1
|
|
Wali S, Zahra M, Okla MK, Wahidah HA, Tauseef I, Haleem KS, Farid A, Maryam A, Abdelgawad H, Adetunji CO, Akhtar N, Akbar S, Rehman W, Yasir H, Shakira G. Brassica oleracea L. (Acephala Group) based zinc oxide nanoparticles and their efficacy as antibacterial agent. BRAZ J BIOL 2024;84. [DOI: 10.1590/1519-6984.259351] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/22/2022] Open
Abstract
Abstract Zinc oxide nanoparticles were synthesized from the leaf extract of Brassica oleracea L. Acephala group (collard green) followed by their characterization using Scanning Electron Microscope (SEM), and Energy Dispersive X-ray (EDX). The antibacterial properties of zinc nanoparticles were tested against Gram-negative bacteria, Pseudomonas aeruginosa (ATCC ® 9027™), Escherichia coli (ATCC ® 8739™), Klebsiella pneumoniae (ATCC® BAA-1705™) and Gram-positive bacteria, Staphylococcus aureus (ATCC ® 6538™) and Listeria monocytogenes (ATCC ® 13932™), at four different concentrations (50.00 µg/ml, 100.00 µg/ml, 500.00 µg/ml and 1 mg/ml) of zinc oxide nanoparticles suspension. Results revealed that the synthesized nanoparticles exhibit strong antibacterial effects against Pseudomonas aeruginosa, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli at 500.00 µg/ml-1 mg/ml concentrations. An increase in efficacy of nanoparticles with the decrease of their size was also evident. This is a first ever report on Brassica oleracea, L. based nanoparticles which demonstrates that 500.00 µg-1 mg/ml conc. of zinc oxide nanoparticles have antibacterial activity against both Gram -ve and Gram +ve bacteria and have the potential to be considered as an antibacterial agent in future.
Collapse
|
2
|
|
Manzoor S, Alsaiari NS, Katubi KM, Nisa MU, Abid AG, Chughtai AH, Abdullah M, Aman S, Al-buriahi MS, Ashiq MN. Facile fabrication of SnSe nanorods embedded in GO nanosheet for robust oxygen evolution reaction. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2022.2151298] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/22/2023] Open
|
3
|
|
Sukri N, Putri TTM, Mahani, Nurhadi B. Characteristics of propolis encapsulated with gelatin and sodium alginate by complex coacervation method. INT J FOOD PROP 2023;26:696-707. [DOI: 10.1080/10942912.2023.2179635] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/24/2023] Open
|
4
|
|
Genchi L, Laptenok SP, Liberale C. Background signals in stimulated Raman scattering microscopy and current solutions to avoid them. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2023.2176258] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/16/2023]
|
5
|
|
Joshi S, Mehra M, Singh R, Kakar S. Review on Chemistry of Oxazole derivatives: Current to Future Therapeutic Prospective. Egyptian Journal of Basic and Applied Sciences 2023;10:218-239. [DOI: 10.1080/2314808x.2023.2171578] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/08/2023]
|
6
|
|
Aida MS, Alonizan N, Zarrad B, Hjiri M. Influence of plant extract on the homogeneous and heterogeneous green chemistry synthesis of nanostructured ZnO. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2023.2179819] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/27/2023] Open
|
7
|
|
Yang W, Peng Z, Wang G. An overview: metal-based inhibitors of urease. J Enzyme Inhib Med Chem 2023;38:361-375. [DOI: 10.1080/14756366.2022.2150182] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/03/2022] Open
|
8
|
|
Ibrahim MAA, Ali SSM, Abdeljawaad KAA, Abdelrahman AHM, Gabr GA, Shawky AM, Mekhemer GAH, Sidhom PA, Paré PW, Hegazy MF. In-silico natural product database mining for novel neuropilin-1 inhibitors: molecular docking, molecular dynamics and binding energy computations. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2023.2182623] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/04/2023] Open
|
9
|
|
Odate A, Kirrander A, Weber PM, Minitti MP. Brighter, faster, stronger: ultrafast scattering of free molecules. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2022.2126796] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/29/2022]
|
10
|
|
Lopez-acevedo O, Sucerquia D. QM/MM methods in studies of coinage metals: copper, silver, and gold interacting with biological and organic molecules. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2022.2153625] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/14/2022]
|
11
|
|
Cai Q, Zhao D, Xu H, Xu W, Yao H, Zhang Y. Crosslinked PAES-based sandwich-structured polymer nanocomposites with covalently strengthened interface towards high-temperature capacitive energy storage. NANOCOMPOSITES 2023;9:10-17. [DOI: 10.1080/20550324.2023.2173053] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/11/2023] Open
