451
|
Genomic and functional integrity of the hematopoietic system requires tolerance of oxidative DNA lesions. Blood 2017; 130:1523-1534. [PMID: 28827409 DOI: 10.1182/blood-2017-01-764274] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023] Open
Abstract
Endogenous DNA damage is causally associated with the functional decline and transformation of stem cells that characterize aging. DNA lesions that have escaped DNA repair can induce replication stress and genomic breaks that induce senescence and apoptosis. It is not clear how stem and proliferating cells cope with accumulating endogenous DNA lesions and how these ultimately affect the physiology of cells and tissues. Here we have addressed these questions by investigating the hematopoietic system of mice deficient for Rev1, a core factor in DNA translesion synthesis (TLS), the postreplicative bypass of damaged nucleotides. Rev1 hematopoietic stem and progenitor cells displayed compromised proliferation, and replication stress that could be rescued with an antioxidant. The additional disruption of Xpc, essential for global-genome nucleotide excision repair (ggNER) of helix-distorting nucleotide lesions, resulted in the perinatal loss of hematopoietic stem cells, progressive loss of bone marrow, and fatal aplastic anemia between 3 and 4 months of age. This was associated with replication stress, genomic breaks, DNA damage signaling, senescence, and apoptosis in bone marrow. Surprisingly, the collapse of the Rev1Xpc bone marrow was associated with progressive mitochondrial dysfunction and consequent exacerbation of oxidative stress. These data reveal that, to protect its genomic and functional integrity, the hematopoietic system critically depends on the combined activities of repair and replication of helix-distorting oxidative nucleotide lesions by ggNER and Rev1-dependent TLS, respectively. The error-prone nature of TLS may provide mechanistic understanding of the accumulation of mutations in the hematopoietic system upon aging.
Collapse
|
452
|
Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev 2017; 37:79-93. [PMID: 28552719 DOI: 10.1016/j.arr.2017.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process.
Collapse
|
453
|
Sissler M, González-Serrano LE, Westhof E. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Trends Mol Med 2017; 23:693-708. [DOI: 10.1016/j.molmed.2017.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023]
|
454
|
Meseguer S, Boix O, Navarro-González C, Villarroya M, Boutoual R, Emperador S, García-Arumí E, Montoya J, Armengod ME. microRNA-mediated differential expression of TRMU, GTPBP3 and MTO1 in cell models of mitochondrial-DNA diseases. Sci Rep 2017; 7:6209. [PMID: 28740091 PMCID: PMC5524753 DOI: 10.1038/s41598-017-06553-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/14/2017] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial diseases due to mutations in the mitochondrial (mt) DNA are heterogeneous in clinical manifestations but usually include OXPHOS dysfunction. Mechanisms by which OXPHOS dysfunction contributes to the disease phenotype invoke, apart from cell energy deficit, maladaptive responses to mitochondria-to-nucleus retrograde signaling. Here we used five different cybrid models of mtDNA diseases to demonstrate that the expression of the nuclear-encoded mt-tRNA modification enzymes TRMU, GTPBP3 and MTO1 varies in response to specific pathological mtDNA mutations, thus altering the modification status of mt-tRNAs. Importantly, we demonstrated that the expression of TRMU, GTPBP3 and MTO1 is regulated by different miRNAs, which are induced by retrograde signals like ROS and Ca2+ via different pathways. Our data suggest that the up- or down-regulation of the mt-tRNA modification enzymes is part of a cellular response to cope with a stoichiometric imbalance between mtDNA- and nuclear-encoded OXPHOS subunits. However, this miRNA-mediated response fails to provide full protection from the OXPHOS dysfunction; rather, it appears to aggravate the phenotype since transfection of the mutant cybrids with miRNA antagonists improves the energetic state of the cells, which opens up options for new therapeutic approaches.
Collapse
Affiliation(s)
- Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Olga Boix
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Navarro-González
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Magda Villarroya
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Rachid Boutoual
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sonia Emperador
- Universidad de Zaragoza - CIBERER (node 727)-Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - Elena García-Arumí
- Hospital Universitario Vall d'Hebron (Barcelona, Spain) and Biomedical Research Networking Centre for Rare Diseases CIBERER, node 701, Barcelona, Spain
| | - Julio Montoya
- Universidad de Zaragoza - CIBERER (node 727)-Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - M-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain. .,CIBERER node 721, Valencia, Spain.
| |
Collapse
|
455
|
Kim SJ, Xiao J, Wan J, Cohen P, Yen K. Mitochondrially derived peptides as novel regulators of metabolism. J Physiol 2017; 595:6613-6621. [PMID: 28574175 DOI: 10.1113/jp274472] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondrially derived peptides represent a new class of circulating signalling molecules. Humanin, the first member of this class, has been shown to have several metabolic effects such as reducing weight gain and visceral fat and increasing glucose-stimulated insulin release. The discovery of several other new members, such as MOTS-c and SHLP1-6, has further added to this group. These new peptides have also been found to affect metabolism with MOTS-c potently decreasing weight gain in mice on a high-fat diet. This review covers the basic biology of this class of peptides and discusses the relevance to organismal metabolism.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
456
|
Quirós PM, Prado MA, Zamboni N, D'Amico D, Williams RW, Finley D, Gygi SP, Auwerx J. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 2017; 216:2027-2045. [PMID: 28566324 PMCID: PMC5496626 DOI: 10.1083/jcb.201702058] [Citation(s) in RCA: 537] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial stress activates a mitonuclear response to safeguard and repair mitochondrial function and to adapt cellular metabolism to stress. Using a multiomics approach in mammalian cells treated with four types of mitochondrial stressors, we identify activating transcription factor 4 (ATF4) as the main regulator of the stress response. Surprisingly, canonical mitochondrial unfolded protein response genes mediated by ATF5 are not activated. Instead, ATF4 activates the expression of cytoprotective genes, which reprogram cellular metabolism through activation of the integrated stress response (ISR). Mitochondrial stress promotes a local proteostatic response by reducing mitochondrial ribosomal proteins, inhibiting mitochondrial translation, and coupling the activation of the ISR with the attenuation of mitochondrial function. Through a trans-expression quantitative trait locus analysis, we provide genetic evidence supporting a role for Fh1 in the control of Atf4 expression in mammals. Using gene expression data from mice and humans with mitochondrial diseases, we show that the ATF4 pathway is activated in vivo upon mitochondrial stress. Our data illustrate the value of a multiomics approach to characterize complex cellular networks and provide a versatile resource to identify new regulators of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Davide D'Amico
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
457
|
Short B. ATF4 helps mitochondria pass the stress test. J Biophys Biochem Cytol 2017. [PMCID: PMC5496634 DOI: 10.1083/jcb.201706026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transcription factor ATF4 coordinates the mitochondrial stress response in mammalian cells.
