451
|
Marami LM, Dilba GM, Babele DA, Sarba EJ, Gizaw A, Bune WM, Bayu MD, Admasu P, Mekbeb A, Tadesse M, Abdisa K, Bayisa D. Phytochemical Screening and in-vitro Evaluation of Antibacterial Activities of Echinops amplexicaulis, Ruta chalepensis and Salix subserrata Against Selected Pathogenic Bacterial Strains in West Shewa Zone, Ethiopia. J Exp Pharmacol 2021; 13:511-520. [PMID: 34040458 PMCID: PMC8140919 DOI: 10.2147/jep.s305936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background Although traditional healers in Ethiopia have a long history of using medicinal plants to treat diseases in animals and humans, studies on the antibacterial activities and potential bioactive ingredients of most medicinal plants have been insufficient. Therefore, this study aimed to evaluate the in-vitro antibacterial activities and to screen phytochemical constituents of selected medicinal plants against reference bacterial strains. Methods The fresh and healthy roots of Echinops amplexicaulis, fruits of Ruta chalepensis, and leaves of Salix subserrata were collected from West Shewa Zone, Ethiopia. Agar well diffusion and agar dilution methods were used to evaluate antibacterial activities and minimum inhibitory concentrations (MIC). All the crude plant extracts were tested against Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli and Pseudomonas aeruginosa at concentrations of 100, 50, and 25 mg/mL in each triplet (3x). MIC of crude extracts ranging from 1.5625 to 12.50 mg/mL was applied to all bacterial strains. The positive control was ciprofloxacin disk (5 μg) and the negative control was 5% dimethyl sulfoxide. The presence of secondary metabolites of each crude extract was screened. The group means comparisons were done using one-way ANOVA and results were presented as mean ± standard deviation. Results Although all selected plant extracts had shown antibacterial activities, methanol extracts had a greater zone of inhibition against all reference bacterial strains when compared to petroleum ether extracts. The growth of P. aeruginosa was inhibited at a minimum concentration of both methanol and petroleum extracts (1.5625 mg/mL) when compared to the remaining bacterial strains. Phytochemical screening showed that saponins and alkaloids were found in all crude plant extracts, while phytosterol was meager. Conclusion This study revealed that all tested plants had significant secondary metabolites and antibacterial activities against reference bacterial strains.
Collapse
Affiliation(s)
- Lencho Megersa Marami
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Laboratory Technology, Ambo, Oromia, Ethiopia
| | - Getachew Mulatu Dilba
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Laboratory Technology, Ambo, Oromia, Ethiopia
| | - Dagmawit Atalel Babele
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Laboratory Technology, Ambo, Oromia, Ethiopia
| | - Edilu Jorga Sarba
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Science, Ambo, Oromia, Ethiopia
| | - Askale Gizaw
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Laboratory Technology, Ambo, Oromia, Ethiopia
| | - Wakuma Mitiku Bune
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Laboratory Technology, Ambo, Oromia, Ethiopia
| | - Morka Dandecha Bayu
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Laboratory Technology, Ambo, Oromia, Ethiopia
| | - Petros Admasu
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Science, Ambo, Oromia, Ethiopia
| | - Abraham Mekbeb
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Science, Ambo, Oromia, Ethiopia
| | - Miressa Tadesse
- Ambo University, College of Computational and Natural Science, Department of Chemistry, Ambo, Oromia, Ethiopia
| | - Kebede Abdisa
- Ambo University, College of Agriculture and Veterinary Science, Department of Veterinary Science, Ambo, Oromia, Ethiopia
| | - Dejene Bayisa
- Jeldu Woreda, Livestock and Fishery Development Office, Gojo, Oromia, Ethiopia
| |
Collapse
|
452
|
Zhang K, Raju C, Zhong W, Pethe K, Gründling A, Chan-Park MB. Cationic Glycosylated Block Co-β-peptide Acts on the Cell Wall of Gram-Positive Bacteria as Anti-biofilm Agents. ACS APPLIED BIO MATERIALS 2021; 4:3749-3761. [PMID: 35006805 DOI: 10.1021/acsabm.0c01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance is a global threat. In addition to the emergence of resistance to last resort drugs, bacteria escape antibiotics killing by forming complex biofilms. Strategies to tackle antibiotic resistance as well as biofilms are urgently needed. Wall teichoic acid (WTA), a generic anionic glycopolymer present on the cell surface of many Gram-positive bacteria, has been proposed as a possible therapeutic target, but its druggability remains to be demonstrated. Here we report a cationic glycosylated block co-β-peptide that binds to WTA. By doing so, the co-β-peptide not only inhibits biofilm formation, it also disperses preformed biofilms in several Gram-positive bacteria and resensitizes methicillin-resistant Staphylococcus aureus to oxacillin. The cationic block of the co-β-peptide physically interacts with the anionic WTA within the cell envelope, whereas the glycosylated block forms a nonfouling corona around the bacteria. This reduces physical interaction between bacteria-substrate and bacteria-biofilm matrix, leading to biofilm inhibition and dispersal. The WTA-targeting co-β-peptide is a promising lead for the future development of broad-spectrum anti-biofilm strategies against Gram-positive bacteria.
Collapse
Affiliation(s)
- Kaixi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Cheerlavancha Raju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Wenbin Zhong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Kevin Pethe
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Angelika Gründling
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, Flowers Building London, London SW7 2AZ, United Kingdom
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
453
|
Joyce LR, Guan Z, Palmer KL. Streptococcus pneumoniae, S. pyogenes and S. agalactiae membrane phospholipid remodelling in response to human serum. MICROBIOLOGY-SGM 2021; 167. [PMID: 33983874 PMCID: PMC8290102 DOI: 10.1099/mic.0.001048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Streptococcus pneumoniae, S. pyogenes (Group A Streptococcus; GAS) and S. agalactiae (Group B Streptococcus; GBS) are major aetiological agents of diseases in humans. The cellular membrane, a crucial site in host–pathogen interactions, is poorly characterized in streptococci. Moreover, little is known about whether or how environmental conditions influence their lipid compositions. Using normal phase liquid chromatography coupled with electrospray ionization MS, we characterized the phospholipids and glycolipids of S. pneumoniae, GAS and GBS in routine undefined laboratory medium, streptococcal defined medium and, in order to mimic the host environment, defined medium supplemented with human serum. In human serum-supplemented medium, all three streptococcal species synthesize phosphatidylcholine (PC), a zwitterionic phospholipid commonly found in eukaryotes but relatively rare in bacteria. We previously reported that S. pneumoniae utilizes the glycerophosphocholine (GPC) biosynthetic pathway to synthesize PC. Through substrate tracing experiments, we confirm that GAS and GBS scavenge lysoPC, a major metabolite in human serum, thereby using an abbreviated GPC pathway for PC biosynthesis. Furthermore, we found that plasmanyl-PC is uniquely present in the GBS membrane during growth with human serum, suggesting GBS possesses unusual membrane biochemical or biophysical properties. In summary, we report cellular lipid remodelling by the major pathogenic streptococci in response to metabolites present in human serum.
Collapse
Affiliation(s)
- Luke R Joyce
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
454
|
Abstract
Childhood pneumococcal infection is a growing concern among paediatricians especially, in countries where there is no routine vaccination program against Streptococcal pneumoniae. The disease is associated with significant morbidity and mortality in young children particularly those who are under the age of two years. Its main virulent factors include polysaccharide capsule, autolysin, pneumolysin, choline-binding Protein A, the higher chance for genetic transformation, and the presence of pilli that facilitate enhanced binding of bacteria to host cellular surfaces. More severe and invasive pneumococcal infections are seen in children with immunodeficiencies, hypofunctional spleen, malnutrition, chronic lung disease and nephrotic syndrome. The disease spectrum includes a range of manifestations from trivial upper respiratory tract infections to severe invasive pneumococcal disease (PD). The basis of diagnosis is the isolation of bacteria in the culture of body fluids including blood. Antibiotics are best guided by sensitivity patterns and the emergence of resistance is a growing concern.
Collapse
|
455
|
Virga F, Cappellesso F, Stijlemans B, Henze AT, Trotta R, Van Audenaerde J, Mirchandani AS, Sanchez-Garcia MA, Vandewalle J, Orso F, Riera-Domingo C, Griffa A, Ivan C, Smits E, Laoui D, Martelli F, Langouche L, Van den Berghe G, Feron O, Ghesquière B, Prenen H, Libert C, Walmsley SR, Corbet C, Van Ginderachter JA, Ivan M, Taverna D, Mazzone M. Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. SCIENCE ADVANCES 2021; 7:eabf0466. [PMID: 33962944 PMCID: PMC7616432 DOI: 10.1126/sciadv.abf0466] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Unbalanced immune responses to pathogens can be life-threatening although the underlying regulatory mechanisms remain unknown. Here, we show a hypoxia-inducible factor 1α-dependent microRNA (miR)-210 up-regulation in monocytes and macrophages upon pathogen interaction. MiR-210 knockout in the hematopoietic lineage or in monocytes/macrophages mitigated the symptoms of endotoxemia, bacteremia, sepsis, and parasitosis, limiting the cytokine storm, organ damage/dysfunction, pathogen spreading, and lethality. Similarly, pharmacologic miR-210 inhibition improved the survival of septic mice. Mechanistically, miR-210 induction in activated macrophages supported a switch toward a proinflammatory state by lessening mitochondria respiration in favor of glycolysis, partly achieved by downmodulating the iron-sulfur cluster assembly enzyme ISCU. In humans, augmented miR-210 levels in circulating monocytes correlated with the incidence of sepsis, while serum levels of monocyte/macrophage-derived miR-210 were associated with sepsis mortality. Together, our data identify miR-210 as a fine-tuning regulator of macrophage metabolism and inflammatory responses, suggesting miR-210-based therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Federico Virga
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, Department of Oncology, KU Leuven, Leuven, Belgium
- Molecular Biotechnology Center, University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Cappellesso
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Anne-Theres Henze
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rosa Trotta
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Ananda S Mirchandani
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Manuel A Sanchez-Garcia
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Francesca Orso
- Molecular Biotechnology Center, University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Alberto Griffa
- Molecular Biotechnology Center, University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Evelien Smits
- CORE, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Fabio Martelli
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Olivier Feron
- FATH, IREC, Université Catholique de Louvain, Brussels, Belgium
| | - Bart Ghesquière
- Metabolomics Core Facility, Center for Cancer Biology, VIB, Leuven, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Hans Prenen
- CORE, University of Antwerp, Wilrijk, Antwerp, Belgium
- University Hospital Antwerp, Edegem, Belgium
| | | | - Sarah R Walmsley
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cyril Corbet
- FATH, IREC, Université Catholique de Louvain, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Mircea Ivan
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Daniela Taverna
- Molecular Biotechnology Center, University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, VIB, Leuven, Belgium.
