1
|
Barzan G, Sacco A, Giovannozzi AM, Portesi C, Schiavone C, Salafranca J, Wrona M, Nerín C, Rossi AM. Development of innovative antioxidant food packaging systems based on natural extracts from food industry waste and Moringa oleifera leaves. Food Chem 2024; 432:137088. [PMID: 37688815 DOI: 10.1016/j.foodchem.2023.137088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
Active packaging that prolongs food shelf life, maintaining its quality and safety, is an increasing industrial demand, especially if integrated in a circular economy model. In this study, the fabrication and characterization of sustainable cellulose-based active packaging using food-industry waste and natural extracts as antioxidant agents was assessed. Grape marc, olive pomace and moringa leaf extracts obtained by supercritical fluid, antisolvent and maceration extraction in different solvents were compared for their antioxidant power and phenolic content. Grape and moringa macerates in acetone and methanol, as the most efficient and cost-effective extracts, were incorporated in the packaging as coatings or in-between layers. Both systems showed significant free-radical protection in vitro (antioxidant power 50%) and more than 50% prevention of ground beef lipid peroxidation over 16 days by indirect TBARS and direct in situ Raman microspectroscopy measurements. Therefore, these systems are promising for industrial applications and more sustainable farm-to-fork food production systems.
Collapse
Affiliation(s)
- Giulia Barzan
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy.
| | - Alessio Sacco
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| | - Andrea Mario Giovannozzi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy.
| | - Chiara Portesi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| | - Consolato Schiavone
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Jesús Salafranca
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Magdalena Wrona
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Cristina Nerín
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Andrea Mario Rossi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| |
Collapse
|
2
|
Shehzad Q, Liu Z, Zuo M, Wang J. The role of polysaccharides in improving the functionality of zein coated nanocarriers: Implications for colloidal stability under environmental stresses. Food Chem 2024; 431:136967. [PMID: 37604006 DOI: 10.1016/j.foodchem.2023.136967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Zein has gained popularity over the past few years as an incredible food and bio-based materials. The potential functions and health benefits of zein microcapsules or micro-/nanoparticles in bioactive components delivery, structured emulsion, etc., have received great attention. However, the development has been limited by colloidal destabilization, especially when thermal processing is involved. There is a recent trend in developing zein-polysaccharide complexes (ZPCs), which has tremendously improved the performance of zein-based colloidal carrier systems or emulsions. Increasing our understanding of zein interactions and their contribution to the structure of various macromolecules can help us to develop novel biomaterials that can be used in food, agriculture, biomedicine, and cosmetics. In addition, these nanocarriers are suitable for the encapsulation and delivery of bioactive compounds which have positive perspective in food industry. Therefore, this article aimed to review recent advances in the ZPCs that can be applied to functional or health-promoting foods, with a focus on the characteristics of different ZPCs, factors and mechanisms affecting the stability (especially thermal stability) of these complexes, and their application in food industry as a carrier for BCs. Further, the stability of ZPCs based emulsions under processing and physiological environments, as well some typical effective methods are introduced. Also, the principal challenges and prospects were enumerated and discussed.
Collapse
Affiliation(s)
- Qayyum Shehzad
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China
| | - Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China.
| | - Min Zuo
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Rezaei H, Matin AA, Mohammadnejad M. Cold atmospheric plasma treated 3D printed polylactic acid film; application in thin film solid phase microextraction of anticancer drugs. Talanta 2024; 266:125064. [PMID: 37572475 DOI: 10.1016/j.talanta.2023.125064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Tyrosine Kinase Inhibitors (TKIs) represent a pharmacological category of targeted therapeutics deployed for the treatment of malignant pathologies. Considering the side effects of this class of drugs for humans, therapeutic drug monitoring (TDM) becomes important. Here, a novel and specific methodology is introduced for the quantification of two TKIs (dasatinib and erlotinib) in human plasma samples. Furthermore, this study investigates the successful application of 3D printer technology in analytical sample preparation methods. Employing a fused deposition modeling (FDM) 3D printer and polylactic acid (PLA) filament, adsorbent films were designed and produced to be utilized in thin film microextraction. The 3D printed polylactic acid film surface was modified using cold atmospheric plasma (CAP) as a fast, clean and dry surface modification method with low consumption of chemicals and energy. Subsequently, FESEM, AFM, ATR-FTIR, and WCA analysis studies were employed to effectively assess the efficacy of the plasma surface modification method for the 3D printed films. After the optimization of the plasma modification and extraction methods, human plasma samples were studied for the effectiveness of the aforementioned approach. So, the selected 3D printed films with excellent microextraction efficiency have been found to be effective in sample preparation of biological samples. The linear dynamic range (LDR), limit of detection (LOD) and limit of quantification (LOQ) were obtained 0.10-20 μgL-1, 0.03 μgL-1and 0.1 μgL-1 for dasatinib and 1.0-500 μgL-1, 0.3 μgL-1, and 1 μgL-1 for erlotinib. The results obtained indicate that the developed method proves to be successful in the effective separation of anticancer drugs.
