1
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
Affiliation(s)
- Niranjana Nair
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
2
|
Zhu X, Guan Z, Fang Y, Zhang Y, Guan Z, Li S, Peng K. Rift Valley Fever Virus Nucleoprotein Triggers Autophagy to Dampen Antiviral Innate Immune Responses. J Virol 2023; 97:e0181422. [PMID: 36939341 PMCID: PMC10134837 DOI: 10.1128/jvi.01814-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.
Collapse
Affiliation(s)
- Xiangtao Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zihan Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhenqiong Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
3
|
Wichgers Schreur PJ, Bird BH, Ikegami T, Bermúdez-Méndez E, Kortekaas J. Perspectives of Next-Generation Live-Attenuated Rift Valley Fever Vaccines for Animal and Human Use. Vaccines (Basel) 2023; 11:vaccines11030707. [PMID: 36992291 DOI: 10.3390/vaccines11030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Live-attenuated Rift Valley fever (RVF) vaccines transiently replicate in the vaccinated host, thereby effectively initiating an innate and adaptive immune response. Rift Valley fever virus (RVFV)-specific neutralizing antibodies are considered the main correlate of protection. Vaccination with classical live-attenuated RVF vaccines during gestation in livestock has been associated with fetal malformations, stillbirths, and fetal demise. Facilitated by an increased understanding of the RVFV infection and replication cycle and availability of reverse genetics systems, novel rationally-designed live-attenuated candidate RVF vaccines with improved safety profiles have been developed. Several of these experimental vaccines are currently advancing beyond the proof-of-concept phase and are being evaluated for application in both animals and humans. We here provide perspectives on some of these next-generation live-attenuated RVF vaccines and highlight the opportunities and challenges of these approaches to improve global health.
Collapse
Affiliation(s)
- Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- BunyaVax B.V., 8221 RA Lelystad, The Netherlands
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Ayers VB, Huang YJS, Dunlop JI, Kohl A, Brennan B, Higgs S, Vanlandingham DL. Immunogenicity of a Candidate Live Attenuated Vaccine for Rift Valley Fever Virus with a Two-Segmented Genome. Viral Immunol 2023; 36:33-40. [PMID: 36399689 PMCID: PMC9885543 DOI: 10.1089/vim.2022.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging arbovirus that affects both ruminants and humans. RVFV causes severe and recurrent outbreaks in Africa and the Arabian Peninsula with a significant risk for emergence into new locations. Although there are a variety of RVFV veterinary vaccines for use in endemic areas, there is currently no licensed vaccine for human use; therefore, there is a need to develop and assess new vaccines. Herein, we report a live-attenuated recombinant vaccine candidate for RVFV, based on the previously described genomic reconfiguration of the conditionally licensed MP12 vaccine. There are two general strategies used to develop live-attenuated RVFV vaccines, one being serial passage of wild-type RVFV strains to select attenuated mutants such as Smithburn, Clone 13, and MP12 vaccine strains. The second strategy has utilized reverse genetics to attenuate RVFV strains by introducing deletions or insertions within the viral genome. The novel candidate vaccine characterized in this report contains a two-segmented genome that lacks the medium viral segment (M) and two virulence genes (nonstructural small and nonstructural medium). The vaccine candidate, named r2segMP12, was evaluated for the production of neutralizing antibodies to RVFV in outbred CD-1 mice. The immune response induced by the r2segMP12 vaccine candidate was directly compared to the immune response induced by the rMP12 parental strain vaccine. Our study demonstrated that a single immunization with the r2segMP12 vaccine candidate at 105 plaque-forming units elicited a higher neutralizing antibody response than the rMP12 vaccine at the same vaccination titer without the need for a booster.
Collapse
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA.,Address correspondence to: Dr. Dana L. Vanlandingham, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Ayers VB, Huang YJS, Dunlop JI, Kohl A, Brennan B, Higgs S, Vanlandingham DL. Replication Kinetics of a Candidate Live-Attenuated Vaccine for Cache Valley Virus in Aedes albopictus. Vector Borne Zoonotic Dis 2022; 22:553-558. [DOI: 10.1089/vbz.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
6
|
McMillen CM, Boyles DA, Kostadinov SG, Hoehl RM, Schwarz MM, Albe JR, Demers MJ, Hartman AL. Congenital Rift Valley fever in Sprague Dawley rats is associated with diffuse infection and pathology of the placenta. PLoS Negl Trop Dis 2022; 16:e0010898. [PMID: 36315601 PMCID: PMC9648853 DOI: 10.1371/journal.pntd.0010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Rift Valley fever (RVF) is a disease of animals and humans associated with abortions in ruminants and late-gestation miscarriages in women. Here, we use a rat model of congenital RVF to identify tropisms, pathologies, and immune responses in the placenta during vertical transmission. Infection of late-gestation pregnant rats resulted in vertical transmission to the placenta and widespread infection throughout the decidua, basal zone, and labyrinth zone. Some pups from infected dams appeared normal while others had gross signs of teratogenicity including death. Histopathological lesions were detected in placenta from pups regardless of teratogenicity, while teratogenic pups had widespread hemorrhage throughout multiple placenta layers. Teratogenic events were associated with significant increases in placental pro-inflammatory cytokines, type I interferons, and chemokines. RVFV displays a high degree of tropism for all placental tissue layers and the degree of hemorrhage and inflammatory mediator production is highest in placenta from pups with adverse outcomes. Given the potential for RVFV to emerge in new locations and the recent evidence of emerging viruses, like Zika and SARS-CoV-2, to undergo vertical transmission, this study provides essential understanding regarding the mechanisms by which RVFV crosses the placenta barrier. Rift Valley fever virus (RVFV) infections cause human health and economical burdens given its ability to induce high rates of abortions in ruminants and possible contributions towards late-term miscarriages in women. In this study, we have identified important structures in the placenta targeted by this emerging bunyavirus. Inflammation was associated with more severe fetal outcomes such as death and fetal deformities. The striking similarities between the pathologies of the placenta in the rat model of congenital RVF and those observed in naturally infected ruminants highlight the utility of this rodent model. These findings may be further translated towards understanding the mechanisms involved in vertical transmission of RVFV in humans.
