451
|
Abstract
Long-term effective use of antiretroviral therapy (ART) among people with HIV (PWH) has significantly reduced the burden of disease, yet a cure for HIV has not been universally achieved, likely due to the persistence of an HIV reservoir. The central nervous system (CNS) is an understudied HIV sanctuary. Importantly, due to viral persistence in the brain, cognitive disturbances persist to various degrees at high rates in PWH despite suppressive ART. Given the complexity and accessibility of the CNS compartment and that it is a physiologically and anatomically unique immune site, human studies to reveal molecular mechanisms of viral entry, reservoir establishment, and the cellular and structural interactions leading to viral persistence and brain injury to advance a cure and either prevent or limit cognitive impairments in PWH remain challenging. Recent advances in human brain organoids show that they can mimic the intercellular dynamics of the human brain and may recapitulate many of the events involved in HIV infection of the brain (neuroHIV). Human brain organoids can be produced, spontaneously or with addition of growth factors and at immature or mature states, and have become stronger models to study neurovirulent viral infections of the CNS. While organoids provide opportunities to study neuroHIV, obstacles such as the need to incorporate microglia need to be overcome to fully utilize this model. Here, we review the current achievements in brain organoid biology and their relevance to neuroHIV research efforts.
Collapse
|
452
|
Sharma K, Dhar N, Thacker VV, Simonet TM, Signorino-Gelo F, Knott GW, McKinney JD. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 2021; 10:66481. [PMID: 34219648 PMCID: PMC8354636 DOI: 10.7554/elife.66481] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/04/2021] [Indexed: 12/23/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) proliferate within superficial bladder umbrella cells to form intracellular bacterial communities (IBCs) during early stages of urinary tract infections. However, the dynamic responses of IBCs to host stresses and antibiotic therapy are difficult to assess in situ. We develop a human bladder-chip model wherein umbrella cells and bladder microvascular endothelial cells are co-cultured under flow in urine and nutritive media respectively, and bladder filling and voiding mimicked mechanically by application and release of linear strain. Using time-lapse microscopy, we show that rapid recruitment of neutrophils from the vascular channel to sites of infection leads to swarm and neutrophil extracellular trap formation but does not prevent IBC formation. Subsequently, we tracked bacterial growth dynamics in individual IBCs through two cycles of antibiotic administration interspersed with recovery periods which revealed that the elimination of bacteria within IBCs by the antibiotic was delayed, and in some instances, did not occur at all. During the recovery period, rapid proliferation in a significant fraction of IBCs reseeded new foci of infection through bacterial shedding and host cell exfoliation. These insights reinforce a dynamic role for IBCs as harbors of bacterial persistence, with significant consequences for non-compliance with antibiotic regimens. Urinary tract infections are one of the most common reasons people need antibiotics. These bacterial infections are typically caused by uropathogenic Escherichia coli (also known as UPEC), which either float freely in the urine and wash away when the bladder empties, or form communities inside cells that the bladder struggles to clear. It is possible that the bacteria living within cells are also more protected from the immune system and antibiotics. But this is hard to study in animal models. To overcome this, Sharma et al. built a ‘bladder-chip’ which mimics the interface between the blood vessels and the tissue layers of the human bladder. Similar chip devices have also been made for other organs. However, until now, no such model had been developed for the bladder. On the chip created by Sharma et al. is a layer of bladder cells which sit at the bottom of a channel filled with diluted human urine. These cells were infected with UPEC, and then imaged over time to see how the bacteria moved, interacted with the bladder cells, and aggregated together. Immune cells from human blood were then added to a vascular channel underneath the bladder tissue, which is coated with endothelial cells that normally line blood vessels. The immune cells rapidly crossed the endothelial barrier and entered the bladder tissue, and swarmed around sites of infection. In some instances, they released the contents of their cells to form net-like traps to catch the bacteria. But these traps failed to remove the bacteria living inside bladder cells. Antibiotics were then added to the urine flowing over the bladder cells as well as the vascular channel, similar to how drugs would be delivered in live human tissue. Sharma et al. discovered that the antibiotics killed bacteria residing in bladder cells slower than bacteria floating freely in the urine. Furthermore, they found that bacteria living in tightly packed communities within bladder cells were more likely to survive treatment and go on to re-infect other parts of the tissue. Antibiotic resistance is a pressing global challenge, and recurrent urinary tract infections are a significant contributor. The bladder-chip presented here could further our understanding of how these bacterial infections develop in vivo and how good antibiotics are at removing them. This could help researchers identify the best dosing and treatment strategies, as well as provide a platform for rapidly testing new antibiotic drugs and other therapies.
Collapse
Affiliation(s)
- Kunal Sharma
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Vivek V Thacker
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas M Simonet
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Francois Signorino-Gelo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Graham W Knott
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
453
|
Bodnar B, Zhang Y, Liu J, Lin Y, Wang P, Wei Z, Saribas S, Zhu Y, Li F, Wang X, Yang W, Li Q, Ho WZ, Hu W. Novel Scalable and Simplified System to Generate Microglia-Containing Cerebral Organoids From Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:682272. [PMID: 34290591 PMCID: PMC8288463 DOI: 10.3389/fncel.2021.682272] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Human cerebral organoid (CO) is a three-dimensional (3D) cell culture system that recapitulates the developing human brain. While CO has proved an invaluable tool for studying neurological disorders in a more clinically relevant matter, there have still been several shortcomings including CO variability and reproducibility as well as lack of or underrepresentation of certain cell types typically found in the brain. As the technology to generate COs has continued to improve, more efficient and streamlined protocols have addressed some of these issues. Here we present a novel scalable and simplified system to generate microglia-containing CO (MCO). We characterize the cell types and dynamic development of MCOs and validate that these MCOs harbor microglia, astrocytes, neurons, and neural stem/progenitor cells, maturing in a manner that reflects human brain development. We introduce a novel technique for the generation of embryoid bodies (EBs) directly from induced pluripotent stem cells (iPSCs) that involves simplified steps of transitioning directly from 3D cultures as well as orbital shaking culture in a standard 6-well culture plate. This allows for the generation of MCOs with an easy-to-use system that is affordable and accessible by any general lab.
Collapse
Affiliation(s)
- Brittany Bodnar
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yongang Zhang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yuan Lin
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Peng Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Zhengyu Wei
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sami Saribas
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yuanjun Zhu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenli Yang
- Institute for Regenerative Medicine and Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
454
|
Kubelt C, Molkewehrum H, Lucius R, Synowitz M, Held-Feindt J, Helmers AK. Influence of Simulated Deep Brain Stimulation on the Expression of Inflammatory Mediators by Human Central Nervous System Cells In Vitro. Neuromolecular Med 2021; 24:169-182. [PMID: 34216357 PMCID: PMC9117383 DOI: 10.1007/s12017-021-08674-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
Deep brain stimulation (DBS) seems to modulate inflammatory processes. Whether this modulation leads to an induction or suppression of inflammatory mediators is still controversially discussed. Most studies of the influence of electrical stimulation on inflammation were conducted in rodent models with direct current stimulation and/or long impulses, both of which differ from the pattern in DBS. This makes comparisons with the clinical condition difficult. We established an in-vitro model that simulated clinical stimulation patterns to investigate the influence of electrical stimulation on proliferation and survival of human astroglial cells, microglia, and differentiated neurons. We also examined its influence on the expression of the inflammatory mediators C-X-C motif chemokine (CXCL)12, CXCL16, CC-chemokin-ligand-2 (CCL)2, CCL20, and interleukin (IL)-1β and IL-6 by these cells using quantitative polymerase chain reaction. In addition, protein expression was assessed by immunofluorescence double staining. In our model, electrical stimulation did not affect proliferation or survival of the examined cell lines. There was a significant upregulation of CXCL12 in the astrocyte cell line SVGA, and of IL-1β in differentiated SH-SY5Y neuronal cells at both messenger RNA and protein levels. Our model allowed a valid examination of chemokines and cytokines associated with inflammation in human brain cells. With it, we detected the induction of inflammatory mediators by electrical stimulation in astrocytes and neurons.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Henri Molkewehrum
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Ralph Lucius
- Department of Anatomy, University of Kiel, 24118, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Ann-Kristin Helmers
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany.