Collapse
Affiliation(s)
- Hadiseh Rezaei
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amir Abbas Matin
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Mohsen Mohammadnejad
- Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
4
|
Sun Y, Zhou L, Ding Y, Liu C, Mao ZS, Jiang QY, Chen J, Chen F, Cao Y. Fabrication of flexible electrospinning nano-fiber membrane for detection of respiratory tract transmission virus based on SERS. Talanta 2024; 266:125127. [PMID: 37647815 DOI: 10.1016/j.talanta.2023.125127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The application of flexible sensors in the biomedical field is deepening. It is of great significance to develop flexible wearable sensors which are more in line with the needs of the public. A flexible polylactic acid membrane fabric was prepared by electrospinning method. The membrane was used as SERS active substrate by screen printing capture probe which combine Au nanoplates with antibodies to the target substance. Thioglycolic acid-labeled silver nanoparticles coupled with antibodies as SERS nanotags. The target substance can be fixed between the capture probe and SERS nanotags. Due to the high specific surface area between the spinning, the adhesion rate of the capture probe is higher than that of the rigid substrate, and the enrichment and hypersensitivity detection of the object to be tested could be realized. The membranes prepared are flexible, wearable, portable, highly biocompatible, and can be mass-produced for high-throughput detection. We then applied the sensor to the detection of SARS-CoV-2 with detection limits as low as 10 TU/mL. This membrane as a SERS substrate can offer a fast and non-invasive reference for the early diagnosis of respiratory infectious diseases similar to COVID-19.
Collapse
Affiliation(s)
- Yang Sun
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
| | - Liuzhu Zhou
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yan Ding
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
| | - Cheng Liu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
| | - Zheng-Sheng Mao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qiao-Yan Jiang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
| | - Jin Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
5
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Deir S, Mozhdehbakhsh Mofrad Y, Mashayekhan S, Shamloo A, Mansoori-Kermani A. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening. Talanta 2024; 266:124901. [PMID: 37459786 DOI: 10.1016/j.talanta.2023.124901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases are caused by hereditary factors, environmental conditions, and medication-related issues. On the other hand, the cardiotoxicity of drugs should be thoroughly examined before entering the market. In this regard, heart-on-chip (HOC) systems have been developed as a more efficient and cost-effective solution than traditional methods, such as 2D cell culture and animal models. HOCs must replicate the biology, physiology, and pathology of human heart tissue to be considered a reliable platform for heart disease modeling and drug testing. Therefore, many efforts have been made to find the best methods to fabricate different parts of HOCs and to improve the bio-mimicry of the systems in the last decade. Beating HOCs with different platforms have been developed and techniques, such as fabricating pumpless HOCs, have been used to make HOCs more user-friendly systems. Recent HOC platforms have the ability to simultaneously induce and record electrophysiological stimuli. Additionally, systems including both heart and cancer tissue have been developed to investigate tissue-tissue interactions' effect on cardiac tissue response to cancer drugs. In this review, all steps needed to be considered to fabricate a HOC were introduced, including the choice of cellular resources, biomaterials, fabrication techniques, biomarkers, and corresponding biosensors. Moreover, the current HOCs used for modeling cardiac diseases and testing the drugs are discussed. We finally introduced some suggestions for fabricating relatively more user-friendly HOCs and facilitating the commercialization process.
Collapse
Affiliation(s)
- Sara Deir
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
7
|
Acquavia MA, Benítez JJ, Bianco G, Crescenzi MA, Hierrezuelo J, Grifé-Ruiz M, Romero D, Guzmán-Puyol S, Heredia-Guerrero JA. Incorporation of bioactive compounds from avocado by-products to ethyl cellulose-reinforced paper for food packaging applications. Food Chem 2023; 429:136906. [PMID: 37480776 DOI: 10.1016/j.foodchem.2023.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Reinforced films were fabricated by impregnating paper in ethyl cellulose solutions. After solvent evaporation, the infused ethyl cellulose acted as binder of the paper microfibres and occupied the pores and cavities, thus improving the mechanical and barrier properties. To prepare active films, avocado by-products from guacamole industrial production were extracted in ethyl acetate. Then, the extract (optimized to be rich in phenolic compounds and flavonoids and mainly composed by lipids) was incorporated to the paper reinforced with the highest content of ethyl cellulose. In general, the addition of the avocado by-products extract decreased the water uptake and permeability, improved the wettability, and increased the biodegradability in seawater and the antioxidant capacity. In addition, these films acted as barriers and retainers for Escherichia coli and Bacillus cereus. The potentiality of these materials for food packaging was demonstrated by low overall migrations and a similar food preservation to common low-density polyethylene.
