451
|
Sanjarnia P, Picchio ML, Polegre Solis AN, Schuhladen K, Fliss PM, Politakos N, Metterhausen L, Calderón M, Osorio-Blanco ER. Bringing innovative wound care polymer materials to the market: Challenges, developments, and new trends. Adv Drug Deliv Rev 2024; 207:115217. [PMID: 38423362 DOI: 10.1016/j.addr.2024.115217] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
The development of innovative products for treating acute and chronic wounds has become a significant topic in healthcare, resulting in numerous products and innovations over time. The growing number of patients with comorbidities and chronic diseases, which may significantly alter, delay, or inhibit normal wound healing, has introduced considerable new challenges into the wound management scenario. Researchers in academia have quickly identified promising solutions, and many advanced wound healing materials have recently been designed; however, their successful translation to the market remains highly complex and unlikely without the contribution of industry experts. This review article condenses the main aspects of wound healing applications that will serve as a practical guide for researchers working in academia and industry devoted to designing, evaluating, validating, and translating polymer wound care materials to the market. The article highlights the current challenges in wound management, describes the state-of-the-art products already on the market and trending polymer materials, describes the regulation pathways for approval, discusses current wound healing models, and offers a perspective on new technologies that could soon reach consumers. We envision that this comprehensive review will significantly contribute to highlighting the importance of networking and exchanges between academia and healthcare companies. Only through the joint of these two actors, where innovation, manufacturing, regulatory insights, and financial resources act in harmony, can wound care products be developed efficiently to reach patients quickly and affordably.
Collapse
Affiliation(s)
- Pegah Sanjarnia
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Matías L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Agustin N Polegre Solis
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Katharina Schuhladen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Patricia M Fliss
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Nikolaos Politakos
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Lutz Metterhausen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ernesto R Osorio-Blanco
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany.
| |
Collapse
|
452
|
Zhao H, Sengupta SK, Sisley JM, Haddadin O, Pfeifer H, Ortega-Loayza AG. Deep Vein Thrombosis and Healing Outcomes in Patients With Pyoderma Gangrenosum. JAMA Dermatol 2024; 160:472-474. [PMID: 38353971 PMCID: PMC10867771 DOI: 10.1001/jamadermatol.2023.6066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
This single-center prospective case-control study assessed the association between deep vein thrombosis and healing outcomes in patients with pyoderma gangrenosum.
Collapse
Affiliation(s)
- Hannah Zhao
- School of Medicine, Oregon Health & Science University, Portland
| | | | | | - Olivia Haddadin
- School of Medicine, Oregon Health & Science University, Portland
| | - Hailey Pfeifer
- School of Medicine, Oregon Health & Science University, Portland
| | | |
Collapse
|
453
|
Mulawarmanti D, Revianti S, Wahjuningsih E. Efficacy of Topical Application of Chum Salmon ( Oncorhynchus keta) Skin-derived Collagen Extracts in Improving Oral Traumatic Ulcer Healing. Contemp Clin Dent 2024; 15:124-128. [PMID: 39206236 PMCID: PMC11349075 DOI: 10.4103/ccd.ccd_544_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background Traumatic ulcer is a wound on the oral mucosa that often causes pain and impaired eating function. Healing of these wounds takes a long time and can interfere with an individual's daily activities. One therapeutic approach that is being developed is the use of topical application of chum salmon skin-derived collagen extract. Collagen is the main component of the extracellular matrix and plays a major role in wound healing. The skin of chum salmon (Oncorhynchus keta) contains collagen that is effective for the treatment of wounds. Aim The aim of this study was to evaluate the effectiveness of topical applications of chum salmon (O. keta) skin-derived collagen extracts in improving the healing of traumatic ulcers through analysis of neutrophil and macrophage numbers and collagen density. Materials and Methods Twenty-four male Wistar rats were randomly divided into four groups consisting of six rats each. The labial mucosa of the lower lips of the rats was injured with heated amalgam stoppers to create oral traumatic ulcers. Group 1 was a control group; in Groups 2, 3, and 4, 25%, 50%, and 75% of collagen extracts from chum salmon (O. keta) skin were applied topically once a day for 7 days, respectively. The neutrophil and macrophage numbers were observed by hematoxylin and eosin staining. Masson's Trichrome staining was used to analyze the collagen density. Data were analyzed using one-way analysis of variance and continued with post hoc least significant difference tests. Significance is considered if P < 0.05. Results The oral traumatic ulcers gradually healed until day 7. The number of neutrophils and macrophages was significantly decreased in the treatment groups, and collagen density was increased, compared to the control group (P < 0.05). The decrease of neutrophil and macrophage numbers occurred significantly with the increased collagen extract concentrations (P < 0.05). Collagen density also increased significantly with the increased collagen extract concentrations (P < 0.05). Conclusion Topical applications of chum salmon (O. keta) skin-derived collagen extracts accelerate the healing process of oral traumatic ulcers by decreasing neutrophil and macrophage numbers and increasing collagen density.
Collapse
Affiliation(s)
- Dian Mulawarmanti
- Department of Oral Biology, Faculty of Dentistry, Hang Tuah University, Surabaya, Indonesia
| | - Syamsulina Revianti
- Department of Oral Biology, Faculty of Dentistry, Hang Tuah University, Surabaya, Indonesia
| | - Endah Wahjuningsih
- Department of Oral Biology, Faculty of Dentistry, Hang Tuah University, Surabaya, Indonesia
| |
Collapse
|
454
|
Koivunotko E, Koivuniemi R, Monola J, Harjumäki R, Pridgeon CS, Madetoja M, Linden J, Paasonen L, Laitinen S, Yliperttula M. Cellulase-assisted platelet-rich plasma release from nanofibrillated cellulose hydrogel enhances wound healing. J Control Release 2024; 368:397-412. [PMID: 38423475 DOI: 10.1016/j.jconrel.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Platelet-rich plasma (PRP) is a source of growth factors, which are implicated in active tissue regeneration. However, after transplantation the efficacy of these bioactive compounds is often diminished due to rapid degradation and untargeted localization. For this reason, we evaluated the potential of nanofibrillated cellulose (NFC) hydrogel as a PRP carrier. NFC hydrogel is an animal-free biomaterial that, when doped with cellulase, can assist the release of PRP in a wound site. In this study, we examined the effects of 0.5% (m/v) NFC hydrogel formulations, including PRP and cellulase, on the migration and proliferation of skin cells via an in vitro scratch wound model. The suitability of the 0.8% NFC hydrogel formulations for accelerated wound healing and PRP carrying was studied in vitro in diffusion studies and in vivo in a full-thickness excisional wound model in SKH1 mice. None of the NFC hydrogel formulations with or without PRP and cellulase disturbed the normal cell behavior in vitro, and cellulase was successfully used to degrade NFC. NFC hydrogel slowed fibroblast migration rate in vitro. In vivo, NFC hydrogel treatment showed significantly enhanced re-epithelialization compared to control and supported collagen deposition. In addition, angiogenesis was significantly induced via PRP release after degrading NFC hydrogel with cellulase without abnormal host reaction. This study demonstrates the potential of NFC hydrogel with cellulase as a carrier for PRP with controlled release in future skin tissue engineering applications.
Collapse
Affiliation(s)
- Elle Koivunotko
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Raili Koivuniemi
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Julia Monola
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Riina Harjumäki
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Chris S Pridgeon
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Mari Madetoja
- Made Consulting Ltd, Tykistökatu 4b, 20520 Turku, Finland
| | - Jere Linden
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences and Finnish Centre for Laboratory Animal Pathology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lauri Paasonen
- UPM Biomedicals, UPM-Kymmene Corporation, 00100 Helsinki, Finland
| | - Saara Laitinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310 Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
455
|
Ding Q, Liu X, Liu X, Chai G, Wang N, Ma S, Zhang L, Zhang S, Yang J, Wang Y, Shen L, Ding C, Liu W. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy. Int J Biol Macromol 2024; 263:130226. [PMID: 38368971 DOI: 10.1016/j.ijbiomac.2024.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
With the improvement of modern living standards, the challenge of diabetic wound healing has significantly impacted the public health system. In this study, our objective was to enhance the bioactivity of taxifolin (TAX) by encapsulating it in liposomes using a thin film dispersion method. Additionally, polyvinyl alcohol/carboxymethyl chitosan-based hydrogels were prepared through repeated freeze-thawing. In vitro and in vivo experiments were conducted to investigate the properties of the hydrogel and its effectiveness in promoting wound healing in diabetic mice. The results of the experiments revealed that the encapsulation efficiency of taxifolin liposomes (TL) was 89.80 ± 4.10 %, with a drug loading capacity of 17.58 ± 2.04 %. Scanning electron microscopy analysis demonstrated that the prepared hydrogels possessed a porous structure, facilitating gas exchange and the absorption of wound exudates. Furthermore, the wound repair experiments in diabetic mice showed that the TL-loaded hydrogels (TL-Gels) could expedite wound healing by suppressing the inflammatory response and promoting the expression of autophagy-related proteins. Overall, this study highlights that TL-Gels effectively reduce wound healing time by modulating the inflammatory response and autophagy-related protein expression, thus offering promising prospects for the treatment of hard-to-heal wounds induced by diabetes.