- Laboratory of Tumor Inflammation and Angiogenesis, CCB, Department of Oncology, KU Leuven, Leuven, Belgium
- Molecular Biotechnology Center, University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
456
|
Morimura A, Hamaguchi S, Akeda Y, Tomono K. Mechanisms Underlying Pneumococcal Transmission and Factors Influencing Host-Pneumococcus Interaction: A Review. Front Cell Infect Microbiol 2021; 11:639450. [PMID: 33996623 PMCID: PMC8113816 DOI: 10.3389/fcimb.2021.639450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae (also called pneumococcus) is not only a commensal that frequently colonizes the human upper respiratory tract but also a pathogen that causes pneumonia, sepsis, and meningitis. The mechanism of pneumococcal infection has been extensively studied, but the process of transmission has not been fully elucidated because of the lack of tractable animal models. Novel animal models of transmission have enabled further progress in investigating pneumococcal transmission mechanisms including the processes such as pneumococcal shedding, survival in the external environment, and adherence to the nasopharynx of a new host. Herein, we present a review on these animal models, recent research findings about pneumococcal transmission, and factors influencing the host-pneumococcus interaction.
Collapse
Affiliation(s)
- Ayumi Morimura
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeto Hamaguchi
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| | - Yukihiro Akeda
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
457
|
Prasasty VD, Hutagalung RA, Gunadi R, Sofia DY, Rosmalena R, Yazid F, Sinaga E. Prediction of human-Streptococcus pneumoniae protein-protein interactions using logistic regression. Comput Biol Chem 2021; 92:107492. [PMID: 33964803 DOI: 10.1016/j.compbiolchem.2021.107492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae is a major cause of mortality in children under five years old. In recent years, the emergence of antibiotic-resistant strains of S. pneumoniae increases the threat level of this pathogen. For that reason, the exploration of S. pneumoniae protein virulence factors should be considered in developing new drugs or vaccines, for instance by the analysis of host-pathogen protein-protein interactions (HP-PPIs). In this research, prediction of protein-protein interactions was performed with a logistic regression model with the number of protein domain occurrences as features. By utilizing HP-PPIs of three different pathogens as training data, the model achieved 57-77 % precision, 64-75 % recall, and 96-98 % specificity. Prediction of human-S. pneumoniae protein-protein interactions using the model yielded 5823 interactions involving thirty S. pneumoniae proteins and 324 human proteins. Pathway enrichment analysis showed that most of the pathways involved in the predicted interactions are immune system pathways. Network topology analysis revealed β-galactosidase (BgaA) as the most central among the S. pneumoniae proteins in the predicted HP-PPI networks, with a degree centrality of 1.0 and a betweenness centrality of 0.451853. Further experimental studies are required to validate the predicted interactions and examine their roles in S. pneumoniae infection.
Collapse
Affiliation(s)
- Vivitri Dewi Prasasty
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia.
| | - Rory Anthony Hutagalung
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Reinhart Gunadi
- Department of Biology, Faculty of Life Sciences, Universitas Surya, Tangerang, Banten, 15143, Indonesia
| | - Dewi Yustika Sofia
- Department of Biology, Faculty of Life Sciences, Universitas Surya, Tangerang, Banten, 15143, Indonesia
| | - Rosmalena Rosmalena
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Fatmawaty Yazid
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Ernawati Sinaga
- Faculty of Biology, Universitas Nasional, Jakarta, 12520, Indonesia.
| |
Collapse
|
458
|
Shekhar S, Åmdal HA, Petersen FC. Vaccination With the Commensal Streptococcus mitis Expressing Pneumococcal Serotype 5 Capsule Elicits IgG/IgA and Th17 Responses Against Streptococcus pneumoniae. Front Immunol 2021; 12:676488. [PMID: 33953733 PMCID: PMC8089380 DOI: 10.3389/fimmu.2021.676488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Recent studies have identified a clinical isolate of the commensal Streptococcus mitis that expresses Streptococcus pneumoniae serotype 5 capsule (S. mitis serotype 5) and shows serospecificity toward pneumococcal serotype 5. However, it remains unknown whether S. mitis serotype 5 induces protective immunity against pneumococcal serotype 5. In this study, we evaluated the ability of S. mitis serotype 5 to generate protective immunity in a mouse model of lung infection with pneumococcal serotype 5. Upon challenge infection with S. pneumoniae serotype 5, mice intranasally immunized with S. mitis serotype 5 exhibited reduced pneumococcal loads in the lungs, nasal wash, and bronchoalveolar lavage fluid compared with those receiving PBS (control). The immunized mice displayed significantly higher levels of IgG and IgA antibodies reactive to S. mitis serotype 5, S. pneumoniae serotype 5 or S. pneumoniae serotype 4 than the antibody levels in control mice. In vaccinated mice, the IgG/IgA antibody levels reactive to S. mitis serotype 5 or S. pneumoniae serotype 5 were higher than the levels reactive to S. pneumoniae serotype 4. Furthermore, in-vitro restimulation of the lung-draining mediastinal lymph node cells and splenocytes from immunized mice with killed S. mitis serotype 5, S. pneumoniae serotype 5 or S. pneumoniae serotype 4 showed enhanced Th17, but not Th1 and Th2, responses. Overall, our findings show that mucosal immunization with S. mitis serotype 5 protects against S. pneumoniae serotype 5 infection and induces Th17 and predominant serotype-specific IgG/IgA antibody responses against pneumococcal infection.
Collapse
Affiliation(s)
| | - Heidi A Åmdal
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
459
|
[Clustering and influencing factors of Streptococcus pneumoniae carriage among kindergarten children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23. [PMID: 33840408 PMCID: PMC8050557 DOI: 10.7499/j.issn.1008-8830.2011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the clustering and influencing factors of Streptococcus pneumoniae carriage among kindergarten children, and to provide a scientific basis for the prevention of pneumococcal diseases. METHODS The multi-stage stratified cluster sampling method was used to collect nasal swabs via the nasal vestibule at both sides from 1 702 kindergarten children in Liuzhou, China. A questionnaire survey was performed on their parents. The chi-square test and the random effects logistic regression analysis were used to analyze data. RESULTS The carriage rate of Streptococcus pneumoniae was 13.16% (224/1 702) among kindergarten children. The clustering analysis showed that the class-level random effect of Streptococcus pneumoniae carriage was statistically significant (Z=2.07, P=0.038), with an intraclass correlation coefficient of 5.9%. The random effects logistic regression analysis showed that the children aged 5-7 years had a lower risk of Streptococcus pneumoniae carriage than those aged 2-< 5 years (OR=0.55, 95%CI:0.40-0.76, P=0.001), and the children with ≥ 5 family members living together had a higher risk of Streptococcus pneumoniae carriage than those with < 5 family members (OR=1.34, 95%CI:1.01-1.79, P=0.043). CONCLUSIONS Streptococcus pneumoniae carriage shows a class-level clustering effect, and age and the number of cohabitants are important influencing factors for Streptococcus pneumoniae carriage in children.
Collapse
|
460
|
Wong AYW, Johnsson ATA, Ininbergs K, Athlin S, Özenci V. Comparison of Four Streptococcus pneumoniae Urinary Antigen Tests Using Automated Readers. Microorganisms 2021; 9:microorganisms9040827. [PMID: 33924729 PMCID: PMC8070120 DOI: 10.3390/microorganisms9040827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/13/2023] Open
Abstract
Streptococcus pneumoniae urinary antigen tests (UATs) may be interpreted using automatic readers to potentially automate sample incubation and provide standardized results reading. Here, we evaluated four UATs the BinaxNOW S. pneumoniae Antigen Card (Abbott, Chicago, IL, USA), ImmuView S. pneumoniae and Legionella (SSI Diagnostica, Hillerød, Denmark), STANDARD F S. pneumoniae Ag FIA (SD Biosensor, Gyeonggi, South Korea), and Sofia S. pneumoniae FIA (Quidel Corporation, San Diego, CA, USA) with their respective benchtop readers for their ability to detect S. pneumoniae urinary antigen. We found that these assays had a sensitivity of 76.9–86.5%, and specificity of 84.2–89.7%, with no significant difference found among the four UATs. The assays had a high level of agreement with each other, with 84.5% of samples testing consistently across all four assays. The automatically and visually read test results from the two immunochromatographic assays, BinaxNOW and ImmuView, were compared and showed excellent agreement between the two types of reading. Immunofluorescent-based assays, Sofia and STANDARD F, had significantly less time to detect compared to the two immunochromatographic assays due to having less assay setup procedures and shorter sample incubation times. In conclusion, the four UATs performed similarly in the detection of S. pneumoniae urinary antigen, and readers can bring increased flexibility to running UATs in the clinical routine.
Collapse
Affiliation(s)
- Alicia Yoke Wei Wong
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, 141 86 Stockholm, Sweden;
- Correspondence: (A.Y.W.W.); (V.Ö.)
| | | | - Karolina Ininbergs
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, 141 86 Stockholm, Sweden;
- Department of Clinical Microbiology, Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden
| | - Simon Athlin
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden;
| | - Volkan Özenci
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, 141 86 Stockholm, Sweden;
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden;
- Correspondence: (A.Y.W.W.); (V.Ö.)
| |
Collapse
|
461
|
Xu D, Wu X, Peng L, Chen T, Huang Q, Wang Y, Ye C, Peng Y, Hu D, Fang R. The Critical Role of NLRP6 Inflammasome in Streptococcus pneumoniae Infection In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22083876. [PMID: 33918100 PMCID: PMC8069100 DOI: 10.3390/ijms22083876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) causes severe pulmonary diseases, leading to high morbidity and mortality. It has been reported that inflammasomes such as NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) play an important role in the host defense against S. pneumoniae infection. However, the role of NLRP6 in vivo and in vitro against S. pneumoniae remains unclear. Therefore, we investigated the role of NLRP6 in regulating the S. pneumoniae-induced inflammatory signaling pathway in vitro and the role of NLRP6 in the host defense against S. pneumoniae in vivo by using NLRP6−/− mice. The results showed that the NLRP6 inflammasome regulated the maturation and secretion of IL-1β, but it did not affect the induction of IL-1β transcription in S. pneumoniae-infected macrophages. Furthermore, the activation of caspase-1, caspase-11, and gasdermin D (GSDMD) as well as the oligomerization of apoptosis-associated speck-like protein (ASC) were also mediated by NLRP6 in S. pneumoniae-infected macrophages. However, the activation of NLRP6 reduced the expression of NF-κB and ERK signaling pathways in S. pneumoniae-infected macrophages. In vivo study showed that NLRP6−/− mice had a higher survival rate, lower number of bacteria, and milder inflammatory response in the lung compared with wild-type (WT) mice during S. pneumoniae infection, indicating that NLRP6 plays a negative role in the host defense against S. pneumoniae. Furthermore, increased bacterial clearance in NLRP6 deficient mice was modulated by the recruitment of macrophages and neutrophils. Our study provides a new insight on S. pneumoniae-induced activation of NLRP6 and suggests that blocking NLRP6 could be considered as a potential therapeutic strategy to treat S. pneumoniae infection.