Collapse
Affiliation(s)
- Maria A Acquavia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - José J Benítez
- Insituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Calle Americo Vespucio 49, Isla de la Cartuja, Sevilla 41092, Spain
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria A Crescenzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Jesús Hierrezuelo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Departamento de Microbiología, Bulevar Louis Pasteur 49, 29010 Malaga, Spain
| | - Montserrat Grifé-Ruiz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Departamento de Microbiología, Bulevar Louis Pasteur 49, 29010 Malaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Departamento de Microbiología, Bulevar Louis Pasteur 49, 29010 Malaga, Spain
| | - Susana Guzmán-Puyol
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Bulevar Louis Pasteur 49, 29010 Malaga, Spain
| | - José A Heredia-Guerrero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Bulevar Louis Pasteur 49, 29010 Malaga, Spain.
| |
Collapse
|
8
|
Ma C, Sun K, Wang G, Wang G, Sun D, Ma J. A nonenzymic microfiber optic-biosensor modified phenylboric acid for sensitively and specifically detecting low glucose concentration. Spectrochim Acta A Mol Biomol Spectrosc 2023; 303:123197. [PMID: 37542870 DOI: 10.1016/j.saa.2023.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
A microfiber interferometer coated with sensitive films formed by amide bond between 3-Carboxy-4-fluorophenylboronic acid (FPBA) and polydopamine (PDA) for the detection of trace glucose concentration is designed and demonstrated. Due to a huge evanescent field, this microfiber interferometer has a very sensitive response to the refractive index (RI) of the surrounding environment, which has excellent sensing performance including RI sensitivity response of 1825.83 nm/RIU and low temperature response of -0.04 nm/°C. Due to the good film-forming performance of PDA, whose the amino group coupled with the carboxyl molecule on FPBA to form an amide bond, PDA/FPBA can be attached to the microfiber interferometer for detecting different concentrations of glucose. The concentration range of glucose detection is 0.1-20 mM with a sensitivity of 1.71 nm/mM and a limit of detection of 12.6 ppm. Finally, the sensor is tested in actual samples of human urine to detect different concentrations of glucose and proved to be responsive and reproducible in urine. We can estimate the concentration of glucose in urine by wavelength shift. The sensor has the advantages of simple manufacture, low cost, high sensitivity, and specific recognition glucose in urine. In addition, the success of this sensor shows that the combination of ultrafine fiber and organic chemical materials has broad prospects in the field of optical detection.
Collapse
Affiliation(s)
- Chenfei Ma
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China
| | - Kang Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China
| | - Guoquan Wang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China
| | - Guanjun Wang
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China.
| | - Jie Ma
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| |
Collapse
|
9
|
Farooq S, Xu L, Ostovan A, Qin C, Liu Y, Pan Y, Ping J, Ying Y. Assessing the greenification potential of cyclodextrin-based molecularly imprinted polymers for pesticides detection. Food Chem 2023; 429:136822. [PMID: 37450994 DOI: 10.1016/j.foodchem.2023.136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Cyclodextrins, with their unparalleled attributes of eco-friendliness, natural abundance, versatile utility, and facile functionalization, make a paramount contribution to the field of molecular imprinting. Leveraging the unique properties of cyclodextrins in molecularly imprinted polymers synthesis has revolutionized the performance of molecularly imprinted polymers, resulting in enhanced adsorption selectivity, capacity, and rapid extraction of pesticides, while also circumventing conventional limitations. As the concern for food quality and safety continues to grow, the need for standard analytical methods to detect pesticides in food and environmental samples has become paramount. Cyclodextrins, being non-toxic and biodegradable, present an attractive option for greener reagents in imprinting polymers that can also ensure environmental safety post-application. This review provides a comprehensive summary of the significance of cyclodextrins in molecular imprinting for pesticide detection in food and environmental samples. The recent advancements in the synthesis and application of molecularly imprinted polymers using cyclodextrins have been critically analyzed. Furthermore, the current limitations have been meticulously examined, and potential opportunities for greenification with cyclodextrin applications in this field have been discussed. By harnessing the advantages of cyclodextrins in molecular imprinting, it is possible to develop highly selective and efficient methods for detecting pesticides in food and environmental samples while also addressing the challenges of sustainability and environmental impact.