Collapse
|
458
|
Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mech Ageing Dev 2017; 165:115-128. [DOI: 10.1016/j.mad.2016.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
|
459
|
Rangaraju S, Raza SA, Pennati A, Deng Q, Dammer EB, Duong D, Pennington MW, Tansey MG, Lah JJ, Betarbet R, Seyfried NT, Levey AI. A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation. J Neuroinflammation 2017. [PMID: 28651603 PMCID: PMC5485721 DOI: 10.1186/s12974-017-0906-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Kv1.3 potassium channels regulate microglial functions and are overexpressed in neuroinflammatory diseases. Kv1.3 blockade may selectively inhibit pro-inflammatory microglia in neurological diseases but the molecular and cellular mechanisms regulated by Kv1.3 channels are poorly defined. METHODS We performed immunoblotting and flow cytometry to confirm Kv1.3 channel upregulation in lipopolysaccharide (LPS)-activated BV2 microglia and in brain mononuclear phagocytes freshly isolated from LPS-treated mice. Quantitative proteomics was performed on BV2 microglia treated with control, LPS, ShK-223 (highly selective Kv1.3 blocker), and LPS+ShK-223. Gene ontology (GO) analyses of Kv1.3-dependent LPS-regulated proteins were performed, and the most representative proteins and GO terms were validated. Effects of Kv1.3-blockade on LPS-activated BV2 microglia were studied in migration, focal adhesion formation, reactive oxygen species production, and phagocytosis assays. In vivo validation of protein changes and predicted molecular pathways were performed in a model of systemic LPS-induced neuroinflammation, employing antigen presentation and T cell proliferation assays. Informed by pathway analyses of proteomic data, additional mechanistic experiments were performed to identify early Kv1.3-dependent signaling and transcriptional events. RESULTS LPS-upregulated cell surface Kv1.3 channels in BV2 microglia and in microglia and CNS-infiltrating macrophages isolated from LPS-treated mice. Of 144 proteins differentially regulated by LPS (of 3141 proteins), 21 proteins showed rectification by ShK-223. Enriched cellular processes included MHCI-mediated antigen presentation (TAP1, EHD1), cell motility, and focal adhesion formation. In vitro, ShK-223 decreased LPS-induced focal adhesion formation, reversed LPS-induced inhibition of migration, and inhibited LPS-induced upregulation of EHD1, a protein involved in MHCI trafficking. In vivo, intra-peritoneal ShK-223 inhibited LPS-induced MHCI expression by CD11b+CD45low microglia without affecting MHCI expression or trafficking of CD11b+CD45high macrophages. ShK-223 inhibited LPS-induced MHCI-restricted antigen presentation to ovalbumin-specific CD8+ T cells both in vitro and in vivo. Kv1.3 co-localized with the LPS receptor complex and regulated LPS-induced early serine (S727) STAT1 phosphorylation. CONCLUSIONS We have unraveled novel molecular and functional roles for Kv1.3 channels in pro-inflammatory microglial activation, including a Kv1.3 channel-regulated pathway that facilitates MHCI expression and MHCI-dependent antigen presentation by microglia to CD8+ T cells. We also provide evidence for neuro-immunomodulation by systemically administered ShK peptides. Our results further strengthen the therapeutic candidacy of microglial Kv1.3 channels in neurologic diseases.
Collapse
Affiliation(s)
- Srikant Rangaraju
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA.
| | - Syed Ali Raza
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Qiudong Deng
- Department of Biochemistry, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Duc Duong
- Department of Biochemistry, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | | | - Malu G Tansey
- Department of Physiology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - James J Lah
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Ranjita Betarbet
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| |
Collapse
|
460
|
Gatliff J, East DA, Singh A, Alvarez MS, Frison M, Matic I, Ferraina C, Sampson N, Turkheimer F, Campanella M. A role for TSPO in mitochondrial Ca 2+ homeostasis and redox stress signaling. Cell Death Dis 2017; 8:e2896. [PMID: 28640253 PMCID: PMC5520880 DOI: 10.1038/cddis.2017.186] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca2+ signaling leading to a parallel increase in the cytosolic Ca2+ pools that activate the Ca2+-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca2+ uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca2+ dynamics and redox transients in neuronal cytotoxicity.