Collapse
Affiliation(s)
- Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xuexia Liu
- Traditional Chinese Medicine Hospital of Wuzhou, Guangzhou 543099, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun 130118, China
| | - Yanjun Wang
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Chuanbo Ding
- Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
456
|
Al-Jabr KH, Alhumaidan LS, Alghamdi AA, Almutairi MSL, Alsubaihi AA, Alrasheedi SM, Alkhdairi A, Alzweihary AM, Alrasheedi MS, Alrasheedi KAM, Alrashdi MN. Awareness of Side Effects of Corticosteroids among Users and Nonusers in Saudi Arabia. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1612-S1618. [PMID: 38882861 PMCID: PMC11174157 DOI: 10.4103/jpbs.jpbs_925_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 06/18/2024] Open
Abstract
Background Corticosteroids are anti-inflammatory medications that are used to reduce inflammation and inhibit the immune system in a variety of disorders, including allergies, asthma, systemic lupus erythematous, eczema, inflammatory bowel disease, and swollen joints or muscles. The goal of this study was to assess the level of awareness and sources of information about the side effects of corticosteroids among the general population in Saudi Arabia. Methods This observational cross-sectional study was conducted in Saudi Arabia using an electronic questionnaire. A non-probability convenience sampling technique was used. Statistical Package for the Social Sciences (SPSS) was used for data analysis. Results The study included 755 participants from Saudi Arabia (67.3% females and 32.7% males). Around 26.8% reported using corticosteroids, and 73.9% were aware of the side effects of glucocorticoids. Among steroid users (202 participants), the most common conditions were allergies (36.1%), asthma or chronic obstructive pulmonary disease (COPD) (21.8%), and skin diseases (27.7%). The majority of respondents (57.9%) used steroids for less than 2 weeks, and topical application (52.5%) was the most common form. Only 30.7% received information about side effects at the time of prescription. The most reported side effects were truncal obesity, moon face, skin thinning, bruising, and slower wound healing. Conclusion This study highlights the importance of promoting awareness and knowledge regarding the side effects of corticosteroids in Saudi Arabia. While overall awareness levels were relatively satisfactory, specific side effects require further attention in educational efforts.
Collapse
Affiliation(s)
- Khalid H Al-Jabr
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Kingdom of Saudi Arabia
| | - Lama Saleh Alhumaidan
- College of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Abdullrahman A Alghamdi
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Kingdom of Saudi Arabia
| | - Meshari Sanad L Almutairi
- College of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | | | - Sami M Alrasheedi
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Ahmad Alkhdairi
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Ali M Alzweihary
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | | | | | - Mousa Nasser Alrashdi
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| |
Collapse
|
457
|
Ma H, Axi Y, Lu Y, Dai C, Huang S, Kong Z, Jimo R, Li H, Chen G, Li P, Zhang L, Qu Y, Qin X, Zeng R, Gou K. A dual network cross-linked hydrogel with multifunctional Bletilla striata polysaccharide/gelatin/tea polyphenol for wound healing promotion. Int J Biol Macromol 2024; 265:130780. [PMID: 38471606 DOI: 10.1016/j.ijbiomac.2024.130780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Wound healing is a dynamic and complex biological process, and traditional biological excipients cannot meet the needs of the wound healing process, and there is an urgent need for a biological dressing with multifunctionality and the ability to participate in all stages of wound healing. This study developed tea polyphenol (TP) incorporated multifunctional hydrogel based on oxidized Bletilla striata polysaccharide (OBSP) and adipic acid dihydrazide modified gelatin (Gel-ADH) with antimicrobial, antioxidant hemostatic, and anti-inflammatory properties to promote wound healing. The composite OBSP, Gel-ADH, TP (OBGTP) hydrogels prepared by double crosslinking between OBSP, TP and Gel-ADH via Schiff base bonding and hydrogen bonding had good rheological and swelling properties. The introduction of TP provided the composite hydrogel with excellent antioxidant antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coil). In the rat liver hemorrhage model and skin injury model, the OBGTP composite hydrogel had significant (p < 0.001) hemostatic ability, and had the ability to accelerate collagen deposition, reduce the expression of inflammatory factors, and promote rapid wound healing. In addition, OBGTP hydrogels had adhesive properties and good biocompatibility. In conclusion, OBGTP multifunctional composite hydrogels have great potential for wound healing applications.
Collapse
Affiliation(s)
- Hongyu Ma
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Yongbu Axi
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Yuanhui Lu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Chunguang Dai
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Shengting Huang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Zilin Kong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Rezhemu Jimo
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Heran Li
- School of Pharmacy, China Medical University, Puhe RD77, 110122, China
| | - Gongzheng Chen
- Sichuan Credit Pharmaceutical Co., Ltd, Luzhou, 646100, China
| | - Ping Li
- Chengdu integrated TCM & Western Medicine Hospital, Chengdu, 610017, China
| | - Liang Zhang
- ChengDu Institute for Drug Control & NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Chengdu, 610000, China
| | - Yan Qu
- Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xuhua Qin
- Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China; ChengDu Institute for Drug Control & NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Chengdu, 610000, China; Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Kaijun Gou
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China & Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu, 610225, China; Sichuan Credit Pharmaceutical Co., Ltd, Luzhou, 646100, China; Chengdu integrated TCM & Western Medicine Hospital, Chengdu, 610017, China; Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
458
|
Wang Y, Zhao X, Zhou X, Dai J, Hu X, Piao Y, Zu G, Xiao J, Shi K, Liu Y, Li Y, Shi L. A supramolecular hydrogel dressing with antibacterial, immunoregulation, and pro-regeneration ability for biofilm-associated wound healing. J Control Release 2024; 368:740-755. [PMID: 38499092 DOI: 10.1016/j.jconrel.2024.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Chronic wound treatment has emerged as a significant healthcare concern worldwide due to its substantial economic burden and the limited effectiveness of current treatments. Effective management of biofilm infections, regulation of excessive oxidative stress, and promotion of tissue regeneration are crucial for addressing chronic wounds. Hydrogel stands out as a promising candidate for chronic wound treatment. However, its clinical application is hindered by the difficulty in designing and fabricating easily and conveniently. To overcome these obstacles, we present a supermolecular G-quadruplex hydrogel with the desired multifunction via a dynamic covalent strategy and Hoogsteen-type hydrogen bonding. The G-quadruplex hydrogel is made from the self-assembly of guanosine, 2-formylphenyboronic acid, polyethylenimine, and potassium chloride, employing dynamic covalent strategy and Hoogsteen-type hydrogen bonding. In the acidic/oxidative microenvironment associated with bacterial infections, the hydrogel undergoes controlled degradation, releasing the polyethylenimine domain, which effectively eliminates bacteria. Furthermore, nanocomplexes comprising guanosine monophosphate and manganese sulfate are incorporated into the hydrogel skeleton, endowing it with the ability to scavenge reactive oxygen species and modulate macrophages. Additionally, the integration of basic fibroblast growth factor into the G-quadruplex skeleton through dynamic covalent bonds facilitates controlled tissue regeneration. In summary, the facile preparation process and the incorporation of multiple functionalities render the G-quadruplex hydrogel a highly promising candidate for advanced wound dressing. It holds great potential to transition from laboratory research to clinical practice, addressing the pressing needs of chronic wound management.
Collapse
Affiliation(s)
- Yumeng Wang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingjian Zhou
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Juqin Dai
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaowen Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China
| | - Yinzi Piao
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, The Center of Wound Healing and Regenerative Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
459
|
Logothetou V, L'Eplattenier H, Shimizu N. Complications and influence of cutaneous closure technique on subdermal plexus flaps in 97 dogs (2006-2022). Vet Surg 2024; 53:546-555. [PMID: 38037259 DOI: 10.1111/vsu.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE To determine the incidence and severity of complications for subdermal plexus flaps in dogs and compare the complications when using sutures or staples for cutaneous closure of subdermal plexus flaps. STUDY DESIGN Retrospective monocentric study. SAMPLE POPULATION Ninety-seven client-owned dogs. METHODS Dogs that underwent wound reconstruction using subdermal plexus flaps were retrospectively identified. Type of flap, cutaneous closure technique, complications and level of complication associated with their use were recorded. Follow-up was considered adequate if it was more than 10 days postoperatively or until a complication occurred. RESULTS Complications were seen in 52 dogs (53.6%), of which 13/18 (72.2%) of dogs had cutaneous closure with skin staples versus 39/79 (49.3%) with skin sutures. The location of the mass/wound on the head and use of an advancement flap was associated with lower incidence of complications (p < .001; p = .018 respectively). Location of the mass/wound on the proximal pelvic limb was associated with a low level of complications (p = .01) on univariable analysis only. On multivariable analysis, only an increased bodyweight was associated with an increased incidence of complications (p = .029). CONCLUSIONS Increased weight may be associated with an increased risk of complications with subdermal plexus flaps. No risk factor was found to be associated with the severity of complications. CLINICAL SIGNIFICANCE Overall incidence of complications for subdermal plexus flaps in dogs in this study was 53.6%. The number of dogs included in the study was not sufficient to assess if the skin closure technique affects the incidence of complications.