Collapse
Affiliation(s)
- Saqib Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chunlian Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yingjia Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuxiang Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
10
|
Alrefaee SH, Alnoman RB, Alenazi NA, Alharbi H, Alkhamis K, Alsharief HH, El-Metwaly NM. Electrospun glass nanofibers to strengthen polycarbonate plastic glass toward photoluminescent smart materials. Spectrochim Acta A Mol Biomol Spectrosc 2023; 302:122986. [PMID: 37336189 DOI: 10.1016/j.saa.2023.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Electrospun glass nanofibers (GNFs) were used to strengthen polycarbonate (PC) to create long-persistent photoluminescent and fluorescent smart materials such as afterglow concrete and smart window. Physical integration of lanthanide-activated aluminate (LA) nanoparticles (NPs) yielded transparent GNFs@PC smart sheets. Spectral investigations utilizing photoluminescence and CIE Lab parameters were performed to confirm that the translucent appearance of GNFs@PC changed to green when exposed to UV light. This fluorescence activity was quickly reversible for the GNFs@PC hybrids with low concentrations of LANPs, which indicate fluorescence emission. Higher phosphor concentrations in GNFs@PC led to longer-lasting afterglow photoluminescence and slower reversibility. The GNFs@PC hybrids showed an emission band detected at 518 nm upon excitation at 368 nm. The morphological characteristics of LANPs and GNFs were analyzed by transmission electron microscopy (TEM), which revealed sizes of 11-26 nm and 250-300 nm, respectively. GNFs were prepared using electrospinning technology and then used as a roughening agent into PC sheets. Morphological characteristics of GNFs and GNFs@PC smart sheets were examined using energy-dispersive X-ray spectroscopy (EDXA), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The GNFs@PC smart sheets were shown to have enhanced scratch resistance in comparison to LANPs-free PC control sample. Increases in LANPs concentration enhanced both hydrophobicity and UV protection.
Collapse
Affiliation(s)
- Salhah H Alrefaee
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 30799, Saudi Arabia
| | - Rua B Alnoman
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Haifa Alharbi
- Department of Chemistry, College of Science, Northern Border University, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Hatun H Alsharief
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia.
| |
Collapse
|
11
|
Xiao Y, Li H, Tu M, Sun L, Wang F. Novel AIEE pillar[5]arene-fluorene fluorescent copolymer for selective recognition of paraquat by forming polypseudorotaxane. Spectrochim Acta A Mol Biomol Spectrosc 2023; 302:123112. [PMID: 37478758 DOI: 10.1016/j.saa.2023.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
A novel conjugated polymer (Co-P[5]Flu) was synthesized by copolymerizing a difunctionalized pillar[5]arene and a fluorene derivative monomer. Co-P[5]Flu displayed an aggregation-induced emission enhancement (AIEE) effect because of the restricted intramolecular rotations of the pillar[5]arene unit. Co-P[5]Flu exhibited high selectivity and sensitivity towards the pesticide paraquat (PQ) with excellent anti-interference properties. It presented fluorescence quenching response (1-I/I0=96.6%) only towards paraquat and not towards other competitive guests. The fluorescence titration experiments revealed that the detection limit (LOD) for paraquat was as low as 1.69×10-8 M, and the Stern-Volmer constant (KSV) was determined to be 2.11×104 M-1. The recognition mechanism was studied using both 1H NMR titration and theoretical calculations. The Co-P[5]Flu showed fluorescence quenching for PQ due to the synergistic effect of polypseudorotaxane formation and photoinduced electron transfer (PET). Additionally, the polymer chemosensor demonstrated potential for the detection of paraquat in practical samples.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Man Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lei Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
12
|
Mansor MA, Ahmad MR, Petrů M, Rahimian Koloor SS. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell. Artif Cells Nanomed Biotechnol 2023; 51:371-383. [PMID: 37548425 DOI: 10.1080/21691401.2023.2239274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, ρ at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.
Collapse
Affiliation(s)
- Muhammad Asraf Mansor
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Ridzuan Ahmad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Michal Petrů
- Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
13
|
Xia L, Li L, Xiao Y, Xiao F, Liu L, Chen X, Li X, Wang H. Active colorimetric bilayer polycaprolactone-eucalyptus oil@silk fibroin-bayberry anthocyanins (PCL-EO@SF-BAs) membrane with directional water transport (DWT) for food packaging. J Colloid Interface Sci 2023; 651:356-367. [PMID: 37544224 DOI: 10.1016/j.jcis.2023.07.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Currently, designing smart membranes with multifunctional effectiveness is crucial to food freshness monitoring and retention. Herein, an active colorimetric Janus bilayer membrane with directional water transport (DWT) performance is constructed by electrospinning, which comprises a hydrophilic layer of silk fibroin-bayberry anthocyanins (SF-BAs) and a hydrophobic layer of polycaprolactone-eucalyptus oil (PCL-EO). The entities of BAs and EO are well dispersed in the fiber matrix by hydrogen bonds and physical interactions, respectively. BAs endow the membrane colorimetric response and antioxidant activity, and EO contributes to the antibacterial activity while DWT performance is generated from the asymmetric wettability of the two layers. The bilayer membrane has an accumulative one-way transport index of 1077%, an overall moisture management capacity of 0.76 and a water evaporation rate of 0.48 g h-1. Moreover, the release of BAs and EO was predominantly controlled by Fickian diffusion. As a pH-sensing indicator, PCL-EO@SF-BAs is highly sensitive to external pH stimuli and the response is reversible. In addition to freshness monitoring, PCL-EO@SF-BAs can extend the shelf-life of pork beyond 100% at 4 °C. Also, it can extend the shelf life of shrimp by approximately 70% at 25 °C with the synergistic effect of antibacterial activity and the DWT performance.