| |
Collapse
|
455
|
Harschnitz O, Studer L. Human stem cell models to study host-virus interactions in the central nervous system. Nat Rev Immunol 2021; 21:441-453. [PMID: 33398129 PMCID: PMC9653304 DOI: 10.1038/s41577-020-00474-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Advancements in human pluripotent stem cell technology offer a unique opportunity for the neuroimmunology field to study host-virus interactions directly in disease-relevant cells of the human central nervous system (CNS). Viral encephalitis is most commonly caused by herpesviruses, arboviruses and enteroviruses targeting distinct CNS cell types and often leading to severe neurological damage with poor clinical outcomes. Furthermore, different neurotropic viruses will affect the CNS at distinct developmental stages, from early prenatal brain development to the aged brain. With the unique flexibility and scalability of human pluripotent stem cell technology, it is now possible to examine the molecular mechanisms underlying acute infection and latency, determine which CNS subpopulations are specifically infected, study temporal aspects of viral susceptibility, perform high-throughput chemical or genetic screens for viral restriction factors and explore complex cell-non-autonomous disease mechanisms. Therefore, human pluripotent stem cell technology has the potential to address key unanswered questions about antiviral immunity in the CNS, including emerging questions on the potential CNS tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Oliver Harschnitz
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York (NY), USA,The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York (NY), USA,
| | - Lorenz Studer
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York (NY), USA,The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York (NY), USA
| |
Collapse
|
456
|
Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol 2021; 42:468-486. [PMID: 34187261 DOI: 10.1080/07388551.2021.1932716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three-dimensional (3D) cell cultures offer an unparalleled platform to recreate spatial arrangements of cells in vitro. 3D cell culture systems have gained increasing interest due to their evident advantages in providing more physiologically relevant information and more predictive data compared to their two-dimensional (2D) counterpart. Design and well-established fabrication of organoids (a particular type of 3D cell culture system) are nowadays considered a pivotal achievement for their ability to replicate in vitro cytoarchitecture and the functionalities of an organ. In this condition, pluripotent stem cells self-organize into 3D structures mimicking the in vivo microenvironments, architectures and multi-lineage differentiation. Scaffolds are key supporting elements in these 3D constructs, and Matrigel is the most commonly used matrix despite its relevant translation limitations including animal-derived sources, non-defined composition, batch-to-batch variability and poorly tailorable properties. Alternatively, 3D synthetic scaffolds, including self-assembling peptides, show promising biocompatibility and biomimetic properties, and can be tailored on specific target tissue/cells. In this review, we discuss the recent advances on 3D cell culture systems and organoids, promising tools for tissue engineering and regenerative medicine applications. For this purpose, we will describe the current state-of-the-art on 3D cell culture systems and organoids based on currently available synthetic-based biomaterials (including tailored self-assembling peptides) either tested in in vivo animal models or developed in vitro with potential application in the field of tissue engineering, with the aim to inspire researchers to take on such promising platforms for clinical applications in the near future.
Collapse
Affiliation(s)
- Amanda Marchini
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fabrizio Gelain
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
457
|
Sarieva K, Mayer S. The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 2021; 8:686410. [PMID: 34250020 PMCID: PMC8264783 DOI: 10.3389/fmolb.2021.686410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a growing body of evidence has demonstrated the impact of prenatal environmental adversity on the development of the human embryonic and fetal brain. Prenatal environmental adversity includes infectious agents, medication, and substances of use as well as inherently maternal factors, such as diabetes and stress. These adversities may cause long-lasting effects if occurring in sensitive time windows and, therefore, have high clinical relevance. However, our knowledge of their influence on specific cellular and molecular processes of in utero brain development remains scarce. This gap of knowledge can be partially explained by the restricted experimental access to the human embryonic and fetal brain and limited recapitulation of human-specific neurodevelopmental events in model organisms. In the past years, novel 3D human stem cell-based in vitro modeling systems, so-called brain organoids, have proven their applicability for modeling early events of human brain development in health and disease. Since their emergence, brain organoids have been successfully employed to study molecular mechanisms of Zika and Herpes simplex virus-associated microcephaly, as well as more subtle events happening upon maternal alcohol and nicotine consumption. These studies converge on pathological mechanisms targeting neural stem cells. In this review, we discuss how brain organoids have recently revealed commonalities and differences in the effects of environmental adversities on human neurogenesis. We highlight both the breakthroughs in understanding the molecular consequences of environmental exposures achieved using organoids as well as the on-going challenges in the field related to variability in protocols and a lack of benchmarking, which make cross-study comparisons difficult.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
458
|
Sağraç D, Şişli HB, Şenkal S, Hayal TB, Şahin F, Doğan A. Organoids in Tissue Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:45-64. [PMID: 34164796 DOI: 10.1007/5584_2021_647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Improvements in stem cell-based research and genetic modification tools enable stem cell-based tissue regeneration applications in clinical therapies. Although inadequate cell numbers in culture, invasive isolation procedures, and poor survival rates after transplantation remain as major challenges, cell-based therapies are useful tools for tissue regeneration.Organoids hold a great promise for tissue regeneration, organ and disease modeling, drug testing, development, and genetic profiling studies. Establishment of 3D cell culture systems eliminates the disadvantages of 2D models in terms of cell adaptation and tissue structure and function. Organoids possess the capacity to mimic the specific features of tissue architecture, cell-type composition, and the functionality of real organs while preserving the advantages of simplified and easily accessible cell culture models. Thus, organoid technology might emerge as an alternative to cell and tissue transplantation. Although transplantation of various organoids in animal models has been demonstrated, liöitations related to vascularized structure formation, cell viability and functionality remain as obstacles in organoid-based transplantation therapies. Clinical applications of organoid-based transplantations might be possible in the near future, when limitations related to cell viability and tissue integration are solved. In this review, the literature was analyzed and discussed to explore the current status of organoid-based transplantation studies.
Collapse
Affiliation(s)
- Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
459
|
Song G, Zhao M, Chen H, Zhou X, Lenahan C, Ou Y, He Y. The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Front Cell Neurosci 2021; 15:646921. [PMID: 34234646 PMCID: PMC8257041 DOI: 10.3389/fncel.2021.646921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease responsible for significant morbidity and disability worldwide. However, there remains a dearth of effective therapies. The failure of many therapies for stroke in clinical trials has promoted the development of human cell-based models, such as brain organoids. Brain organoids differ from pluripotent stem cells in that they recapitulate various key features of the human central nervous system (CNS) in three-dimensional (3D) space. Recent studies have demonstrated that brain organoids could serve as a new platform to study various neurological diseases. However, there are several limitations, such as the scarcity of glia and vasculature in organoids, which are important for studying stroke. Herein, we have summarized the application of brain organoid technology in stroke research, such as for modeling and transplantation purposes. We also discuss methods to overcome the limitations of brain organoid technology, as well as future prospects for its application in stroke research. Although there are many difficulties and challenges associated with brain organoid technology, it is clear that this approach will play a critical role in the future exploration of stroke treatment.
Collapse
Affiliation(s)
- Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
460
|
Martens YA, Xu S, Tait R, Li G, Zhao XC, Lu W, Liu CC, Kanekiyo T, Bu G, Zhao J. Generation and validation of APOE knockout human iPSC-derived cerebral organoids. STAR Protoc 2021; 2:100571. [PMID: 34151296 PMCID: PMC8190508 DOI: 10.1016/j.xpro.2021.100571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/- ) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD. For complete details on the use and execution of this protocol, please refer to Zhao et al. (2020).
Collapse
Affiliation(s)
- Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroregeneration Lab, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Gary Li
- ALSTEM, Richmond, CA, 94806, USA
| | | | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroregeneration Lab, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroregeneration Lab, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroregeneration Lab, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroregeneration Lab, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
461
|
Makrygianni EA, Chrousos GP. From Brain Organoids to Networking Assembloids: Implications for Neuroendocrinology and Stress Medicine. Front Physiol 2021; 12:621970. [PMID: 34177605 PMCID: PMC8222922 DOI: 10.3389/fphys.2021.621970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are three-dimensional cultures that contain multiple types of cells and cytoarchitectures, and resemble fetal human brain structurally and functionally. These organoids are being used increasingly to model brain development and disorders, however, they only partially recapitulate such processes, because of several limitations, including inability to mimic the distinct cortical layers, lack of functional neuronal circuitry as well as non-neural cells and gyrification, and increased cellular stress. Efforts to create improved brain organoid culture systems have led to region-specific organoids, vascularized organoids, glia-containing organoids, assembloids, sliced organoids and polarized organoids. Assembloids are fused region-specific organoids, which attempt to recapitulate inter-regional and inter-cellular interactions as well as neural circuitry development by combining multiple brain regions and/or cell lineages. As a result, assembloids can be used to model subtle functional aberrations that reflect complex neurodevelopmental, neuropsychiatric and neurodegenerative disorders. Mammalian organisms possess a highly complex neuroendocrine system, the stress system, whose main task is the preservation of systemic homeostasis, when the latter is threatened by adverse forces, the stressors. The main central parts of the stress system are the paraventricular nucleus of the hypothalamus and the locus caeruleus/norepinephrine-autonomic nervous system nuclei in the brainstem; these centers innervate each other and interact reciprocally as well as with various other CNS structures. Chronic dysregulation of the stress system has been implicated in major pathologies, the so-called chronic non-communicable diseases, including neuropsychiatric, neurodegenerative, cardiometabolic and autoimmune disorders, which lead to significant population morbidity and mortality. We speculate that brain organoids and/or assembloids could be used to model the development, regulation and dysregulation of the stress system and to better understand stress-related disorders. Novel brain organoid technologies, combined with high-throughput single-cell omics and gene editing, could, thus, have major implications for precision medicine.