Collapse
|
460
|
Dixit K, Bora H, Chakrabarti R, Saha B, Dogra N, Biswas S, Sengupta TK, Kaushal M, Rana S, Mukherjee G, Dhara S. Thermoresponsive keratin-methylcellulose self-healing injectable hydrogel accelerating full-thickness wound healing by promoting rapid epithelialization. Int J Biol Macromol 2024; 263:130073. [PMID: 38342268 DOI: 10.1016/j.ijbiomac.2024.130073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Chronic wounds suffer from impaired healing due to microbial attack and poor vascular growth. Thermoresponsive hydrogels gained attention in wound dressing owing to their gelation at physiological temperature enabling them to take the shape of asymmetric wounds. The present study delineates the development of thermoresponsive hydrogel (MCK), from hair-derived keratin (K) and methylcellulose (MC) in the presence of sodium sulfate. The gelation temperature (Tg) of this hydrogel is in the range of 30 °C to 33 °C. Protein-polymer interaction leading to thermoreversible sol-gel transition involved in MCK blends has been analyzed and confirmed by FTIR, XRD, and thermal studies. Keratin, has introduced antioxidant properties to the hydrogel imparted cytocompatibility towards human dermal fibroblasts (HDFs) as evidenced by both MTT and live dead assays. In vitro wound healing assessment has been shown by enhanced migration of HDFs in the presence of MCK hydrogel compared to the control. Also, CAM assay and CD31 expression by the Wistar rat model has shown increased blood vessel branching after the implantation of MCK hydrogel. Further, in vivo study, demonstrated MCK efficacy of hydrogel in accelerating full-thickness wounds with minimal scarring in Wistar rats, re-epithelialization, and reinstatement of the epidermal-dermal junction thereby exhibiting clinical relevance for chronic wounds.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India; Immunology and Inflammation Research Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Hema Bora
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Rituparna Chakrabarti
- Cardiovascular biology lab, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Baisakhee Saha
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Nantu Dogra
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Saikat Biswas
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | | | - Manish Kaushal
- Department of Chemical Engineering, IIT Kharagpur, West Bengal 721302, India
| | - Subhasis Rana
- Department of Basic Science and Humanities, University of Engineering and Management, New Town, Action Area-III, Kolkata 700160, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Research Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Santanu Dhara
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
461
|
Lin Z, Li LY, Chen L, Jin C, Li Y, Yang L, Li CZ, Qi CY, Gan YY, Zhang JR, Wang P, Ni LB, Wang GF. Lonicerin promotes wound healing in diabetic rats by enhancing blood vessel regeneration through Sirt1-mediated autophagy. Acta Pharmacol Sin 2024; 45:815-830. [PMID: 38066346 PMCID: PMC10943091 DOI: 10.1038/s41401-023-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/08/2023] [Indexed: 03/17/2024]
Abstract
Among the numerous complications of diabetes mellitus, diabetic wounds seriously affect patients' quality of life and result in considerable psychological distress. Promoting blood vessel regeneration in wounds is a crucial step in wound healing. Lonicerin (LCR), a bioactive compound found in plants of the Lonicera japonica species and other honeysuckle plants, exhibits anti-inflammatory and antioxidant activities, and it recently has been found to alleviate ulcerative colitis by enhancing autophagy. In this study we investigated the efficacy of LCR in treatment of diabetic wounds and the underlying mechanisms. By comparing the single-cell transcriptomic data from healing and non-healing states in diabetic foot ulcers (DFU) of 5 patients, we found that autophagy and SIRT signaling activation played a crucial role in mitigating inflammation and oxidative stress, and promoting cell survival in wound healing processes. In TBHP-treated human umbilical vein endothelial cells (HUVECs), we showed that LCR alleviated cell apoptosis, and enhanced the cell viability, migration and angiogenesis. Furthermore, we demonstrated that LCR treatment dose-dependently promoted autophagy in TBHP-treated HUVECs by upregulating Sirt1 expression, and exerted its anti-apoptotic effect through the Sirt1-autophagy axis. Knockdown of Sirt1 significantly decreased the level of autophagy, and mitigated the anti-apoptotic effect of LCR. In a STZ-induced diabetic rat model, administration of LCR significantly promoted wound healing, which was significantly attenuated by Sirt1 knockdown. This study highlights the potential of LCR as a therapeutic agent for the treatment of diabetic wounds and provides insights into the molecular mechanisms underlying its effects.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA
| | - Lu-Yao Li
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chen Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325702, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Lan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chang-Zhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Cai-Yu Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yu-Yang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jia-Rui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Li-Bin Ni
- Department of Orthopaedic Surgery, Zhejiang Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, 310014, China.
| | - Gao-Feng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA.
| |
Collapse
|
462
|
Tran TPA, Luong AH, Lin WC. Characterizations of Centrifugal Electrospun Polyvinyl Alcohol/Sodium Alginate/Tamanu Oil/Silver Nanoparticles Wound Dressing. IEEE Trans Nanobioscience 2024; 23:368-377. [PMID: 38427547 DOI: 10.1109/tnb.2024.3371224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Known for its water solubility, flexibility, strong adhesion, and eco-friendly nature, polyvinyl alcohol (PVA) is widely used in various industries. In the medical field, it is used for applications such as creating bandages and orthopaedic devices. Incorporating sodium alginate (SA) into PVA membranes enhances their structural integrity, breathability, and permeability, thereby minimising the risk of cellular damage in the wound zone. Moreover, the addition of tamanu oil (C alophyllum inophyllum L.) and silver nanoparticles, both of which are known for their antibacterial properties and benefits in traditional wound healing, further enhances the membranes' wound-healing effectiveness. Following production, the membranes undergo a series of tests designed to evaluate their physical properties as well as their antioxidant and antibacterial capabilities. Subsequently, in vitro testing is conducted using human skin cells; experiments on Wistar rats are then performed. Numerous experiments have consistently demonstrated that the performance of polyvinyl alcohol/sodium alginate/tamanu oil (PVA/SA/Oil) membrane is superior to that of polyvinyl alcohol/sodium alginate/tamanu oil/silver nanoparticles (PVA/SA/Oil/Ag NP) membrane. Specifically, the polyvinyl alcohol/sodium alginate (PVA/SA) combination exhibits an impressive wound-healing rate of 98.82% after 15 days, with cells maintaining a high viability of 92% in a nourishing environment. Moreover, these membranes exhibit exceptional resistance to the oxidation of free radicals, surpassing the 70% threshold, and they possess antibacterial activity against Staphylococcus aureus subsp. aureus in vitro. Based on the obtained results, the nanofiber membranes composed of polyvinyl alcohol/ alginate/ tamanu oil, with or without silver nanoparticles, have shown potential as wound dressings in the wound care discipline.
Collapse
|
463
|
Fahaduddin, Bal T. Fabrication and evaluation of Dillenia indica-carrageenan blend hybrid superporous hydrogel reinforced with green synthesized MgO nanoparticles as an effective wound dressing material. Int J Biol Macromol 2024; 265:130835. [PMID: 38492694 DOI: 10.1016/j.ijbiomac.2024.130835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
An unexplored hybrid superporous hydrogel (MHSPH) of Dillenia indica fruit mucilage (DIFM) and carrageenan blend embedded with green synthesized magnesium oxide nanoparticles (MNPs) is utilized as an effective wound dressing material with appreciable mechanical strength in murine model. The prepared MNPs and the optimized MHSPH were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT- IR) spectroscopy. Size, zeta potential and morphology of MNPs was assessed using Dynamic light scattering technique (DLS) and field-emission scanning electron microscopy (FESEM) respectively. The MHSPH grades were further optimized using swelling study in phosphate buffer solution at pH 1.2, 7.0, and 8. Both MNPs and the optimized grade of MHSPH were evaluated based on hemolysis assay, and protein denaturation assays indicating them to be safe for biological use. Acute toxicity studies of the optimized MHSPH on Zebra fish model, revealed no observable toxic effect on the gill cells. Wound healing in Swiss albino mice with application of optimized grade of MHSPH took only 11 days for healing when compared to control mice where healing took 14 days, thus concluding that MHSPH as an effective dressing material as well as tissue regrowth scaffold.
Collapse
Affiliation(s)
- Fahaduddin
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
464
|
Aljuboori IW, Mahmood MS, Al-Rihaymee SA. Clinical Effectiveness of Salvia officinalis in Periodontitis: A Split-Mouth Randomized Controlled Trial. Cureus 2024; 16:e58582. [PMID: 38765348 PMCID: PMC11102653 DOI: 10.7759/cureus.58582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Background Periodontitis is a chronic inflammatory condition that destroys the tissues supporting the teeth. Conventional nonsurgical treatments, such as mechanical scaling and root surface debridement (RSD), often require adjunct therapies to enhance outcomes due to their limited efficacy in completely eradicating pathogenic microorganisms. Given the adverse effects of standard adjunctive therapies, including antibiotics and nonsteroidal anti-inflammatory drugs, Salvia officinalis (sage) presents a promising herbal alternative due to its anti-inflammatory and antimicrobial properties. This study aims to assess the local application of Salvia officinalis gel as an adjunctive to scaling and RSD to manage periodontitis. Methods We conducted a randomized, controlled split-mouth clinical trial involving 14 systemically healthy periodontitis patients. We included patients with at least 20 natural teeth, a probing pocket depth (PPD) ≥5 mm, and attachment loss ≥4 mm at a minimum of five sites. Primary outcomes measured were bleeding on probing (BOP), PPD, and relative attachment level (RAL). The Salvia officinalis gel was applied to designated test sites post-RSD, while control sites received no adjunctive treatment. Clinical parameters were recorded at baseline and a one-month follow-up visit. Results The cohort consisted of 10 men and four women, with a mean age of 37.1 ± 5.46 years. At the follow-up visit, the test group demonstrated a significant reduction in mean BOP (P = 0.0004), whereas the control group showed no significant change (P ≥ 0.05). Both groups experienced significant decreases in mean PPD and RAL from baseline to follow-up, with the test group showing greater improvements. Conclusions Salvia officinalis gel, used as an adjunct to scaling and RSD, significantly improves clinical periodontal parameters in patients with periodontitis. Its anti-inflammatory properties likely underpin the observed benefits, offering an effective and safe alternative to traditional chemical pharmaceuticals. Further research is needed to explore the long-term effects and mechanisms underlying the therapeutic benefits of Salvia officinalis in periodontal treatment.