Collapse
Affiliation(s)
- Li Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Feng Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Lanhua Liu
- Instrumental Analysis Center, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Xiangying Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, China.
| |
Collapse
|
14
|
Guillou E, Dumazert L, Caër C, Beigbeder A, Ouagne P, Le Saout G, Beaugrand J, Bourmaud A, Le Moigne N. In-situ monitoring of changes in ultrastructure and mechanical properties of flax cell walls during controlled heat treatment. Carbohydr Polym 2023; 321:121253. [PMID: 37739490 DOI: 10.1016/j.carbpol.2023.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/24/2023]
Abstract
Plant fibres are increasingly used as reinforcements, especially in thermoplastic composites. Understanding the impact of temperature on the properties of these fibres is an important issue for the manufacturing of high-performance materials with minimal defects. In this work, the structural evolution and mechanical behaviour of flax fibre cell walls were dynamically monitored by temperature-controlled X-ray diffraction and nanoindentation from 25 to 230 °C; detailed biochemical analysis was also conducted on fibre samples after each heating step. With increasing temperature up to 230 °C, a decrease in the local mechanical performance of the flax cell walls, of about -72 % for the indentation modulus and -35 % for the hardness, was measured. This was associated with a decrease in the packing of the cellulose crystal lattice (increase in d-spacing d200), as well as significant mass losses measured by thermogravimetric analysis and changes in the biochemical composition, i.e. non-cellulosic polysaccharides attributed to the middle lamellae but also to the cell walls. This work, which proposes for the first time an in-situ investigation of the dynamic temperature evolution of the flax cell wall properties, highlights the reversible behaviour of their crystalline structure (i.e. cellulose) and local mechanical properties after cooling to room temperature, even after exposure to high temperatures.
Collapse
Affiliation(s)
- Elouan Guillou
- IPC Laval, Rue Léonard De Vinci, Changé, France; Univ. Bretagne Sud, UMR CNRS 6027, IRDL, Lorient, France
| | - Loïc Dumazert
- Polymers Composites and Hybrids (PCH) - IMT Mines Ales, Ales, France
| | - Célia Caër
- ENSTA Bretagne, UMR CNRS 6027, IRDL, Brest, France
| | | | - Pierre Ouagne
- Laboratoire Génie de Production, LGP, Université de Toulouse, INP-ENIT, Tarbes, France
| | - Gwenn Le Saout
- LMGC, IMT Mines Ales, Univ Montpellier, CNRS, Ales, France
| | - Johnny Beaugrand
- UR 1268 Biopolymères Interactions Assemblages, INRAE, Nantes, France
| | - Alain Bourmaud
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, Lorient, France.
| | - Nicolas Le Moigne
- Polymers Composites and Hybrids (PCH) - IMT Mines Ales, Ales, France.
| |
Collapse
|
15
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Yavuzturk Gul B, Pekgenc E, Vatanpour V, Koyuncu I. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges. Carbohydr Polym 2023; 321:121296. [PMID: 37739529 DOI: 10.1016/j.carbpol.2023.121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
Due to low-cost, sustainability and good mechanical stability, cellulose-based materials are frequently used in fabrication of polymeric gas separation membrane as potential carbohydrate polymers to substitute traditional petrochemical-based materials. In this review, the performance of cellulose-based polymeric membranes i.e. cellulose acetate, cellulose diacetate, cellulose triacetate, ethyl cellulose and carboxymethyl cellulose in the separation of different gases were investigated. This review paper provides the main features and advantages in the fabrication of cellulose-based gas separation membranes. The influence of the functionalization of cellulose on gas separation and permeability performance of related membranes is considered. Influence of different modification procedures such as blending with polymers, nanomaterials and ionic liquids on the gas separation ability of cellulose-based membranes were reviewed. Moreover, a brief inquiry of the potential of cellulose-based gas separation membranes for industrial applications, by examining the performance of different cellulose derivatives and identifying potential strategies for membrane modification and optimization are given, along with the current restrictions and the future perspectives are discussed.