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
462
|
Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y. Organ-on-a-chip systems for vascular biology. J Mol Cell Cardiol 2021; 159:1-13. [PMID: 34118217 DOI: 10.1016/j.yjmcc.2021.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Organ-on-a-chip (OOC) platforms involve the miniaturization of cell culture systems and enable a variety of novel experimental approaches. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living systems, the incorporation of vascular structure is a key feature common to almost all organ-on-a-chip systems. In this review we highlight recent advances in organ-on-a-chip technologies with a focus on the vasculature. We first present the developmental process of the blood vessels through which vascular cells assemble into networks and remodel to form complex vascular beds under flow. We then review self-assembled vascular models and flow systems for the study of vascular development and biology as well as pre-patterned vascular models for the generation of perfusable microvessels for modeling vascular and tissue function. We finally conclude with a perspective on developing future OOC approaches for studying different aspects of vascular biology. We highlight the fit for purpose selection of OOC models towards either simple but powerful testbeds for therapeutic development, or complex vasculature to accurately replicate human physiology for specific disease modeling and tissue regeneration.
Collapse
Affiliation(s)
- Christian J Mandrycky
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| | - Caitlin C Howard
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| | - Samuel G Rayner
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA; Department of Medicine; Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Yu Jung Shin
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| | - Ying Zheng
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
463
|
Involvement of Microglia in the Pathophysiology of Intracranial Aneurysms and Vascular Malformations-A Short Overview. Int J Mol Sci 2021; 22:ijms22116141. [PMID: 34200256 PMCID: PMC8201350 DOI: 10.3390/ijms22116141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysms and vascular malformations of the brain represent an important source of intracranial hemorrhage and subsequent mortality and morbidity. We are only beginning to discern the involvement of microglia, the resident immune cell of the central nervous system, in these pathologies and their outcomes. Recent evidence suggests that activated proinflammatory microglia are implicated in the expansion of brain injury following subarachnoid hemorrhage (SAH) in both the acute and chronic phases, being also a main actor in vasospasm, considerably the most severe complication of SAH. On the other hand, anti-inflammatory microglia may be involved in the resolution of cerebral injury and hemorrhage. These immune cells have also been observed in high numbers in brain arteriovenous malformations (bAVM) and cerebral cavernomas (CCM), although their roles in these lesions are currently incompletely ascertained. The following review aims to shed a light on the most significant findings related to microglia and their roles in intracranial aneurysms and vascular malformations, as well as possibly establish the course for future research.
Collapse
|
464
|
Nguyen J, Lin YY, Gerecht S. The next generation of endothelial differentiation: Tissue-specific ECs. Cell Stem Cell 2021; 28:1188-1204. [PMID: 34081899 DOI: 10.1016/j.stem.2021.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) sense and respond to fluid flow and regulate immune cell trafficking in all organs. Despite sharing the same mesodermal origin, ECs exhibit heterogeneous tissue-specific characteristics. Human pluripotent stem cells (hPSCs) can potentially be harnessed to capture this heterogeneity and further elucidate endothelium behavior to satisfy the need for increased accuracy and breadth of disease models and therapeutics. Here, we review current strategies for hPSC differentiation to blood vascular ECs and their maturation into continuous, fenestrated, and sinusoidal tissues. We then discuss the contribution of hPSC-derived ECs to recent advances in organoid development and organ-on-chip approaches.
Collapse
Affiliation(s)
- Jane Nguyen
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ying-Yu Lin
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
465
|
Fiorenzano A, Sozzi E, Parmar M, Storm P. Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing. Cells 2021; 10:cells10061366. [PMID: 34206038 PMCID: PMC8226961 DOI: 10.3390/cells10061366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Human midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson’s disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsychiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain. No systematic molecular classification at the genome-wide level has been proposed to date. Although many years of scientific efforts in embryonic and adult mouse brain have positioned us to better understand the complexity of DA neuron biology, many biological phenomena specific to humans are not amenable to being reproduced in animal models. The establishment of human cell-based systems combined with advanced computational single-cell transcriptomics holds great promise for decoding the mechanisms underlying maturation and diversification of human DA neurons, and linking their molecular heterogeneity to functions in the midbrain. Human pluripotent stem cells have emerged as a useful tool to recapitulate key molecular features of mature DA neuron subtypes. Here, we review some of the most recent advances and discuss the current challenges in using stem cells, to model human DA biology. We also describe how single cell RNA sequencing may provide key insights into the molecular programs driving DA progenitor specification into mature DA neuron subtypes. Exploiting the state-of-the-art approaches will lead to a better understanding of stem cell-derived DA neurons and their use in disease modeling and regenerative medicine.
Collapse
|
466
|
Shankaran A, Prasad K, Chaudhari S, Brand A, Satyamoorthy K. Advances in development and application of human organoids. 3 Biotech 2021; 11:257. [PMID: 33977021 PMCID: PMC8105691 DOI: 10.1007/s13205-021-02815-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Innumerable studies associated with cellular differentiation, tissue response and disease modeling have been conducted in two-dimensional (2D) culture systems or animal models. This has been invaluable in deciphering the normal and disease states in cell biology; the key shortcomings of it being suitability for translational or clinical correlations. The past decade has seen several major advances in organoid culture technologies and this has enhanced our understanding of mimicking organ reconstruction. The term organoid has generally been used to describe cellular aggregates derived from primary tissues or stem cells that can self-organize into organotypic structures. Organoids mimic the cellular microenvironment of tissues better than 2D cell culture systems and represent the tissue physiology. Human organoids of brain, thyroid, gastrointestinal, lung, cardiac, liver, pancreatic and kidney have been established from various diseases, healthy tissues and from pluripotent stem cells (PSCs). Advances in patient-derived organoid culture further provides a unique perspective from which treatment modalities can be personalized. In this review article, we have discussed the current strategies for establishing various types of organoids of ectodermal, endodermal and mesodermal origin. We have also discussed their applications in modeling human health and diseases (such as cancer, genetic, neurodegenerative and infectious diseases), applications in regenerative medicine and evolutionary studies.
Collapse
Affiliation(s)
- Abhijith Shankaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Angela Brand
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
- Department International Health, Faculty of Medicine, Health and Life Sciences, Maastricht University, Duboisdomein 30, 6229 GT Maastricht, The Netherlands
- United Nations University- Maastricht Economic and Social Research Institute On Innovation and Technology (UNU-MERIT), Boschstraat 24, 6211 AX Maastricht, The Netherlands
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| |
Collapse
|
467
|
Luo J, Li P. Human pluripotent stem cell-derived brain organoids as in vitro models for studying neural disorders and cancer. Cell Biosci 2021; 11:99. [PMID: 34049587 PMCID: PMC8161602 DOI: 10.1186/s13578-021-00617-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
The sheer complexities of brain and resource limitation of human brain tissue greatly hamper our understanding of the brain disorders and cancers. Recently developed three-dimensional (3D) brain organoids (BOs) are self-organized and spontaneously differentiated from human pluripotent stem cells (hPSCs) in vitro, which exhibit similar features with cell type diversity, structural organization, and functional connectivity as the developing human brain. Based on these characteristics, hPSC-derived BOs (hPDBOs) provide new opportunities to recapitulate the complicated processes during brain development, neurodegenerative disorders, and brain cancers in vitro. In this review, we will provide an overview of existing BO models and summarize the applications of this technology in modeling the neural disorders and cancers. Furthermore, we will discuss the challenges associated with their use as in vitro models for disease modeling and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
468
|
de Dios-Figueroa GT, Aguilera-Marquez JDR, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture Models in COVID-19 Times: A Review of 3D Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021; 9:602. [PMID: 34073231 PMCID: PMC8226796 DOI: 10.3390/biomedicines9060602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, emerging viruses have become a worldwide concern. The fast and extensive spread of the disease caused by SARS-CoV-2 (COVID-19) has impacted the economy and human activity worldwide, highlighting the human vulnerability to infectious diseases and the need to develop and optimize technologies to tackle them. The three-dimensional (3D) cell culture models emulate major tissue characteristics such as the in vivo virus-host interactions. These systems may help to generate a quick response to confront new viruses, establish a reliable evaluation of the pathophysiology, and contribute to therapeutic drug evaluation in pandemic situations such as the one that humanity is living through today. This review describes different types of 3D cell culture models, such as spheroids, scaffolds, organoids, and organs-on-a-chip, that are used in virus research, including those used to understand the new severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Guadalupe Tonantzin de Dios-Figueroa
- Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico; (G.T.d.D.-F.); (J.d.R.A.-M.)