Collapse
Affiliation(s)
- Ismael W Aljuboori
- Department of Periodontics, College of Dentistry, Ashur University, Baghdad, IRQ
| | - Maha S Mahmood
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, IRQ
| | - Sarah A Al-Rihaymee
- Department of Periodontics, College of Dentistry, University of Babylon, Hillah, IRQ
| |
Collapse
|
465
|
Manikandan R, Anantanarayan P, Kumar DN, Ponvel K. Oral Wound Healing: A Scoping Review and Proposal of a New Index for Palatal Mucosa. J Maxillofac Oral Surg 2024; 23:416-423. [PMID: 38601226 PMCID: PMC11001815 DOI: 10.1007/s12663-023-02052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/20/2023] [Indexed: 04/12/2024] Open
Abstract
Purpose The aim of this scoping review was to evaluate the wound healing indices available in literature and propose a new intra-oral wound healing index to assess the healing of palatal mucosa. Materials and Methods A PubMed database search was conducted to identify relevant studies using the search strategy: ('Oral Wound healing') OR ('Palatal tissue healing') OR ('Healing indices in Oral and Maxillofacial Surgery') OR ('Palatal wound healing') OR ('Complications in wound healing'). A qualitative and quantitative synthesis of the results was done and data was presented following the PRISMA-ScR guidelines. Results The search resulted in 9 articles published between 2019 and 2022, which were eligible for inclusion in the study. The data revealed that the indices currently available for the assessment of intra-oral healing were limited and primarily concerned with the assessment of gingival and periodontal tissues. Conclusion The healing indices devised for gingival and periodontal tissues cannot be applied to palatal healing due to the differences in clinical and histological aspects. Therefore, a new index to monitor the healing response specifically for the soft tissues in the palate has been proposed. This maybe particularly useful in cleft palate repair and other procedures performed over the palatal tissues.
Collapse
Affiliation(s)
- R. Manikandan
- Department of Oral & Maxillofacial Surgery, Meenakshi Cleft and Craniofacial Center, Meenakshi Ammal Dental College & Hospital, Maduravoyal, Chennai, 600095 India
| | - P. Anantanarayan
- Department of Oral & Maxillofacial Surgery, Meenakshi Cleft and Craniofacial Center, Meenakshi Ammal Dental College & Hospital, Maduravoyal, Chennai, 600095 India
| | - Divya Nirmal Kumar
- Department of Oral & Maxillofacial Surgery, Meenakshi Cleft and Craniofacial Center, Meenakshi Ammal Dental College & Hospital, Maduravoyal, Chennai, 600095 India
| | - Keerthana Ponvel
- Department of Oral & Maxillofacial Surgery, Meenakshi Cleft and Craniofacial Center, Meenakshi Ammal Dental College & Hospital, Maduravoyal, Chennai, 600095 India
| |
Collapse
|
466
|
Xu X, Lu H, Huo P, Jin D, Zhu Y, Meng H. Effects of amoxicillin and metronidazole as an adjunct to scaling and root planing on glycemic control in patients with periodontitis and type 2 diabetes: A short-term randomized controlled trial. J Periodontal Res 2024; 59:249-258. [PMID: 38115631 DOI: 10.1111/jre.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE To assess the effects of amoxicillin and metronidazole with scaling and root planing (SRP) on periodontal parameters and glycemic control in patients with severe periodontitis and diabetes mellitus. BACKGROUND Adjunctive antibiotics use is advantageous for treating periodontitis in patients with severe periodontitis and diabetes. However, the effects of adjunctive antibiotic use on hemoglobin A1c (HbA1c) levels remain unclear. METHODS This short-term, randomized controlled trial enrolled patients with severe periodontitis and type 2 diabetes. The patients were randomly allocated to SPR only (i.e., control) or SPR + antibiotics (500 mg of amoxicillin and 200 mg of metronidazole, three times daily for 7 days) groups. Periodontal and hematological parameters were assessed at baseline and 3 months after treatment. Inter- and intra-group analyses were performed using Student's t-tests, Mann-Whitney U tests, and the binary logistic regression models. p-values of <.05 were considered statistically significant. RESULTS This study enrolled 49 patients, with 23 and 26 patients in the SRP-only and SRP + antibiotics groups, respectively. The periodontal parameters improved significantly and similarly in both groups after treatment (p < .05). The SRP + antibiotics group had more sites of improvement than the SRP-only group when the initial probing depth was >6 mm. (698 [78.96%] vs. 545 [73.35%], p = .008). The HbA1c levels decreased in the SRP-only and SRP + antibiotics groups after treatment (0.39% and 0.53%, respectively). The multivariable binary logistic regression model demonstrated that antibiotics administration and a high baseline HbA1c level were associated with a greater reduction in the HbA1c level (odds ratio = 4.551, 95% confidence interval: 1.012-20.463; odds ratio = 7.162, 95% confidence interval: 1.359-37.753, respectively). CONCLUSIONS SRP and SRP plus systemic antibiotics were beneficial for glycemic control. Adjunctive antibiotic use slightly improved the outcome for patients with severe periodontitis and poorly controlled diabetes.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - He Lu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Pengcheng Huo
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Dongsiqi Jin
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunxuan Zhu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Huanxin Meng
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
467
|
Zheng H, Na H, Yao J, Su S, Han F, Li X, Chen X. 16S rRNA seq-identified Corynebacterium promotes pyroptosis to aggravate diabetic foot ulcer. BMC Infect Dis 2024; 24:366. [PMID: 38561650 PMCID: PMC10986075 DOI: 10.1186/s12879-024-09235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is one of the main chronic complications caused by diabetes, leading to amputation in severe cases. Bacterial infection affects the wound healing in DFU. METHODS DFU patients who met the criteria were selected, and the clinical data were recorded in detail. The pus exudate from the patient's foot wound and venous blood were collected for biochemical analysis. The distribution of bacterial flora in pus exudates of patients was analyzed by 16S rRNA sequencing, and the correlation between DFU and pathogenic variables, pyroptosis and immunity was analyzed by statistical analysis. Then, the effects of key bacteria on the inflammation, proliferation, apoptosis, and pyroptosis of polymorphonuclear leukocytes were investigated by ELISA, CCK-8, flow cytometry, RT-qPCR and western blot. RESULTS Clinical data analysis showed that Wagner score was positively correlated with the level of inflammatory factors, and there was high CD3+, CD4+, and low CD8+ levels in DFU patients with high Wagner score. Through alpha, beta diversity analysis and species composition analysis, Corynebacterium accounted for a large proportion in DFU. Logistics regression model and Person correlation analysis demonstrated that mixed bacterial infections could aggravate foot ulcer, and the number of bacteria was closely related to inflammatory factors PCT, PRT, immune cells CD8+, and pyroptosis-related proteins GSDMD and NLRP3. Through in vitro experiments, Corynebacterium inhibited cell proliferation, promoted inflammation (TNF-α, PCT, CRP), apoptosis and pyroptosis (IL-1β, LDH, IL-18, GSDMD, NLRP3, and caspase-3). CONCLUSION Mixed bacterial infections exacerbate DFU progression with a high predominance of Corynebacterium, and Corynebacterium promotes inflammation, apoptosis and pyroptosis to inhibit DFU healing.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Han Na
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Jiangling Yao
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Sheng Su
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Feng Han
- Department of Clinical Laboratory, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Xiaoyan Li
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China
| | - Xiaopan Chen
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, No. 31, Longhua Road, Haikou City, 570102, China.
| |
Collapse
|
468
|
He Y, Zhu H, Xu W, Wang T, Chen Y. Wound healing rates in COPD patients undergoing traditional pulmonary rehabilitation versus tailored Wound-Centric interventions. Int Wound J 2024; 21:e14863. [PMID: 38606653 PMCID: PMC11009941 DOI: 10.1111/iwj.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
This comparative cross-sectional study, conducted at Shanghai Pulmonary Hospital, aimed to evaluate the efficacy of tailored wound-centric interventions (TWCI) versus traditional pulmonary rehabilitation (TPR) in enhancing wound healing in patients with chronic obstructive pulmonary disease (COPD). Enrolling 340 patients with confirmed COPD, the study randomly assigned participants to either the TWCI or TPR group for a 12-week programme. The primary outcome measured was the rate of wound healing, with secondary outcomes including changes in pulmonary function tests (PFTs) and quality of life (QoL) scores. The TWCI group received a customized programme integrating standard pulmonary rehabilitation with specific wound care strategies, such as enhanced oxygen therapy, nutritional supplementation, and infection control measures. In contrast, the TPR group underwent a conventional pulmonary rehabilitation programme without targeted wound care interventions. Wound healing rates, PFTs, and QoL scores were assessed at the end of the intervention and 3 months post-intervention. The TWCI group demonstrated a statistically significant improvement in wound healing rates compared with the TPR group. The TWCI group had a 15% higher rate of reduction in wound size, a 10% rise in complete healing rates, and a 20% drop in infection rates (p < 0.05). Specifically, TWCI group exhibited higher rates of wound size reduction, complete healing, and decreased infection rates. Additionally, long-term pulmonary function and overall quality of life improvements were more pronounced in the tailored group, underscoring the benefits of a personalized approach to managing COPD and wound care. The study concluded that integrating wound-specific care strategies with pulmonary rehabilitation significantly enhances health outcomes in COPD patients with wounds. These findings supported the adoption of customized, multidisciplinary care plans, suggesting that tailored interventions can offer a comprehensive solution to the complex needs of COPD patients, potentially redefining best practices in chronic disease management.