|
12
|
|
Alahmadi M, Alsaedi WH, Mohamed WS, Hassan HMA, Ezzeldien M, Abu-dief AM. Development of Bi2O3/MoSe2 mixed nanostructures for photocatalytic degradation of methylene blue dye. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2022.2161333] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/22/2023] Open
|
13
|
|
Vu KA, Mulligan CN. Remediation of organic contaminated soil by Fe-based nanoparticles and surfactants: a review. Environmental Technology Reviews 2023;12:60-82. [DOI: 10.1080/21622515.2023.2177200] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/22/2023]
|
14
|
|
Alharbi TMD. Recent progress on vortex fluidic synthesis of carbon nanomaterials. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2023.2172954] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/22/2023] Open
|
15
|
|
Hossan A, Alsahag M, Alisaac A, Bamaga MA, Alalawy AI, El-metwaly NM. Synthesis, molecular modelling and biological evaluation of new 4-aminothiophene and thienopyrimidine compounds. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2023.2164993] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/25/2023] Open
|
16
|
|
Iqra, Sughra K, Ali A, Afzal F, Yousaf MJ, Khalid W, Faizul Rasul H, Aziz Z, Aqlan FM, Al-farga A, Arshad A. Wheat-based gluten and its association with pathogenesis of celiac disease: a review. INT J FOOD PROP 2023;26:511-525. [DOI: 10.1080/10942912.2023.2169709] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/28/2023] Open
|
17
|
|
Deniz Çiftçi T. A New Concept for Adsorption Studies Using a Brush-Type Adsorbent (Magnetite Coated Animal Fibers). J NAT FIBERS 2023;20. [DOI: 10.1080/15440478.2022.2156652] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/24/2022]
|
18
|
|
Mendes PCD, Song Y, Ma W, Gani TZH, Lim KH, Kawi S, Kozlov SM. Opportunities in the design of metal@oxide core-shell nanoparticles. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2023.2175623] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
19
|
|
Xue K, Yang C, He Y. A review of technologies for bromide and iodide removal from water. Environmental Technology Reviews 2023;12:129-148. [DOI: 10.1080/21622515.2023.2184275] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/07/2023]
|
20
|
|
Vaaland IC, López Ó, Puerta A, Fernandes MX, Padrón JM, Fernández-bolaños JG, Sydnes MO, Lindbäck E. Investigation of the enantioselectivity of acetylcholinesterase and butyrylcholinesterase upon inhibition by tacrine-iminosugar heterodimers. J Enzyme Inhib Med Chem 2023;38:349-360. [DOI: 10.1080/14756366.2022.2150762] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/03/2022] Open
|
21
|
|
Haresh Liya D, Elanchezhian M, Pahari M, Mouroug Anand N, Suresh S, Balaji N, Kumar Jainarayanan A. QPromoters: sequence based prediction of promoter strength in Saccharomyces cesrevisiae. All Life 2023;16. [DOI: 10.1080/26895293.2023.2168304] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/22/2023] Open
|
22
|
|
Demirag AD, Çelik S, Arslan S, Özel A, Akyüz S. The inhibitory activity of Ruxolitinib against COVID-19 major protease enzyme and SARS CoV-2 spike glycoprotein: A molecular docking study. ojn 2023;8:1-9. [DOI: 10.56171/ojn.1134119] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/28/2023]
Abstract
Ruxolitinib (C17H18N6) is a Janus kinase (JAK) inhibitor that inhibits JAK1, JAK2, and JAK3 and with its tyrosine kinase inhibitor function It is the first drug approved for use in the treatment of myelofibrosis. The possible conformations of the ruxolitinib molecule were searched using PM3 technique and the Spartan06 software. The estimated molecular energies of the Ruxolitinib conformers, obtained by the variations in dihedral angles, were compared, and the most stable conformer was determined. To enlighten the inhibitory activity of Ruxolitinib agaist the apo (PDB ID: 6M03) and holo (PDB ID: 6LU7) forms of the main protease enzyme (Mpro) of COVID-19 and the SARSCoV-2 spike glycoprotein (PDB ID: 6VXX), molecular docking simulations were performed. The binding affinities and binding modes were determined. The binding free energies of ruxolitinib and 6M03, 6LU7, 6VXX targets calculated by the combination of Molecular Mechanics/Generalized Born Surface Area (MMGBSA) and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods {MM/PB(GB)SA approach}, were found to be -22.24, -19.96 and -22.44 kcal/mol, respectively.