| | - Janette del Rocío Aguilera-Marquez
- Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico; (G.T.d.D.-F.); (J.d.R.A.-M.)
| | - Tanya A. Camacho-Villegas
- CONACYT-Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico;
| | - Pavel H. Lugo-Fabres
- CONACYT-Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico;
| |
Collapse
|
469
|
Ho C, Morsut L. Novel synthetic biology approaches for developmental systems. Stem Cell Reports 2021; 16:1051-1064. [PMID: 33979593 PMCID: PMC8185972 DOI: 10.1016/j.stemcr.2021.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, developmental systems are investigated with increasing technological power. Still, open questions remain, especially concerning self-organization capacity and its control. Here, we present three areas where synthetic biology tools are used in top-down and bottom-up approaches for studying and constructing developmental systems. First, we discuss how synthetic biology tools can improve stem cell-based organoid models. Second, we discuss recent studies employing user-defined perturbations to study embryonic patterning in model species. Third, we present "toy models" of patterning and morphogenesis using synthetic genetic circuits in non-developmental systems. Finally, we discuss how these tools and approaches can specifically benefit the field of embryo models.
Collapse
Affiliation(s)
- Christine Ho
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
470
|
Bose R, Banerjee S, Dunbar GL. Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:640212. [PMID: 34041235 PMCID: PMC8141848 DOI: 10.3389/fcell.2021.640212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022] Open
Abstract
Modeling neurological disorders is challenging because they often have both endogenous and exogenous causes. Brain organoids consist of three-dimensional (3D) self-organizing brain tissue which increasingly is being used to model various aspects of brain development and disorders, such as the generation of neurons, neuronal migration, and functional networks. These organoids have been recognized as important in vitro tools to model developmental features of the brain, including neurological disorders, which can provide insights into the molecular mechanisms involved in those disorders. In this review, we describe recent advances in the generation of two-dimensional (2D), 3D, and blood-brain barrier models that were derived from induced pluripotent stem cells (iPSCs) and we discuss their advantages and limitations in modeling diseases, as well as explore the development of a vascularized and functional 3D model of brain processes. This review also examines the applications of brain organoids for modeling major neurodegenerative diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raj Bose
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Soumyabrata Banerjee
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute, Ascension St. Mary's, Saginaw, MI, United States
| |
Collapse
|
471
|
Zhao D, Lei W, Hu S. Cardiac organoid - a promising perspective of preclinical model. Stem Cell Res Ther 2021; 12:272. [PMID: 33957972 PMCID: PMC8100358 DOI: 10.1186/s13287-021-02340-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Human cardiac organoids (hCOs), three-dimensional (3D) cellular constructs similar to in vivo organ, are new-generation models. To a large extent, a hCO retains the biological characteristics and functions of cells in vivo more accurately than previous models. With the continuous development of biotechnology, the hCO model is becoming increasingly complex and mature. High-fidelity hCOs help us better explore the mysteries of human physiology and integrate phenotypes with living functions into models. Here, we discuss recent advances in the methods of constructing human cardiac organoids and introduce applications of hCOs, especially in modeling cardiovascular diseases, including myocardial infarction, heart failure, genetic cardiac diseases, and arrhythmia. In addition, we propose the prospects for and the limitations of hCOs. In conclusion, a greater understanding of hCOs will provide ways to improve hCO construction and make these models useful for future preclinical studies.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
472
|
Zagare A, Gobin M, Monzel AS, Schwamborn JC. A robust protocol for the generation of human midbrain organoids. STAR Protoc 2021; 2:100524. [PMID: 34027482 PMCID: PMC8121770 DOI: 10.1016/j.xpro.2021.100524] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The lack of advanced in vitro models recapitulating the human brain complexity is still a major obstacle in brain development and neurological disease research. Here, we describe a robust protocol to derive human midbrain organoids from neuroepithelial stem cells. These complex 3D models are characterized by the presence of functional neurons, including dopaminergic neurons and glial cells, making them particularly attractive for the study of Parkinson disease. For complete details on the use and execution of this protocol, please refer to Monzel et al. (2017). Reproducible generation of midbrain organoids from patterned neural precursor cells Midbrain organoids comprise dopaminergic neurons, astrocytes, and oligodendrocytes Cellular interaction and maturation are boosted by extracellular matrix embedding Suitable for in vitro midbrain development research and disease modeling
Collapse
Affiliation(s)
- Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedecine (LCSB), University of Luxembourg, 6, Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Matthieu Gobin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedecine (LCSB), University of Luxembourg, 6, Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Anna S Monzel
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedecine (LCSB), University of Luxembourg, 6, Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedecine (LCSB), University of Luxembourg, 6, Avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
473
|
Coccia E, Ahfeldt T. Towards physiologically relevant human pluripotent stem cell (hPSC) models of Parkinson's disease. Stem Cell Res Ther 2021; 12:253. [PMID: 33926571 PMCID: PMC8082939 DOI: 10.1186/s13287-021-02326-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
The derivation of human embryonic stem cells followed by the discovery of induced pluripotent stem cells and leaps in genome editing approaches have continuously fueled enthusiasm for the development of new models of neurodegenerative diseases such as Parkinson's disease (PD). PD is characterized by the relative selective loss of dopaminergic neurons (DNs) in specific areas of substantia nigra pars compacta (SNpc). While degeneration in late stages can be widespread, there is stereotypic early degeneration of these uniquely vulnerable neurons. Various causes of selective vulnerability have been investigated but much remains unclear. Most studies have sought to identify cell autonomous properties of the most vulnerable neurons. However, recent findings from genetic studies and model systems have added to our understanding of non-cell autonomous contributions including regional-specific neuro-immune interactions with astrocytes, resident or damage-activated microglia, neuro-glia cell metabolic interactions, involvement of endothelial cells, and damage to the vascular system. All of these contribute to specific vulnerability and, along with aging and environmental factors, might be integrated in a complex stressor-threshold model of neurodegeneration. In this forward-looking review, we synthesize recent advances in the field of PD modeling using human pluripotent stem cells, with an emphasis on organoid and complex co-culture models of the nigrostriatal niche, with emerging CRISPR applications to edit or perturb expression of causal PD genes and associated risk factors, such as GBA, to understand the impact of these genes on relevant phenotypes.
Collapse
Affiliation(s)
- Elena Coccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, US.
| |
Collapse
|
474
|
Olmsted ZT, Paluh JL. Stem Cell Neurodevelopmental Solutions for Restorative Treatments of the Human Trunk and Spine. Front Cell Neurosci 2021; 15:667590. [PMID: 33981202 PMCID: PMC8107236 DOI: 10.3389/fncel.2021.667590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
The ability to reliably repair spinal cord injuries (SCI) will be one of the greatest human achievements realized in regenerative medicine. Until recently, the cellular path to this goal has been challenging. However, as detailed developmental principles are revealed in mouse and human models, their application in the stem cell community brings trunk and spine embryology into efforts to advance human regenerative medicine. New models of posterior embryo development identify neuromesodermal progenitors (NMPs) as a major bifurcation point in generating the spinal cord and somites and is leading to production of cell types with the full range of axial identities critical for repair of trunk and spine disorders. This is coupled with organoid technologies including assembloids, circuitoids, and gastruloids. We describe a paradigm for applying developmental principles towards the goal of cell-based restorative therapies to enable reproducible and effective near-term clinical interventions.