Collapse
Affiliation(s)
- Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Devin A. Boyles
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stefan G. Kostadinov
- Department of Pathology, Magee Women’s Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Joseph R. Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Matthew J. Demers
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
Selim A, Alsubki RA, Albohairy FM, Attia KA, Kimiko I. A survey of bluetongue infection in one-humped camels (Camelus Dromedarius); seroprevalence and risk factors analysis. BMC Vet Res 2022; 18:322. [PMID: 35996137 PMCID: PMC9394030 DOI: 10.1186/s12917-022-03421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/05/2022] [Indexed: 11/14/2022] Open
Abstract
Bluetongue (BT) is an insect-borne, non-contagious viral disease which affects domestic ruminants including camels and is transmitted by Culicoides spp. Clinical symptoms of BT are typically seen in sheep, although subclinical BT infections are mostly seen in cattle, goats, and camelids. The goal of the present study was to evaluate the sero-prevalence of Bluetongue virus (BTV) in camels from some governorates in Egypt's southern and northern regions, as well as the infection's potential risk factors. During 2020-2021, a cross sectional study was conducted to screen presence of anti-BTV antibodies in 400 serum samples, which were collected randomly from camels, examined using competitive enzyme-linked immunosorbent assay (cELISA). The sera of 102 out of 400 camels tested positive for BTV, representing a frequency of 25.5%. Moreover, the odds of sero-positivity were higher among camels living in Aswan (OR = 5.33, 95%CI: 2.35-12.11), especially in females (OR = 2.63, 95%CI = 1.44-4.09) during summer season (OR = 2.40, 95%CI = 1.20-4.81). Furthermore, the probability of getting BTV infection increased when camels were exposed to the insect vectors (OR = 1.63, 95%CI = 0.87-3.09). The high prevalence of BTV in camels in several Egyptian regions highlights the need for more epidemiological investigations of BTV infection in other ruminant species in order to better control BT disease in these regions.
Collapse
Affiliation(s)
- Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, , P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fatima M Albohairy
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, , P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
8
|
Fang Y, Khater EIM, Xue JB, Ghallab EHS, Li YY, Jiang TG, Li SZ. Epidemiology of Mosquito-Borne Viruses in Egypt: A Systematic Review. Viruses 2022; 14:v14071577. [PMID: 35891557 PMCID: PMC9322113 DOI: 10.3390/v14071577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
There are at least five common mosquito-borne viruses (MBVs) recorded in Egypt, including dengue virus (DENV), Rift Valley fever virus (RVFV), West Nile virus (WNV), Chikungunya virus, and Sindbis virus. Unexpected outbreaks caused by MBVs reflect the deficiencies of the MBV surveillance system in Egypt. This systematic review characterized the epidemiology of MBV prevalence in Egypt. Human, animal, and vector prevalence studies on MBVs in Egypt were retrieved from Web of Science, PubMed, and Bing Scholar, and 33 eligible studies were included for further analyses. The monophyletic characterization of the RVFV and WNV strains found in Egypt, which spans about half a century, suggests that both RVFV and WNV are widely transmitted in this nation. Moreover, the seropositive rates of DENV and WNV in hosts were on the rise in recent years, and spillover events of DENV and WNV to other countries from Egypt have been recorded. The common drawback for surveillance of MBVs in Egypt is the lack of seroprevalence studies on MBVs, especially in this century. It is necessary to evaluate endemic transmission risk, establish an early warning system for MBVs, and develop a sound joint system for medical care and public health for managing MBVs in Egypt.
Collapse
Affiliation(s)
- Yuan Fang
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Emad I. M. Khater
- Department of Entomology, Faculty of Science, Ain Shams University, Abbasiah, Cairo 11566, Egypt; (E.I.M.K.); (E.H.S.G.)
| | - Jing-Bo Xue
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Enas H. S. Ghallab
- Department of Entomology, Faculty of Science, Ain Shams University, Abbasiah, Cairo 11566, Egypt; (E.I.M.K.); (E.H.S.G.)