Collapse
Affiliation(s)
- Jemma Gatliff
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Daniel A East
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Regina Elena-National Cancer Institute, 00144 Rome, Italy
| | - Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Maria Soledad Alvarez
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Michele Frison
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Ivana Matic
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
| | - Caterina Ferraina
- Regina Elena-National Cancer Institute, 00144 Rome, Italy
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
| | - Natalie Sampson
- Division of Experimental Urology, Medical University of Innsbruck, A6020 Innsbruck, Austria
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
- University College London Consortium for Mitochondrial Research, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
461
|
Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster. Mol Biol Evol 2017. [DOI: 10.1093/molbev/msx184] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
462
|
Mitochondrial form, function and signalling in aging. Biochem J 2017; 473:3421-3449. [PMID: 27729586 DOI: 10.1042/bcj20160451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.
Collapse
|
463
|
Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 2017; 107:216-227. [PMID: 27915046 PMCID: PMC5449269 DOI: 10.1016/j.freeradbiomed.2016.11.050] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress.
Collapse
Affiliation(s)
- Mohammad Saki
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Aishwarya Prakash
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States.
| |
Collapse
|
464
|
Santini A, Ronchi D, Garbellini M, Piga D, Protti A. Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes. Expert Opin Drug Saf 2017; 16:833-843. [PMID: 28538105 DOI: 10.1080/14740338.2017.1335305] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Linezolid inhibits bacterial growth by targeting bacterial ribosomes and by interfering with bacterial protein synthesis. Lactic acidosis is a rare, but potentially lethal, side effect of linezolid. Areas covered: The pathogenesis of linezolid-induced lactic acidosis is reviewed with special emphasis on aspects relevant to the recognition, prevention and treatment of the syndrome. Expert opinion: Linezolid-induced lactic acidosis reflects the untoward interaction between the drug and mitochondrial ribosomes. The inhibition of mitochondrial protein synthesis diminishes the respiratory chain enzyme content and thus limits aerobic energy production. As a result, anaerobic glycolysis and lactate generation accelerate independently from tissue hypoxia. In the absence of any confirmatory test, linezolid-induced lactic acidosis should be suspected only after exclusion of other, more common, causes of lactic acidosis such as hypoxemia, anemia or low cardiac output. Normal-to-high whole-body oxygen delivery, high venous oxygen saturation and lack of response to interventions that effectively increase tissue oxygen provision all suggest a primary defect in oxygen use at the mitochondrial level. During prolonged therapy with linezolid, blood drug and lactate levels should be regularly monitored. The current standard-of-care treatment of linezolid-induced lactic acidosis consists of drug withdrawal to reverse mitochondrial intoxication and intercurrent life support.
Collapse
Affiliation(s)
- Alessandro Santini
- a Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milan , Italy
| | - Dario Ronchi
- b Centro Dino Ferrari, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti , Università degli Studi di Milano , Milan , Italy.,c UOC Neurologia , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milan , Italy
| | - Manuela Garbellini
- b Centro Dino Ferrari, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti , Università degli Studi di Milano , Milan , Italy.,c UOC Neurologia , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milan , Italy
| | - Daniela Piga
- b Centro Dino Ferrari, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti , Università degli Studi di Milano , Milan , Italy.,c UOC Neurologia , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milan , Italy
| | - Alessandro Protti
- a Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
465
|
Esparza-Moltó PB, Nuevo-Tapioles C, Cuezva JM. Regulation of the H +-ATP synthase by IF1: a role in mitohormesis. Cell Mol Life Sci 2017; 74:2151-2166. [PMID: 28168445 PMCID: PMC5425498 DOI: 10.1007/s00018-017-2462-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/18/2023]
Abstract
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
466
|
Mitophagy Transcriptome: Mechanistic Insights into Polyphenol-Mediated Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626500 PMCID: PMC5463118 DOI: 10.1155/2017/9028435] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are important bioenergetic and signalling hubs critical for myriad cellular functions and homeostasis. Dysfunction in mitochondria is a central theme in aging and diseases. Mitophagy, a process whereby damaged mitochondria are selectively removed by autophagy, plays a key homeostatic role in mitochondrial quality control. Upregulation of mitophagy has shown to mitigate superfluous mitochondrial accumulation and toxicity to safeguard mitochondrial fitness. Hence, mitophagy is a viable target to promote longevity and prevent age-related pathologies. Current challenge in modulating mitophagy for cellular protection involves identification of physiological ways to activate the pathway. Till date, mitochondrial stress and toxins remain the most potent inducers of mitophagy. Polyphenols have recently been demonstrated to protect mitochondrial health by facilitating mitophagy, thus suggesting the exciting prospect of augmenting mitophagy through dietary intake. In this review, we will first discuss the different surveillance mechanisms responsible for the removal of damaged mitochondrial components, followed by highlighting the transcriptional regulatory mechanisms of mitophagy. Finally, we will review the functional connection between polyphenols and mitophagy and provide insight into the underlying mechanisms that potentially govern polyphenol-induced mitophagy.
Collapse
|
467
|
Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ 2017; 24:955-960. [PMID: 28498364 DOI: 10.1038/cdd.2017.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022] Open
Abstract
The energy-converting organelles mitochondria and chloroplasts are tightly embedded in cellular metabolism and stress response. To appropriately control organelle function, extensive regulatory mechanisms are at play that involve two-way exchange between the nucleus and mitochondria/chloroplasts. In recent years, our understanding of how mitochondria and chloroplasts provide 'retrograde' feedback to the nucleus, resulting in targeted transcriptional changes, has greatly increased. Nevertheless, mitochondrial and chloroplast retrograde signalling have largely been studied independently, and only few points of interaction have been found or proposed. Through reassessment of recent publications, this perspective proposes that two of the most well-studied retrograde signalling pathways in plants, those mediated by ANAC017 and those mediated by phosphoadenosine phosphate (PAP), are most likely convergent and can direct overlapping genes. Furthermore, at least part of this common retrograde response appears targeted towards suppression of programmed cell death (PCD) triggered by organellar defects. The identified target genes are discussed in light of their roles in PCD suppression and amplifying the signalling cascade via positive-feedback loops. Finally, a mechanism is proposed that may explain why the convergence of PAP/ANAC017-dependent signalling appears capable of suppressing some types of PCD lesions, but not others, based on the subcellular location of the initial PCD-inducing dysfunction.