Collapse
|
23
|
|
Lee J, Jun H, Park N, Kim T. Textile-Based Volatile Organic Compound Sensors Using Cellulose Fabrics and Direct Dyes. J NAT FIBERS 2023;20. [DOI: 10.1080/15440478.2022.2162178] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/03/2023]
|
24
|
|
Mabuea BP, Erasmus E, Swart HC. Molybdenum-Tungsten carbides based electrocatalysts for hydrogen evolution reaction. International Journal of Sustainable Energy 2023;42:91-102. [DOI: 10.1080/14786451.2023.2176700] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/12/2023]
|
25
|
|
Sánchez DB, Caro S, Alvarez AE. Assessment of methods to select optimum doses of rejuvenators for asphalt mixtures with high RAP content. INT J PAVEMENT ENG 2023;24. [DOI: 10.1080/10298436.2022.2161544] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/08/2023]
|
26
|
|
Arabani M, Majd Rahimabadi M. Assessing the effect of short and long-term aging on moisture damage of hot mix asphalt using two different methods. INT J PAVEMENT ENG 2023;24. [DOI: 10.1080/10298436.2023.2168661] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/29/2023]
|
27
|
|
Fu Y, Kong Y, Li X, Cheng D, Hou Y, Li Y, Li T, Xiao Y, Zhang Q, Rong R. Novel Pt(IV) prodrug self-assembled nanoparticles with enhanced blood circulation stability and improved antitumor capacity of oxaliplatin for cancer therapy. Drug Deliv 2023;30:2171158. [PMID: 36744299 DOI: 10.1080/10717544.2023.2171158] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/07/2023] Open
Abstract
Pt(IV) compounds are regarded as prodrugs of active Pt(II) drugs (i.e. cisplatin, carboplatin, and oxaliplatin) and burgeoned as the most ideal candidates to substitute Pt(II) anticancer drugs with severe side effects. Nanoparticle drug delivery systems have been widely introduced to deliver Pt(IV) prodrugs more effectively and safely to tumors, but clinical outcomes were unpredictable owing to limited in vivo pharmacokinetics understanding. Herein, a novel Pt(IV) prodrug of oxaliplatin(OXA) was synthesized and prepared as self-assembled micellar nanoparticles(PEG-OXA NPs). In vitro, PEG-OXA NPs rapidly released biologically active OXA within 5 min in tumor cells while remaining extremely stable in whole blood or plasma. Importantly, the pharmacokinetic results showed that the AUC0-∞, and t1/2 values of PEG-OXA NPs were 1994 ± 117 h·µg/mL and 3.28 ± 0.28 h, respectively, which were much higher than that of free OXA solution (2.03 ± 0.55 h·µg/mL and 0.16 ± 0.07 h), indicating the longer drug circulation of PEG-OXA NPs in vivo. The altered pharmacokinetic behavior of PEG-OXA NPs remarkably contributed to improve antitumor efficacy, decrease systemic toxicity and increase tumor growth inhibition compared to free OXA. These findings establish that PEG-OXA NPs have the potential to offer a desirable self-delivery platform of platinum drugs for anticancer therapeutics.