| | - Yuan-Yuan Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
| | - Tian-Ge Jiang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Shi-Zhu Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Correspondence:
| |
Collapse
|
9
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Roberts HC, Padalino B, Pasquali P, Spoolder H, Ståhl K, Calvo AV, Viltrop A, Winckler C, Gubbins S, Broglia A, Aznar I, Van der Stede Y. Assessment of the control measures of the category A diseases of Animal Health Law: Rift Valley Fever. EFSA J 2022; 20:e07070. [PMID: 35079289 PMCID: PMC8767515 DOI: 10.2903/j.efsa.2022.7070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Saeed OS, El-Deeb AH, Gadalla MR, El-Soally SAG, Ahmed HAH. Genetic Characterization of Rift Valley Fever Virus in Insectivorous Bats, Egypt. Vector Borne Zoonotic Dis 2021; 21:1003-1006. [PMID: 34958267 DOI: 10.1089/vbz.2021.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The endemic character of Rift Valley fever (RVF) disease points toward an interepidemic reservoir. Although not yet identified, bats and rodents may be implicated in RVF virus (RVFV) epidemiology. In this study, we investigated the putative role of Egyptian frugivorous and insectivorous bats in RVFV epidemiology in Egypt. Methods: From 2019 to 2021, 200 bats of two different species from six Egyptian governorates were tested for phleboviruses using real-time RT-PCR (rRT-PCR) and sequence analysis. Results: Screening through rRT-PCR showed evidence of the RVFV genome only in insectivorous bats. Partial sequence and phylogenetic analysis based on S and M genome segments showed that these viruses are genetically similar to those circulating (clade A) in livestock and humans during previously reported RVFV outbreaks in 1977/78 and 2003 in Egypt. Conclusions: Our molecular data suggest that the bat Pipistrellus deserti could play a role in RVFV ecology in Egypt.
Collapse
Affiliation(s)
- Omar Sayed Saeed
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ayman Hany El-Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
11
|
Abstract
Rift valley fever (RVF) is an acute vector-borne viral zoonotic disease of domestic and wild ruminants. The RVF virus (RVFV) belonging to the Phlebovirus genus of the Bunyaviridae family causes this disease. Studies have shown that mosquitoes are the vectors that transmit RVFV. Specifically, Aedes and Culex mosquito species are among the many vectors of this virus, which affects not only sheep, goats, buffalo, cattle, and camels but also human beings. Since the 30s of the last century, RVF struck Africa, and to a lesser extent, Asian continents, with subsequent episodes of epizootic, epidemic, and sporadic outbreaks. These outbreaks, therefore, resulted in the cumulative loss of thousands of human lives, thereby disrupting the livestock market or only those with seropositive cases. After that outbreak episode, RVF was not reported in Libya until January 13, 2020, where it was reported for the 1st time in a flock of sheep and goats in the southern region of the country. Although insufficient evidence to support RVF clinical cases among the confirmed seropositive animals exists, neither human cases nor death were reported in Libya. Yet, the overtime expansion of RVF kinetics in the Libyan neighborhoods, in addition to the instability and security vacuum experienced in the country, lack of outbreak preparedness, and the availability of suitable climatic and disease vector factors, makes this country a possible future scene candidate for RVF expansion. Urgently, strengthening veterinary services (VS) and laboratory diagnostic capacities, including improvement of monitoring and surveillance activity programs, should be implemented in areas at risk (where imported animals crossing borders from Libyan neighborhoods and competent vectors are found) at national, sub-national, and regional levels. The Libyan government should also implement a tripartite framework (one health approach) among the veterinary public health, public health authority, and environmental sanitation sectors to implement RVF surveillance protocols, along with an active partnership with competent international bodies (OIE, FAO, and WHO). Therefore, this review comprises the most updated data regarding the epidemiological situation of RVF infections and its socioeconomic impacts on African and Asian continents, and also emphasize the emerging interest of RVF in Libya.
Collapse
Affiliation(s)
- Abdusalam S. Mahmoud
- Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Osama K. Sawesi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Osama R. El-Waer
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Emad M. Bennour
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
12
|
Anthony T, van Schalkwyk A, Romito M, Odendaal L, Clift SJ, Davis AS. Vaccination with Rift Valley fever virus live attenuated vaccine strain Smithburn caused meningoencephalitis in alpacas. J Vet Diagn Invest 2021; 33:777-781. [PMID: 34041966 DOI: 10.1177/10406387211015294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic, viral, mosquito-borne disease that causes considerable morbidity and mortality in humans and livestock in Africa and the Arabian Peninsula. In June 2018, 4 alpaca inoculated subcutaneously with live attenuated RVF virus (RVFV) Smithburn strain exhibited pyrexia, aberrant vocalization, anorexia, neurologic signs, and respiratory distress. One animal died the evening of inoculation, and 2 at ~20 d post-inoculation. Concern regarding potential vaccine strain reversion to wild-type RVFV or vaccine-induced disease prompted autopsy of the latter two. Macroscopically, both alpacas had severe pulmonary edema and congestion, myocardial hemorrhages, and cyanotic mucous membranes. Histologically, they had cerebral nonsuppurative encephalomyelitis with perivascular cuffing, multifocal neuronal necrosis, gliosis, and meningitis. Lesions were more severe in the 4-mo-old cria. RVFV antigen and RNA were present in neuronal cytoplasm, by immunohistochemistry and in situ hybridization (ISH) respectively, and cerebrum was also RVFV positive by RT-rtPCR. The virus clustered in lineage K (100% sequence identity), with close association to Smithburn sequences published previously (identity: 99.1-100%). There was neither evidence of an aberrant immune-mediated reaction nor reassortment with wild-type virus. The evidence points to a pure infection with Smithburn vaccine strain as the cause of the animals' disease.