Collapse
Affiliation(s)
- Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Enise Pekgenc
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
17
|
Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-023-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
Collapse
|
18
|
Chen SQ, Liao Q, Meldrum OW, Guo L, Wang K, Zhang S, Liu Y, Chen X, Zhu J, Li L. Mechanical properties and wound healing potential of bacterial cellulose-xyloglucan-dextran hydrogels. Carbohydr Polym 2023; 321:121268. [PMID: 37739520 DOI: 10.1016/j.carbpol.2023.121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/22/2023] [Accepted: 08/06/2023] [Indexed: 09/24/2023]
Abstract
Bacterial cellulose (BC) is a promising material for use as an artificial skin in wound healing application, however, its applications are limited due to its poor malleability. Incorporating non-cellulosic polysaccharides such as dextran and xyloglucan (XG) may enhance its respective wound healing and malleability. This study presents a novel in situ biopreparation method to produce BC-based hybrid hydrogels containing dextran (BC-D) and xyloglucan-dextran (BC-XG-D) with unique mechanical and rheological properties. Structural analysis revealed that dextran of different sizes (10 k, 70 k and 2 M of Mw) form micron-sized particles by loosely binding to cellulosic fibres. The addition of xyloglucan resulted acts as a lubricant in mechanical testing. The BC-XG-D hybrid hydrogels showed a reduced Young's modulus of 4 MPa and a higher maximum tensile strain of 53 % compared to native BC. Moreover, they displayed less plastic but more viscous behaviour under large shear strain deformation. The wound healing animal model experiments demonstrated that the BC-XG-D hybrid hydrogels promoted wound healing process and skin maturation. Overall, these findings contribute to the development of functional BC-based medical materials with desired mechanical and rheological properties that have the potential to accelerate wound healing.
Collapse
Affiliation(s)
- Si-Qian Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Qiudong Liao
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Lei Guo
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuyan Zhang
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yujia Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xu Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Zhu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
19
|
Donati I, Christensen BE. Alginate-metal cation interactions: Macromolecular approach. Carbohydr Polym 2023; 321:121280. [PMID: 37739522 DOI: 10.1016/j.carbpol.2023.121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023]
Abstract
Alginates are a broad family of linear (unbranched) polysaccharides derived from brown seaweeds and some bacteria. Despite having only two monomers, i.e. β-d-mannuronate (M) and its C5 epimer α-l-guluronate (G), their blockwise arrangement in oligomannuronate (..MMM..), oligoguluronate (..GGG..), and polyalternating (..MGMG..) blocks endows it with a rather complex interaction pattern with specific counterions and salts. Classic polyelectrolyte theories well apply to alginate as polyanion in the interaction with monovalent and non-gelling divalent cations. The use of divalent gelling ions, such as Ca2+, Ba2+ or Sr2+, provides thermostable homogeneous or heterogeneous hydrogels where the block composition affects both macroscopic and microscopic properties. The mechanism of alginate gelation is still explained in terms of the original egg-box model, although over the years some novel insights have been proposed. In this review we summarize several decades of research related to structure-functionships in alginates in the presence of non-gelling and gelling cations and present some novel applications in the field of self-assembling nanoparticles and use of radionuclides.
Collapse
Affiliation(s)
- Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Bjørn E Christensen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway.
| |
Collapse
|
20
|
Plog J, Wang X, Lichade KM, Pan Y, Yarin AL. Extremely-fast electrostatically-assisted direct ink writing of 2D, 2.5D and 3D functional traces of conducting polymer Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate- polyethylene oxide (PEDOT:PSS-PEO). J Colloid Interface Sci 2023; 651:1043-1053. [PMID: 37598624 DOI: 10.1016/j.jcis.2023.07.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
HYPOTHESIS Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an attractive conducting polymer, albeit its rheological properties are inappropriate for direct ink writing (DIW). Here it is hypothesized that a suspension of PEDOT:PSS with a non-conducting highly spinnable viscoelastic polymer, e.g., polyethylene oxide (PEO), will significantly facilitate printability and enhance the electrical conductivity (EC) of PEDOT:PSS-PEO. It is also hypothesized that high-humidity post-treatment will enhance the EC even further, and the application of the electric field can facilitate the DIW speed beyond the capabilities of current commercial 3D printers. EXPERIMENTS The rheological behavior of PEDOT:PSS suspensions with several non-conducting polymers was explored in the experiments. The EC of the suspensions was measured, including the effect of high-humidity post-treatment. High-speed DIW of the optimal suspension was experimentally demonstrated with the applied electric field. FINDINGS The findings revealed that PEO serves as a secondary dopant, and the suspension of 4.33 wt% PEDOT:PSS-52 wt% PEO possesses the EC > 15 times higher than that of PEDOT:PSS. Many 2D, 2.5D and 3D functional traces were printed at high resolution at the DIW speed up to 8.64 m/s (>10 times faster than current commercial printers), facilitated by the applied electric field. Post-treatment at 80-90% relative humidity enhanced the EC more than twice.