Collapse
Affiliation(s)
- Yan He
- Department of Respiratory and Critical Care MedicineShanghai Fourth People's Hospital Affiliated to Tongji UniversityShanghaiChina
| | - He Zhu
- Department of Thoracic Care UnitShanghai Pulmonary HospitalShanghaiChina
| | - Wenjie Xu
- Department of Respiratory and Critical Care MedicineShanghai Pulmonary HospitalShanghaiChina
| | - Tao Wang
- Department of Thoracic Care UnitShanghai Pulmonary HospitalShanghaiChina
| | - Ying Chen
- Nursing DepartmentShanghai Fourth People’s Hospital Affiliated to Tongji UniversityShanghaiChina
| |
Collapse
|
469
|
Sun H, Liu K, Peng Z, Liu S. Exploration of wound-related complications post-kidney transplantation. Int Wound J 2024; 21:e14578. [PMID: 38113325 PMCID: PMC10961868 DOI: 10.1111/iwj.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
An essential intervention for patients with end-stage renal disease is kidney transplantation. Nonetheless, patient outcomes are substantially affected by complications associated with postoperative wounds. The purpose of this research was to determine the prevalence, risk factors and repercussions of wound-related complications among kidney transplant recipients. A cross-sectional observational study was undertaken at Qilu Hospital of Shandong University Department of Organ Transplantation, China. Included in the study were 118 patients who had undergone kidney transplantation during the specified time period. Medical record evaluations, questionnaires and patient interviews were utilized to collect data, with an emphasis on demographics, transplant information, postoperative care and wound complications. Infection, dehiscence, lymphocoele, delayed wound healing, seroma formation and haematoma were classified as complications. The presence of comorbidities, age over 50 and living donor transplants were identified as significant risk factors for postoperative complications. The most prevalent complications observed were delayed wound healing (21.2%) and infections (16.9%) (p < 0.05). Antibiotics were found to be effective in managing infections, while prolonged conservative management was necessary for delayed wound healing. Prominent complications that recurred were infections and wound healing delays. No statistically significant correlation was observed between gender, BMI and prior transplants with the occurrence of complications (p > 0.05). The research highlighted the significance of taking into account patient-specific variables, including age and concurrent medical conditions, when conducting post-kidney transplantation treatment. The results supported the use of individualized strategies in postoperative care, particularly for populations at high risk, in order to reduce the incidence and severity of complications associated with wounds in pursuit to enhancing clinical practices and formulating focused intervention strategies to improve patient outcomes following transplantation.
Collapse
Affiliation(s)
- Huaibin Sun
- Department of Organ TransplantationQilu Hospital of Shandong UniversityShandongChina
| | - Kao Liu
- Department of Organ TransplantationQilu Hospital of Shandong UniversityShandongChina
| | - Zhiguo Peng
- Department of Organ TransplantationQilu Hospital of Shandong UniversityShandongChina
| | - Shengli Liu
- Department of Organ TransplantationQilu Hospital of Shandong UniversityShandongChina
| |
Collapse
|
470
|
Chen H, Lu S, Wang Q, Li M, Chen X, Pan B. Application of hyperbaric oxygen therapy in diabetic foot ulcers: A meta-analysis. Int Wound J 2024; 21:e14621. [PMID: 38531355 PMCID: PMC10965274 DOI: 10.1111/iwj.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 03/28/2024] Open
Abstract
Hyperbaric oxygen therapy (HBOT) has been used in patients with diabetic foot ulcers (DFU) for many years, but its clinical efficacy is still controversial. Therefore, this study explored the efficacy of HBOT applied to DFU by means of meta-analysis. PubMed, Cochrane Library, Embase, CNKI and Wanfang databases were searched, from database inception to October 2023, and published randomised controlled trials (RCTs) of HBOT in DFU were collected. Two investigators independently screened the collected literature, extracted relevant data and assessed the quality of the literature. Review Manager 5.4 software was applied for data analysis. Twenty-nine RCTs with 1764 patients were included. According to the combined results, when compared with conventional treatment, HBOT significantly increased the complete healing rate of DFUs (46.76% vs. 24.46%, odds ratio [OR]: 2.83, 95% CI: 2.29-3.51, p < 0.00001) and decreased the amputation rate (26.03% vs. 45.00%, OR: 0.41, 95% CI: 0.18-0.95, p = 0.04), but the incidence of adverse events was significantly higher in patients (17.37% vs. 8.27%, OR: 2.49, 95% CI: 1.35-4.57, p = 0.003), whereas there was no significant difference in the mortality (6.96% vs. 12.71%, OR: 0.52, 95% CI: 0.21-1.28, p = 0.16). Our results suggest that HBOT is effective in increasing the complete healing rate and decreasing the amputation rate in patients with DFUs, but increases the incidence of adverse events, while it has no significant effect on mortality.
Collapse
Affiliation(s)
- Hai‐Rong Chen
- Department of General Practice MedicineAffiliated Haikou Hospital of Xiangya Medical College of Central South UniversityHaikouChina
| | - Shi‐Juan Lu
- Department of Cardiovascular MedicineAffiliated Haikou Hospital of Xiangya Medical College of Central South UniversityHaikouChina
| | - Qi Wang
- Department of General Practice MedicineAffiliated Haikou Hospital of Xiangya Medical College of Central South UniversityHaikouChina
| | - Ming‐Lan Li
- Department of General Practice MedicineAffiliated Haikou Hospital of Xiangya Medical College of Central South UniversityHaikouChina
| | - Xun‐Chun Chen
- Department of General Practice MedicineAffiliated Haikou Hospital of Xiangya Medical College of Central South UniversityHaikouChina
| | - Bi‐Yun Pan
- Department of General Practice MedicineAffiliated Haikou Hospital of Xiangya Medical College of Central South UniversityHaikouChina
| |
Collapse
|
471
|
Brauckmann V, Block OM, Pardo LA, Lehmann W, Braatz F, Felmerer G, Mönnighoff S, Ernst J. Can Early Post-Operative Scoring of Non-Traumatic Amputees Decrease Rates of Revision Surgery? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:565. [PMID: 38674211 PMCID: PMC11052005 DOI: 10.3390/medicina60040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Medical registries evolved from a basic epidemiological data set to further applications allowing deriving decision making. Revision rates after non-traumatic amputation are high and dramatically impact the following rehabilitation of the amputee. Risk scores for revision surgery after non-traumatic lower limb amputation are still missing. The main objective was to create an amputation registry allowing us to determine risk factors for revision surgery after non-traumatic lower-limb amputation and to develop a score for an early detection and decision-making tool for the therapeutic course of patients at risk for non-traumatic lower limb amputation and/or revision surgery. Materials and Methods: Retrospective data analysis was of patients with major amputations lower limbs in a four-year interval at a University Hospital of maximum care. Medical records of 164 patients analysed demographics, comorbidities, and amputation-related factors. Descriptive statistics analysed demographics, prevalence of amputation level and comorbidities of non-traumatic lower limb amputees with and without revision surgery. Correlation analysis identified parameters determining revision surgery. Results: In 4 years, 199 major amputations were performed; 88% were amputated for non-traumatic reasons. A total of 27% of the non-traumatic cohort needed revision surgery. Peripheral vascular disease (PVD) (72%), atherosclerosis (69%), diabetes (42%), arterial hypertension (38%), overweight (BMI > 25), initial gangrene (47%), sepsis (19%), age > 68.2 years and nicotine abuse (17%) were set as relevant within this study and given a non-traumatic amputation score. Correlation analysis revealed delayed wound healing (confidence interval: 64.1% (47.18%; 78.8%)), a hospital length of stay before amputation of longer than 32 days (confidence interval: 32.3 (23.2; 41.3)), and a BKA amputation level (confidence interval: 74.4% (58%; 87%)) as risk factors for revision surgery after non-traumatic amputation. A combined score including all parameters was drafted to identify non-traumatic amputees at risk for revision surgery. Conclusions: Our results describe novel scoring systems for risk assessment for non-traumatic amputations and for revision surgery at non-traumatic amputations. It may be used after further prospective evaluation as an early-warning system for amputated limbs at risk of revision.
Collapse
Affiliation(s)
- Vesta Brauckmann
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Ole Moritz Block
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, University Medical Center, 37075 Göttingen, Germany (L.A.P.J.); (W.L.); (F.B.); (G.F.)
| | - Luis A. Pardo
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, University Medical Center, 37075 Göttingen, Germany (L.A.P.J.); (W.L.); (F.B.); (G.F.)