Collapse
Affiliation(s)
- Tasneem Anthony
- Provincial Veterinary Laboratory, Department of Agriculture, Western Cape Government, Capetown, South Africa
| | - Antoinette van Schalkwyk
- South Africa Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Marco Romito
- South Africa Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Lieza Odendaal
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Sarah J Clift
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - A Sally Davis
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
13
|
Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021; 13:v13040709. [PMID: 33923863 PMCID: PMC8073615 DOI: 10.3390/v13040709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) infects humans and a wide range of ungulates and historically has caused devastating epidemics in Africa and the Arabian Peninsula. Lesions of naturally infected cases of Rift Valley fever (RVF) have only been described in detail in sheep with a few reports concerning cattle and humans. The most frequently observed lesion in both ruminants and humans is randomly distributed necrosis, particularly in the liver. Lesions supportive of vascular endothelial injury are also present and include mild hydropericardium, hydrothorax and ascites; marked pulmonary congestion and oedema; lymph node congestion and oedema; and haemorrhages in many tissues. Although a complete understanding of RVF pathogenesis is still lacking, antigen-presenting cells in the skin are likely the early targets of the virus. Following suppression of type I IFN production and necrosis of dermal cells, RVFV spreads systemically, resulting in infection and necrosis of other cells in a variety of organs. Failure of both the innate and adaptive immune responses to control infection is exacerbated by apoptosis of lymphocytes. An excessive pro-inflammatory cytokine and chemokine response leads to microcirculatory dysfunction. Additionally, impairment of the coagulation system results in widespread haemorrhages. Fatal outcomes result from multiorgan failure, oedema in many organs (including the lungs and brain), hypotension, and circulatory shock. Here, we summarize current understanding of RVF cellular tropism as informed by lesions caused by natural infections. We specifically examine how extant knowledge informs current understanding regarding pathogenesis of the haemorrhagic fever form of RVF, identifying opportunities for future research.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Correspondence: (L.O.); (A.S.D.)
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (L.O.); (A.S.D.)
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa;
- College of Public Health Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
14
|
McMillen CM, Hartman AL. Rift Valley Fever: a Threat to Pregnant Women Hiding in Plain Sight? J Virol 2021; 95:e01394-19. [PMID: 33597209 DOI: 10.1128/JVI.01394-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
The potential for emerging mosquito-borne viruses to cause fetal infection in pregnant women was overlooked until the Zika fever outbreak several years ago. Rift Valley fever virus (RVFV) is an emerging arbovirus with a long history of fetal infection and death in pregnant livestock. The effect of RVFV infection on pregnant women is not well understood. This Gem examines the effects that this important emerging pathogen has during pregnancy, its potential impact on pregnant women, and the current research efforts designed to understand and mitigate adverse effects of RVFV infection during pregnancy.
Collapse
|
15
|
Mohamed WMA, Ali AO, Mahmoud HYAH, Omar MA, Chatanga E, Salim B, Naguib D, Anders JL, Nonaka N, Moustafa MAM, Nakao R. Exploring Prokaryotic and Eukaryotic Microbiomes Helps in Detecting Tick-Borne Infectious Agents in the Blood of Camels. Pathogens 2021; 10:351. [PMID: 33809738 DOI: 10.3390/pathogens10030351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022] Open
Abstract
Dromedary camels (Camelus dromedarius) are widely distributed in Africa, the Middle East and northern India. In this study, we aimed to detect tick-borne pathogens through investigating prokaryotic and eukaryotic microorganisms in camel blood based on a metagenomic approach and then to characterize potentially pathogenic organisms using traditional molecular techniques. We showed that the bacteria circulating in the blood of camels is dominated by Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. At the genus level, Sediminibacterium, Hydrotalea, Bradyrhizobium and Anaplasma were the most abundant taxa. Eukaryotic profile was dominated by Fungi, Charophyta and Apicomplexa. At the genus level, Theileria was detected in 10 out of 18 samples, while Sarcocystis, Hoplorhynchus and Stylocephalus were detected in one sample each. Our metagenomic approach was successful in the detection of several pathogens or potential pathogens including Anaplasma sp., Theileria ovis, Th. separata, Th. annulate, Th. mutans-like and uncharacterized Theileria sp. For further characterization, we provided the partial sequences of citrate synthase (gltA) and heat-shock protein (groEL) genes of Candidatus Anaplasma camelii. We also detected Trypanosoma evansi type A using polymerase chain reaction (PCR) targeting the internal transcribed spacer 1 (ITS1) region. This combined metagenomic and traditional approach will contribute to a better understanding of the epidemiology of pathogens including tick-borne bacteria and protozoa in animals.