Collapse
|
28
|
|
Zhang H, Qin W, Romero H, Leonhardt H, Cardoso MC. Heterochromatin organization and phase separation. Nucleus 2023;14:2159142. [PMID: 36710442 DOI: 10.1080/19491034.2022.2159142] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/31/2023] Open
Abstract
The eukaryotic nucleus displays a variety of membraneless compartments with distinct biomolecular composition and specific cellular activities. Emerging evidence indicates that protein-based liquid-liquid phase separation (LLPS) plays an essential role in the formation and dynamic regulation of heterochromatin compartmentalization. This feature is especially conspicuous at the pericentric heterochromatin domains. In this review, we will describe our understanding of heterochromatin organization and LLPS. In addition, we will highlight the increasing importance of multivalent weak homo- and heteromolecular interactions in LLPS-mediated heterochromatin compartmentalization in the complex environment inside living cells.
Collapse
|
29
|
|
Ali A, Long F, Shen PK. Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts. ELECTROCHEM ENERGY R 2023;6. [DOI: 10.1007/s41918-022-00136-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/28/2022]
|
30
|
|
Amin M, Butt AS, Ahmad J, Lee C, Azam SU, Mannan HA, Naveed AB, Farooqi ZUR, Chung E, Iqbal A. Issues and challenges in hydrogen separation technologies. ENERGY REP 2023;9:894-911. [DOI: 10.1016/j.egyr.2022.12.014] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/23/2022] Open
|
31
|
|
Angeli A, Ferraroni M, Bonardi A, Supuran CT, Nocentini A. Diversely N-substituted benzenesulfonamides dissimilarly bind to human carbonic anhydrases: crystallographic investigations of N-nitrosulfonamides. J Enzyme Inhib Med Chem 2023;38:2178430. [PMID: 36798036 DOI: 10.1080/14756366.2023.2178430] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/18/2023] Open
Abstract
Carbonic anhydrases (CAs) are a zinc metalloenzymes that catalyse the reversible hydration of carbon dioxide to bicarbonate and proton, pivotal for a wide range of biological processes. CAs are involved in numerous pathologies and thus represent valuable drug targets in the treatments of several diseases such as glaucoma, obesity, tumour, neuropathic pain, cerebral ischaemia, or as antiinfectives. In the last two decades, several efforts have been made to achieve selective CA inhibitors (CAIs) employing different drug design approaches. However, N-substitutions on primary sulphonamide groups still remain poorly investigated. Here, we reported for the first time the co-crystallisation of a N-nitro sulphonamide derivative with human (h) CA II pointing out the binding site and mode of inhibition of this class of CAIs. The thorough comprehension of the ligand/target interaction might be valuable for a further CAI optimisation for achieving new potent and selective derivatives.
Collapse
|
32
|
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023;14:2180934. [PMID: 36794396 DOI: 10.1080/21505594.2023.2180934] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
|
33
|
|
Wang J, Pan F, Chen W, Li B, Yang D, Ming P, Wei X, Zhang C. Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. ELECTROCHEM ENERGY R 2023;6:6. [DOI: 10.1007/s41918-022-00141-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
34
|
|
Misiak P, Niemirowicz-laskowska K, Markiewicz KH, Wielgat P, Kurowska I, Czarnomysy R, Misztalewska-turkowicz I, Car H, Bielawski K, Wilczewska AZ. Doxorubicin-loaded polymeric nanoparticles containing ketoester-based block and cholesterol moiety as specific vehicles to fight estrogen-dependent breast cancer. Cancer Nanotechnol 2023;14:23. [DOI: 10.1186/s12645-023-00176-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/28/2023] Open
Abstract
AbstractThe presented research concerns the preparation of polymer nanoparticles (PNPs) for the delivery of doxorubicin. Several block and statistical copolymers, composed of ketoester derivative, N-isopropylacrylamide, and cholesterol, were synthesized. In the nanoprecipitation process, doxorubicin (DOX) molecules were kept in spatial polymeric systems. DOX-loaded PNPs show high efficacy against estrogen-dependent MCF-7 breast cancer cell lines despite low doses of DOX applied and good compatibility with normal cells. Research confirms the effect of PNPs on the degradation of the biological membrane, and the accumulation of reactive oxygen species (ROS), and the ability to cell cycle arrest are strictly linked to cell death.