Collapse
|
468
|
Formentini L, Santacatterina F, Núñez de Arenas C, Stamatakis K, López-Martínez D, Logan A, Fresno M, Smits R, Murphy MP, Cuezva JM. Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. Cell Rep 2017; 19:1202-1213. [DOI: 10.1016/j.celrep.2017.04.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 01/06/2023] Open
|
469
|
Ralff MD, Kline CLB, Küçükkase OC, Wagner J, Lim B, Dicker DT, Prabhu VV, Oster W, El-Deiry WS. ONC201 Demonstrates Antitumor Effects in Both Triple-Negative and Non-Triple-Negative Breast Cancers through TRAIL-Dependent and TRAIL-Independent Mechanisms. Mol Cancer Ther 2017; 16:1290-1298. [PMID: 28424227 DOI: 10.1158/1535-7163.mct-17-0121] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is a major cause of cancer-related death. TNF-related apoptosis-inducing ligand (TRAIL) has been of interest as a cancer therapeutic, but only a subset of triple-negative breast cancers (TNBC) is sensitive to TRAIL. The small-molecule ONC201 induces expression of TRAIL and its receptor DR5. ONC201 has entered clinical trials in advanced cancers. Here, we show that ONC201 is efficacious against both TNBC and non-TNBC cells (n = 13). A subset of TNBC and non-TNBC cells succumbs to ONC201-induced cell death. In 2 of 8 TNBC cell lines, ONC201 treatment induces caspase-8 cleavage and cell death that is blocked by TRAIL-neutralizing antibody RIK2. The proapoptotic effect of ONC201 translates to in vivo efficacy in the MDA-MB-468 xenograft model. In most TNBC lines tested (6/8), ONC201 has an antiproliferative effect but does not induce apoptosis. ONC201 decreases cyclin D1 expression and causes an accumulation of cells in the G1 phase of the cell cycle. pRb expression is associated with sensitivity to the antiproliferative effects of ONC201, and the compound synergizes with taxanes in less sensitive cells. All non-TNBC cells (n = 5) are growth inhibited following ONC201 treatment, and unlike what has been observed with TRAIL, a subset (n = 2) shows PARP cleavage. In these cells, cell death induced by ONC201 is TRAIL independent. Our data demonstrate that ONC201 has potent antiproliferative and proapoptotic effects in a broad range of breast cancer subtypes, through TRAIL-dependent and TRAIL-independent mechanisms. These findings develop a preclinical rationale for developing ONC201 as a single agent and/or in combination with approved therapies in breast cancer. Mol Cancer Ther; 16(7); 1290-8. ©2017 AACR.
Collapse
Affiliation(s)
- Marie D Ralff
- MD/PhD Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Christina L B Kline
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ozan C Küçükkase
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jessica Wagner
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Bora Lim
- Department of Medicine (Hematology/Oncology), Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - David T Dicker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
470
|
Raini G, Sharet R, Herrero M, Atzmon A, Shenoy A, Geiger T, Elroy-Stein O. Mutant eIF2B leads to impaired mitochondrial oxidative phosphorylation in vanishing white matter disease. J Neurochem 2017; 141:694-707. [PMID: 28306143 DOI: 10.1111/jnc.14024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is a master regulator of protein synthesis under normal and stress conditions. Mutations in any of the five genes encoding its subunits lead to vanishing white matter (VWM) disease, a recessive genetic deadly illness caused by progressive loss of white matter in the brain. In this study we used fibroblasts, which are not involved in the disease, to demonstrate the involvement of eIF2B in mitochondrial function and abundance. Mass spectrometry of total proteome of mouse embryonic fibroblasts (MEFs) isolated from Eif2b5R132H/R132H mice revealed unbalanced stoichiometry of proteins involved in oxidative phosphorylation and of mitochondrial translation machinery components, among others. Mutant MEFs exhibit 55% decrease in oxygen consumption rate per mtDNA content and 47% increase in mitochondrial abundance (p < 0.005), reflecting adaptation to energy requirements. A more robust eIF2B-associated oxidative respiration deficiency was found in mutant primary astrocytes, which exhibit > 3-fold lower ATP-linked respiration per cell despite a 2-fold increase in mtDNA content (p < 0.03). The 2-fold increase in basal and stimulated glycolysis in mutant astrocytes (p ≤ 0.03), but not in MEFs, demonstrates their higher energetic needs and further explicates their involvement in the disease. The data demonstrate the critical role of eIF2B in tight coordination of expression from nuclear and mitochondrial genomes and illuminates the importance of mitochondrial function in VWM pathology. Further dissection of the signaling network associated with eIF2B function will help generating therapeutic strategies for VWM disease and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Gali Raini
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Reut Sharet
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Melisa Herrero
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
471
|
Affiliation(s)
- David M. Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
472
|
Meier JA, Hyun M, Cantwell M, Raza A, Mertens C, Raje V, Sisler J, Tracy E, Torres-Odio S, Gispert S, Shaw PE, Baumann H, Bandyopadhyay D, Takabe K, Larner AC. Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Sci Signal 2017; 10:eaag2588. [PMID: 28351946 PMCID: PMC5502128 DOI: 10.1126/scisignal.aag2588] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is associated with various physiological and pathological functions, mainly as a transcription factor that translocates to the nucleus upon tyrosine phosphorylation induced by cytokine stimulation. In addition, a small pool of STAT3 resides in the mitochondria, where it serves as a sensor for various metabolic stressors including reactive oxygen species (ROS). Mitochondrially localized STAT3 largely exerts its effects through direct or indirect regulation of the activity of the electron transport chain (ETC). It has been assumed that the amounts of STAT3 in the mitochondria are static. We showed that various stimuli, including oxidative stress and cytokines, triggered a signaling cascade that resulted in a rapid loss of mitochondrially localized STAT3. Recovery of the mitochondrial pool of STAT3 over time depended on phosphorylation of Ser727 in STAT3 and new protein synthesis. Under these conditions, mitochondrially localized STAT3 also became competent to bind to cyclophilin D (CypD). Binding of STAT3 to CypD was mediated by the amino terminus of STAT3, which was also important for reducing mitochondrial ROS production after oxidative stress. These results outline a role for mitochondrially localized STAT3 in sensing and responding to external stimuli.