Collapse
Affiliation(s)
- Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Xingping Wu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Tingting Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Yu Wang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Dongliang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
- Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: ; Tel./Fax: +86-23-68251196
| |
Collapse
|
462
|
Dong W, Rasid O, Chevalier C, Connor M, Eldridge MJG, Hamon MA. Streptococcus pneumoniae Infection Promotes Histone H3 Dephosphorylation by Modulating Host PP1 Phosphatase. Cell Rep 2021; 30:4016-4026.e4. [PMID: 32209465 DOI: 10.1016/j.celrep.2020.02.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022] Open
Abstract
Pathogenic bacteria can alter host gene expression through post-translational modifications of histones. We show that a natural colonizer, Streptococcus pneumoniae, induces specific histone modifications, including robust dephosphorylation of histone H3 on serine 10 (H3S10), during infection of respiratory epithelial cells. The bacterial pore-forming toxin pneumolysin (PLY), along with the pyruvate oxidase SpxB responsible for H2O2 production, play important roles in the induction of this modification. The combined effects of PLY and H2O2 trigger host signaling that culminates in H3S10 dephosphorylation, which is mediated by the host cell phosphatase PP1. Strikingly, S. pneumoniae infection induces dephosphorylation and subsequent activation of PP1 catalytic activity. Colonization of PP1 catalytically deficient cells results in impaired intracellular S. pneumoniae survival and infection. Interestingly, PP1 activation and H3S10 dephosphorylation are not restricted to S. pneumoniae and appear to be general epigenomic mechanisms favoring intracellular survival of pathogenic bacteria.
Collapse
Affiliation(s)
- Wenyang Dong
- G5 Chromatine et Infection, Institut Pasteur, Paris 75015, France; Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Orhan Rasid
- G5 Chromatine et Infection, Institut Pasteur, Paris 75015, France
| | | | - Michael Connor
- G5 Chromatine et Infection, Institut Pasteur, Paris 75015, France
| | | | | |
Collapse
|
463
|
Zhang C, An H, Hu J, Li J, Zhang W, Lan X, Deng H, Zhang JR. MetR is a molecular adaptor for pneumococcal carriage in the healthy upper airway. Mol Microbiol 2021; 116:438-458. [PMID: 33811693 DOI: 10.1111/mmi.14724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae resides in the human upper airway as a commensal but also causes pneumonia, bacteremia, meningitis, and otitis media. It remains unclear how pneumococci adapt to nutritional conditions of various host niches. We here show that MetR, a LysR family transcriptional regulator, serves as a molecular adaptor for pneumococcal fitness, particularly in the upper airway. The metR mutant of strain D39 rapidly disappeared from the nasopharynx but was marginally attenuated in the lungs and bloodstream of mice. RNA-seq and ChIP-seq analyses showed that MetR broadly regulates transcription of the genes involved in methionine synthesis and other functions under methionine starvation. Genetic and biochemical analyses confirmed that MetR is essential for the activation of methionine synthesis but not uptake. Co-infection of influenza virus partially restored the colonization defect of the metR mutant. These results strongly suggest that MetR is particularly evolved for pneumococcal carriage in the upper airway of healthy individuals where free methionine is severely limited, but it becomes dispensable where environmental methionine is relatively more abundant (e.g., inflamed upper airway and sterile sites). To the best of our knowledge, MetR represents the first known regulator particularly for pneumococcal carriage in healthy individuals.
Collapse
Affiliation(s)
- Chengwang Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jiao Hu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xun Lan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
464
|
Xu L, Earl J, Bajorski P, Gonzalez E, Pichichero ME. Nasopharyngeal microbiome analyses in otitis-prone and otitis-free children. Int J Pediatr Otorhinolaryngol 2021; 143:110629. [PMID: 33516061 DOI: 10.1016/j.ijporl.2021.110629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES About 10-15% children develop frequent acute otitis media (AOM) confirmed by tympanocentesis. These children are designated sOP (stringently defined otitis-prone) because all AOM episodes have been microbiologically confirmed. The cause of otitis-proneness in sOP children is multi-factorial, including frequent otopathogen nasopharyngeal (NP) colonization and deficiency in innate and adaptive immune responses. A largely unexplored contributor to otitis proneness is NP microbiome composition. Since the microbiome modulates otopathogen NP colonization and immune responses, we hypothesized that the NP microbiome composition in sOP children might be dysregulated. METHODS We performed 16S rRNA sequencing to analyze microbiome composition in 157 NP samples from 28 sOP and 68 AOM-free children when they were 6 months or 12 months old and healthy. Bioinformatic approaches were employed to examine the composition difference between the two populations and its correlation with changes in levels of inflammatory cytokines. RESULTS A different global microbiome profile and reduced alpha diversity was observed in the NP microbiome of sOP children when 6 months old, compared with that from AOM-free children of the same age. This difference was resolved when groups were compared at 12 months old. We found 4 bacterial genera-Bacillus, Veillonella, Gemella, and Prevotella-correlated with higher levels of pro-inflammatory cytokines in the NP. Those 4 bacterial genera were in lower abundance in sOP compared to AOM-free children. CONCLUSION Dysbiosis occurs in the NP microbiome of sOP children at an early age even when they were healthy. This dysbiosis correlates with a lower inflammatory state in the NP of these children.
Collapse
Affiliation(s)
- Lei Xu
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Josh Earl
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Peter Bajorski
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Eduardo Gonzalez
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Michael E Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA.
| |
Collapse
|
465
|
Keshava S, Magisetty J, Tucker TA, Kujur W, Mulik S, Esmon CT, Idell S, Rao LVM, Pendurthi UR. Endothelial Cell Protein C Receptor Deficiency Attenuates Streptococcus pneumoniae-induced Pleural Fibrosis. Am J Respir Cell Mol Biol 2021; 64:477-491. [PMID: 33600743 PMCID: PMC8008801 DOI: 10.1165/rcmb.2020-0328oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.
Collapse
Affiliation(s)
| | | | | | - Weshely Kujur
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Sachin Mulik
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Charles T. Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | | | | |
Collapse
|
466
|
王 旭, 陈 敏, 李 文, 傅 锦, 叶 小. [Clustering and influencing factors of Streptococcus pneumoniae carriage among kindergarten children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:363-368. [PMID: 33840408 PMCID: PMC8050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/26/2021] [Indexed: 08/12/2024]
Abstract
OBJECTIVE To study the clustering and influencing factors of Streptococcus pneumoniae carriage among kindergarten children, and to provide a scientific basis for the prevention of pneumococcal diseases. METHODS The multi-stage stratified cluster sampling method was used to collect nasal swabs via the nasal vestibule at both sides from 1 702 kindergarten children in Liuzhou, China. A questionnaire survey was performed on their parents. The chi-square test and the random effects logistic regression analysis were used to analyze data. RESULTS The carriage rate of Streptococcus pneumoniae was 13.16% (224/1 702) among kindergarten children. The clustering analysis showed that the class-level random effect of Streptococcus pneumoniae carriage was statistically significant (Z=2.07, P=0.038), with an intraclass correlation coefficient of 5.9%. The random effects logistic regression analysis showed that the children aged 5-7 years had a lower risk of Streptococcus pneumoniae carriage than those aged 2-< 5 years (OR=0.55, 95%CI:0.40-0.76, P=0.001), and the children with ≥ 5 family members living together had a higher risk of Streptococcus pneumoniae carriage than those with < 5 family members (OR=1.34, 95%CI:1.01-1.79, P=0.043). CONCLUSIONS Streptococcus pneumoniae carriage shows a class-level clustering effect, and age and the number of cohabitants are important influencing factors for Streptococcus pneumoniae carriage in children.
Collapse
Affiliation(s)
- 旭麟 王
- 广东药科大学公共卫生学院, 广东广州 510310School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - 敏琪 陈
- 广东药科大学公共卫生学院, 广东广州 510310School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - 文宇 李
- 广东药科大学公共卫生学院, 广东广州 510310School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | | | - 小华 叶
- 广东药科大学公共卫生学院, 广东广州 510310School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
467
|
Hammond AJ, Binsker U, Aggarwal SD, Ortigoza MB, Loomis C, Weiser JN. Neuraminidase B controls neuraminidase A-dependent mucus production and evasion. PLoS Pathog 2021; 17:e1009158. [PMID: 33819312 PMCID: PMC8049478 DOI: 10.1371/journal.ppat.1009158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/15/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Binding of Streptococcus pneumoniae (Spn) to nasal mucus leads to entrapment and clearance via mucociliary activity during colonization. To identify Spn factors allowing for evasion of mucus binding, we used a solid-phase adherence assay with immobilized mucus of human and murine origin. Spn bound large mucus particles through interactions with carbohydrate moieties. Mutants lacking neuraminidase A (nanA) or neuraminidase B (nanB) showed increased mucus binding that correlated with diminished removal of terminal sialic acid residues on bound mucus. The non-additive activity of the two enzymes raised the question why Spn expresses two neuraminidases and suggested they function in the same pathway. Transcriptional analysis demonstrated expression of nanA depends on the enzymatic function of NanB. As transcription of nanA is increased in the presence of sialic acid, our findings suggest that sialic acid liberated from host glycoconjugates by the secreted enzyme NanB induces the expression of the cell-associated enzyme NanA. The absence of detectable mucus desialylation in the nanA mutant, in which NanB is still expressed, suggests that NanA is responsible for the bulk of the modification of host glycoconjugates. Thus, our studies describe a functional role for NanB in sialic acid sensing in the host. The contribution of the neuraminidases in vivo was then assessed in a murine model of colonization. Although mucus-binding mutants showed an early advantage, this was only observed in a competitive infection, suggesting a complex role of neuraminidases. Histologic examination of the upper respiratory tract demonstrated that Spn stimulates mucus production in a neuraminidase-dependent manner. Thus, an increase production of mucus containing secretions appears to be balanced, in vivo, by decreased mucus binding. We postulate that through the combined activity of its neuraminidases, Spn evades mucus binding and mucociliary clearance, which is needed to counter neuraminidase-mediated stimulation of mucus secretions.
Collapse
Affiliation(s)
- Alexandria J. Hammond
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Ulrike Binsker
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Surya D. Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Mila Brum Ortigoza
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
468
|
Akahoshi S, Morikawa Y, Sakakibara H, Kaneko T, Sekine A, Obonai T, Hataya H. Risk factors of bacteremia in children hospitalized with community-acquired pneumonia: A nested case-control study. J Infect Chemother 2021; 27:1198-1204. [PMID: 33814348 DOI: 10.1016/j.jiac.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To assess the risk factors of bacteremia in children hospitalized with community-acquired pneumonia (CAP). STUDY DESIGN The present, nested, case-control study enrolled a cohort of patients with CAP aged < 18 years who were hospitalized at Tokyo Metropolitan Children's Medical Center or Tama-Hokubu Medical Center between March 2010 and February 2018. Among the cohort with blood cultures (BCs), patients with bacteremia were identified and matched with five control patients based on their treatment facility, underlying disease, and age. Conditional logistic regression was used to calculate the odds ratios (ORs) of bacteremia for risk factor candidates. RESULTS BCs were obtained for 2,383 (84%) of the 2,853 patients in the CAP cohort. Of those with BCs, 34 (1.4%) had bacteremia. S. pneumoniae and H. influenzae accounted for 26 (76%) and four (12%) instances of the bacteremia pathogens, respectively. Bacteremia occurred more frequently among patients hospitalized in the spring than during other seasons (P = 0.022). On multivariate analysis, the severity of pneumonia was not associated with bacteremia incidence (OR: 0.92 [0.30-2.85]) while a white blood cell count > 16,000/μL (OR: 5.90 [2.14-16.3]) was shown to be a significant risk factor. The OR of the need for a ventilator on admission day was significantly high (28.4 [3.02-1374]) on univariate analysis, but the subject pool was too small to determine its significance on multivariate analysis. CONCLUSIONS The results of the present study supported BC collection in patients with leukocytosis and in those requiring ventilator use on admission.