Graphical Abstract
Collapse
|
35
|
|
Jabbar A, Rehman K, Jabri T, Kanwal T, Perveen S, Rashid MA, Kazi M, Ahmad Khan S, Saifullah S, Shah MR. Improving curcumin bactericidal potential against multi-drug resistant bacteria via its loading in polydopamine coated zinc-based metal-organic frameworks. Drug Deliv 2023;30:2159587. [PMID: 36718806 DOI: 10.1080/10717544.2022.2159587] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/01/2023] Open
Abstract
Multi-drug resistant (MDR) bactearial strains have posed serious health issues, thus leading to a significant increase in mortality, morbidity, and the expensive treatment of infections. Metal-organic frameworks (MOFs), comprising metal ions and a variety of organic ligands, have been employed as an effective drug deliveryy vehicle due to their low toxicity, biodegradability, higher structural integrity and diverse surface functionalities. Polydopamine (PDA) is a versatile biocompatible polymer with several interesting properties, including the ability to adhere to biological surfaces. As a result, modifying drug delivery vehicles with PDA has the potential to improve their antimicrobial properties. This work describes the preparation of PDA-coated Zn-MOFs for improving curcumin's antibacterial properties against S. aureus and E. coli. Powder X-ray diffraction (P-XRD), FT-IR, scanning electron microscopy (SEM), and DLS were utilized to characterize PDA-coated Zn-MOFs. The curcumin loading and in vitro release of the prepared MOFs were also examined. Finally, the MOFs were tested for bactericidal ability against E. coli and S. aureus using an anti-bacterial assay and surface morphological analysis. Smaller size MOFs were capable of loading and releasing curcumin. The findings showed that as curcumin was encapsulated into PDA-coated MOFs, its bactericidal potential was significantly enhanced, and the findings were further supported by SEM which indicated the complete morphological distortion of the bacteria after treatment with PDA-Cur-Zn-MOFs. These studies clearly indicate that the PDA-Cur-Zn-MOFs developed in this study are extremely promising for long-term release of drugs to treat a wide range of microbial infections.
Collapse
|
36
|
|
Jin X, Yang Q, Wei G, Song J, Zhang Z. A simple self-assembling system of melittin for hepatoma treatment. Cancer Nanotechnol 2023;14:2. [DOI: 10.1186/s12645-022-00154-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/12/2023] Open
Abstract
Abstract
Background
Hepatoma is a serious public health concern. New attempts are urgently needed to solve this problem. Melittin, a host defense peptide derived from the venom of honeybees, has noteworthy hemolysis and non-specific cytotoxicity in clinical applications. Here, the self-assembly of melittin and vitamin E-succinic acid-(glutamate)12 (VG) was fabricated via noncovalent π-stacking and hydrogen bonding interactions using an environment-friendly method without “toxic” solvents.
Results
As expected, the designed self-assembly (denoted as M/VG nanoparticles) exhibits a uniform morphology with a particle size of approximately 60 nm and a zeta potential of approximately − 26.8 mV. Furthermore, added VG significantly decreased hemolytic activity, increased tumor-targeted effects, and accelerated apoptosis.
Conclusion
Our research provides a promising strategy for the development of natural self-assembled biological peptides for clinical application, particularly for transforming toxic peptides into safe therapeutic systems.