Collapse
Affiliation(s)
- J Plog
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA
| | - X Wang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA
| | - K M Lichade
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA
| | - Y Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA.
| | - A L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St, Chicago, IL 60607-7022, USA; School of Mechanical Engineering, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
21
|
Ratnasari A. Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review. Bioengineered 2023; 14:2252234. [PMID: 37712708 PMCID: PMC10506444 DOI: 10.1080/21655979.2023.2252234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Membrane technology can play a suitable role in removing pharmaceutical active compounds since it requires low energy and simple operation. Even though membrane technology has progressed for wastewater applications nowadays, modifying membranes to achieve the strong desired membrane performance is still needed. Thus, this study overviews a comprehensive insight into the application of modified polymer membranes to remove pharmaceutical active compounds from wastewater. Biotoxicity of pharmaceutical active compounds is first prescribed to gain deep insight into how membranes can remove pharmaceutical active compounds from wastewater. Then, the behavior of the diffusion mechanism can be concisely determined using mass transfer factor model that represented by β and B with value up to 2.004 g h mg-1 and 1.833 mg g-1 for organic compounds including pharmaceutical active compounds. The model refers to the adsorption of solute to attach onto acceptor sites of the membrane surface, external mass transport of solute materials from the bulk liquid to the membrane surface, and internal mass transfer to diffuse a solute toward acceptor sites of the membrane surface with evidenced up to 0.999. Different pharmaceutical compounds have different solubility and relates to the membrane hydrophilicity properties and mechanisms. Ultimately, challenges and future recommendations have been presented to view the future need to enhance membrane performance regarding fouling mitigation and recovering compounds. Afterwards, the discussion of this study is projected to play a critical role in advance of better-quality membrane technologies for removing pharmaceutical active compounds from wastewater in an eco-friendly strategy and without damaging the ecosystem.
Collapse
Affiliation(s)
- Anisa Ratnasari
- Department of Environmental Engineering, Faculty of Civil Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
| |
Collapse
|
22
|
Hu M, Taguchi K, Matsumoto K, Kobatake E, Ito Y, Ueda M. Polysarcosine-Coated liposomes attenuating immune response induction and prolonging blood circulation. J Colloid Interface Sci 2023; 651:273-283. [PMID: 37542902 DOI: 10.1016/j.jcis.2023.07.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
HYPOTHESIS Liposomes coated with long polysarcosine (PSar) chains at a high density might enable long blood circulation and attenuate accelerated blood clearance (ABC) phenomenon. EXPERIMENTS In this study, we controlled the length (23, 45, 68 mers) and density (5, 10, 15 mol%) of PSar on liposomal coatings and, furthermore, investigated the effects of PSar length and density on the blood circulation time, biodistribution, immune response, and ABC phenomenon induction. Length-controlled PSar-bound lipids (PSar-PEs) were synthesized using a click reaction and inserted into bare liposomes at different combinations of chain lengths and proportions. FINDINGS Although all PSar-coated liposomes (PSar-lipos) had similar morphological, physical, and chemical properties, they had different blood circulation times and biodistribution, and exerted varied effects on the immune system. All PSar-lipos with different PSar length and density showed a similar anti-PSar IgM response. Liposomes modified with the longest PSar chain (68 mers) at a high density (15 mol%) showed the longest blood circulation time and, additionally, attenuated ABC phenomenon compared with PEG-lipo. The ex vivo analysis of the biodistribution of liposomes revealed that a thick PSar layer enhanced the blood circulation time of liposomes due to the reduction of the accumulation of liposomes in the liver and spleen. These findings provide new insights into the relationship between IgM expression and ABC phenomenon inhibition.
Collapse
Affiliation(s)
- Mingxin Hu
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakouen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakouen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Motoki Ueda
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
23
|
Lizarazo-Fonseca L, Correa-Araujo L, Prieto-Abello L, Camacho-Rodríguez B, Silva-Cote I. In vitro and in vivo evaluation of electrospun poly (ε-caprolactone)/collagen scaffolds and Wharton's jelly mesenchymal stromal cells (hWJ-MSCs) constructs as potential alternative for skin tissue engineering. Regen Ther 2023; 24:11-24. [PMID: 37284730 PMCID: PMC10239703 DOI: 10.1016/j.reth.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Dermal substitutes bear a high clinical demand because of their ability to promote the healing process of cutaneous wounds by reducing the healing time the appearance and improving the functionality of the repaired tissue. Despite the increasing development of dermal substitutes, most of them are only composed of biological or biosynthetic matrices. This demonstrates the need for new developments focused on using scaffolds with cells (tissue construct) that promote the production of factors for biological signaling, wound coverage, and general support of the tissue repair process. Here, we fabricate by electrospinning two scaffolds: poly(ε-caprolactone) (PCL) as a control and poly(ε-caprolactone)/collagen type I (PCol) in a ratio lower collagen than previously reported, 19:1, respectively. Then, characterize their physicochemical and mechanical properties. As we bear in mind the creation of a biologically functional construct, we characterize and assess in vitro the implications of seeding human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs) on both scaffolds. Finally, to determine the potential functionality of the constructs in vivo, their efficiency was evaluated in a porcine biomodel. Our findings demonstrated that collagen incorporation in the scaffolds produces fibers with similar diameters to those in the human native extracellular matrix, increases wettability, and enhances the presence of nitrogen on the scaffold surface, improving cell adhesion and proliferation. These synthetic scaffolds improved the secretion of factors by hWJ-MSCs involved in skin repair processes such as b-FGF and Angiopoietin I and induced its differentiation towards epithelial lineage, as shown by the increased expression of Involucrin and JUP. In vivo experiments confirmed that lesions treated with the PCol/hWJ-MSCs constructs might reproduce a morphological organization that seems relatively equivalent to normal skin. These results suggest that the PCol/hWJ-MSCs construct is a promising alternative for skin lesions repair in the clinic.