Collapse
|
475
|
Kitamura K, Umehara K, Ito R, Yamaura Y, Komori T, Morio H, Akita H, Furihata T. Development, Characterization and Potential Applications of a Multicellular Spheroidal Human Blood-Brain Barrier Model Integrating Three Conditionally Immortalized Cell Lines. Biol Pharm Bull 2021; 44:984-991. [PMID: 33896887 DOI: 10.1248/bpb.b21-00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro blood-brain barrier (BBB) models are essential research tools for use in developing brain-targeted drugs and understanding the physiological and pathophysiological functions of the BBB. To develop BBB models with better functionalities, three-dimensional (3D) culture methods have gained significant attention as a promising approach. In this study, we report on the development of a human conditionally immortalized cell-based multicellular spheroidal BBB (hiMCS-BBB) model. After being seeded into non-attachment culture wells, HASTR/ci35 (astrocytes) and HBPC/ci37 cells (brain pericytes) self-assemble to form a spheroid core that is then covered with an outer monolayer of HBMEC/ci18 cells (brain microvascular endothelial cells). The results of immunocytochemistry showed the protein expression of several cellular junction and BBB-enriched transporter genes in HBMEC/ci18 cells of the spheroid model. The permeability assays showed that the hiMCS-BBB model exhibited barrier functions against the penetration of dextran (5 and 70 kDa) and rhodamine123 (a P-glycoprotein substrate) into the core. On the other hand, facilitation of 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxyglucose (2-NBDG; a fluorescent glucose analog) uptake was observed in the hiMCS-BBB model. Furthermore, tumor necrosis factor-alpha treatment elicited an inflammatory response in HBMEC/ci18 cells, thereby suggesting that BBB inflammation can be recapitulated in the hiMCS-BBB model. To summarize, we have developed an hiMCS-BBB model that possesses fundamental BBB properties, which can be expected to provide a useful and highly accessible experimental platform for accelerating various BBB studies.
Collapse
Affiliation(s)
- Keita Kitamura
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University.,Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Kenta Umehara
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Ryo Ito
- Research Center of Neurology, Ono Pharmaceutical Co., Ltd
| | | | - Takafumi Komori
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd
| | - Hanae Morio
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
476
|
Sun N, Meng X, Liu Y, Song D, Jiang C, Cai J. Applications of brain organoids in neurodevelopment and neurological diseases. J Biomed Sci 2021; 28:30. [PMID: 33888112 PMCID: PMC8063318 DOI: 10.1186/s12929-021-00728-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
A brain organoid is a self-organizing three-dimensional tissue derived from human embryonic stem cells or pluripotent stem cells and is able to simulate the architecture and functionality of the human brain. Brain organoid generation methods are abundant and continue to improve, and now, an in vivo vascularized brain organoid has been encouragingly reported. The combination of brain organoids with immune-staining and single-cell sequencing technology facilitates our understanding of brain organoids, including the structural organization and the diversity of cell types. Recent publications have reported that brain organoids can mimic the dynamic spatiotemporal process of early brain development, model various human brain disorders, and serve as an effective preclinical platform to test and guide personalized treatment. In this review, we introduce the current state of brain organoid differentiation strategies, summarize current progress and applications in the medical domain, and discuss the challenges and prospects of this promising technology.
Collapse
Affiliation(s)
- Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
477
|
Albert K, Niskanen J, Kälvälä S, Lehtonen Š. Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. Int J Mol Sci 2021; 22:ijms22094334. [PMID: 33919317 PMCID: PMC8122303 DOI: 10.3390/ijms22094334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism's somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer's disease and Parkinson's disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.
Collapse
Affiliation(s)
- Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Sara Kälvälä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
478
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
479
|
Ng AHM, Khoshakhlagh P, Rojo Arias JE, Pasquini G, Wang K, Swiersy A, Shipman SL, Appleton E, Kiaee K, Kohman RE, Vernet A, Dysart M, Leeper K, Saylor W, Huang JY, Graveline A, Taipale J, Hill DE, Vidal M, Melero-Martin JM, Busskamp V, Church GM. A comprehensive library of human transcription factors for cell fate engineering. Nat Biotechnol 2021; 39:510-519. [PMID: 33257861 PMCID: PMC7610615 DOI: 10.1038/s41587-020-0742-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for cell engineering based on developmental biology and computational systems biology.
Collapse
Affiliation(s)
- Alex H M Ng
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Parastoo Khoshakhlagh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Jesus Eduardo Rojo Arias
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Giovanni Pasquini
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Anka Swiersy
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Seth L Shipman
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA
| | - Evan Appleton
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Kiavash Kiaee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Richie E Kohman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Matthew Dysart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kathleen Leeper
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Wren Saylor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jeremy Y Huang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David E Hill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Volker Busskamp
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany.
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- GC Therapeutics, Inc, Cambridge, MA, USA.
| |
Collapse
|
480
|
Matsui TK, Tsuru Y, Hasegawa K, Kuwako KI. Vascularization of human brain organoids. STEM CELLS (DAYTON, OHIO) 2021; 39:1017-1024. [PMID: 33754425 DOI: 10.1002/stem.3368] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
Human brain organoids are three-dimensional tissues that are generated in vitro from pluripotent stem cells and recapitulate the early development of the human brain. Brain organoids consist mainly of neural lineage cells, such as neural stem/precursor cells, neurons, astrocytes, and oligodendrocytes. However, all human brain organoids lack vasculature, which plays indispensable roles not only in brain homeostasis but also in brain development. In addition to the delivery of oxygen and nutrition, accumulating evidence suggests that the vascular system of the brain regulates neural differentiation, migration, and circuit formation during development. Therefore, vascularization of human brain organoids is of great importance. Current trials to vascularize various organoids include the adjustment of cultivation protocols, the introduction of microfluidic devices, and the transplantation of organoids into immunodeficient mice. In this review, we summarize the efforts to accomplish vascularization and perfusion of brain organoids, and we discuss these attempts from a forward-looking perspective.
Collapse
Affiliation(s)
- Takeshi K Matsui
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Yuichiro Tsuru
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Koichi Hasegawa
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
481
|
Zhang F, Li S, Shen Z, Cheng X, Xue Z, Zhang H, Song H, Bai K, Yan D, Wang H, Zhang Y, Huang Y. Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices. Proc Natl Acad Sci U S A 2021; 118:e2026414118. [PMID: 33836614 PMCID: PMC7980465 DOI: 10.1073/pnas.2026414118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structures that significantly and rapidly change their shapes and sizes upon external stimuli have widespread applications in a diversity of areas. The ability to miniaturize these deployable and morphable structures is essential for applications in fields that require high-spatial resolution or minimal invasiveness, such as biomechanics sensing, surgery, and biopsy. Despite intensive studies on the actuation mechanisms and material/structure strategies, it remains challenging to realize deployable and morphable structures in high-performance inorganic materials at small scales (e.g., several millimeters, comparable to the feature size of many biological tissues). The difficulty in integrating actuation materials increases as the size scales down, and many types of actuation forces become too small compared to the structure rigidity at millimeter scales. Here, we present schemes of electromagnetic actuation and design strategies to overcome this challenge, by exploiting the mechanics-guided three-dimensional (3D) assembly to enable integration of current-carrying metallic or magnetic films into millimeter-scale structures that generate controlled Lorentz forces or magnetic forces under an external magnetic field. Tailored designs guided by quantitative modeling and developed scaling laws allow formation of low-rigidity 3D architectures that deform significantly, reversibly, and rapidly by remotely controlled electromagnetic actuation. Reconfigurable mesostructures with multiple stable states can be also achieved, in which distinct 3D configurations are maintained after removal of the magnetic field. Demonstration of a functional device that combines the deep and shallow sensing for simultaneous measurements of thermal conductivities in bilayer films suggests the promising potential of the proposed strategy toward multimodal sensing of biomedical signals.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| | - Zhangming Shen
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xu Cheng
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhaoguo Xue
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Hang Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Honglie Song
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ke Bai
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Dongjia Yan
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| | - Yihui Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| |
Collapse
|
482
|
Tanaka Y, Cakir B, Xiang Y, Sullivan GJ, Park IH. Synthetic Analyses of Single-Cell Transcriptomes from Multiple Brain Organoids and Fetal Brain. Cell Rep 2021; 30:1682-1689.e3. [PMID: 32049002 PMCID: PMC7043376 DOI: 10.1016/j.celrep.2020.01.038] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Human brain organoid systems offer unprecedented opportunities to investigate both neurodevelopmental and neurological disease. Single-cell-based transcriptomics or epigenomics have dissected the cellular and molecular heterogeneity in the brain organoids, revealing a complex organization. Similar but distinct protocols from different labs have been applied to generate brain organoids, providing a large resource to perform a comparative analysis of brain developmental processes. Here, we take a systematic approach to compare the single-cell transcriptomes of various human cortical brain organoids together with fetal brain to define the identity of specific cell types and differentiation routes in each method. Importantly, we identify unique developmental programs in each protocol compared to fetal brain, which will be a critical benchmark for the utility of human brain organoids in the future. Tanaka et al. report integrative analyses of single-cell RNA-seq for human brain organoids derived from different protocols. They find a unique preference of cell differentiation routes across protocols and provide a benchmark for the use and the improvement of human brain organoids.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gareth J Sullivan