Collapse
|
16
|
Fakour S, Naserabadi S, Ahmadi E. A serological and hematological study on Rift valley fever and associated risk factors in aborted sheep at Kurdistan province in west of Iran. Comp Immunol Microbiol Infect Dis 2021; 75:101620. [PMID: 33609990 DOI: 10.1016/j.cimid.2021.101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Rift Valley fever (RVF) is a disease caused by RVF virus (RVFV) which can cause infections in a range of wild and domestic ruminants as well as in humans and characterized by an increased incidence of abortion in ruminants. This study aims to survey the seroprevalence and risk factors of this zoonose among aborted sheep in Kurdistan province, the west of Iran. 182 blood samples were collected from aborted sheep during the past one month under age groups <1, ≥1-3, >3-5 year in four seasons in two groups of border and non-border cities of Kurdistan province. The presence of RVFV-specific Antibodies was investigated by using competitive ELISA. Indirect immunofluorescence assay (IIFA) was used to confirm positive samples, after separation of serum, as well as blood samples were analyzed for description of hematological parameters. Of a total sheep sampled 1.65 % (n = 3) were positive for RVFV antibodies in both test. The results of IIFA were correlated with the ELISA results. All of the positive samples showed leucopenia and had significant relation with seroprevalence of RVF (P < 0.05). The seroprevalence of RVF in the border cities were significantly higher than other group (P < 0.05) Age of sheep and season had no significant effect on prevalence of RVF (P > 0.05). Results obtained in this study indicated the presence of low-level RVFV circulation among the sheep of Kurdistan Province in Iran, so it is necessary to carry out further studies in other areas of Iran. Doing an epidemiologically study aimed at isolating RVFV in the ruminants of Kurdistan province is recommended. The risk factor of bordering with Iran's western neighbor (Iraq) requires seriously control of the exchange of animals and the relevant products between the two countries.
Collapse
Affiliation(s)
- Shahin Fakour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Sanandaj Branch Islamic Azad University, Sanandaj, Iran.
| | - Salahedin Naserabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Sanandaj Branch Islamic Azad University, Sanandaj, Iran
| | - Elham Ahmadi
- Department of Microbiology, Faculty of Veterinary Medicine, Sanandaj Branch Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
17
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Gubbins S, Antoniou SE, Broglia A, Abrahantes JC, Dhollander S, Van der Stede Y. Rift Valley Fever - assessment of effectiveness of surveillance and control measures in the EU. EFSA J 2020; 18:e06292. [PMID: 33193869 PMCID: PMC7642843 DOI: 10.2903/j.efsa.2020.6292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Effectiveness of surveillance and control measures against Rift Valley Fever (RVF) in Mayotte (overseas France) and in continental EU were assessed using mathematical models. Surveillance for early detection of RVF virus circulation implies very low design prevalence values and thus sampling a high number of animals, so feasibility issues may rise. Passive surveillance based on notified abortions in ruminants is key for early warning and at present the only feasible surveillance option. The assessment of vaccination and culling against RVF in Mayotte suggests that vaccination is more effective when quickly implemented throughout the population, e.g. at a rate of 200 or 2,000 animals vaccinated per day. Test and cull is not an option for RVF control in Mayotte given the high number of animals that would need to be tested. If the risk of RVFV introduction into the continental EU increases, ruminant establishments close to possible points of disease incursion should be included in the surveillance. An enhanced surveillance on reproductive disorders should be applied during summer in risk areas. Serosurveillance targets of 0.3% animals should be at least considered. RVF control measures possibly applied in the continental EU have been assessed in the Netherlands, as an example. Culling animals on farms within a 20 km radius of detected farms appears as the most effective measure to control RVF spread, although too many animals should be culled. Alternative measures are vaccination in a 50 km radius around detection, ring vaccination between 20 and 50 km and culling of detected farms. The assessment of zoning showed that, following RVFV introduction and considering an R0 = 2, a mean vector dispersal of 10 km and 10 farms initially detected, RVFV would spread beyond a radius of up to 100 km or 50 km from the infected area with 10% or 55% probability, respectively.
Collapse
|
18
|
Hughes EC, Anderson NE. Zoonotic Pathogens of Dromedary Camels in Kenya: A Systematised Review. Vet Sci 2020; 7:vetsci7030103. [PMID: 32764264 PMCID: PMC7559378 DOI: 10.3390/vetsci7030103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 01/26/2023] Open
Abstract
Kenya is home to Africa’s third largest population of dromedary camels, and production at commercial and local levels are increasingly important. In pastoral and nomadic communities in the arid and semi-arid lands (ASALs), camels play a vital role in food security, while commercial milk production and formalized export markets are rapidly emerging as camel populations expand into non-traditional areas. Until recently, little focus was placed on camels as hosts of zoonotic disease, but the emergence of Middle Eastern respiratory coronavirus (MERS-CoV) in 2012, and the discovery of exposure to the virus in Kenyan camels, highlighted the need for further understanding of this area. This systematised review utilised a robust search strategy to assess the occurrence of camel-associated zoonoses in Kenya and to evaluate the quality of the published literature. Seventy-four studies were identified, covering sixteen pathogens, with an increasing number of good quality studies in recent years. Despite this, the area remains under-researched and there is a lack of robust, high-quality research. Trypanosome spp., Echinococcus granulosus and Brucella spp. appeared most frequently in the literature. Pathogens with the highest reported prevalence were MERS-CoV (0–100%), Echinococcus granulosa (7–60%) and Rift Valley fever virus (7–57%). Exposure to Brucella spp., Coxiella burnetii and Crimean-Congo haemorrhagic fever virus showed higher levels in camel or camel-associated vectors than other livestock species, although brucellosis was the only disease for which there was robust evidence linking camel and human exposure. Zoonotic agents with less severe human health outcomes, such as Dermatophilosus congolensis and contagious ecthyma, were also represented in the literature. This review provides an important summary of the scope and quality of current knowledge. It demonstrates that further research, and improved adherence to robust study design and reporting are essential if the zoonotic risk from camels in Kenya, and elsewhere, is to be better understood.