Collapse
Affiliation(s)
| | | | | | | | - Ingrid Silva-Cote
- Corresponding author. Secretaría Distrital de Salud, Carrera 32 # 12-81, Bogotá, Colombia
| |
Collapse
|
24
|
Peng X, Li Y, Liu M, Li Z, Wang X, Zhang K, Zhao X, Li G, Bian L. Complex coacervate-derived hydrogel with asymmetric and reversible wet bioadhesion for preventing UV light-induced morbidities. Bioact Mater 2023; 30:62-72. [PMID: 37575876 PMCID: PMC10412988 DOI: 10.1016/j.bioactmat.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Protecting the skin from UV light irradiation in wet and underwater environments is challenging due to the weak adhesion of existing sunscreen materials but highly desired. Herein we report a polyethyleneimine/thioctic acid/titanium dioxide (PEI/TA/TiO2) coacervate-derived hydrogel with robust, asymmetric, and reversible wet bioadhesion and effective UV-light-shielding ability. The PEI/TA/TiO2 complex coacervate can be easily obtained by mixing a PEI solution and TA/TiO2 powder. The fluid PEI/TA/TiO2 coacervate deposited on wet skin can spread into surface irregularities and subsequently transform into a hydrogel with increased cohesion, thereby establishing interdigitated contact and adhesion between the bottom surface and skin. Meanwhile, the functional groups between the skin and hydrogel can form physical interactions to further enhance bioadhesion, whereas the limited movement of amine and carboxyl groups on the top hydrogel surface leads to low adhesion. Therefore, the coacervate-derived hydrogel exhibits asymmetric adhesiveness on the bottom and top surfaces. Moreover, the PEI/TA/TiO2 hydrogel formed on the skin could be easily removed using a NaHCO3 aqueous solution without inflicting damage. More importantly, the PEI/TA/TiO2 hydrogel can function as an effective sunscreen to block UV light and prevent UV-induced MMP-9 overexpression, inflammation, and DNA damage in animal skin. The advantages of PEI/TA/TiO2 coacervate-derived hydrogels include robust, asymmetric, and reversible wet bioadhesion, effective UV light-shielding ability, excellent biocompatibility, and easy preparation and usage, making them a promising bioadhesive to protect the skin from UV light-associated damage in wet and underwater environments.
Collapse
Affiliation(s)
- Xin Peng
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yuan Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, Hong Kong Special Administrative Region
| | - Menghui Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhuo Li
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuemei Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, Hong Kong Special Administrative Region
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
25
|
Lee IK, Xie R, Luz-Madrigal A, Min S, Zhu J, Jin J, Edwards KL, Phillips MJ, Ludwig AL, Gamm DM, Gong S, Ma Z. Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct. Bioact Mater 2023; 30:142-153. [PMID: 37575875 PMCID: PMC10415596 DOI: 10.1016/j.bioactmat.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Age-related macular degeneration (AMD) causes blindness due to loss of retinal pigment epithelium (RPE) and photoreceptors (PRs), which comprise the two outermost layers of the retina. Given the small size of the macula and the importance of direct contact between RPE and PRs, the use of scaffolds for targeted reconstruction of the outer retina in later stage AMD and other macular dystrophies is particularly attractive. We developed microfabricated, honeycomb-patterned, biodegradable poly(glycerol sebacate) (PGS) scaffolds to deliver organized, adjacent layers of RPE and PRs to the subretinal space. Furthermore, an optimized process was developed to photocure PGS, shortening scaffold production time from days to minutes. The resulting scaffolds robustly supported the seeding of human pluripotent stem cell-derived RPE and PRs, either separately or as a dual cell-layered construct. These advanced, economical, and versatile scaffolds can accelerate retinal cell transplantation efforts and benefit patients with AMD and other retinal degenerative diseases.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Agustin Luz-Madrigal
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Mad
|
|