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hospital and University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
483
|
Costamagna G, Comi GP, Corti S. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. Int J Mol Sci 2021; 22:ijms22052659. [PMID: 33800815 PMCID: PMC7961877 DOI: 10.3390/ijms22052659] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decade, different research groups in the academic setting have developed induced pluripotent stem cell-based protocols to generate three-dimensional, multicellular, neural organoids. Their use to model brain biology, early neural development, and human diseases has provided new insights into the pathophysiology of neuropsychiatric and neurological disorders, including microcephaly, autism, Parkinson’s disease, and Alzheimer’s disease. However, the adoption of organoid technology for large-scale drug screening in the industry has been hampered by challenges with reproducibility, scalability, and translatability to human disease. Potential technical solutions to expand their use in drug discovery pipelines include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to create isogenic models, single-cell RNA sequencing to characterize the model at a cellular level, and machine learning to analyze complex data sets. In addition, high-content imaging, automated liquid handling, and standardized assays represent other valuable tools toward this goal. Though several open issues still hamper the full implementation of the organoid technology outside academia, rapid progress in this field will help to prompt its translation toward large-scale drug screening for neurological disorders.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
484
|
Guyon J, Chapouly C, Andrique L, Bikfalvi A, Daubon T. The Normal and Brain Tumor Vasculature: Morphological and Functional Characteristics and Therapeutic Targeting. Front Physiol 2021; 12:622615. [PMID: 33746770 PMCID: PMC7973205 DOI: 10.3389/fphys.2021.622615] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is among the most common tumor of the central nervous system in adults. Overall survival has not significantly improved over the last decade, even with optimizing standard therapeutic care including extent of resection and radio- and chemotherapy. In this article, we review features of the brain vasculature found in healthy cerebral tissue and in glioblastoma. Brain vessels are of various sizes and composed of several vascular cell types. Non-vascular cells such as astrocytes or microglia also interact with the vasculature and play important roles. We also discuss in vitro engineered artificial blood vessels which may represent useful models for better understanding the tumor-vessel interaction. Finally, we summarize results from clinical trials with anti-angiogenic therapy alone or in combination, and discuss the value of these approaches for targeting glioblastoma.
Collapse
Affiliation(s)
- Joris Guyon
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France
| | - Candice Chapouly
- INSERM, Biology of Cardiovascular Diseases, U1034, University Bordeaux, Pessac, France
| | - Laetitia Andrique
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France.,VoxCell 3D Plateform, UMS TBMcore 3427, Bordeaux, France
| | | | - Thomas Daubon
- University Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| |
Collapse
|
485
|
Vieira de Sá R, Cañizares Luna M, Pasterkamp RJ. Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease. Tissue Eng Part C Methods 2021; 27:213-224. [PMID: 33446055 DOI: 10.1089/ten.tec.2020.0337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite their large societal burden, the development of therapeutic treatments for neurodegenerative diseases (NDDs) has been relatively unsuccessful. This is, in part, due to a lack of representative experimental models that reveal fundamental aspects of human brain pathology. Recently, assays for in vitro modeling of the human central nervous system (CNS) have significantly improved with the development of brain and spinal cord organoids. Coupled with induced-pluripotent stem cell and genome editing technologies, CNS organoids are a promising tool for studying neurodegeneration in a patient-specific manner. An extensive array of protocols for the generation of organoids for different brain regions has been developed and used for studying neurodegenerative and other brain diseases. However, their application in the field of motor neuron disease (MND) has been limited due to a lack of adequate organoid models. The development of protocols to derive spinal cord and trunk organoids and progress in the field of assembloids are providing new opportunities for modeling MND. In this study here we review recent advances in the development of CNS organoid models, their application in NDDs, and technical limitations. Finally, we discuss future perspectives for the development of organoid-based systems for MND and provide a framework for their development. Impact statement Animal models and two-dimensional cultures are currently the main platforms for studying neurodegenerative diseases (NDDs). However, central nervous system (CNS) organoid technology offers novel possibilities for studying these diseases. Organoid modeling in combination with emerging organ-on-a-chip approaches, induced-pluripotent stem cell technology, and genome editing render in vitro modeling of NDDs more robust and physiologically relevant. In this study, we review the principles underlying CNS organoid generation, their use in NDD research, and future perspectives in organoid technology. Finally, we discuss how advances in different fields could be combined to generate a multisystem organoid-on-a-chip model to investigate a specific class of NDDs, motor neuron diseases.
Collapse
Affiliation(s)
- Renata Vieira de Sá
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marta Cañizares Luna
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
486
|
Tanaka Y, Park IH. Regional specification and complementation with non-neuroectodermal cells in human brain organoids. J Mol Med (Berl) 2021; 99:489-500. [PMID: 33651139 PMCID: PMC8026433 DOI: 10.1007/s00109-021-02051-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/22/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Along with emergence of the organoids, their application in biomedical research has been currently one of the most fascinating themes. For the past few years, scientists have made significant contributions to deriving organoids representing the whole brain and specific brain regions. Coupled with somatic cell reprogramming and CRISPR/Cas9 editing, the organoid technologies were applied for disease modeling and drug screening. The methods to develop organoids further improved for rapid and efficient generation of cerebral organoids. Additionally, refining the methods to develop the regionally specified brain organoids enabled the investigation of development and interaction of the specific brain regions. Recent studies started resolving the issue in the lack of non-neuroectodermal cells in brain organoids, including vascular endothelial cells and microglia, which play fundamental roles in neurodevelopment and are involved in the pathophysiology of acute and chronic neural disorders. In this review, we highlight recent advances of neuronal organoid technologies, focusing on the region-specific brain organoids and complementation with endothelial cells and microglia, and discuss their potential applications to neuronal diseases.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA.,Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, H1T 2M4, Canada
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
487
|
Mansour AA, Schafer ST, Gage FH. Cellular complexity in brain organoids: Current progress and unsolved issues. Semin Cell Dev Biol 2021; 111:32-39. [DOI: 10.1016/j.semcdb.2020.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/31/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
|
488
|
Gordon A, Yoon SJ, Tran SS, Makinson CD, Park JY, Andersen J, Valencia AM, Horvath S, Xiao X, Huguenard JR, Pașca SP, Geschwind DH. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci 2021; 24:331-342. [PMID: 33619405 PMCID: PMC8109149 DOI: 10.1038/s41593-021-00802-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
Human stem-cell-derived models provide the promise of accelerating our understanding of brain disorders, but not knowing whether they possess the ability to mature beyond mid- to late-fetal stages potentially limits their utility. We leveraged a directed differentiation protocol to comprehensively assess maturation in vitro. Based on genome-wide analysis of the epigenetic clock and transcriptomics, as well as RNA editing, we observe that three-dimensional human cortical organoids reach postnatal stages between 250 and 300 days, a timeline paralleling in vivo development. We demonstrate the presence of several known developmental milestones, including switches in the histone deacetylase complex and NMDA receptor subunits, which we confirm at the protein and physiological levels. These results suggest that important components of an intrinsic in vivo developmental program persist in vitro. We further map neurodevelopmental and neurodegenerative disease risk genes onto in vitro gene expression trajectories to provide a resource and webtool (Gene Expression in Cortical Organoids, GECO) to guide disease modeling.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Stephen S Tran
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Integrative Biology, University of California Los Angeles, Angeles, CA, USA
| | - Christopher D Makinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jin Young Park
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Alfredo M Valencia
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xinshu Xiao
- Department of Integrative Biology, University of California Los Angeles, Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
489
|
Abstract
Brain organoids closely recapitulate many features and characteristics of in vivo brain tissue. This technology in turn allows unprecedented possibilities to investigate brain development and function in the dish. Several brain organoid protocols have been established, and the studies have focused on validating the architecture, cellular composition, and function of the organoids. In future, the improved and advanced organoid models will enable us to understand cellular and molecular features of the developing brain. However, several obstacles, such as the quality of the organoids, 3D structural analysis, and measurement of the neural connectivity need to be improved. In this perspective, we will provide an overview of the current state of the art of the brain organoid field, with a focus on protocols and organoid characterization. Additionally, we will address the current limitations of this evolving field and provide an understanding of the current brain organoid landscape and insight toward the next steps.