Collapse
Affiliation(s)
- Ellen Clare Hughes
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK;
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Henry Wellcome Building, Garscube Campus, Glasgow G61 1QH, UK
- Correspondence:
| | - Neil Euan Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK;
| |
Collapse
|
19
|
Wichgers Schreur PJ, Oreshkova N, van Keulen L, Kant J, van de Water S, Soós P, Dehon Y, Kollár A, Pénzes Z, Kortekaas J. Safety and efficacy of four-segmented Rift Valley fever virus in young sheep, goats and cattle. NPJ Vaccines 2020; 5:65. [PMID: 32728479 PMCID: PMC7382487 DOI: 10.1038/s41541-020-00212-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. RVFV induces severe disease in newborns and abortion in pregnant ruminants. The viral genome consists of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M segment encodes a glycoprotein precursor protein that is co-translationally cleaved into the two structural glycoproteins Gn and Gc, which are involved in receptor attachment and cell entry. We previously constructed a four-segmented RVFV (RVFV-4s) by splitting the M genome segment into two M-type segments encoding either Gn or Gc. RVFV-4s replicates efficiently in cell culture but was shown to be completely avirulent in mice, lambs and pregnant ewes. Here, we show that a RVFV-4s candidate vaccine for veterinary use (vRVFV-4s) does not disseminate in vaccinated animals, is not shed or spread to the environment and does not revert to virulence. Furthermore, a single vaccination of lambs, goat kids and calves was shown to induce protective immunity against a homologous challenge. Finally, the vaccine was shown to provide full protection against a genetically distinct RVFV strain. Altogether, we demonstrate that vRVFV-4s optimally combines efficacy with safety, holding great promise as a next-generation RVF vaccine.
Collapse
Affiliation(s)
- Paul J Wichgers Schreur
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,BunyaVax B.V., Lelystad, The Netherlands
| | - Nadia Oreshkova
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jet Kant
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Sandra van de Water
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Pál Soós
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Yves Dehon
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Anna Kollár
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Zoltán Pénzes
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,BunyaVax B.V., Lelystad, The Netherlands.,Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Chauhan RP, Dessie ZG, Noreddin A, El Zowalaty ME. Systematic Review of Important Viral Diseases in Africa in Light of the 'One Health' Concept. Pathogens 2020; 9:E301. [PMID: 32325980 DOI: 10.3390/pathogens9040301] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging and re-emerging viral diseases are of great public health concern. The recent emergence of Severe Acute Respiratory Syndrome (SARS) related coronavirus (SARS-CoV-2) in December 2019 in China, which causes COVID-19 disease in humans, and its current spread to several countries, leading to the first pandemic in history to be caused by a coronavirus, highlights the significance of zoonotic viral diseases. Rift Valley fever, rabies, West Nile, chikungunya, dengue, yellow fever, Crimean-Congo hemorrhagic fever, Ebola, and influenza viruses among many other viruses have been reported from different African countries. The paucity of information, lack of knowledge, limited resources, and climate change, coupled with cultural traditions make the African continent a hotspot for vector-borne and zoonotic viral diseases, which may spread globally. Currently, there is no information available on the status of virus diseases in Africa. This systematic review highlights the available information about viral diseases, including zoonotic and vector-borne diseases, reported in Africa. The findings will help us understand the trend of emerging and re-emerging virus diseases within the African continent. The findings recommend active surveillance of viral diseases and strict implementation of One Health measures in Africa to improve human public health and reduce the possibility of potential pandemics due to zoonotic viruses.
Collapse
|
21
|
Gutjahr B, Keller M, Rissmann M, von Arnim F, Jäckel S, Reiche S, Ulrich R, Groschup MH, Eiden M. Two monoclonal antibodies against glycoprotein Gn protect mice from Rift Valley Fever challenge by cooperative effects. PLoS Negl Trop Dis 2020; 14:e0008143. [PMID: 32160203 PMCID: PMC7089562 DOI: 10.1371/journal.pntd.0008143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/23/2020] [Accepted: 02/15/2020] [Indexed: 11/22/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus that causes severe disease in humans and ruminants. The infection is characterized by abortions in pregnant animals, high mortality in neonates as well as febrile illness in humans that develop in 1% of cases encephalitis or hemorrhagic fever. There is presently no specific antiviral treatment for RVFV infection available. In this study, two monoclonal antibodies (mAbs), raised against glycoprotein Gn, were applied in a therapeutic study. Treatment of RVFV infected mice with neutralizing mAb Gn3 alone at two different time points (30 minutes before or 30 minutes after virus challenge) showed only moderate efficacy of about 58.3% survival in both applications. However, a combination therapy together with non-neutralizing mAb Gn32 demonstrated complete protection (100% survival) when applied 30 minutes after the lethal challenge dose. The increase of mAb efficacy is probably based on cooperative neutralization effects. These data suggest that a combination therapy with mAbs Gn3 and Gn32 could be an effective treatment option against RVFV infection. Rift Valley fever virus represents an acute viral disease affecting animals especially livestock and humans and is responsible for widespread outbreaks throughout Africa and on the Arabian Peninsula. The virus causes abortions and high mortality especially in young animals, whereas the symptoms in humans range from mild flu-like illness to severe hemorrhagic manifestations that can be lethal. So far, no antiviral therapeutics for animals nor humans were available yet. Therefore, we evaluated two monoclonal antibodies—one neutralizing and one non-neutralizing—in a mouse model for therapeutic treatment against Rift Valley fever. We selected these antibodies since they exhibited cooperative effects in vitro. During Rift Valley fever virus infection in mice, the applied neutralizing antibody alone showed only partial protection. In contrast, a combined application with both antibodies, lead to a complete protection in one treatment group (100% survival). A detailed pathological and molecular analysis clearly indicated a strong reduction of virus replication in target tissues of treated mice. Taken together, these results identified two monoclonal antibodies with strong antiviral effects against Rift Valley fever infection, which are promising candidates for therapeutic interventions against RVFV.