Collapse
Affiliation(s)
- Shogo Akahoshi
- Department of General Pediatrics, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
| | - Yoshihiko Morikawa
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Hiroshi Sakakibara
- Department of General Pediatrics, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Tetsuji Kaneko
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Asami Sekine
- Department of Pediatrics, Tama-Hokubu Medical Center, Tokyo Metropolitan Health and Medical Treatment Corporation, 1 Chome-7-1 Aobacho, Higashimurayama, Tokyo, 189-8511, Japan
| | - Toshimasa Obonai
- Department of Pediatrics, Tama-Hokubu Medical Center, Tokyo Metropolitan Health and Medical Treatment Corporation, 1 Chome-7-1 Aobacho, Higashimurayama, Tokyo, 189-8511, Japan
| | - Hiroshi Hataya
- Department of General Pediatrics, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| |
Collapse
|
469
|
Murakami D, Kono M, Nanushaj D, Kaneko F, Zangari T, Muragaki Y, Weiser JN, Hotomi M. Exposure to Cigarette Smoke Enhances Pneumococcal Transmission Among Littermates in an Infant Mouse Model. Front Cell Infect Microbiol 2021; 11:651495. [PMID: 33869082 PMCID: PMC8045753 DOI: 10.3389/fcimb.2021.651495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae, one of the most common commensal pathogens among children, is spread by close contact in daycare centers or within a family. Host innate immune responses and bacterial virulence factors promote pneumococcal transmission. However, investigations into the effects of environmental factors on transmission have been limited. Passive smoking, a great concern for children's health, has been reported to exacerbate pneumococcal diseases. Here, we describe the effect of cigarette smoke exposure on an infant mouse model of pneumococcal transmission. Our findings reveal that the effect of cigarette smoke exposure significantly promotes pneumococcal transmission by enhancing bacterial shedding from the colonized host and by increasing susceptibility to pneumococcal colonization in the new host, both of which are critical steps of transmission. Local inflammation, followed by mucosal changes (such as mucus hypersecretion and disruption of the mucosal barrier), are important underlying mechanisms for promotion of transmission by smoke exposure. These effects were attributable to the constituents of cigarette smoke rather than smoke itself. These findings provide the first experimental evidence of the impact of environmental factors on pneumococcal transmission and the mechanism of pathogenesis.
Collapse
Affiliation(s)
- Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Fumie Kaneko
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.,Department of Otolaryngology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Tonia Zangari
- Department of Microbiology, New York University School of Medicine, New York, NY, United States
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University, Wakayama, Japan
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, United States
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
470
|
Franck S, Michelet R, Casilag F, Sirard JC, Wicha SG, Kloft C. A Model-Based Pharmacokinetic/Pharmacodynamic Analysis of the Combination of Amoxicillin and Monophosphoryl Lipid A Against S. pneumoniae in Mice. Pharmaceutics 2021; 13:469. [PMID: 33808396 PMCID: PMC8065677 DOI: 10.3390/pharmaceutics13040469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Combining amoxicillin with the immunostimulatory toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) represents an innovative approach for enhancing antibacterial treatment success. Exploiting pharmacokinetic and pharmacodynamic data from an infection model of Streptococcus pneumoniae infected mice, we aimed to evaluate the preclinical exposure-response relationship of amoxicillin with MPLA coadministration and establish a link to survival. Antibiotic serum concentrations, bacterial numbers in lung and spleen and survival data of mice being untreated or treated with amoxicillin (four dose levels), MPLA, or their combination were analyzed by nonlinear mixed-effects modelling and time-to-event analysis using NONMEM® to characterize these treatment regimens. On top of a pharmacokinetic interaction, regarding the pharmacodynamic effects the combined treatment was superior to both monotherapies: The amoxicillin efficacy at highest dose was increased by a bacterial reduction of 1.74 log10 CFU/lung after 36 h and survival was increased 1.35-fold to 90.3% after 14 days both compared to amoxicillin alone. The developed pharmacometric pharmacokinetic/pharmacodynamic disease-treatment-survival models provided quantitative insights into a novel treatment option against pneumonia revealing a pharmacokinetic interaction and enhanced activity of amoxicillin and the immune system stimulator MPLA in combination. Further development of this drug combination flanked with pharmacometrics towards the clinical setting seems promising.
Collapse
Affiliation(s)
- Sebastian Franck
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (S.F.); (R.M.)
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (S.F.); (R.M.)
| | - Fiordiligie Casilag
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center of Infection and Immunity of Lille, University Lille, 59019 Lille, France; (F.C.); (J.-C.S.)
| | - Jean-Claude Sirard
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center of Infection and Immunity of Lille, University Lille, 59019 Lille, France; (F.C.); (J.-C.S.)
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (S.F.); (R.M.)
| |
Collapse
|
471
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
472
|
Bizri AR, Althaqafi A, Kaabi N, Obeidat N, Al Akoury N, Haridy H. The Burden of Invasive Vaccine-Preventable Diseases in Adults in the Middle East and North Africa (MENA) Region. Infect Dis Ther 2021; 10:663-685. [PMID: 33751422 PMCID: PMC7983355 DOI: 10.1007/s40121-021-00420-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/19/2021] [Indexed: 11/26/2022] Open
Abstract
Implementing vaccination programmes at the national level is key to managing vaccine-preventable diseases (VPDs) in the overall population. Although paediatric immunization programmes have significantly reduced the burden of VPD, disease burden in adults still poses a substantial challenge, particularly in low- and middle-income countries such as those within the Middle East and North Africa (MENA) region. Invasive bacterial diseases (IBDs) are an important public health concern within this region, although vaccines are available to prevent the three most common causative organisms associated with IBD: Neisseria meningitidis (NM), Streptococcus pneumoniae (SP), and Haemophilus influenzae (HI). For this review, three separate PubMed searches were used to identify English-language publications describing the epidemiology of NM, SP, and HI in adults within the MENA region. Of the 161 total publications retrieved among all 3 literature searches, 39 were included in this review (NM: 8 publications; SP: 27 publications; HI: 4 publications). Publications describing epidemiology in paediatric or overall populations were excluded. Overall, these studies generally observed a high burden of IBD among adults in this region. Although NM, SP, and HI are communicable diseases in several countries, the surveillance systems in the MENA region are largely inadequate, resulting in poor responses to outbreaks and hindering improvement in outcomes of communicable diseases. Improving IBD surveillance would provide necessary estimates of disease burden, resulting in better vaccination strategies and improved outcomes. In conclusion, the present review provides a summary of the available information on the epidemiology of vaccine-preventable IBD in adults within the MENA region and highlights the need for increased disease surveillance and preventive strategies in these countries.
Collapse
Affiliation(s)
| | - Abdulhakeem Althaqafi
- Department of Medicine, Ministry of National Guard-Health Affairs, Jeddah, Saudi Arabia.
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia.
| | - Nawal Kaabi
- Abu Dhabi Health Services Company, Abu Dhabi, United Arab Emirates
| | | | | | | |
Collapse
|
473
|
Domon H, Terao Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2021; 11:615959. [PMID: 33796475 PMCID: PMC8008068 DOI: 10.3389/fcimb.2021.615959] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae, also known as pneumococcus, is a Gram-positive diplococcus and a major human pathogen. This bacterium is a leading cause of bacterial pneumonia, otitis media, meningitis, and septicemia, and is a major cause of morbidity and mortality worldwide. To date, studies on S. pneumoniae have mainly focused on the role of its virulence factors including toxins, cell surface proteins, and capsules. However, accumulating evidence indicates that in addition to these studies, knowledge of host factors and host-pathogen interactions is essential for understanding the pathogenesis of pneumococcal diseases. Recent studies have demonstrated that neutrophil accumulation, which is generally considered to play a critical role in host defense during bacterial infections, can significantly contribute to lung injury and immune subversion, leading to pneumococcal invasion of the bloodstream. Here, we review bacterial and host factors, focusing on the role of neutrophils and their elastase, which contribute to the progression of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
474
|
Streptococcus pneumoniae serotype 22F infection in respiratory syncytial virus infected neonatal lambs enhances morbidity. PLoS One 2021; 16:e0235026. [PMID: 33705390 PMCID: PMC7951856 DOI: 10.1371/journal.pone.0235026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of viral bronchiolitis resulting in hospitalization and a frequent cause of secondary respiratory bacterial infection, especially by Streptococcus pneumoniae (Spn) in infants. While murine studies have demonstrated enhanced morbidity during a viral/bacterial co-infection, human meta-studies have conflicting results. Moreover, little knowledge about the pathogenesis of emerging Spn serotype 22F, especially the co-pathologies between RSV and Spn, is known. Here, colostrum-deprived neonate lambs were divided into four groups. Two of the groups were nebulized with RSV M37, and the other two groups were mock nebulized. At day three post-RSV infection, one RSV group (RSV/Spn) and one mock-nebulized group (Spn only) were inoculated with Spn intratracheally. At day six post-RSV infection, bacterial/viral loads were assessed along with histopathology and correlated with clinical symptoms. Lambs dually infected with RSV/Spn trended with higher RSV titers, but lower Spn. Additionally, lung lesions were observed to be more frequent in the RSV/Spn group characterized by increased interalveolar wall thickness accompanied by neutrophil and lymphocyte infiltration and higher myeloperoxidase. Despite lower Spn in lungs, co-infected lambs had more significant morbidity and histopathology, which correlated with a different cytokine response. Thus, enhanced disease severity during dual infection may be due to lesion development and altered immune responses rather than bacterial counts.