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, University Medical Center, 37075 Göttingen, Germany (L.A.P.J.); (W.L.); (F.B.); (G.F.)
| | - Frank Braatz
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, University Medical Center, 37075 Göttingen, Germany (L.A.P.J.); (W.L.); (F.B.); (G.F.)
- Orthobionics Study Programme, Private University of Applied Sciences, 37073 Göttingen, Germany;
| | - Gunther Felmerer
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, University Medical Center, 37075 Göttingen, Germany (L.A.P.J.); (W.L.); (F.B.); (G.F.)
| | - Sebastian Mönnighoff
- Orthobionics Study Programme, Private University of Applied Sciences, 37073 Göttingen, Germany;
| | - Jennifer Ernst
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, University Medical Center, 37075 Göttingen, Germany (L.A.P.J.); (W.L.); (F.B.); (G.F.)
| |
Collapse
|
472
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
473
|
Kondej K, Zawrzykraj M, Czerwiec K, Deptuła M, Tymińska A, Pikuła M. Bioengineering Skin Substitutes for Wound Management-Perspectives and Challenges. Int J Mol Sci 2024; 25:3702. [PMID: 38612513 PMCID: PMC11011330 DOI: 10.3390/ijms25073702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Non-healing wounds and skin losses constitute significant challenges for modern medicine and pharmacology. Conventional methods of wound treatment are effective in basic healthcare; however, they are insufficient in managing chronic wound and large skin defects, so novel, alternative methods of therapy are sought. Among the potentially innovative procedures, the use of skin substitutes may be a promising therapeutic method. Skin substitutes are a heterogeneous group of materials that are used to heal and close wounds and temporarily or permanently fulfill the functions of the skin. Classification can be based on the structure or type (biological and synthetic). Simple constructs (class I) have been widely researched over the years, and can be used in burns and ulcers. More complex substitutes (class II and III) are still studied, but these may be utilized in patients with deep skin defects. In addition, 3D bioprinting is a rapidly developing method used to create advanced skin constructs and their appendages. The aforementioned therapies represent an opportunity for treating patients with diabetic foot ulcers or deep skin burns. Despite these significant developments, further clinical trials are needed to allow the use skin substitutes in the personalized treatment of chronic wounds.
Collapse
Affiliation(s)
- Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Małgorzata Zawrzykraj
- Department of Clinical Anatomy, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.Z.); (K.C.)
| | - Katarzyna Czerwiec
- Department of Clinical Anatomy, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.Z.); (K.C.)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| | - Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| |
Collapse
|
474
|
Qiu F, Fan S, Diao Y, Liu J, Li B, Li K, Zhang W. The mechanism of Chebulae Fructus Immaturus promote diabetic wound healing based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117579. [PMID: 38104882 DOI: 10.1016/j.jep.2023.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic ulcers (DUs) are commonly seen in the lower limbs, especially the feet. Long-term hyperglycaemia in diabetic patients may cause peripheral microvascular damage, which affects local blood flow reconstruction when the skin is ruptured. This results in delayed or even non-healing of skin wounds. Chebulae Fructus Immaturus (CFI) is a traditional Chinese medicine. According to traditional Chinese medicine theory, CFI belongs to the lung channel and large intestine channel. Clinical data confirm a significant clinical effect of CFI in the treatment of skin diseases. CFI can be safely used to treat wounds due to its natural active ingredients. AIM OF THE STUDY This study utilised HPLC-ESI-QTOF-MS/MS combined with network pharmacology to investigate the mechanism of Chebulae Fructus Immaturus extract (CFIE) in the treatment of DU. Moreover, the efficacy of CFIE on DU was verified in vitro and in vivo by constructing cell models and mouse models. MATERIALS AND METHODS The main ingredients of CFIE were identified by HPLC-ESI-QTOF-MS/MS. The targets of these ingredients were predicted by database analysis and intersected with the DU targets. Gene ontology (GO) was used for functional enrichment of differential genes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for enrichment of signalling pathways related to the differential genes. The network pharmacology findings were validated in vivo and in vitro, and the affinity of key targets and active components was assessed using molecular docking. RESULTS Twenty-nine compounds of CFIE were identified by HPLC-ESI-QTOF-MS/MS, and their potential targets were predicted. Among these, 41 targets were associated with DU. KEGG enrichment analysis showed that the PI3K/AKT and HIF-1α signalling pathways were significantly enriched, which may be related to the promotion of wound angiogenesis. In vitro cell experiments showed that CFIE promoted the proliferation, migration and angiogenesis of HUVECs, and also affected the expression of pathway-related proteins. In vivo experiments showed that CFIE increased the expression of pathway-related proteins in wound tissue and promoted the formation of blood vessels. CONCLUSIONS In summary, this study systematically demonstrated the possible therapeutic effects and mechanisms of CFIE on DU through network pharmacology analysis and experimental verification. The results revealed that CFIE can accelerate the angiogenesis of diabetic wounds through the PI3K/AKT and HIF-1α signalling pathways, ultimately promoting the healing of diabetic wounds.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shuyuan Fan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center,Dalian, 116044, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Kun Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Wei Zhang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
475
|
Cotterell A, Griffin M, Downer MA, Parker JB, Wan D, Longaker MT. Understanding wound healing in obesity. World J Exp Med 2024; 14:86898. [PMID: 38590299 PMCID: PMC10999071 DOI: 10.5493/wjem.v14.i1.86898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/30/2023] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
Abstract
Obesity has become more prevalent in the global population. It is associated with the development of several diseases including diabetes mellitus, coronary heart disease, and metabolic syndrome. There are a multitude of factors impacted by obesity that may contribute to poor wound healing outcomes. With millions worldwide classified as obese, it is imperative to understand wound healing in these patients. Despite advances in the understanding of wound healing in both healthy and diabetic populations, much is unknown about wound healing in obese patients. This review examines the impact of obesity on wound healing and several animal models that may be used to broaden our understanding in this area. As a growing portion of the population identifies as obese, understanding the underlying mechanisms and how to overcome poor wound healing is of the utmost importance.
Collapse
Affiliation(s)
- Asha Cotterell
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA 94301, United States
| | - Michelle Griffin
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA 94301, United States
| | - Mauricio A Downer
- Stanford University School of Medicine, Stanford University School of Medicine, Palo Alto, CA 94301, United States
| | - Jennifer B Parker
- Stanford University School of Medicine, Stanford University School of Medicine, Palo Alto, CA 94301, United States
| | - Derrick Wan
- Department of Surgery, Stanford University School of Medicine, Hagey Laboratory for Pediatric Regenerative Medicine, Palo Alto, CA 94301, United States
| | - Michael T Longaker
- Department of Surgery, Stanford University School of Medicine, Hagey Laboratory for Pediatric Regenerative Medicine, Palo Alto, CA 94301, United States
| |
Collapse
|
476
|
Toufanian S, Mohammed J, Winterhelt E, Lofts A, Dave R, Coombes BK, Hoare T. A Nanocomposite Dynamic Covalent Cross-Linked Hydrogel Loaded with Fusidic Acid for Treating Antibiotic-Resistant Infected Wounds. ACS APPLIED BIO MATERIALS 2024; 7:1947-1957. [PMID: 38394042 DOI: 10.1021/acsabm.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is associated with high levels of morbidity and is considered a difficult-to-treat infection, often requiring nonstandard treatment regimens and antibiotics. Since over 40% of the emerging antibiotic compounds have insufficient solubility that limits their bioavailability and thus efficacy through oral or intravenous administration, it is crucial that alternative drug delivery products be developed for wound care applications. Existing effective treatments for soft tissue MRSA infections, such as fusidic acid (FA), which is typically administered orally, could also benefit from alternative routes of administration to improve local efficacy and bioavailability while reducing the required therapeutic dose. Herein, we report an antimicrobial poly(oligoethylene glycol methacrylate) (POEGMA)-based composite hydrogel loaded with fusidic acid-encapsulating self-assembled polylactic acid-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PLA-POEGMA) nanoparticles for the treatment of MRSA-infected skin wounds. The inclusion of the self-assembled nanoparticles (380 nm diameter when loaded with fusidic acid) does not alter the favorable mechanical properties and stability of the hydrogel in the context of its use as a wound dressing, while fusidic acid (FA) can be released from the hydrogel over ∼10 h via a diffusion-controlled mechanism. The antimicrobial studies demonstrate a clear zone of inhibition in vitro and a 1-2 order of magnitude inhibition of bacterial growth in vivo in an MRSA-infected full-thickness excisional murine wound model even at very low antibiotic doses. Our approach thus can both circumvent challenges in the local delivery of hydrophobic antimicrobial compounds and directly deliver antimicrobials into the wound to effectively combat methicillin-resistant infections using a fraction of the drug dose required using other clinically relevant strategies.
Collapse
Affiliation(s)
- Samaneh Toufanian
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Jody Mohammed
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Erica Winterhelt
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
477
|
Zou W, Lu J, Zhang L, Sun D. Tetrahedral framework nucleic acids for improving wound healing. J Nanobiotechnology 2024; 22:113. [PMID: 38491372 PMCID: PMC10943864 DOI: 10.1186/s12951-024-02365-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. In recent years, there has been growing interest in developing innovative strategies to enhance the efficacy of wound healing. Tetrahedral framework nucleic acids (tFNAs) have emerged as a promising tool for wound healing applications due to their unique structural and functional properties. Therefore, it is of great significance to summarize the applications of tFNAs for wound healing. This review article provides a comprehensive overview of the potential of tFNAs as a novel therapeutic approach for wound healing. In this review, we discuss the possible mechanisms of tFNAs in wound healing and highlight the role of tFNAs in modulating key processes involved in wound healing, such as cell proliferation and migration, angiogenesis, and tissue regeneration. The targeted delivery and controlled release capabilities of tFNAs offer advantages in terms of localized and sustained delivery of therapeutic agents to the wound site. In addition, the latest research progress on tFNAs in wound healing is systematically introduced. We also discuss the biocompatibility and biosafety of tFNAs, along with their potential applications and future directions for research. Finally, the current challenges and prospects of tFNAs are briefly discussed to promote wider applications.