Collapse
Affiliation(s)
- Benjamin Gutjahr
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Felicitas von Arnim
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Susanne Jäckel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Saxon State Laboratory of Health and Veterinary Affairs, Dresden, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
22
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Rojas JLG, Schmidt CG, Michel V, Chueca MÁM, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Bett B, Cetre-Sossah C, Chevalier V, Devos C, Gubbins S, Monaco F, Sotiria-Eleni A, Broglia A, Abrahantes JC, Dhollander S, Stede YVD, Zancanaro G. Rift Valley Fever - epidemiological update and risk of introduction into Europe. EFSA J 2020; 18:e06041. [PMID: 33020705 PMCID: PMC7527653 DOI: 10.2903/j.efsa.2020.6041] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever (RVF) is a vector‐borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub‐Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5–15 years of inter‐epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low‐level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228–700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.
Collapse
|
23
|
Rissmann M, Stoek F, Pickin MJ, Groschup MH. Mechanisms of inter-epidemic maintenance of Rift Valley fever phlebovirus. Antiviral Res 2019; 174:104692. [PMID: 31870761 DOI: 10.1016/j.antiviral.2019.104692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
Rift Valley fever phlebovirus (RVFV) is an arthropod-borne virus that has caused substantial epidemics throughout Africa and in the Arabian Peninsula. The virus can cause severe disease in livestock and humans and therefore the control and prevention of viral outbreaks is of utmost importance. The epidemiology of RVFV has some particular characteristics. Unexpected and significant epidemics have been observed in spatially and temporally divergent patterns across the African continent. Sudden epidemics in previously unaffected areas are followed by periods of long-term apparent absence of virus and sudden, unpredictable reoccurrence in disparate regions. Therefore, the elucidation of underlying mechanisms of viral maintenance is one of the largest gaps in the knowledge of RVFV ecology. It remains unknown whether the virus needs to be reintroduced before RVF outbreaks can occur, or if unperceived viral circulation in local vertebrates or mosquitoes is sufficient for maintenance of the virus. To gain insight into these knowledge gaps, we here review existing data that describe potential mechanisms of RVFV maintenance, as well as molecular and serological studies in endemic and non-endemic areas that provide evidence of an inter- or pre-epidemic virus presence. Basic and country-specific mechanisms of RVFV introduction into non-endemic countries are summarized and an overview of studies using mathematical modeling of RVFV persistence is given.
Collapse
Affiliation(s)
- Melanie Rissmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Franziska Stoek
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Matthew J Pickin
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany.
| |
Collapse
|
24
|
Stedman A, Wright D, Wichgers Schreur PJ, Clark MHA, Hill AVS, Gilbert SC, Francis MJ, van Keulen L, Kortekaas J, Charleston B, Warimwe GM. Safety and efficacy of ChAdOx1 RVF vaccine against Rift Valley fever in pregnant sheep and goats. NPJ Vaccines 2019; 4:44. [PMID: 31646004 DOI: 10.1038/s41541-019-0138-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus that was first discovered in Kenya in 1930 and has since spread to become endemic in much of Africa and the Arabian Peninsula. Rift Valley fever (RVF) causes recurrent outbreaks of febrile illness associated with high levels of mortality and poor outcomes during pregnancy—including foetal malformations, spontaneous abortion and stillbirths—in livestock, and associated with miscarriage in humans. No vaccines are available for human use and those licensed for veterinary use have potential drawbacks, including residual virulence that may contraindicate their use in pregnancy. To address this gap, we previously developed a simian adenovirus vectored vaccine, ChAdOx1 RVF, that encodes RVFV envelope glycoproteins. ChAdOx1 RVF is fully protective against RVF in non-pregnant livestock and is also under development for human use. Here, we now demonstrate that when administered to pregnant sheep and goats, ChAdOx1 RVF is safe, elicits high titre RVFV neutralizing antibody, and provides protection against viraemia and foetal loss, although this protection is not as robust for the goats. In addition, we provide a description of RVFV challenge in pregnant goats and contrast this to the pathology observed in pregnant sheep. Together, our data further support the ongoing development of ChAdOx1 RVF vaccine for use in livestock and humans. Rift Valley fever (RVF) causes high levels of foetal loss and abnormality—particularly in sheep and goats. George M. Warimwe and colleagues investigate the safety, efficacy and immunogenicity of the candidate replication-deficient RVF vaccine ChAdOx1 RVF in pregnant sheep and goats. Pregnant animals were vaccinated i.m. during the first trimester and 21 days later challenged i.v. with recombinant live virus to assess protective efficacy. ChAdOx1 RVF is safe in both pregnant sheep and goats with no adverse clinical signs, high titres of neutralizing antibodies and normal pregnancy. ChAdOx1 RVF is strongly protective against subsequent live RVF challenge in pregnant sheep and allows normal foetal development; however, the vaccine is considerably less efficacious in pregnant goats.