Collapse
|
490
|
Lee J, Koehler KR. Skin organoids: A new human model for developmental and translational research. Exp Dermatol 2021; 30:613-620. [PMID: 33507537 DOI: 10.1111/exd.14292] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Culturing skin cells outside of the body has been a cornerstone of dermatological investigation for many years; however, human skin equivalent systems typically lack the full complexity of native skin. Notably, skin appendages, such as hair follicles and sweat glands, remain a challenge to generate or maintain in cell cultures and reconstruct in damaged skin. Recent work from our lab has demonstrated methods for generating appendage-bearing skin tissue-known as skin organoids-from pluripotent stem cells. Here, we will summarize this work and other related works, and then discuss the potential future applications of skin organoids in dermatological research.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, Massachusetts, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, Massachusetts, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
491
|
Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021; 142:477-530. [PMID: 33706925 PMCID: PMC8363060 DOI: 10.1016/bs.ctdb.2020.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human brain development is an intricate process that involves precisely timed coordination of cell proliferation, fate specification, neuronal differentiation, migration, and integration of diverse cell types. Understanding of these fundamental processes, however, has been largely constrained by limited access to fetal brain tissue and the inability to prospectively study neurodevelopment in humans at the molecular, cellular and system levels. Although non-human model organisms have provided important insights into mechanisms underlying brain development, these systems do not fully recapitulate many human-specific features that often relate to disease. To address these challenges, human brain organoids, self-assembled three-dimensional neural aggregates, have been engineered from human pluripotent stem cells to model the architecture and cellular diversity of the developing human brain. Recent advancements in neural induction and regional patterning using small molecules and growth factors have yielded protocols for generating brain organoids that recapitulate the structure and neuronal composition of distinct brain regions. Here, we first provide an overview of early mammalian brain development with an emphasis on molecular cues that guide region specification. We then focus on recent efforts in generating human brain organoids that model the development of specific brain regions and highlight endeavors to enhance the cellular complexity to better mimic the in vivo developing human brain. We also provide examples of how organoid models have enhanced our understanding of human neurological diseases and conclude by discussing limitations of brain organoids with our perspectives on future advancements to maximize their potential.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan G Schnoll
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
492
|
Williams-Medina A, Deblock M, Janigro D. In vitro Models of the Blood-Brain Barrier: Tools in Translational Medicine. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 2:623950. [PMID: 35047899 PMCID: PMC8757867 DOI: 10.3389/fmedt.2020.623950] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022] Open
Abstract
Medical progress has historically depended on scientific discoveries. Until recently, science was driven by technological advancements that, once translated to the clinic, fostered new treatments and interventions. More recently, technology-driven medical progress has often outpaced laboratory research. For example, intravascular devices, pacemakers for the heart and brain, spinal cord stimulators, and surgical robots are used routinely to treat a variety of diseases. The rapid expansion of science into ever more advanced molecular and genetic mechanisms of disease has often distanced laboratory-based research from day-to-day clinical realities that remain based on evidence and outcomes. A recognized reason for this hiatus is the lack of laboratory tools that recapitulate the clinical reality faced by physicians and surgeons. To overcome this, the NIH and FDA have in the recent past joined forces to support the development of a "human-on-a-chip" that will allow research scientists to perform experiments on a realistic replica when testing the effectiveness of novel experimental therapies. The development of a "human-on-a-chip" rests on the capacity to grow in vitro various organs-on-a-chip, connected with appropriate vascular supplies and nerves, and our ability to measure and perform experiments on these virtually invisible organs. One of the tissue structures to be scaled down on a chip is the human blood-brain barrier. This review gives a historical perspective on in vitro models of the BBB and summarizes the most recent 3D models that attempt to fill the gap between research modeling and patient care. We also present a summary of how these in vitro models of the BBB can be applied to study human brain diseases and their treatments. We have chosen NeuroAIDS, COVID-19, multiple sclerosis, and Alzheimer's disease as examples of in vitro model application to neurological disorders. Major insight pertaining to these illnesses as a consequence of more profound understanding of the BBB can reveal new avenues for the development of diagnostics, more efficient therapies, and definitive clarity of disease etiology and pathological progression.
Collapse
Affiliation(s)
- Alberto Williams-Medina
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
- Flocel, Inc., Cleveland, OH, United States
| | - Michael Deblock
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Damir Janigro
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
- Flocel, Inc., Cleveland, OH, United States
| |
Collapse
|
493
|
Ramani A, Pranty AI, Gopalakrishnan J. Neurotropic Effects of SARS-CoV-2 Modeled by the Human Brain Organoids. Stem Cell Reports 2021; 16:373-384. [PMID: 33631123 PMCID: PMC7879157 DOI: 10.1016/j.stemcr.2021.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a socioeconomic burden, which exhibits respiratory illness along with unexpected neurological complications. Concerns have been raised about whether the observed neurological symptoms are due to direct effects on CNS or associated with the virus's systemic effect. Recent SARS-CoV-2 infection studies using human brain organoids revealed that SARS-CoV-2 targets human neurons. Human brain organoids are stem cell-derived reductionist experimental systems that have highlighted the neurotropic effects of SARS-CoV-2. Here, we summarize the neurotoxic effects of SARS-CoV-2 using brain organoids and comprehensively discuss how brain organoids could further improve our understanding when they are fine-tuned.
Collapse
Affiliation(s)
- Anand Ramani
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Street 1, 40225 Düsseldorf, Germany
| | - Abida-Islam Pranty
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Street 1, 40225 Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum Heinrich-Heine-Universität Düsseldorf, Universität Street 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
494
|
Wang H, Yang H, Shi Y, Xiao Y, Yin Y, Jiang B, Ren H, Chen W, Xue Q, Xu X. Reconstituting neurovascular unit with primary neural stem cells and brain microvascular endothelial cells in three-dimensional matrix. Brain Pathol 2021; 31:e12940. [PMID: 33576166 PMCID: PMC8412118 DOI: 10.1111/bpa.12940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 01/03/2023] Open
Abstract
Neurovascular dysfunction is a primary or secondary cause in the pathogenesis of several cerebrovascular and neurodegenerative disorders, including stroke. Therefore, the overall protection of the neurovascular unit (NVU) is a promising therapeutic strategy for various neurovascular diseases. However, the complexity of the NVU limits the study of the pathological mechanisms of neurovascular dysfunction. Reconstituting the in vitro NVU is important for the pathological study and drug screening of neurovascular diseases. In this study, we generated a spontaneously assembled three‐dimensional NVU (3D NVU) by employing the primary neural stem cells and brain microvascular endothelial cells in a Matrigel extracellular matrix platform. This novel model exhibits the fundamental structures and features of the NVU, including neurons, astrocytes, oligodendrocytes, vascular‐like structures, and blood–brain barrier‐like characteristics. Additionally, under oxygen‐glucose deprivation, the 3D NVU exhibits the neurovascular‐ or oxidative stress‐related pathological characteristics of cerebral ischemia and the injuries can be mitigated, respectively, by supplementing with the vascular endothelial growth factor or edaravone, which demonstrated that the availability of 3D NVU in ischemic stroke modeling. Finally, the 3D NVU promoted the angiogenesis and neurogenesis in the brain of cerebral ischemia rats. We expect that the proposed in vitro 3D NVU model will be widely used to investigate the relationships between angiogenesis and neurogenesis and to study the pathology and pharmacology of neurovascular diseases.