Collapse
Affiliation(s)
- Wanqing Zou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| | - Luyong Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
| |
Collapse
|
478
|
Yu X, Tang W, Bai C, Li R, Feng B, Wu J, Guo X, Chen H, Li M. A predictive model for intraabdominal infection after radical gastrectomy in elderly patients. Medicine (Baltimore) 2024; 103:e37489. [PMID: 38489739 PMCID: PMC10939676 DOI: 10.1097/md.0000000000037489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide and the fourth leading cause of cancer-related deaths, with a relatively high incidence among the elderly population. Surgical resection is the mainstay treatment for GC and is currently the only cure. However, the incidence of postoperative intraabdominal infections remains high and seriously affects the prognosis. This study aimed to explore the risk factors for intraabdominal infections after radical gastrectomy in elderly patients and to establish and validate a risk prediction model. We collected the clinical data of 322 GC patients, who underwent radical gastrectomy at the General Surgery Department of China Medical University Dandong Central Hospital from January 2016 to January 2023. The patients were divided into an infected group (n = 27) and a noninfected group (n = 295) according to whether intraabdominal infections occurred postoperatively. A nomogram risk prediction model for the occurrence of postoperative intraabdominal infections was developed. All patients were randomized into a training set (n = 225) and a validation set (n = 97) in a 7:3 ratio, and the model was internally validated. Of the 322 patients, 27 (8.3%) experienced postoperative intraabdominal infections. Single-factor analysis revealed associations of intraabdominal infection with body mass index, glucose, hemoglobin, albumin, and other factors. The multifactorial analysis confirmed that body mass index, glucose, hemoglobin, albumin, surgical duration, and bleeding volume were independent risk factors for intraabdominal infections. The nomogram constructed based on these factors demonstrated excellent performance in both the training and validation sets. A nomogram model was developed and validated to predict the risk of intraabdominal infection after radical gastrectomy. The model has a good predictive performance, which could help clinicians prevent the occurrence of intraabdominal infections after radical gastrectomy in elderly patients.
Collapse
Affiliation(s)
- Xiaohan Yu
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Wanyun Tang
- Orthopedics Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Chenglin Bai
- General Surgery Department, Dandong Central Hospital, Jinzhou Medical University, Dandong, Liaoning, China
| | - Runzhuo Li
- Gastroenterology Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Bo Feng
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Jinge Wu
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Xianzhan Guo
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Hong Chen
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Meng Li
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| |
Collapse
|
479
|
Pun R, Cavanaugh AM, Aldrich E, Tran O, Rudd JC, Hansen LA, North BJ. PKCμ promotes keratinocyte cell migration through Cx43 phosphorylation-mediated suppression of intercellular communication. iScience 2024; 27:109033. [PMID: 38375220 PMCID: PMC10875573 DOI: 10.1016/j.isci.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Downregulation of intercellular communication through suppression of gap junctional conductance is necessary during wound healing. Connexin 43 (Cx43), a prominent gap junction protein in skin, is downregulated following wounding to restrict communication between keratinocytes. Previous studies found that PKCμ, a novel PKC isozyme, regulates efficient cutaneous wound healing. However, the molecular mechanism by which PKCμ regulates wound healing remains unknown. We have identified that PKCμ suppresses intercellular communication and enhances cell migration in an in vitro wound healing model by regulating Cx43 containing gap junctions. PKCμ can directly interact with and phosphorylate Cx43 at S368, which leads to Cx43 internalization and downregulation. Finally, utilizing phosphomimetic and non-phosphorylatable S368 substitutions and gap junction inhibitors, we confirmed that PKCμ regulates intercellular communication and in vitro wound healing by controlling Cx43-S368 phosphorylation. These results define PKCμ as a critical regulator of Cx43 phosphorylation to control cell migration and wound healing in keratinocytes.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ann M. Cavanaugh
- Department of Biology, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA
| | - Emily Aldrich
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Olivia Tran
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Justin C. Rudd
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Laura A. Hansen
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
480
|
Sabapaty A, Salimi-Jazi F, Abrajano C, Yousefi R, Garza D, Dalusag KS, Hui T, Su W, Mueller C, Fuchs J, Chiu B. Comorbidities are not associated with pain symptom or recurrence in patients with pilonidal disease. Pediatr Surg Int 2024; 40:66. [PMID: 38436736 DOI: 10.1007/s00383-024-05644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Comorbidities can potentially impact the presentation or outcome of patients with pilonidal disease (PD) due to poor wound healing or increased inflammatory response. We hypothesized that certain comorbidities could lead to worse pain or higher recurrence rate. METHODS A retrospective study was performed on all PD patients treated with standardized minimally invasive protocol at our clinic 2019-2022. Patients' demographics, comorbidities, initial/follow-up pain score, pain duration, and recurrence were recorded. Data were analyzed by t test and Chi-square test. RESULTS Of 207 total PD patients (108 male, 99 female), 61 had comorbidities. Mean age was 18.2 years. The recurrence rate was 7%, and patients with recurrence were significantly younger. Associated comorbidities included mood/psychiatric disorders (31%), asthma/respiratory illness (30%), obesity-related illness (15%), gastrointestinal disorders (13%), diabetes (10%), thyroid disease (8%), cardiac disease (8%), musculoskeletal/connective tissue disorders (7%), immunologic disease (7%), inflammatory bowel disease (5%), and chest wall disorders (3%). The presence of comorbidities was not associated with PD recurrence. By dividing patients into adolescents (< 18 years) and adults (≥ 18 years), we found no association between comorbidity and recurrence in either group. 55% of patients had pain as an initial symptom. The initial pain score, pain duration, and pain score at follow-up were not associated with comorbidities. The comorbidities and recurrence were not associated with patient age or sex. CONCLUSIONS Having comorbidities was not associated with pain symptoms or recurrence in PD patients. Even though patients with recurrence were younger, there was no association between comorbidity and recurrence in either adolescents or adults.
Collapse
Affiliation(s)
- Akanksha Sabapaty
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Fereshteh Salimi-Jazi
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Claire Abrajano
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Razie Yousefi
- Department of Biochemistry and Molecular Biology, 301 University Boulevard Galveston, University of Texas Medical Branch, 108 Basic Science Building, Galveston, TX, 77555, USA
| | - Deanna Garza
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Kyla Santos Dalusag
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Thomas Hui
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Wendy Su
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Claudia Mueller
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Julie Fuchs
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Bill Chiu
- Department of Surgery, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
481
|
Jain M, Bhogar K, Baral P, Gaind R. Evaluation of risk factors associated with hard-to-heal wound infection in a tertiary care hospital. J Wound Care 2024; 33:180-188. [PMID: 38451790 DOI: 10.12968/jowc.2024.33.3.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
OBJECTIVE The incidence of hard-to-heal wound infection, especially as a result of multidrug-resistant Gram-negative organisms, has increased in recent years. The reason for the increase is multifactorial and the ability of these pathogenic isolates to form biofilms is one of the important risk factors in wound infection. This study aimed to evaluate the risk factors associated with such cases. METHOD This prospective analytical study, conducted over a period of two months, included pus or tissue samples from hospital inpatients with Gram-negative hard-to-heal wound infection. The samples were processed with conventional microbiological techniques. Patient demographic details and the presence of various risk factors were recorded. Biofilm production was detected by tissue culture plate method in the laboratory. The data were analysed using SPSS version 21 (IBM Ltd., US). RESULTS The experimental cohort comprised 200 patients. Klebsiella spp. was the most common identified organism, followed by Escherichia coli and Pseudomonas spp. Carbapenem resistance was observed in 106 (53%) strains. Almost 66% of the strains showed biofilm formation. On evaluation of associated risk factors, age (p=0.043), presence of biofilms (p=0.0001), diabetes (p=0.002), hypertension (p=0.02) and medical device use (p=0.008) had significant association, whereas sex, previous surgery and prior antibiotic use had no significant impact on the chronicity of the wound. CONCLUSION In this study, chronicity of wounds was observed to be associated with multiple risk factors, especially the biofilm-forming ability of the strain. Biofilms are difficult to eradicate and additional measures, such as physical debridement, are important for resolving chronicity. Knowledge about specific risk factors would also allow clinicians a better understanding of the healing process and drive appropriate wound care interventions. DECLARATION OF INTEREST A grant was received from the Indian Council of Medical Research (ICMR) for this work (grant ID: 2017-02686). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Manisha Jain
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| | - Kavin Bhogar
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| | - Purabi Baral
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| |
Collapse
|
482
|
Atala-Acevedo C, McGrath R, Capurro D, Glenister K, Bourke L, Morgan M, Simmons D, Mariño R. Identifying Frailty in Older Adults in Rural Victoria, Australia: A Secondary Analysis of Population Health Data. J Aging Health 2024; 36:170-181. [PMID: 37260112 DOI: 10.1177/08982643231180045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Objectives: To determine the prevalence of frailty among community-dwelling older adults in regional Victoria, Australia. Methods: Frailty status of 376 participants from the Crossroads II cross-sectional study was assessed by selected markers of frailty. The selected variables were psychometrically tested. Associations between frailty and socio-demographic, environmental and health factors were analysed using chi-square, ANOVA and binary logistic regression (BLR). Results: Estimated prevalence of frailty was 39.4%. BLR indicated that frailty decreased with higher educational attainment, (OR = .23; 95% CI: .10-.51) increased for divorced/separated participants (OR = 2.68; 95% CI: 1.29-5.56) and when having three (OR = 3.27; 95% CI: 1.07-9.98), four (OR = 7.20; 95% CI: 2.22-23.31) or five or more chronic conditions (OR = 9.18; 95% CI: 2.83-29.72). Discussion: Frailty in this Australian regional community-dwelling sample was higher than other studies conducted in urban areas of Australia. Present results highlight the importance of exploring the multidimensionality of the frailty construct to have a better understanding which factors are associated with the development of this syndrome.