Collapse
|
475
|
Javed, Mandal PK. Bacterial surface capsular polysaccharides from Streptococcus pneumoniae: A systematic review on structures, syntheses, and glycoconjugate vaccines. Carbohydr Res 2021; 502:108277. [PMID: 33743443 DOI: 10.1016/j.carres.2021.108277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The polysaccharide capsule of Streptococcus pneumoniae constitutes the outermost surface structure of the organism and plays a critical role in virulence. The capsule is the target of current pneumococcal vaccines and glycoconjugates and has important medical and industrial applications. Widespread use of these vaccines is driving changes in serotype prevalence in disease. A massive array of sugars and glycosidic linkages experienced with complete diversity of potential polysaccharide structures. However, it is impossible to collect a sufficient quantity of glycan antigens for the preparation of CPS-based glycoconjugate vaccines from natural sources with high purity and for thorough biological evaluation. So nowadays, the development of a chemical synthetic strategy and their conjugation with a carrier protein to form synthetic glycoconjugate vaccines has been used to gain access on a large scale. This review provides a comprehensive summary of structures, synthesis as well as recent development of synthetic glycoconjugate vaccines, which will support research and may benefit the glycochemical and medical sciences.
Collapse
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
476
|
Barman TK, Racine R, Bonin JL, Califano D, Salmon SL, Metzger DW. Sequential targeting of interferon pathways for increased host resistance to bacterial superinfection during influenza. PLoS Pathog 2021; 17:e1009405. [PMID: 33690728 PMCID: PMC7978370 DOI: 10.1371/journal.ppat.1009405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/19/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial co-infections represent a major clinical complication of influenza. Host-derived interferon (IFN) increases susceptibility to bacterial infections following influenza, but the relative roles of type-I versus type-II IFN remain poorly understood. We have used novel mouse models of co-infection in which colonizing pneumococci were inoculated into the upper respiratory tract; subsequent sublethal influenza virus infection caused the bacteria to enter the lungs and mediate lethal disease. Compared to wild-type mice or mice deficient in only one pathway, mice lacking both IFN pathways demonstrated the least amount of lung tissue damage and mortality following pneumococcal-influenza virus superinfection. Therapeutic neutralization of both type-I and type-II IFN pathways similarly provided optimal protection to co-infected wild-type mice. The most effective treatment regimen was staggered neutralization of the type-I IFN pathway early during co-infection combined with later neutralization of type-II IFN, which was consistent with the expression and reported activities of these IFNs during superinfection. These results are the first to directly compare the activities of type-I and type-II IFN during superinfection and provide new insights into potential host-directed targets for treatment of secondary bacterial infections during influenza. Bacterial co-infections represent a common and challenging clinical complication of influenza. Type-I and type-II interferon (IFN) pathways enhance susceptibility to influenza-pneumococcal co-infection, leading to increased lung pathology and mortality. However, the comparative importance of type-I versus type-II IFN remains unclear. We have used two novel mouse models of co-infection in which pneumococci were inoculated into the upper respiratory tract followed two days later by influenza virus infection. Virus co-infection caused IFN-dependent inflammation that facilitated spreading of the colonizing bacteria into the lungs, followed by tissue damage and death. In this pneumococcal-influenza virus superinfection model, mice lacking both type-I and type-II IFN pathways demonstrated minimal lung pathology and increased survival compared to wild-type mice and mice deficient in only one pathway. Therapeutic neutralization of both type-I and type-II IFN pathways similarly provided optimal protection to superinfected wild-type mice. The most effective treatment regimen involved neutralization of the type-I IFN pathway early during co-infection combined with later neutralization of the type-II IFN pathway. These results provide new insights into potential host-directed therapy for management of bacterial-viral superinfections.
Collapse
Affiliation(s)
- Tarani Kanta Barman
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Rachael Racine
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jesse L. Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Danielle Califano
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Sharon L. Salmon
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dennis W. Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
477
|
Dynamics of antimicrobial resistance of Streptococcus pneumoniae following PCV10 introduction in Brazil: Nationwide surveillance from 2007 to 2019. Vaccine 2021; 39:3207-3215. [PMID: 33707062 DOI: 10.1016/j.vaccine.2021.02.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Brazil introduced 10-valent pneumococcal conjugate vaccine (PCV10) into its immunization program in 2010. We assessed antimicrobial susceptibility of Streptococcus pneumoniae (Spn) obtained from a national surveillance system for invasive pneumococcal diseases (IPD) before/after PCV10 introduction. METHODS Antimicrobial non-susceptible isolates were defined as intermediate or resistant. Minimum inhibitory concentrations (MICs) to penicillin and ceftriaxone were analyzed by year. Antimicrobial susceptibility rates were assessed for each three-year-period using the pre-PCV10-period as reference. Susceptibility of vaccine-types was evaluated for 2017-2019. RESULTS 11,380 isolates were studied. Spn with penicillin ≥ 0.125 mg/L and ceftriaxone ≥ 1.0 mg/L decreased in the three-years after PCV10 introduction (2011-2013: penicillin, 28.1-22.5%; ceftriaxone, 11.3%-7.6%) versus pre-PCV10-years (2007-2009: penicillin, 33.8-38.1%; ceftriaxone, 17.2%-15.6%). After 2013, the proportion of Spn with those MICs to penicillin and ceftriaxone increased to 39.4% and 19.7% in 2019, respectively. Non-susceptibility to penicillin and ceftriaxone increased in 2014-2016, and again in 2017-2019 especially among children < 5 years with meningitis (penicillin, 53.9%; ceftriaxone, 28.0%); multidrug-resistance reached 25% in 2017-2019. Serotypes 19A, 6C and 23A were most associated with antimicrobial non-susceptibility. CONCLUSIONS Antimicrobial non-susceptible Spn decreased in the three-years after vaccination but subsequently increased and was associated with non-PCV10-types. Antimicrobial susceptibility surveillance is fundamental for guiding antibiotic therapy policies.
Collapse
|
478
|
Clonal lineages and antimicrobial resistance of nonencapsulated Streptococcus pneumoniae in the post-pneumococcal conjugate vaccine era in Japan. Int J Infect Dis 2021; 105:695-701. [PMID: 33676003 DOI: 10.1016/j.ijid.2021.02.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The emergence and spread of nonencapsulated Streptococcus pneumoniae (NESp) is a public health concern in the post-pneumococcal conjugate vaccine era. We analyzed the prevalence, molecular characteristics, and antimicrobial resistance of NESp responsible for noninvasive infections in northern Japan. METHODS NESp isolates were identified using molecular and phenotypical methods among 4463 S. pneumoniae isolates from noninvasive infection cases during 4 study periods between January 2011 and January 2019. NESp isolates were analyzed for antimicrobial susceptibility, genotype, and virulence-associated genes. RESULTS Seventy-one NESp isolates were identified (1.6% of total clinical isolates) and assigned to the null capsule clade (NCC)1 (pspK+) (94.4%) or NCC2 (aliC+/aliD+) (5.6%). The dominant sequence types (STs) were ST7502 (23.9%), ST4845 (19.7%), ST16214 (11.3%), ST11379 (9.9%), and ST7786 (7.0%). These 5 dominant STs and all 7 novel STs were related to the sporadic NESp lineage ST1106 or PMEN clone Denmark14-ST230. High non-susceptibility rates of NESp were observed for trimethoprim-sulfamethoxazole, erythromycin, and tetracycline (>92.9%), and multidrug resistance was observed in 88.7% of the NESp isolates, including all ST7502, ST4845, and ST11379 isolates. CONCLUSIONS The study revealed that the dominant clonal groups of NESp were associated with a high prevalence of non-susceptibility to antimicrobials in northern Japan.
Collapse
|
479
|
Rivero-Calle I, Gómez-Rial J, Bont L, Gessner BD, Kohn M, Dagan R, Payne DC, Bruni L, Pollard AJ, García-Sastre A, Faustman DL, Osterhaus A, Butler R, Giménez Sánchez F, Álvarez F, Kaforou M, Bello X, Martinón-Torres F. TIPICO X: report of the 10th interactive infectious disease workshop on infectious diseases and vaccines. Hum Vaccin Immunother 2021; 17:759-772. [PMID: 32755474 PMCID: PMC7996078 DOI: 10.1080/21645515.2020.1788301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 11/03/2022] Open
Abstract
TIPICO is an expert meeting and workshop that aims to provide the most recent evidence in the field of infectious diseases and vaccination. The 10th Interactive Infectious Disease TIPICO workshop took place in Santiago de Compostela, Spain, on November 21-22, 2019. Cutting-edge advances in vaccination against respiratory syncytial virus, Streptococcus pneumoniae, rotavirus, human papillomavirus, Neisseria meningitidis, influenza virus, and Salmonella Typhi were discussed. Furthermore, heterologous vaccine effects were updated, including the use of Bacillus Calmette-Guérin (BCG) vaccine as potential treatment for type 1 diabetes. Finally, the workshop also included presentations and discussion on emergent virus and zoonoses, vaccine resilience, building and sustaining confidence in vaccination, approaches to vaccine decision-making, pros and cons of compulsory vaccination, the latest advances in decoding infectious diseases by RNA gene signatures, and the application of big data approaches.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Louis Bont
- Wilhelmina’s Children’s Hospital University Medical Center Utrecht, The Netherlands
| | | | - Melvin Kohn
- Vaccines and Infectious Diseases Medical Affairs, Global Medical and Scientific Affairs, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel C. Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laia Bruni
- Cancer Epidemiology Research Program, Institut Català d’Oncologia (ICO) - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Andrew J. Pollard
- Oxford Vaccines Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise L. Faustman
- The Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Osterhaus
- Artemis One Health, Utrecht, The Netherlands
- Research Center Emerging Infections and Zoonoses, Hannover, Germany
| | - Robb Butler
- WHO Regional Office for Europe, Copenhagen, Denmark
| | | | | | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| |
Collapse
|
480
|
Scott NR, Mann B, Tuomanen EI, Orihuela CJ. Multi-Valent Protein Hybrid Pneumococcal Vaccines: A Strategy for the Next Generation of Vaccines. Vaccines (Basel) 2021; 9:209. [PMID: 33801372 PMCID: PMC8002124 DOI: 10.3390/vaccines9030209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a bacterial pathogen known to colonize the upper respiratory tract and cause serious opportunistic diseases such as pneumonia, bacteremia, sepsis and meningitis. As a consequence, millions of attributable deaths occur annually, especially among infants, the elderly and immunocompromised individuals. Although current vaccines, composed of purified pneumococcal polysaccharide in free form or conjugated to a protein carrier, are widely used and have been demonstrated to be effective in target groups, Spn has continued to colonize and cause life-threatening disease in susceptible populations. This lack of broad protection highlights the necessity of improving upon the current "gold standard" pneumococcal vaccines to increase protection both by decreasing colonization and reducing the incidence of sterile-site infections. Over the past century, most of the pneumococcal proteins that play an essential role in colonization and pathogenesis have been identified and characterized. Some of these proteins have the potential to serve as antigens in a multi-valent protein vaccine that confers capsule independent protection. This review seeks to summarize the benefits and limitations of the currently employed vaccine strategies, describes how leading candidate proteins contribute to pneumococcal disease development, and discusses the potential of these proteins as protective antigens-including as a hybrid construct.
Collapse
Affiliation(s)
- Ninecia R. Scott
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.); (E.I.T.)