Collapse
Affiliation(s)
- Jeremy A Meier
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Moonjung Hyun
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Marc Cantwell
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ali Raza
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Claudia Mertens
- Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10065, USA
| | - Vidisha Raje
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Sisler
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Erin Tracy
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Peter E Shaw
- School of Life Sciences, University of Nottingham, Nottingham, U.K
| | - Heinz Baumann
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Kazuaki Takabe
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Andrew C Larner
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
473
|
Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets. Cell Death Discov 2017; 3:17016. [PMID: 28386457 PMCID: PMC5357670 DOI: 10.1038/cddiscovery.2017.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 01/25/2023] Open
Abstract
In recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two α-helices, which we termed V-domain according to the predicted structure. So far we have detected this domain in the following proteins: mammalian BAX, BCL-XL, TCTP and yeast Mmi1p and Erg6p. According to our experiments there are two functions of this domain: (1) shuttling of proteins to mitochondria in times of stress and apoptosis; (2) clearing the outer mitochondrial membrane from pro- as well as anti-apoptotic proteins by moving them to LDs after the stress ceases. In this way the LDs are used by the cell to modulate stress response.
Collapse
|
474
|
Yano M. ABCB10 depletion reduces unfolded protein response in mitochondria. Biochem Biophys Res Commun 2017; 486:465-469. [PMID: 28315685 DOI: 10.1016/j.bbrc.2017.03.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
Abstract
Mitochondria have many functions, including ATP generation. The electron transport chain (ETC) and the coupled ATP synthase generate ATP by consuming oxygen. Reactive oxygen species (ROS) are also produced by ETC, and ROS damage deoxyribonucleic acids, membrane lipids and proteins. Recent analysis indicate that mitochondrial unfolded protein response (UPRmt), which enhances expression of mitochondrial chaperones and proteases to remove damaged proteins, is activated when damaged proteins accumulate in the mitochondria. In Caenorhabditis elegans, HAF-1, a putative ortholog of human ABCB10, plays an essential role in signal transduction from mitochondria to nuclei to enhance UPRmt. Therefore, it is possible that ABCB10 has a role similar to that of HAF-1. However, it has not been reported whether ABCB10 is a factor in the signal transduction pathway to enhance UPRmt. In this study, ABCB10 was depleted in HepG2 cells using small interfering RNA (siRNA), and the effect was examined. ABCB10 depletion upregulated ROS and the expression of ROS-detoxifying enzymes (SOD2, GSTA1, and GSTA2), and SESN3, a protein induced by ROS to protect the cell from oxidative stress. In addition, ABCB10 depletion significantly decreased expression of UPRmt-related mitochondrial chaperones (HSPD1 and DNAJA3), and a mitochondrial protease (LONP1). However, the putative activity of ABCB10 to export peptides from mitochondria was not lost by ABCB10 depletion. Altogether, these data suggest that ABCB10 is involved in UPRmt signaling pathway similar to that of HAF-1, although ABCB10 probably does not participate in peptide export from mitochondria.
Collapse
Affiliation(s)
- Masato Yano
- Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, Kumamoto 861-5598, Japan.
| |
Collapse
|
475
|
Matilainen O, Quirós PM, Auwerx J. Mitochondria and Epigenetics - Crosstalk in Homeostasis and Stress. Trends Cell Biol 2017; 27:453-463. [PMID: 28274652 DOI: 10.1016/j.tcb.2017.02.004] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 12/22/2022]
Abstract
Through epigenetic mechanisms cells integrate environmental stimuli to fine-tune gene expression levels. Mitochondrial function is essential to provide the intermediate metabolites necessary to generate and modify epigenetic marks in the nucleus, which in turn can regulate the expression of mitochondrial proteins. In this review we summarize the function of mitochondria in the regulation of epigenetic mechanisms as a new aspect of mitonuclear communication. We focus in particular on the most common epigenetic modifications - histone acetylation and histone and DNA methylation. We also discuss the emerging field of mitochondrial DNA (mtDNA) methylation, whose physiological role remains unknown. Finally, we describe the essential role of some histone modifications in regulating the mitochondrial unfolded protein response (UPRmt) and the mitochondrial stress-dependent lifespan extension.