Collapse
Affiliation(s)
- Hongjin Wang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Huan Yang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Yuhong Shi
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Yaping Xiao
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Yue Yin
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Baoxiang Jiang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Huijing Ren
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| | - Weihai Chen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qiang Xue
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaoyu Xu
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica-the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
495
|
Zhang S, Wan Z, Kamm RD. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. LAB ON A CHIP 2021; 21:473-488. [PMID: 33480945 PMCID: PMC8283929 DOI: 10.1039/d0lc01186j] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human organoids, self-organized and differentiated from homogenous pluripotent stem cells (PSC), replicate the key structural and functional characteristics of their in vivo counterparts. Despite the rapid advancement of organoid technology and its diverse applications, major limitations in achieving truly in vivo like functionality have been the lack of matured structural organization and constraints on tissue size, both of which are direct consequences of lacking a functional vasculature. In the absence of perfusable vessels, a core region within organoids quickly becomes necrotic during development due to increased metabolic demands that cannot be met by diffusion alone. Thus, incorporating functional vasculature in organoid models is indispensable for their growth in excess of several hundred microns and maturaturation beyond the embryonic and fetal phase. Here, we review recent advancements in vascularizing organoids and engineering in vitro capillary beds, and further explore strategies to integrate them on a microfluidic based platform, aiming for establishing perfused vasculature throughout organoids in vitro.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
496
|
Ahmad Mulyadi Lai HI, Chou SJ, Chien Y, Tsai PH, Chien CS, Hsu CC, Jheng YC, Wang ML, Chiou SH, Chou YB, Hwang DK, Lin TC, Chen SJ, Yang YP. Expression of Endogenous Angiotensin-Converting Enzyme 2 in Human Induced Pluripotent Stem Cell-Derived Retinal Organoids. Int J Mol Sci 2021; 22:1320. [PMID: 33525682 PMCID: PMC7865454 DOI: 10.3390/ijms22031320] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Henkie Isahwan Ahmad Mulyadi Lai
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (H.I.A.M.L.); (S.-J.C.); (P.-H.T.); (C.-S.C.); (S.-H.C.)
- Department of Medical Laboratory, Faculty of Health Sciences, University Selangor, Shah Alam 40000, Selangor, Malaysia
| | - Shih-Jie Chou
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (H.I.A.M.L.); (S.-J.C.); (P.-H.T.); (C.-S.C.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (M.-L.W.)
| | - Yueh Chien
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (M.-L.W.)
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
| | - Ping-Hsing Tsai
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (H.I.A.M.L.); (S.-J.C.); (P.-H.T.); (C.-S.C.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (M.-L.W.)
| | - Chian-Shiu Chien
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (H.I.A.M.L.); (S.-J.C.); (P.-H.T.); (C.-S.C.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (M.-L.W.)
| | - Chih-Chien Hsu
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ying-Chun Jheng
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (M.-L.W.)
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei 11217, Taiwan
| | - Mong-Lien Wang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (M.-L.W.)
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11217, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (H.I.A.M.L.); (S.-J.C.); (P.-H.T.); (C.-S.C.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (M.-L.W.)
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Bai Chou
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Tai-Chi Lin
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Ping Yang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (M.-L.W.)
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan; (C.-C.H.); (Y.-B.C.); (D.-K.H.)
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11217, Taiwan
| |
Collapse
|
497
|
Blue R, Miranda SP, Gu BJ, Chen HI. A Primer on Human Brain Organoids for the Neurosurgeon. Neurosurgery 2021; 87:620-629. [PMID: 32421821 DOI: 10.1093/neuros/nyaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Human brain organoids emerged in 2013 as a technology that, unlike prior in Vitro neural models, recapitulates brain development with a high degree of spatial and temporal fidelity. As the platform matured with more accurate reproduction of cerebral architecture, brain organoids became increasingly valuable for studying both normal cortical neurogenesis and a variety of congenital human brain disorders. While the majority of research utilizing human brain organoids has been in the realm of basic science, clinical applications are forthcoming. These present and future translational efforts have the potential to make a considerable impact on the field of neurosurgery. For example, glioma organoids are already being used to study tumor biology and drug responses, and adaptation for the investigation of other neurosurgery-relevant diseases is underway. Moreover, organoids are being explored as a structured neural substrate for repairing brain circuitry. Thus, we believe it is important for our field to be aware and have an accurate understanding of this emerging technology. In this review, we describe the key characteristics of human brain organoids, review their relevant translational applications, and discuss the ethical implications of their use through a neurosurgical lens.
Collapse
Affiliation(s)
- Rachel Blue
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen P Miranda
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Jiahe Gu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
498
|
Qian L, TCW J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021; 22:1203. [PMID: 33530458 PMCID: PMC7865494 DOI: 10.3390/ijms22031203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.
Collapse
Affiliation(s)
- Lu Qian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia TCW
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
499
|
Middelkamp HHT, Verboven AHA, De Sá Vivas AG, Schoenmaker C, Klein Gunnewiek TM, Passier R, Albers CA, 't Hoen PAC, Nadif Kasri N, van der Meer AD. Cell type-specific changes in transcriptomic profiles of endothelial cells, iPSC-derived neurons and astrocytes cultured on microfluidic chips. Sci Rep 2021; 11:2281. [PMID: 33500551 PMCID: PMC7838281 DOI: 10.1038/s41598-021-81933-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
In vitro neuronal models are essential for studying neurological physiology, disease mechanisms and potential treatments. Most in vitro models lack controlled vasculature, despite its necessity in brain physiology and disease. Organ-on-chip models offer microfluidic culture systems with dedicated micro-compartments for neurons and vascular cells. Such multi-cell type organs-on-chips can emulate neurovascular unit (NVU) physiology, however there is a lack of systematic data on how individual cell types are affected by culturing on microfluidic systems versus conventional culture plates. This information can provide perspective on initial findings of studies using organs-on-chip models, and further optimizes these models in terms of cellular maturity and neurovascular physiology. Here, we analysed the transcriptomic profiles of co-cultures of human induced pluripotent stem cell (hiPSC)-derived neurons and rat astrocytes, as well as one-day monocultures of human endothelial cells, cultured on microfluidic chips. For each cell type, large gene expression changes were observed when cultured on microfluidic chips compared to conventional culture plates. Endothelial cells showed decreased cell division, neurons and astrocytes exhibited increased cell adhesion, and neurons showed increased maturity when cultured on a microfluidic chip. Our results demonstrate that culturing NVU cell types on microfluidic chips changes their gene expression profiles, presumably due to distinct surface-to-volume ratios and substrate materials. These findings inform further NVU organ-on-chip model optimization and support their future application in disease studies and drug testing.
Collapse
Affiliation(s)
- H H T Middelkamp
- Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands.
- BIOS/Lab on a Chip, University of Twente, Enschede, The Netherlands.
| | - A H A Verboven
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Centre for Molecular and Biomolecular Informatics, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.
| | - A G De Sá Vivas
- Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
- BIOS/Lab on a Chip, University of Twente, Enschede, The Netherlands
| | - C Schoenmaker
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - T M Klein Gunnewiek
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - R Passier
- Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - C A Albers
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - P A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - N Nadif Kasri
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
- Department of Cognitive Neurosciences, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - A D van der Meer
- Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
500
|
Kim MS, Kim DH, Kang HK, Kook MG, Choi SW, Kang KS. Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids. Cells 2021; 10:cells10020234. [PMID: 33504071 PMCID: PMC7911731 DOI: 10.3390/cells10020234] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Brain organoids have emerged as a novel model system for neural development, neurodegenerative diseases, and human-based drug screening. However, the heterogeneous nature and immature neuronal development of brain organoids generated from pluripotent stem cells pose challenges. Moreover, there are no previous reports of a three-dimensional (3D) hypoxic brain injury model generated from neural stem cells. Here, we generated self-organized 3D human neural organoids from adult dermal fibroblast-derived neural stem cells. Radial glial cells in these human neural organoids exhibited characteristics of the human cerebral cortex trend, including an inner (ventricular zone) and an outer layer (early and late cortical plate zones). These data suggest that neural organoids reflect the distinctive radial organization of the human cerebral cortex and allow for the study of neuronal proliferation and maturation. To utilize this 3D model, we subjected our neural organoids to hypoxic injury. We investigated neuronal damage and regeneration after hypoxic injury and reoxygenation. Interestingly, after hypoxic injury, reoxygenation restored neuronal cell proliferation but not neuronal maturation. This study suggests that human neural organoids generated from neural stem cells provide new opportunities for the development of drug screening platforms and personalized modeling of neurodegenerative diseases, including hypoxic brain injury.
Collapse
Affiliation(s)
| | | | | | | | - Soon Won Choi
- Correspondence: (S.W.C.); (K.-S.K.); Tel.: +82-2-880-1298 (S.W.C.); +82-2-880-1246 (K.-S.K.)
| | - Kyung-Sun Kang
- Correspondence: (S.W.C.); (K.-S.K.); Tel.: +82-2-880-1298 (S.W.C.); +82-2-880-1246 (K.-S.K.)
| |
Collapse
|