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.); (E.I.T.)
| | - Carlos J. Orihuela
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
481
|
Hirschmann S, Gómez-Mejia A, Mäder U, Karsunke J, Driesch D, Rohde M, Häussler S, Burchhardt G, Hammerschmidt S. The Two-Component System 09 Regulates Pneumococcal Carbohydrate Metabolism and Capsule Expression. Microorganisms 2021; 9:microorganisms9030468. [PMID: 33668344 PMCID: PMC7996280 DOI: 10.3390/microorganisms9030468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Streptococcus pneumoniae two-component regulatory systems (TCSs) are important systems that perceive and respond to various host environmental stimuli. In this study, we have explored the role of TCS09 on gene expression and phenotypic alterations in S. pneumoniae D39. Our comparative transcriptomic analyses identified 67 differently expressed genes in total. Among those, agaR and the aga operon involved in galactose metabolism showed the highest changes. Intriguingly, the encapsulated and nonencapsulated hk09-mutants showed significant growth defects under nutrient-defined conditions, in particular with galactose as a carbon source. Phenotypic analyses revealed alterations in the morphology of the nonencapsulated hk09- and tcs09-mutants, whereas the encapsulated hk09- and tcs09-mutants produced higher amounts of capsule. Interestingly, the encapsulated D39∆hk09 showed only the opaque colony morphology, while the D39∆rr09- and D39∆tcs09-mutants had a higher proportion of transparent variants. The phenotypic variations of D39ΔcpsΔhk09 and D39ΔcpsΔtcs09 are in accordance with their higher numbers of outer membrane vesicles, higher sensitivity against Triton X-100 induced autolysis, and lower resistance against oxidative stress. In conclusion, these results indicate the importance of TCS09 for pneumococcal metabolic fitness and resistance against oxidative stress by regulating the carbohydrate metabolism and thereby, most likely indirectly, the cell wall integrity and amount of capsular polysaccharide.
Collapse
Affiliation(s)
- Stephanie Hirschmann
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Ulrike Mäder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Julia Karsunke
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
- Correspondence:
| |
Collapse
|
482
|
Streptococcus pneumoniae, S. mitis, and S. oralis Produce a Phosphatidylglycerol-Dependent, ltaS-Independent Glycerophosphate-Linked Glycolipid. mSphere 2021; 6:6/1/e01099-20. [PMID: 33627509 PMCID: PMC8544892 DOI: 10.1128/msphere.01099-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lipoteichoic acid (LTA) is a Gram-positive bacterial cell surface polymer that participates in host-microbe interactions. It was previously reported that the major human pathogen Streptococcus pneumoniae and the closely related oral commensals S. mitis and S. oralis produce type IV LTAs. Herein, using liquid chromatography/mass spectrometry-based lipidomic analysis, we found that in addition to type IV LTA biosynthetic precursors, S. mitis, S. oralis, and S. pneumoniae also produce glycerophosphate (Gro-P)-linked dihexosyl (DH)-diacylglycerol (DAG), which is a biosynthetic precursor of type I LTA. cdsA and pgsA mutants produce DHDAG but lack (Gro-P)-DHDAG, indicating that the Gro-P moiety is derived from phosphatidylglycerol (PG), whose biosynthesis requires these genes. S. mitis, but not S. pneumoniae or S. oralis, encodes an ortholog of the PG-dependent type I LTA synthase, ltaS. By heterologous expression analyses, we confirmed that S. mitisltaS confers poly(Gro-P) synthesis in both Escherichia coli and Staphylococcus aureus and that S. mitisltaS can rescue the growth defect of an S. aureusltaS mutant. However, we do not detect a poly(Gro-P) polymer in S. mitis using an anti-type I LTA antibody. Moreover, Gro-P-linked DHDAG is still synthesized by an S. mitisltaS mutant, demonstrating that S. mitis LtaS does not catalyze Gro-P transfer to DHDAG. Finally, an S. mitisltaS mutant has increased sensitivity to human serum, demonstrating that ltaS confers a beneficial but currently undefined function in S. mitis. Overall, our results demonstrate that S. mitis, S. pneumoniae, and S. oralis produce a Gro-P-linked glycolipid via a PG-dependent, ltaS-independent mechanism. IMPORTANCE The cell wall is a critical structural component of bacterial cells that confers important physiological functions. For pathogens, it is a site of host-pathogen interactions. In this work, we analyze the glycolipids synthesized by the mitis group streptococcal species, S. pneumoniae, S. oralis, and S. mitis. We find that all produce the glycolipid, glycerophosphate (Gro-P)-linked dihexosyl (DH)-diacylglycerol (DAG), which is a precursor for the cell wall polymer type I lipoteichoic acid in other bacteria. We investigate whether the known enzyme for type I LTA synthesis, LtaS, plays a role in synthesizing this molecule in S. mitis. Our results indicate that a novel mechanism is responsible. Our results are significant because they identify a novel feature of S. pneumoniae, S. oralis, and S. mitis glycolipid biology.
Collapse
|
483
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
484
|
Minhas V, Paton JC, Trappetti C. Sickly Sweet - How Sugar Utilization Impacts Pneumococcal Disease Progression. Trends Microbiol 2021; 29:768-771. [PMID: 33612397 DOI: 10.1016/j.tim.2021.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen that can spread to multiple sites in the body. However, the mechanisms dictating disease spread are not well understood. Here we highlight the importance of carbohydrate utilization systems on pneumococcal disease, offering insight into how this pathogen causes a spectrum of disease.
Collapse
Affiliation(s)
- Vikrant Minhas
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia.
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
485
|
Jaufmann J, Tümen L, Beer-Hammer S. SLy2-overexpression impairs B-cell development in the bone marrow and the IgG response towards pneumococcal conjugate-vaccine. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:533-546. [PMID: 33592135 PMCID: PMC8127564 DOI: 10.1002/iid3.413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Background Infections with Streptococcus pneumoniae can cause severe diseases in humans including pneumonia. Although guidelines for vaccination have been established, S. pneumoniae is still responsible for a serious burden of disease around the globe. Currently, two pneumococcal immunizations are available, namely the pure polysaccharide vaccine Pneumovax23 (P23) and the conjugate‐vaccine Prevenar13 (PCV13). We recently reported impaired thymus‐independent antibody responses towards P23 in mice overexpressing the immunoinhibitory adapter SLy2. The purpose of this study was to evaluate adaptive B‐cell responses towards the thymus‐dependent vaccine PCV13 in SLy2‐overexpressing mice and to study their survival rate during pneumococcal lung infection. Moreover, we investigated B‐cell developmental stages within the bone marrow (BM) in the context of excessive SLy2‐expression. Methods B‐cell subsets and their surface immune globulins were investigated by flow cytometry. For class‐switch assays, isolated splenic B cells were stimulated in vitro with lipopolysaccharide and interleukin‐4 and antibody secretion was quantified via LEGENDplex. To study PCV13‐specific responses, mice were immunized and serum antibody titers (immunoglobulin M, immunoglobulins IgG1, IgG2, and IgG3) were examined by enzyme‐linked immunosorbent assay. Survival rates of mice were assessed within 7 days upon intranasal challenge with S. pneumoniae. Results Our data demonstrate impaired IgG1 and IgG3 antibody responses towards the pneumococcal conjugate‐vaccine PCV13 in SLy2‐overexpressing mice. This was accompanied by reduced frequencies and numbers of BM‐resident plasmablasts. In addition, we found drastically reduced counts of B‐cell precursors in the BM of SLy2‐Tg mice. The survival rate upon intranasal challenge with S. pneumoniae was mostly comparable between the genotypes. Conclusion Our findings demonstrate an important role of the adapter protein SLy2 in the context of adaptive antibody responses against pneumococcal conjugate‐vaccine. Interestingly, deficits in humoral immunity seemed to be compensated by cellular immune effectors upon bacterial challenge. Our study further shows a novel relevance of SLy2 for plasmablasts and B‐cell progenitors in the BM.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Leyla Tümen
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
486
|
Ali MQ, Kohler TP, Burchhardt G, Wüst A, Henck N, Bolsmann R, Voß F, Hammerschmidt S. Extracellular Pneumococcal Serine Proteases Affect Nasopharyngeal Colonization. Front Cell Infect Microbiol 2021; 10:613467. [PMID: 33659218 PMCID: PMC7917122 DOI: 10.3389/fcimb.2020.613467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae has evolved versatile strategies to colonize the nasopharynx of humans. Colonization is facilitated by direct interactions with host cell receptors or via binding to components of the extracellular matrix. In addition, pneumococci hijack host-derived extracellular proteases such as the serine protease plasmin(ogen) for ECM and mucus degradation as well as colonization. S. pneumoniae expresses strain-dependent up to four serine proteases. In this study, we assessed the role of secreted or cell-bound serine proteases HtrA, PrtA, SFP, and CbpG, in adherence assays and in a mouse colonization model. We hypothesized that the redundancy of serine proteases compensates for the deficiency of a single enzyme. Therefore, double and triple mutants were generated in serotype 19F strain EF3030 and serotype 4 strain TIGR4. Strain EF3030 produces only three serine proteases and lacks the SFP encoding gene. In adherence studies using Detroit-562 epithelial cells, we demonstrated that both TIGR4Δcps and 19F mutants without serine proteases or expressing only CbpG, HtrA, or PrtA have a reduced ability to adhere to Detroit-562 cells. Consistent with these results, we show that the mutants of strain 19F, which preferentially colonizes mice, abrogate nasopharyngeal colonization in CD-1 mice after intranasal infection. The bacterial load in the nasopharynx was monitored for 14 days. Importantly, mutants showed significantly lower bacterial numbers in the nasopharynx two days after infection. Similarly, we detected a significantly reduced pneumococcal colonization on days 3, 7, and 14 post-inoculations. To assess the impact of pneumococcal serine proteases on acute infection, we infected mice intranasally with bioluminescent and invasive TIGR4 or isogenic triple mutants expressing only CbpG, HtrA, PrtA, or SFP. We imaged the acute lung infection in real-time and determined the survival of the mice. The TIGR4lux mutant expressing only PrtA showed a significant attenuation and was less virulent in the acute pneumonia model. In conclusion, our results showed that pneumococcal serine proteases contributed significantly to pneumococcal colonization but played only a minor role in pneumonia and invasive diseases. Because colonization is a prerequisite for invasive diseases and transmission, these enzymes could be promising candidates for the development of antimicrobials to reduce pneumococcal transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
487
|
Pneumococcal Conjugate Vaccine Impact on Serotype 3: A Review of Surveillance Data. Infect Dis Ther 2021; 10:521-539. [PMID: 33587245 PMCID: PMC7954992 DOI: 10.1007/s40121-021-00406-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Limited changes in serotype 3 invasive pneumococcal disease (IPD) incidence rates after a decade of 13-valent pneumococcal conjugate vaccine (PCV13) introduction into several national immunization programs (NIP) have raised questions about PCV13's effectiveness against this serotype. Methods We analyzed the impact of pediatric PCV programs on serotype 3 IPD with two approaches. First, we reviewed the publicly available surveillance data from countries identified in two recently published reviews to describe the population impact of pediatric PCV13 or PCV10 vaccination programs on serotype 3 IPD. We then compared the observed trends in PCV10 and PCV13 countries to a previously described dynamic transmission model that simulates the spread of pneumococcal carriage and development of IPD in a population over time. Results When serotype 3 disease rates are compared from countries that have introduced either a 10-valent (PCV10) vaccine that does not contain serotype 3 in its formulation or PCV13 in their pediatric NIP, over time, serotype 3 incidence rate trends are markedly different. Countries with a PCV10 NIP showed a substantial linear increase in serotype 3 pneumococcal disease among all age groups since the time of PCV10 introduction, whereas countries with a PCV13 NIP experienced a modest decline during the 3–4 years after vaccine introduction followed by an inflection upward in subsequent years. Conclusion These data suggest that PCV13 provides a certain degree of direct and indirect protection against serotype 3 at the population level and direct adult vaccination with a serotype 3-containing vaccine is likely to provide substantial benefit in the context of a pediatric PCV NIP. Further research around serotype 3 transmission patterns and epidemiology is nonetheless warranted. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-021-00406-w.