Graphical Abstract
Collapse
|
37
|
|
Abdoli M, De Luca V, Capasso C, Supuran CT, Žalubovskis R. Novel thiazolone-benzenesulphonamide inhibitors of human and bacterial carbonic anhydrases. J Enzyme Inhib Med Chem 2023;38:2163243. [PMID: 36629426 DOI: 10.1080/14756366.2022.2163243] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/12/2023] Open
Abstract
A small library of novel thiazolone-benzenesulphonamides has been prepared and evaluated for their ability to inhibit three human cytosolic carbonic anhydrases (hCA I, hCA II, and hCA VII) and three bacterial carbonic anhydrases (MscCAβ, StCA1, and StCA2). All investigated hCAs were inhibited by the prepared compounds 4a-4j in the low nanomolar range. These compounds were effective hCA I inhibitors (KIs of 31.5-637.3 nM) and excellent hCA II (KIs in the range of 1.3-13.7 nM) and hCA VII inhibitors (KIs in the range of 0.9-14.6 nM). The most active analog in the series, 4-((4-oxo-5-propyl-4,5-dihydrothiazol-2-yl)amino)benzenesulphonamide 4d, strongly inhibited bacterial MscCAβ, with KI of 73.6 nM, considerably better than AAZ (KI of 625 nM). The tested compounds displayed medium inhibitory potency against StCA1 (KIs of 69.2-163.3 nM) when compared to the standard drug (KI of 59 nM). However, StCA2 was poorly inhibited by the sulphonamides reported here, with KIs in the micromolar range between 275.2 and 4875.0 nM.
Collapse
|
38
|
|
Doronin FA, Rytikov GO, Evdokimov AG, Ruduak YV, Nazarov VG. The synergistic effect of bulk-surface modification onto the wear resistance of the ultrahigh molecular weight polyethylene. POLYM POLYM COMPOS 2023;31:096739112211501. [DOI: 10.1177/09673911221150132] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/26/2023]
Abstract
The paper investigates the effect of bulk and surface modification on the adhesive and tribological properties of ultra-high molecular weight polyethylene (UHMWPE) and shows that bulk modification with nano- and micro-sized modifiers (montmorillonite, shungite, exfoliated graphite) mainly reduces the friction coefficient but leads to a decrease in the wear resistance of the corresponding composites. It is found that gas-phase surface fluorination provides an increase in the wear resistance of experimental samples in all cases due to a combination of nanotexturing and chemomorphological transformations of the surface layers of the modified polymers. The significant dependence of the nanotexture on the technique and mode of modification is demonstrated using the original approaches to the quantitative characterization of the experimental samples’ surfaces’ scanning electron microscopy-images (formed with the scanning electron microscope). It is shown that the surface fluorination not only makes possible to significantly compensate for the increase of the friction coefficient of bulk-modified UHMWPE in comparison with the original one but also provides a nonlinear multiplicative increase in the wear resistance.
Collapse
|
39
|
|
Paranjape P, Sadgir P. Heavy Metal Removal Using Plant Origin Biomass and Agricultural Waste-Derived Biomass from Aqueous Media: a Review. Water Conserv Sci Eng 2023;8:9. [DOI: 10.1007/s41101-023-00177-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/04/2023]
|
40
|
|
Mahammad Ghouse S, Bahatam K, Angeli A, Pawar G, Chinchilli KK, Yaddanapudi VM, Mohammed A, Supuran CT, Nanduri S. Synthesis and biological evaluation of new 3-substituted coumarin derivatives as selective inhibitors of human carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2023;38:2185760. [PMID: 36876597 DOI: 10.1080/14756366.2023.2185760] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/07/2023] Open
Abstract
The Carbonic anhydrase isoforms IX and XII play a significant role in regulating the intracellular and extracellular pH in hypoxic tumours abetting the metastasis of solid tumours. Selective and potent inhibitors targeting carbonic anhydrase IX and XII reduce the activity of these isoforms in hypoxic tumours, representing an antitumor and antimetastatic mechanism. Coumarin-based derivatives are selective inhibitors of CA isoforms IX and XII. In this study, we report the design and synthesis of new 3-substituted coumarin derivatives with different functional moieties and their inhibitory activity against various carbonic anhydrase isoforms. We found that the tertiary sulphonamide derivative 6c showed selective inhibition against CA IX with IC50 of 4.1 µM. Similarly, the carbothioamides 7c, 7b and oxime ether derivative 20a exhibited good inhibition against CA IX and CA XII. Additionally, the binding mode was predicted and validated using molecular docking and dynamic simulations.