Collapse
Affiliation(s)
- Olli Matilainen
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
476
|
Asymmetric Arginine Dimethylation Modulates Mitochondrial Energy Metabolism and Homeostasis in Caenorhabditis elegans. Mol Cell Biol 2017; 37:MCB.00504-16. [PMID: 27994012 DOI: 10.1128/mcb.00504-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/11/2016] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT-1) catalyzes asymmetric arginine dimethylation on cellular proteins and modulates various aspects of biological processes, such as signal transduction, DNA repair, and transcriptional regulation. We have previously reported that the null mutant of prmt-1 in Caenorhabditis elegans exhibits a slightly shortened life span, but the physiological significance of PRMT-1 remains largely unclear. Here we explored the role of PRMT-1 in mitochondrial function as hinted by a two-dimensional Western blot-based proteomic study. Subcellular fractionation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that PRMT-1 is almost entirely responsible for asymmetric arginine dimethylation on mitochondrial proteins. Importantly, isolated mitochondria from prmt-1 mutants represent compromised ATP synthesis in vitro, and whole-worm respiration in prmt-1 mutants is decreased in vivo Transgenic rescue experiments demonstrate that PRMT-1-dependent asymmetric arginine dimethylation is required to prevent mitochondrial reactive oxygen species (ROS) production, which consequently causes the activation of the mitochondrial unfolded-protein response. Furthermore, the loss of enzymatic activity of prmt-1 induces food avoidance behavior due to mitochondrial dysfunction, but treatment with the antioxidant N-acetylcysteine significantly ameliorates this phenotype. These findings add a new layer of complexity to the posttranslational regulation of mitochondrial function and provide clues for understanding the physiological roles of PRMT-1 in multicellular organisms.
Collapse
|
477
|
López-Lluch G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech Ageing Dev 2017; 162:108-121. [DOI: 10.1016/j.mad.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
|
478
|
Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SWM. Vitamin B 3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 2017; 355:756-760. [PMID: 28209901 PMCID: PMC5408298 DOI: 10.1126/science.aal0092] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022]
Abstract
Glaucomas are neurodegenerative diseases that cause vision loss, especially in the elderly. The mechanisms initiating glaucoma and driving neuronal vulnerability during normal aging are unknown. Studying glaucoma-prone mice, we show that mitochondrial abnormalities are an early driver of neuronal dysfunction, occurring before detectable degeneration. Retinal levels of nicotinamide adenine dinucleotide (NAD+, a key molecule in energy and redox metabolism) decrease with age and render aging neurons vulnerable to disease-related insults. Oral administration of the NAD+ precursor nicotinamide (vitamin B3), and/or gene therapy (driving expression of Nmnat1, a key NAD+-producing enzyme), was protective both prophylactically and as an intervention. At the highest dose tested, 93% of eyes did not develop glaucoma. This supports therapeutic use of vitamin B3 in glaucoma and potentially other age-related neurodegenerations.
Collapse
Affiliation(s)
| | | | | | | | | | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
- Department of Ophthalmology, Tufts University of Medicine, Boston, MA 02111, USA
- The Howard Hughes Medical Institute, Bar Harbor, ME 04609, USA
| |
Collapse
|
479
|
Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users. Nutrients 2017; 9:nu9020121. [PMID: 28208582 PMCID: PMC5331552 DOI: 10.3390/nu9020121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s) of action of metformin with the potential for therapeutic interpretations.
Collapse
|
480
|
Abstract
The kidney is a vital organ that demands an extraordinary amount of energy to actively maintain the body's metabolism, plasma hemodynamics, electrolytes and water homeostasis, nutrients reabsorption, and hormone secretion. Kidney is only second to the heart in mitochondrial count and oxygen consumption. As such, the health and status of the energy power house, the mitochondria, is pivotal to the health and proper function of the kidney. Mitochondria are heterogeneous and highly dynamic organelles and their functions are subject to complex regulations through modulation of its biogenesis, bioenergetics, dynamics and clearance within cell. Kidney diseases, either acute kidney injury (AKI) or chronic kidney disease (CKD), are important clinical issues and global public health concerns with high mortality rate and socioeconomic burden due to lack of effective therapeutic strategies to cure or retard the progression of the diseases. Mitochondria-targeted therapeutics has become a major focus for modern research with the belief that maintaining mitochondria homeostasis can prevent kidney pathogenesis and disease progression. A better understanding of the cellular and molecular events that govern mitochondria functions in health and disease will potentially lead to improved therapeutics development.
Collapse
Affiliation(s)
- Pu Duann
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
481
|
Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology? JOURNAL OF PARKINSON'S DISEASE 2017; 7:13-29. [PMID: 27911343 PMCID: PMC5302033 DOI: 10.3233/jpd-160989] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/12/2022]
Abstract
The first clinical description of Parkinson's disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Dominika Truban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| |
Collapse
|
482
|
Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proc Natl Acad Sci U S A 2016; 113:14710-14715. [PMID: 27911769 DOI: 10.1073/pnas.1604572113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of pigmented cells that requires an active metabolism to maintain outer retinal homeostasis and compensate for oxidative stress. Using 13C metabolic flux analysis in human RPE cells, we found that RPE has an exceptionally high capacity for reductive carboxylation, a metabolic pathway that has recently garnered significant interest because of its role in cancer cell survival. The capacity for reductive carboxylation in RPE exceeds that of all other cells tested, including retina, neural tissue, glial cells, and a cancer cell line. Loss of reductive carboxylation disrupts redox balance and increases RPE sensitivity to oxidative damage, suggesting that deficiencies of reductive carboxylation may contribute to RPE cell death. Supporting reductive carboxylation by supplementation with an NAD+ precursor or its substrate α-ketoglutarate or treatment with a poly(ADP ribose) polymerase inhibitor protects reductive carboxylation and RPE viability from excessive oxidative stress. The ability of these treatments to rescue RPE could be the basis for an effective strategy to treat blinding diseases caused by RPE dysfunction.