Collapse
|
488
|
Thuy-Boun PS, Mehta S, Gruening B, McGowan T, Nguyen A, Rajczewski A, Johnson JE, Griffin TJ, Wolan DW, Jagtap PD. Metaproteomics Analysis of SARS-CoV-2-Infected Patient Samples Reveals Presence of Potential Coinfecting Microorganisms. J Proteome Res 2021; 20:1451-1454. [PMID: 33393790 PMCID: PMC7805602 DOI: 10.1021/acs.jproteome.0c00822] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/06/2023]
Abstract
In this Letter, we reanalyze published mass spectrometry data sets of clinical samples with a focus on determining the coinfection status of individuals infected with SARS-CoV-2 coronavirus. We demonstrate the use of ComPIL 2.0 software along with a metaproteomics workflow within the Galaxy platform to detect cohabitating potential pathogens in COVID-19 patients using mass spectrometry-based analysis. From a sample collected from gargling solutions, we detected Streptococcus pneumoniae (opportunistic and multidrug-resistant pathogen) and Lactobacillus rhamnosus (a probiotic component) along with SARS-Cov-2. We could also detect Pseudomonas sps. Bc-h from COVID-19 positive samples and Acinetobacter ursingii and Pseudomonas monteilii from COVID-19 negative samples collected from oro- and nasopharyngeal samples. We believe that the early detection and characterization of coinfections by using metaproteomics from COVID-19 patients will potentially impact the diagnosis and treatment of patients affected by SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Bjoern Gruening
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | | | - An Nguyen
- University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
489
|
Kostić M, Ivanov M, Babić SS, Petrović J, Soković M, Ćirić A. An Up-to-Date Review on Bio-Resource Therapeutics Effective against Bacterial Species Frequently Associated with Chronic Sinusitis and Tonsillitis. Curr Med Chem 2021; 27:6892-6909. [PMID: 32368971 DOI: 10.2174/0929867327666200505093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023]
Abstract
Upper respiratory tract infections include inflammations of the nose, sinuses (sinusitis), pharynx (tonsillitis, pharyngitis) and larynx (laryngitis) with bacteria or viruses as the main cause of these conditions. Due to their repetitive nature, chronic respiratory infections represent a global problem which is often a result of improper treatment. If not treated adequately, these conditions may have serious consequences. On the other hand, mis - and overuse of antibiotics has reduced their efficiency and accelerated the development of resistant bacterial strains, which further complicates the treatment of infections. This literature review will focus on current knowledge regarding medicinal plants and mushrooms which have been traditionally used in the treatment of infections caused by chronic sinusitis and tonsillitis commonly linked to bacteria - Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Fusobacterium nucleatum, Haemophilus influenzae and Moraxella catarrhalis. The present literature overview might be considered as a starting point for the development of novel, natural antimicrobial products with potential practical use in the treatment of chronic tonsillitis and sinusitis.
Collapse
Affiliation(s)
- Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | | | - Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
490
|
Investigating the potential of endolysin loaded chitosan nanoparticles in the treatment of pneumococcal pneumonia. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
491
|
Linden SB, Alreja AB, Nelson DC. Application of bacteriophage-derived endolysins to combat streptococcal disease: current state and perspectives. Curr Opin Biotechnol 2021; 68:213-220. [PMID: 33529969 DOI: 10.1016/j.copbio.2021.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
The decline in new antibiotic candidates combined with an increase in antibiotic-resistance necessitates development of alternative antimicrobials. Bacteriophage-encoded endolysins (lysins) are a class of peptidoglycan hydrolases that have been proposed to fill this antimicrobial void. The past 20 years has seen a dramatic expansion of studies on endolysin discovery, structure/function, engineering, immunogenicity, toxicity/safety, and efficacy in animal models. These collective efforts have led to current human clinical trials on at least three different endolysins that are antimicrobial toward staphylococcal species. It can be anticipated that endolysins targeting streptococcal species may be next in line for translational development. Notably, streptococcal diseases largely manifest at accessible mucous membranes, which should be beneficial for protein therapeutics. Additionally, there are a number of well-identified streptococcal diseases in both humans and animals that are associated with a single species, further favoring a targeted endolysin therapeutic.
Collapse
Affiliation(s)
- Sara B Linden
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Adit B Alreja
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
492
|
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. FRONTIERS IN ALLERGY 2021; 1:617240. [PMID: 35386933 PMCID: PMC8974763 DOI: 10.3389/falgy.2020.617240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research of the Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, GA, United States
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Lebessi
- Department of Microbiology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
493
|
Serum cytokine profile of pediatric patients with laboratory confirmed pneumococcal meningitis. J Infect Public Health 2021; 14:514-520. [PMID: 33743374 DOI: 10.1016/j.jiph.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae infection is a leading cause of bacterial meningitis in children with severe sequelae. Cytokines are important molecules in regulating of host inflammatory and anti-inflammatory responses. So far, the cytokine profile of bacterial meningitis caused by single pathogen has been rarely reported. The aim of this study was to explore serum cytokine profile in pediatric patients with pneumococcal meningitis (PM) and its clinical relevance which could be considered as a valuable tool for differential diagnosis of PM. METHODS During 2015-2018, 95 children with laboratory-confirmed PM were included. Of them, 63 had serum samples at admission. Ten cytokines including TNF-α, IL-12p40, IL-17A, IL-1β, IFN-γ, GM-CSF, IL-10, CXCL-1, IL-8 and IL-13 were measured by multiplex immunoassay in sera of 63 PM patients and 55 age-matched healthy controls (HCs). Level of serum cytokines was compared with different clinical features of patients. RESULTS Significantly higher level of IL-10 was observed in patients than HCs (median, 2.19 vs. 1.92 pg/mL, p = 0.017). Significantly lower levels of serum IL-12p40, IL-17A and IL-1β were observed in patients than HCs (median, 0.68 vs. 10.12 pg/mL, p < 0.0001; 1.14 vs. 1.14 pg/mL, p = 0.004; 1.00 vs. 5.09 pg/mL, p < 0.0001, respectively). No difference was found in levels of other cytokines between patients and controls. A negative correlation was noticed between percentages of blood neutrophils and concentrations of IL-10 (p = 0.048, r = -0.25). Significantly lower levels of IL-12p40 and CXCL-1 were observed in PM patients with sepsis than those without (median 0.68 vs. 1.64 pg/mL, p = 0.026; 7.25 vs. 12.84 pg/mL, p = 0.043, respectively). CONCLUSIONS Our results suggested that there might be significant changes in serum pro-inflammatory and anti-inflammatory cytokines in PM children and that the determination of these cytokines may have limited value for evaluation of clinical outcome of pediatric PM.
Collapse
|
494
|
Matsumoto A, Tabata A, Ohkura K, Oda H, Kodama C, Ohkuni H, Takao A, Kikuchi K, Tomoyasu T, Nagamune H. Molecular characteristics of an adhesion molecule containing cholesterol-dependent cytolysin-motif produced by mitis group streptococci. Microbiol Immunol 2021; 65:61-75. [PMID: 33331679 DOI: 10.1111/1348-0421.12868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/06/2023]
Abstract
Streptococcus pseudopneumoniae (SPpn) is a relatively new species closely related to S. pneumoniae (SPn) and S. mitis (SM) belonging to the Mitis group of the genus Streptococcus (MGS). Although genes encoding various pneumococcal virulence factors have been observed in the SPpn genome, the pathogenicity of SPpn against human, including the roles of virulence factor candidates, is still unclear. The present study focused on and characterized a candidate virulence factor previously reported in SPpn with deduced multiple functional domains, such as lipase domain, two lectin domains, and cholesterol-dependent cytolysin-related domain using various recombinant proteins. The gene was found not only in SPpn but also in the strains of SM and SPn. Moreover, the gene product was expressed in the gene-positive strains as secreted and cell-bound forms. The recombinant of gene product showed lipase activity and human cell-binding activity depending on the function of lectin domain(s), but no hemolytic activity. Thus, based on the distribution of the gene within the MGS and its molecular function, the gene product was named mitilectin (MLC) and its contribution to the potential pathogenicity of the MLC-producing strains was investigated. Consequently, the treatment with anti-MLC antibody and the mlc gene-knockout significantly reduced the human cell-binding activity of MLC-producing strains. Therefore, the multifunctional MLC was suggested to be important as an adhesion molecule in considering the potential pathogenicity of the MLC-producing strains belonging to MGS, such as SPpn and SM.