Collapse
|
41
|
|
Tekeli T, Akocak S, Petreni A, Lolak N, Çete S, Supuran CT. Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties. J Enzyme Inhib Med Chem 2023;38:2185762. [PMID: 36880350 DOI: 10.1080/14756366.2023.2185762] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
A novel series of twelve aromatic bis-ureido-substituted benzenesulfonamides was synthesised by conjugation of aromatic aminobenzenesulfonamides with aromatic bis-isocyanates. The obtained bis-ureido-substituted derivatives were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX and hCA XII). Most of the new compounds showed an effective inhibitory profile against isoforms hCA IX and hCA XII, also having some selectivity with respect to hCA I and hCA II. The inhibition constants of these compounds against isoforms hCA IX and XII were in the range of 6.73-835 and 5.02-429 nM, respectively. Since hCA IX and hCA XII are important drug targets for anti-cancer/anti-metastatic drugs, these effective inhibitors reported here may be considered of interest for cancer related studies in which these enzymes are involved.
Collapse
|
42
|
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023;38:2155816. [PMID: 36629427 DOI: 10.1080/14756366.2022.2155816] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
|
43
|
|
Yang YS, Wang B, Liu J, Li Q, Jiao QC, Qin P. Discovery of coumaric acid derivatives hinted by coastal marine source to seek for uric acid lowering agents. J Enzyme Inhib Med Chem 2023;38:2163241. [PMID: 36629443 DOI: 10.1080/14756366.2022.2163241] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/12/2023] Open
Abstract
In this work, a series of novel compounds Spartinin C1-C24 were screened, synthesised and evaluated for inhibiting xanthine oxidase thus lowering serum uric acid level. The backbones were derived from the components of coastal marine source Spartina alterniflora and marketed drugs. The top hits Spartinin C10 & C22 suggested high inhibition percentages (78.54 and 93.74) at 10 μM dosage, which were higher than the positive control Allopurinol. They were low cytotoxic onto human normal hepatocyte cells. Treatment with Spartinin C10 could lower the serum uric acid level to 440.0 μM in the hyperuricemic model mice (723.0 μM), comparable with Allopurinol (325.8 μM). Spartinin C10 was more appreciated than Allopurinol on other serum indexes. The preliminary pharmacokinetics evaluation indicated that the rapid absorption, metabolism and elimination of Spartinin C10 should be further improved. The discovery of pharmaceutical molecules from coastal marine source here might inspire the inter-disciplinary investigations on public health.
Collapse
|
44
|
|
Pornaroontham P, Kim K, Kulprathipanja S, Rangsunvigit P. Water-soluble organic former selection for methane hydrates by supervised machine learning. ENERGY REP 2023;9:2935-2946. [DOI: 10.1016/j.egyr.2023.01.118] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/11/2023] Open
|
45
|
|
Zhang L, Zhai BZ, Wu YJ, Wang Y. Recent progress in the development of nanomaterials targeting multiple cancer metabolic pathways: a review of mechanistic approaches for cancer treatment. Drug Deliv 2023;30:1-18. [PMID: 36597205 DOI: 10.1080/10717544.2022.2144541] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/05/2023] Open
Abstract
Cancer is a very heterogeneous disease, and uncontrolled cell division is the main characteristic of cancer. Cancerous cells need a high nutrition intake to enable aberrant growth and survival. To do so, cancer cells modify metabolic pathways to produce energy and anabolic precursors and preserve redox balance. Due to the importance of metabolic pathways in tumor growth and malignant transformation, metabolic pathways have also been given promising perspectives for cancer treatment, providing more effective treatment strategies, and target-specific with minimum side effects. Metabolism-based therapeutic nanomaterials for targeted cancer treatment are a promising option. Numerous types of nanoparticles (NPs) are employed in the research and analysis of various cancer therapies. The current review focuses on cutting-edge strategies and current cancer therapy methods based on nanomaterials that target various cancer metabolisms. Additionally, it highlighted the primacy of NPs-based cancer therapies over traditional ones, the challenges, and the future potential.