Collapse
|
25
|
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that was first discovered in Kenya in 1930 and is now endemic throughout multiple African countries and the Arabian Peninsula. RVF virus primarily infects domestic livestock (sheep, goats, cattle) causing high rates of neonatal mortality and abortion, with human infection resulting in a wide variety of clinical outcomes, ranging from self-limiting febrile illness to life-threatening haemorrhagic diatheses, and miscarriage in pregnant women. Since its discovery, RVF has caused many outbreaks in Africa and the Arabian Peninsula with major impacts on human and animal health. However, options for the control of RVF outbreaks are limited by the lack of licensed human vaccines or therapeutics. For this reason, RVF is prioritized by the World Health Organization for urgent research and development of countermeasures for the prevention and control of future outbreaks. In this review, we highlight the current understanding of RVF, including its epidemiology, pathogenesis, clinical manifestations and status of vaccine development.
Collapse
Affiliation(s)
- Daniel Wright
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Thomas A. Bowden
- Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford OX1 2JD, UK
| | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
26
|
Abstract
Dromedary, or one-humped, camels Camelus dromedarius are an almost exclusively domesticated species that are common in arid areas as both beasts of burden and production animals for meat and milk. Currently, there are approximately 30 million dromedary camels, with highest numbers in Africa and the Middle East. The hardiness of camels in arid regions has made humans more dependent on them, especially as a stable protein source. Camels also carry and may transmit disease-causing agents to humans and other animals. The ability for camels to act as a point source or vector for disease is a concern due to increasing human demands for meat, lack of biosafety and biosecurity protocols in many regions, and a growth in the interface with wildlife as camel herds become sympatric with non-domestic species. We conducted a literature review of camel-borne zoonotic diseases and found that the majority of publications (65%) focused on Middle East respiratory syndrome (MERS), brucellosis, Echinococcus granulosus, and Rift Valley fever. The high fatality from MERS outbreaks during 2012-2016 elicited an immediate response from the research community as demonstrated by a surge of MERS-related publications. However, we contend that other camel-borne diseases such as Yersinia pestis, Coxiella burnetii, and Crimean-Congo hemorrhagic fever are just as important to include in surveillance efforts. Camel populations, particularly in sub-Saharan Africa, are increasing exponentially in response to prolonged droughts, and thus, the risk of zoonoses increases as well. In this review, we provide an overview of the major zoonotic diseases present in dromedary camels, their risk to humans, and recommendations to minimize spillover events.
Collapse
Affiliation(s)
- Sophie Zhu
- Graduate Group in Epidemiology, University of California, Davis, CA, 95616, USA.
| | - Dawn Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, 20008, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO, 63110, USA
| |
Collapse
|
27
|
Fawzy M, Helmy YA. The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses 2019; 11:E139. [PMID: 30736362 DOI: 10.3390/v11020139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022] Open
Abstract
Rift Valley fever (RVF) is an emerging transboundary, mosquito-borne, zoonotic viral disease caused high morbidity and mortality in both human and ruminant populations. It is considered an important threat to both agriculture and public health in African and the Middle Eastern countries including Egypt. Five major RVF epidemics have been reported in Egypt (1977, 1993, 1994, 1997, and 2003). The virus is transmitted in Egypt by different mosquito’s genera such as Aedes, Culex, Anopheles, and Mansonia, leading to abortions in susceptible animal hosts especially sheep, goat, cattle, and buffaloes. Recurrent RVF outbreaks in Egypt have been attributed in part to the lack of routine surveillance for the virus. These periodic epizootics have resulted in severe economic losses. We posit that there is a critical need for new approaches to RVF control that will prevent or at least reduce future morbidity and economic stress. One Health is an integrated approach for the understanding and management of animal, human, and environmental determinants of complex problems such as RVF. Employing the One Health approach, one might engage local communities in surveillance and control of RVF efforts, rather than continuing their current status as passive victims of the periodic RVF incursions. This review focuses upon endemic and epidemic status of RVF in Egypt, the virus vectors and their ecology, transmission dynamics, risk factors, and the ecology of the RVF at the animal/human interface, prevention, and control measures, and the use of environmental and climate data in surveillance systems to predict disease outbreaks.
Collapse
|
28
|
Zakham F, Alaoui A, Vapalahti O. Rift Valley Fever in the Middle East North Africa (MENA) Region. Curr Trop Med Rep 2018; 5:257-63. [DOI: 10.1007/s40475-018-0165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Mahmoud AS, Di Sabatino D, Danzetta ML, Iapaolo F, Tolari F, Forzan M, Mazzei M, Dayhum A, |