 39181631 DOI: 10.1016/j.jes.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 08/27/2024]
Abstract
Cerium and cobalt loaded Co-Ce/TiO2 catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation. Based on catalyst characterizations (XPS, EPR and H2-TPR), redox cycle between Co and TiO2 (Co2+ + Ti4+ ↔ Co3+ + Ti3+) results in the formation of Co3+, Ti3+ and oxygen vacancies, which play important roles in toluene catalytic oxidation reaction. The introduction of Ce brings in the dual redox cycles (Co2+ + Ti4+ ↔ Co3+ + Ti3+, Co2+ + Ce4+ ↔ Co3+ + Ce3+), further promoting the elevation of reaction sites amount. Under full spectrum irradiation with light intensity of 580 mW/cm2, Co-Ce/TiO2 catalyst achieved 96% of toluene conversion and 73% of CO2 yield, obviously higher than Co/P25 and Co/TiO2. Co-Ce/TiO2 efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination. Photothermal catalytic reaction displays improved activities compared with thermal catalysis, which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species.
Collapse
Affiliation(s)
- Guanghui Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolan Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | |
|