Collapse
Affiliation(s)
- Airi Matsumoto
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Atsushi Tabata
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Tokushima, Japan.,Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Tokushima, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Hiroki Oda
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Tokushima, Japan
| | - Chihiro Kodama
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Hisashi Ohkuni
- Health Science Research Institute East Japan, Kounosu, Saitama, Japan
| | - Ayuko Takao
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women's Medical University, Shinjyuku-ku, Tokyo, Japan
| | - Toshifumi Tomoyasu
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Tokushima, Japan.,Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Tokushima, Japan
| | - Hideaki Nagamune
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Tokushima, Japan.,Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Tokushima, Japan
| |
Collapse
|
495
|
Du S, Vilhena C, King S, Sahagún-Ruiz A, Hammerschmidt S, Skerka C, Zipfel PF. Molecular analyses identifies new domains and structural differences among Streptococcus pneumoniae immune evasion proteins PspC and Hic. Sci Rep 2021; 11:1701. [PMID: 33462258 PMCID: PMC7814132 DOI: 10.1038/s41598-020-79362-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
The PspC and Hic proteins of Streptococcuspneumoniae are some of the most variable microbial immune evasion proteins identified to date. Due to structural similarities and conserved binding profiles, it was assumed for a long time that these pneumococcal surface proteins represent a protein family comprised of eleven subgroups. Recently, however, the evaluation of more proteins revealed a greater diversity of individual proteins. In contrast to previous assumptions a pattern evaluation of six PspC and five Hic variants, each representing one of the previously defined subgroups, revealed distinct structural and likely functionally regions of the proteins, and identified nine new domains and new domain alternates. Several domains are unique to PspC and Hic variants, while other domains are also present in other virulence factors encoded by pneumococci and other bacterial pathogens. This knowledge improved pattern evaluation at the level of full-length proteins, allowed a sequence comparison at the domain level and identified domains with a modular composition. This novel strategy increased understanding of individual proteins variability and modular domain composition, enabled a structural and functional characterization at the domain level and furthermore revealed substantial structural differences between PspC and Hic proteins. Given the exceptional genomic diversity of the multifunctional PspC and Hic proteins a detailed structural and functional evaluation need to be performed at the strain level. Such knowledge will also be useful for molecular strain typing and characterizing PspC and Hic proteins from new clinical S. pneumoniae strains.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Cláudia Vilhena
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Samantha King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Alfredo Sahagún-Ruiz
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Molecular Immunology Laboratory, Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany. .,Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
496
|
Stahl-Rommel S, Jain M, Nguyen HN, Arnold RR, Aunon-Chancellor SM, Sharp GM, Castro CL, John KK, Juul S, Turner DJ, Stoddart D, Paten B, Akeson M, Burton AS, Castro-Wallace SL. Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing. Genes (Basel) 2021; 12:106. [PMID: 33467183 PMCID: PMC7830261 DOI: 10.3390/genes12010106] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
For the past two decades, microbial monitoring of the International Space Station (ISS) has relied on culture-dependent methods that require return to Earth for analysis. This has a number of limitations, with the most significant being bias towards the detection of culturable organisms and the inherent delay between sample collection and ground-based analysis. In recent years, portable and easy-to-use molecular-based tools, such as Oxford Nanopore Technologies' MinION™ sequencer and miniPCR bio's miniPCR™ thermal cycler, have been validated onboard the ISS. Here, we report on the development, validation, and implementation of a swab-to-sequencer method that provides a culture-independent solution to real-time microbial profiling onboard the ISS. Method development focused on analysis of swabs collected in a low-biomass environment with limited facility resources and stringent controls on allowed processes and reagents. ISS-optimized procedures included enzymatic DNA extraction from a swab tip, bead-based purifications, altered buffers, and the use of miniPCR and the MinION. Validation was conducted through extensive ground-based assessments comparing current standard culture-dependent and newly developed culture-independent methods. Similar microbial distributions were observed between the two methods; however, as expected, the culture-independent data revealed microbial profiles with greater diversity. Protocol optimization and verification was established during NASA Extreme Environment Mission Operations (NEEMO) analog missions 21 and 22, respectively. Unique microbial profiles obtained from analog testing validated the swab-to-sequencer method in an extreme environment. Finally, four independent swab-to-sequencer experiments were conducted onboard the ISS by two crewmembers. Microorganisms identified from ISS swabs were consistent with historical culture-based data, and primarily consisted of commonly observed human-associated microbes. This simplified method has been streamlined for high ease-of-use for a non-trained crew to complete in an extreme environment, thereby enabling environmental and human health diagnostics in real-time as future missions take us beyond low-Earth orbit.
Collapse
Affiliation(s)
| | - Miten Jain
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Hang N. Nguyen
- JES Tech, Houston, TX 77058, USA; (S.S.-R.); (H.N.N.); (C.L.C.)
| | - Richard R. Arnold
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA; (R.R.A.); (S.M.A.-C.)
| | | | | | | | - Kristen K. John
- Project Management and Systems Engineering Division, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Sissel Juul
- Oxford Nanopore Technologies, New York, NY 10013, USA;
| | - Daniel J. Turner
- Oxford Nanopore Technologies, Oxford Science Park, Oxford OX4 4DQ, UK; (D.J.T.); (D.S.)
| | - David Stoddart
- Oxford Nanopore Technologies, Oxford Science Park, Oxford OX4 4DQ, UK; (D.J.T.); (D.S.)
| | - Benedict Paten
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Mark Akeson
- UCSC Genomics Institute, University of California, Santa Cruz, CA 95064, USA; (M.J.); (B.P.); (M.A.)
| | - Aaron S. Burton
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Sarah L. Castro-Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX 77058, USA
| |
Collapse
|
497
|
Jautz J, Potlukova E, Zeeh F, Osthoff M. More than Meets the Eye: Bacteremic Pneumococcal Pneumonia as the Initial Presentation of Multiple Myeloma. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e927904. [PMID: 33402661 PMCID: PMC7797603 DOI: 10.12659/ajcr.927904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patient: Male, 60-year-old Final Diagnosis: Streptococcus pneumoniae bacteremia • multiple myeloma Symptoms: Chills • cough • fever Medication: — Clinical Procedure: Bone marrow biopsy • CT scan • serology Specialty: Hematology • Infectious Diseases • General and Internal Medicine
Collapse
Affiliation(s)
- Jonas Jautz
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Eliska Potlukova
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Franziska Zeeh
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
498
|
Hirade T, Harada A, Koike D, Abe Y, Higuchi T, Kato F, Chang B, Nariai A. Subcutaneous abscess caused by Streptococcus pneumoniae serotype 28F in an infant: a case report. BMC Pediatr 2021; 21:8. [PMID: 33397309 PMCID: PMC7784344 DOI: 10.1186/s12887-020-02465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/10/2020] [Indexed: 12/02/2022] Open
Abstract
Background Invasive pneumococcal disease (IPD) is defined by the detection of Streptococcus pneumoniae on culture from samples obtained from a normally sterile site. Pneumococcal conjugate vaccines (PCV) have been developed for the prevention of IPD that is caused by highly virulent serotypes. Despite the effective reduction of IPD caused by vaccine serotypes after the introduction of PCV, there has been a rapid increase in the incidence of IPD caused by non-vaccine serotypes, and serotype replacement has become a global issue. Case presentation We report a previously healthy 4-month-old girl presenting with a large subcutaneous abscess caused by S. pneumoniae, identified as non-vaccine serotype 28F. The patient had received routine vaccination, including PCV vaccination. After the incision and drainage of the subcutaneous abscess, the patient was treated with antibiotics. She was discharged on Day 7 of hospitalization without any residual sequelae. Conclusions Subcutaneous abscess is a common pediatric skin and soft tissue infection, whereas pneumococcal subcutaneous abscesses are quite rare. As the pneumococcal serotype 28F caused a subcutaneous abscess, this serotype possibly has a high virulence. The incidence of IPD caused by non-vaccine serotypes, such as 28F, is expected to increase in the future. The consolidation of international data on pneumococcal serotypes is important for the development of novel PCV.
Collapse
Affiliation(s)
- Tomohiro Hirade
- Department of Pediatrics, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, 693-8555, Shimane, Japan.
| | - Ai Harada
- Department of Pediatrics, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, 693-8555, Shimane, Japan
| | - Daisuke Koike
- Department of Pediatrics, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, 693-8555, Shimane, Japan
| | - Yasuhiro Abe
- Department of Pediatrics, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, 693-8555, Shimane, Japan
| | - Tsuyoshi Higuchi
- Department of Pediatrics, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, 693-8555, Shimane, Japan
| | - Fumihide Kato
- Department of Pediatrics, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, 693-8555, Shimane, Japan
| | - Bin Chang
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, 162-8640, Tokyo, Japan
| | - Akiyoshi Nariai
- Department of Pediatrics, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, 693-8555, Shimane, Japan
| |
Collapse
|
499
|
Rahikainen R, Rijal P, Tan TK, Wu H, Andersson AC, Barrett JR, Bowden TA, Draper SJ, Townsend AR, Howarth M. Overcoming Symmetry Mismatch in Vaccine Nanoassembly through Spontaneous Amidation. Angew Chem Int Ed Engl 2021; 60:321-330. [PMID: 32886840 PMCID: PMC7821241 DOI: 10.1002/anie.202009663] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Matching of symmetry at interfaces is a fundamental obstacle in molecular assembly. Virus-like particles (VLPs) are important vaccine platforms against pathogenic threats, including Covid-19. However, symmetry mismatch can prohibit vaccine nanoassembly. We established an approach for coupling VLPs to diverse antigen symmetries. SpyCatcher003 enabled efficient VLP conjugation and extreme thermal resilience. Many people had pre-existing antibodies to SpyTag:SpyCatcher but less to the 003 variants. We coupled the computer-designed VLP not only to monomers (SARS-CoV-2) but also to cyclic dimers (Newcastle disease, Lyme disease), trimers (influenza hemagglutinins), and tetramers (influenza neuraminidases). Even an antigen with dihedral symmetry could be displayed. For the global challenge of influenza, SpyTag-mediated display of trimer and tetramer antigens strongly induced neutralizing antibodies. SpyCatcher003 conjugation enables nanodisplay of diverse symmetries towards generation of potent vaccines.
Collapse
Affiliation(s)
- Rolle Rahikainen
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Pramila Rijal
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Tiong Kit Tan
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Hung‐Jen Wu
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Anne‐Marie C. Andersson
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
- Current address: InProTher ApsOle Maaløes Vej 32200KøbenhavnDenmark
| | | | - Thomas A. Bowden
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordOX3 7BNUK
| | | | - Alain R. Townsend
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Mark Howarth
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| |
Collapse
|
500
|
Rahikainen R, Rijal P, Tan TK, Wu H, Andersson AC, Barrett JR, Bowden TA, Draper SJ, Townsend AR, Howarth M. Overcoming Symmetry Mismatch in Vaccine Nanoassembly through Spontaneous Amidation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:325-334. [PMID: 38504824 PMCID: PMC10947127 DOI: 10.1002/ange.202009663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 11/10/2022]
Abstract
Matching of symmetry at interfaces is a fundamental obstacle in molecular assembly. Virus-like particles (VLPs) are important vaccine platforms against pathogenic threats, including Covid-19. However, symmetry mismatch can prohibit vaccine nanoassembly. We established an approach for coupling VLPs to diverse antigen symmetries. SpyCatcher003 enabled efficient VLP conjugation and extreme thermal resilience. Many people had pre-existing antibodies to SpyTag:SpyCatcher but less to the 003 variants. We coupled the computer-designed VLP not only to monomers (SARS-CoV-2) but also to cyclic dimers (Newcastle disease, Lyme disease), trimers (influenza hemagglutinins), and tetramers (influenza neuraminidases). Even an antigen with dihedral symmetry could be displayed. For the global challenge of influenza, SpyTag-mediated display of trimer and tetramer antigens strongly induced neutralizing antibodies. SpyCatcher003 conjugation enables nanodisplay of diverse symmetries towards generation of potent vaccines.
Collapse
Affiliation(s)
- Rolle Rahikainen
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Pramila Rijal
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Tiong Kit Tan
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Hung‐Jen Wu
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Anne‐Marie C. Andersson
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
- Current address: InProTher ApsOle Maaløes Vej 32200KøbenhavnDenmark
| | | | - Thomas A. Bowden
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordOX3 7BNUK
| | | | - Alain R. Townsend
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Mark Howarth
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| |
Collapse
|