Collapse
|
483
|
Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections. Sci Rep 2016; 6:37211. [PMID: 27845414 PMCID: PMC5109032 DOI: 10.1038/srep37211] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
Alteration of macrophage function has an important regulatory impact on the survival of intracellular mycobacteria. We found that macrophages infected with attenuated Mycobacterium tuberculosis (Mtb) strain H37Ra had elevated expression of M1-related molecules, whereas the M2 phenotype was dominant in macrophages infected with virulent Mtb H37Rv. Further, the TLR signalling pathway played an important role in modulating macrophage polarization against Mtb infection. Interestingly, endoplasmic reticulum (ER) stress was significantly increased in M1 polarized macrophages and these macrophages effectively removed intracellular Mtb, indicating that ER stress may be an important component of the host immune response to Mtb in M1 macrophages. This improved understanding of the mechanisms that regulate macrophage polarization could provide new therapeutic strategies for tuberculosis.
Collapse
|
484
|
Lee C, Kim KH, Cohen P. MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med 2016; 100:182-187. [PMID: 27216708 PMCID: PMC5116416 DOI: 10.1016/j.freeradbiomed.2016.05.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
Mitochondria are ancient organelles that are thought to have emerged from once free-living α-proto-bacteria. As such, they still possess several bacterial-like qualities, including a semi-autonomous genetic system, complete with an independent genome and a unique genetic code. The bacterial-like circular mitochondrial DNA (mtDNA) has been described to encode 37 genes, including 22 tRNAs, 2 rRNAs, and 13 mRNAs. Two additional peptides reported to originate from the mtDNA, namely humanin (Hashimoto et al., 2001; Ikone et al., 2003; Guo et al., 2003) [1-3] and MOTS-c (mitochondrial ORF of the twelve S c) (Lee et al., 2015) [4], indicate a larger mitochondrial genetic repertoire (Shokolenko and Alexeyev, 2015) [5]. These mitochondrial-derived peptides (MDPs) have profound and distinct biological activities and provide a paradigm-shifting concept of active mitochondrial-encoded signals that act at the cellular and organismal level (i.e. mitochondrial hormone) (da Cunha et al., 2015; Quiros et al., 2016) [6,7]. Considering that mitochondria are the single most important metabolic organelle, it is not surprising that these MDPs have metabolic actions. MOTS-c has been shown to target the skeletal muscle and enhance glucose metabolism. As such, MOTS-c has implications in the regulation of obesity, diabetes, exercise, and longevity, representing an entirely novel mitochondrial signaling mechanism to regulate metabolism within and between cells.
Collapse
Affiliation(s)
- Changhan Lee
- USC Leonard Davis School of Gerontology, 3715 McClintock Ave., Suite 103, Los Angeles, CA 90089, United States.
| | - Kyung Hwa Kim
- USC Leonard Davis School of Gerontology, 3715 McClintock Ave., Suite 103, Los Angeles, CA 90089, United States
| | - Pinchas Cohen
- USC Leonard Davis School of Gerontology, 3715 McClintock Ave., Suite 103, Los Angeles, CA 90089, United States.
| |
Collapse
|
485
|
Wasilewski M, Chojnacka K, Chacinska A. Protein trafficking at the crossroads to mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:125-137. [PMID: 27810356 DOI: 10.1016/j.bbamcr.2016.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are central power stations in the cell, which additionally serve as metabolic hubs for a plethora of anabolic and catabolic processes. The sustained function of mitochondria requires the precisely controlled biogenesis and expression coordination of proteins that originate from the nuclear and mitochondrial genomes. Accuracy of targeting, transport and assembly of mitochondrial proteins is also needed to avoid deleterious effects on protein homeostasis in the cell. Checkpoints of mitochondrial protein transport can serve as signals that provide information about the functional status of the organelles. In this review, we summarize recent advances in our understanding of mitochondrial protein transport and discuss examples that involve communication with the nucleus and cytosol.
Collapse
Affiliation(s)
- Michal Wasilewski
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | | | |
Collapse
|
486
|
Cuyàs E, Fernández-Arroyo S, Joven J, Menendez JA. Metformin targets histone acetylation in cancer-prone epithelial cells. Cell Cycle 2016; 15:3355-3361. [PMID: 27792453 DOI: 10.1080/15384101.2016.1249547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The usage of metabolic intermediates as substrates for chromatin-modifying enzymes provides a direct link between the metabolic state of the cell and epigenetics. Because this metabolism-epigenetics axis can regulate not only normal but also diseased states, it is reasonable to suggest that manipulating the epigenome via metabolic interventions may improve the clinical manifestation of age-related diseases including cancer. Using a model of BRCA1 haploinsufficiency-driven accelerated geroncogenesis, we recently tested the hypothesis that: 1.) metabolic rewiring of the mitochondrial biosynthetic nodes that overproduce epigenetic metabolites such as acetyl-CoA should promote cancer-related acetylation of histone H3 marks; 2.) metformin-induced restriction of mitochondrial biosynthetic capacity should manifest in the epigenetic regulation of histone acetylation. We now provide one of the first examples of how metformin-driven metabolic shifts such as reduction of the 2-carbon epigenetic substrate acetyl-CoA is sufficient to correct specific histone H3 acetylation marks in cancer-prone human epithelial cells. The ability of metformin to regulate mitonuclear communication and modulate the epigenetic landscape in genomically unstable pre-cancerous cells might guide the development of new metabolo-epigenetic strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- a ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Catalonia , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Catalonia , Spain
| | - Salvador Fernández-Arroyo
- c Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain, The Campus of International Excellence Southern Catalonia , Tarragona , Spain
| | - Jorge Joven
- c Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain, The Campus of International Excellence Southern Catalonia , Tarragona , Spain
| | - Javier A Menendez
- a ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Catalonia , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Catalonia , Spain