Collapse
|
46
|
|
Liao Y, Bruzzese PC, Salvadori E, Chiesa M. 17O hyperfine spectroscopy in surface chemistry and catalysis. Journal of Magnetic Resonance Open 2023;16-17:100101. [DOI: 10.1016/j.jmro.2023.100101] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/14/2023] Open
|
47
|
|
Swidan MM, Essa BM, Sakr TM. Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnol 2023;14:6. [DOI: 10.1186/s12645-023-00157-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Nanomedicine offers great potentials for theranostic studies via providing higher efficacy and safety levels. This work aimed to develop and evaluate a new nanoplatform as a tumor theranostic probe.
Results
Carboxyl-functionalized graphene oxide nanosheets (FGO) was well synthesized from graphite powder and then conjugated with folic acid to act as a targeted nano-probe. Full characterization and in vitro cytotoxicity evaluation were conducted; besides, in vivo bio-evaluation was attained via intrinsic radioiodination approach in both normal and tumor-bearing Albino mice. The results indicated that FGO as well as conjugated graphene oxide nanosheets (CGO) are comparatively non-toxic to normal cells even at higher concentrations. Pharmacokinetics of FGO and CGO showed intensive and selective uptake in the tumor sites where CGO showed high T/NT of 7.27 that was 4 folds of FGO at 1 h post injection. Additionally, radioiodinated-CGO (ICGO) had declared a superior prominence over the previously published tumor targeted GO radiotracers regarding the physicochemical properties pertaining ability and tumor accumulation behavior.
Conclusions
In conclusion, ICGO can be used as a selective tumor targeting agent for cancer theranosis with aid of I-131 that has a maximum beta and gamma energies of 606.3 and 364.5 keV, respectively.
Collapse
|
48
|
|
Changjun Zhang, Yujia Zhang, Yangjing Lv, Jianan Guo, Bianbian Gao, Yi Lu, Anjie Zang, Xi Zhu, Tao Zhou, Yuanyuan Xie. Chromone-based monoamine oxidase B inhibitor with potential iron-chelating activity for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem;38. [PMID: 36519319 DOI: 10.1080/14756366.2022.2134358] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
Based on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities were observed for most of the compounds. Pharmacological assays led to the identification of compound 17d, which exhibited favourable iron-chelating potential (pFe3+ = 18.52) and selective hMAO-B inhibitory activity (IC50 = 67.02 ± 4.3 nM, SI = 11). Docking simulation showed that 17d occupied both the substrate and the entrance cavity of MAO-B, and established several key interactions with the pocket residues. Moreover, 17d was determined to cross the blood-brain barrier (BBB), and can significantly ameliorate scopolamine-induced cognitive impairment in AD mice. Despite its undesired pharmacokinetic property, 17d remains a promising multifaceted agent that is worth further investigation.
Collapse
|
49
|
|
Xue P, Chen Y, Xu Y, Valenzuela C, Zhang X, Bisoyi HK, Yang X, Wang L, Xu X, Li Q. Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color. Nanomicro Lett 2023;15:1. [DOI: 10.1007/s40820-022-00977-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/29/2022] Open
Abstract
AbstractIn nature, many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots. However, it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird. Herein, we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO2 nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices. The resulting soft actuators are found to exhibit brilliant, angle-independent structural color, as well as ultrafast actuation and recovery speeds (a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s, and a recovery time of ~ 0.24 s) in response to acetone vapor. As proof-of-concept illustrations, structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target, artificial green tendrils that can twine around tree branches, and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor. The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.
Collapse
|
50
|
|
Wu J, Zhou J, Shi Z, Wang C, Ngai T, Lin W. Pickering aqueous foam templating: a promising strategy to fabricate porous waterborne polyurethane coatings. Collagen & Leather 2023;5:10. [DOI: 10.1186/s42825-023-00115-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023]
Abstract
Graphical abstract
Collapse
|