| |
Collapse
|
487
|
East DA, Campanella M. Mitophagy and the therapeutic clearance of damaged mitochondria for neuroprotection. Int J Biochem Cell Biol 2016; 79:382-387. [DOI: 10.1016/j.biocel.2016.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/20/2016] [Indexed: 12/23/2022]
|
488
|
Lionaki E, Gkikas I, Tavernarakis N. Differential Protein Distribution between the Nucleus and Mitochondria: Implications in Aging. Front Genet 2016; 7:162. [PMID: 27695477 PMCID: PMC5025450 DOI: 10.3389/fgene.2016.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
The coordination of nuclear and mitochondrial genomes plays a pivotal role in maintenance of mitochondrial biogenesis and functionality during stress and aging. Environmental and cellular inputs signal to nucleus and/or mitochondria to trigger interorganellar compensatory responses. Loss of this tightly orchestrated coordination results in loss of cellular homeostasis and underlies various pathologies and age-related diseases. Several signaling cascades that govern interorganellar communication have been revealed up to now, and have been classified as part of the anterograde (nucleus to mitochondria) or retrograde (mitochondrial to nucleus) response. Many of these molecular pathways rely on the dual distribution of nuclear or mitochondrial components under basal or stress conditions. These dually localized components usually engage in specific tasks in their primary organelle of function, whilst upon cellular stimuli, they appear in the other organelle where they engage in the same or a different task, triggering a compensatory stress response. In this review, we focus on protein factors distributed between the nucleus and mitochondria and activated to exert their functions upon basal or stress conditions. We further discuss implications of bi-organellar targeting in the context of aging.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of CreteHeraklion, Greece
| |
Collapse
|
489
|
Rüb C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res 2016; 367:111-123. [PMID: 27586587 DOI: 10.1007/s00441-016-2485-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023]
Abstract
Mitochondrial dysfunction represents a prominent pathological feature in many neurodegenerative diseases, particularly in Parkinson's disease (PD). Mutations in the genes encoding the proteins Pink1 and Parkin have been identified as genetic risk factors in familiar cases of PD. Research during the last decade has identified both proteins as crucial components of an organellar quality control system that contributes to the maintenance of mitochondrial function in healthy cells. The Pink1/Parkin system acts as a sensor for mitochondrial quality and is activated, in particular, after the loss of the electric potential across the inner mitochondrial membrane. Pink1 molecules accumulate at the surface of damaged mitochondria to recruit and activate Parkin, which, in turn, elicits a signaling pathway eventually leading to the autophagic removal of the damaged organelles. This review summarizes recent advances in our knowledge of the functional role of the Pink1/Parkin system in preventing the accumulation of damaged mitochondria by mitophagy.
Collapse
Affiliation(s)
- Cornelia Rüb
- Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Anne Wilkening
- Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
490
|
Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila. Genetics 2016; 204:613-630. [PMID: 27558138 PMCID: PMC5068850 DOI: 10.1534/genetics.116.192328] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses.
Collapse
|
491
|
Tian Y, Merkwirth C, Dillin A. Mitochondrial UPR: A Double-Edged Sword. Trends Cell Biol 2016; 26:563-565. [PMID: 27394966 DOI: 10.1016/j.tcb.2016.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 01/04/2023]
Abstract
The mitochondrial unfolded protein response (UPR(mt)) promotes the recovery of dysfunctional mitochondria. Surprisingly, UPR(mt) activation inadvertently maintains and propagates the deleterious mtDNA in a heteroplasmic Caenorhabditis elegans strain, with detrimental consequences. This study extends our understanding of the UPR(mt) and provides a possible therapeutic target for diseases associated with mtDNA mutations.
Collapse
Affiliation(s)
- Ye Tian
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carsten Merkwirth
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
492
|
Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis. Trends Cell Biol 2016; 26:577-586. [PMID: 27004699 DOI: 10.1016/j.tcb.2016.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms.
Collapse
|
493
|
García-Aguilar A, Cuezva JM. Immunocytochemistry: its applications and drawbacks for the study of gut neuroendocrinology. Front Physiol 1980; 9:1322. [PMID: 30283362 PMCID: PMC6156145 DOI: 10.3389/fphys.2018.01322] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
The ATPase Inhibitory Factor 1 (IF1) is the physiological inhibitor of the mitochondrial ATP synthase. Herein, we summarize the regulation of the expression and activity of IF1 as a main driver of the activity of oxidative phosphorylation (OXPHOS) in mammalian tissues. We emphasize that the expression of IF1, which is a mitochondrial protein with very short half-life, is tissue-specifically expressed and primarily controlled at posttranscriptional levels. Inhibition of the activity of IF1 as inhibitor of the ATP synthase under normal physiological conditions is exerted by phosphorylation of S39 by a cAMP-dependent PKA-like activity of mitochondria in response to different physiological cues. Conditional tissue-specific transgenic mice overexpressing IF1 in colon, or a mutant active version of IF1 (IF1-H49K) in liver or in neurons, revealed the inhibition of the ATP synthase and the reprograming of energy metabolism to an enhanced glycolysis. In the IF1-H49K models, the assembly/activity of complex IV and the superassembly of complex V are also affected. Moreover, the IF1-mediated inhibition of the ATP synthase generates a reactive oxygen species (mtROS) signal that switches on the expression of nuclear genes that facilitate adaptation to a restrained OXPHOS. In contrast to normal mice, metabolically preconditioned animals are partially protected from the action of cytotoxic agents by upgrading the activation of stress kinases and transcription factors involved in resolving metabolic adaptation, the antioxidant response, cell survival, and the immune response of the tissue microenvironment. Altogether, we stress a fundamental physiological function for the ATP synthase and its inhibitor in mitohormesis.
Collapse
|