Collapse
Affiliation(s)
- Claudia Atala-Acevedo
- Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC Australia
| | - Roisin McGrath
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC Australia
| | - Daniel Capurro
- School of Computing and Information Systems, Centre for the Digital Transformation of Health, The University of Melbourne, Melbourne, VIC Australia
| | - Kristen Glenister
- Department of Rural Health, The University of Melbourne, Melbourne, VIC Australia
| | - Lisa Bourke
- Department of Rural Health, The University of Melbourne, Melbourne, VIC Australia
| | - Mike Morgan
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC Australia
| | - David Simmons
- Department of Rural Health, The University of Melbourne, Melbourne, VIC Australia
- Macarthur Clinical School, Western Sydney University, Sydney, Australia
| | - Rodrigo Mariño
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
483
|
Sreekumar S, Vijayan V, Gangaraj KP, Thangasornaraja M, Kiran MS. Caffeine-reinforced Collagen as Localized Microenvironmental Trans-Browning Bio-Matrix for Soft Tissue Repair and Regeneration in Bariatric Condition. Adv Biol (Weinh) 2024; 8:e2300544. [PMID: 38155149 DOI: 10.1002/adbi.202300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Indexed: 12/30/2023]
Abstract
The wound exudates, hypoperfusion of the subcutaneous fat layer, and poor vasculature worsen wound management in obese subjects. In the current study, a multifunctional Caffeine-reinforced collagen biomaterial is developed that can simultaneously modulate lipid metabolism and angiogenesis in obese wound microenvironments for faster tissue regeneration. The biomaterial is fabricated specialized for obese conditions to initiate simultaneous lipolysis and angiogenesis locally in the hypoxic subcutaneous fat in wound margins of obese subjects. Caffeine-reinforced collagen biomatrix shows better structural integrity, thermal stability, bio-compatibility, and lesser proteolytic susceptibility. Caffeine-collagen biomaterial promote angiogenesis, fibroblast migration, and localized browning of white adipocytes to activate thermogenesis in the subcutaneous fat layer at the wound site. Full-thickness excision wound healing studies performed in obese C57BL6 mice shows faster wound closure within day 9 when compare to control mice. The Caffeine-reinforced collagen biomaterial remodeled the wound site locally by activating fibroblast to secrete collagen, activate endothelial cells to promote angiogenesis, and induce browning in white adipocytes in subcutaneous fat. The study opens a new direction in bariatric tissue regenerative medicine by locally modulating lipid metabolism, angiogenesis, and trans-browning at the injured site for faster complete restoration of the damaged tissue.
Collapse
Affiliation(s)
- Sreelekshmi Sreekumar
- Biological Materials Laboratory, Council of Scientific and Industrial Research- Central Leather Research Institute, Chennai, TN, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinu Vijayan
- Biological Materials Laboratory, Council of Scientific and Industrial Research- Central Leather Research Institute, Chennai, TN, 600020, India
| | | | - Menakha Thangasornaraja
- Biological Materials Laboratory, Council of Scientific and Industrial Research- Central Leather Research Institute, Chennai, TN, 600020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, Council of Scientific and Industrial Research- Central Leather Research Institute, Chennai, TN, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
484
|
Zhang Y, Han X, Zhao J, Gan M, Chen Y, Zhang J, He Y, Wu M, Liu H. Process optimization and character evaluation of Bletilla striata polysaccharide (BSP) and chitosan (CS) composite hemostatic sponge (BSP-CS). Biointerphases 2024; 19:021002. [PMID: 38526056 DOI: 10.1116/6.0003369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Bletilla striata polysaccharide (BSP) and chitosan (CS) were chemically cross-linked using oxalyl chloride to prepare a composite hemostatic sponge (BSP-CS), and the process parameters were optimized using the Box-Behnken design (BBD) with response surface methodology. To optimize the performance of the hemostatic sponge, we adjusted the ratio of independent variables, the amount of oxalyl chloride added, and the freeze-dried volume. A series of evaluations were conducted on the hemostatic applicability of BSP-CS. The characterization results revealed that BSP-CS had a stable bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 72 h, and the bacteriostatic rate was above 30%. The CCK-8 cytotoxicity test demonstrated that BSP-CS had a certain effect on promoting cell proliferation of L929 cells. In the mouse tail-cutting experiment, the hemostasis time of BSP-CS was 463.0±38.16 s, shortened by 91.3 s on average compared with 554.3±34.67 s of the gauze group. The blood loss of the BSP-CS group was 28.47±3.74 mg, which was 34.7% lower than that of the control gauze group (43.6±3.83 mg). In the in vitro coagulation experiment, the in vitro coagulation index of the BSP-CS group was 97.29%±1.8%, which was reduced to 8.6% of the control group. The CT value of the BSP-CS group was 240±15 s, which was 155 s lower than that of the gauze group (355±31.22 s). All characterization results indicate that BSP-CS is an excellent hemostatic material.
Collapse
Affiliation(s)
- Yeshan Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xue Han
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jun Zhao
- Guizhou Tongde Pharmaceutical Co., Ltd., Tongren 554300, Guizhou Province, China
| | - Menglan Gan
- Guizhou Vocational College of Agriculture, Guiyang 551400, Guizhou Province, China
| | - Yaya Chen
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jinxia Zhang
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yu He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mingkai Wu
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Hai Liu
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
485
|
Chen D, Zhang J, Wang Y, Jiang W, Xu Y, Xiong C, Feng Z, Han Y, Chen Y. Risk factors for sternal wound infection after open-heart operations: A systematic review and meta-analysis. Int Wound J 2024; 21:e14457. [PMID: 37909266 PMCID: PMC10898401 DOI: 10.1111/iwj.14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
We aimed to quantitatively and systematically elucidate the rationality of the examined variables as independent risk factors for sternal wound infection. We searched databases to screen studies, ascertained the variables to be analysed, extracted the data and applied meta-analysis to each qualified variable. Odds ratios and mean differences were considered to be the effect sizes for binary and continuous variables, respectively. A random-effects model was used for these procedures. The source of heterogeneity was evaluated using a meta-regression. Publication bias was tested by funnel plot and Egger's test, the significant results of which were then calculated using trim and fill analysis. We used a sensitivity analysis and bubble chart to describe their robustness. After screening all variables in the eligible literature, we excluded 55 because only one or no research found them significant after multivariate analysis, leaving 33 variables for synthesis. Two binary variables (age over 65 years, NYHA class >2) and a continuous variable (preoperative stay) were not significant after the meta-analysis. The most robust independent risk factors in our study were diabetes mellitus, obesity, use of bilateral internal thoracic arteries, chronic obstructive pulmonary disease, prolonged surgery time, prolonged ventilation and critical preoperative state, followed by congestive heart failure, atrial fibrillation, renal insufficiency, stroke, peripheral vascular disease and use of an intra-aortic balloon pump. Relatively low-risk factors were emergent/urgent surgery, smoking, myocardial infarction, combined surgery and coronary artery bypass grafting. Sternal wound infection after open-heart surgery is a multifactorial disease. The detected risk factors significantly affected the wound healing process, but some were different in strength. Anything that affects wound healing and antibacterial ability, such as lack of oxygen, local haemodynamic disorders, malnutrition condition and compromised immune system will increase the risk, and this reminds us of comprehensive treatment during the perioperative period.
Collapse
Affiliation(s)
- Dongsheng Chen
- Department of Plastic and Reconstructive SurgeryThe First Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Jianghe Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Yuting Wang
- Department of Plastic and Reconstructive SurgeryThe First Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Weiqian Jiang
- Department of Plastic and Reconstructive SurgeryThe First Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Yujian Xu
- Department of Plastic and Reconstructive SurgeryThe First Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Chenlu Xiong
- Department of Plastic and Reconstructive SurgeryThe First Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Zekun Feng
- Department of Cardiovascular SurgeryThe First Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Yan Han
- Department of Plastic and Reconstructive SurgeryThe First Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Youbai Chen
- Department of Plastic and Reconstructive SurgeryThe First Medical Centre of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
486
|
Zheng G, Yu T, Humayun A, Chen H. Assessing the efficacy of Naoxintong capsules on wound healing in post-craniotomy patients: A clinical perspective. Int Wound J 2024; 21:e14806. [PMID: 38414325 PMCID: PMC10899796 DOI: 10.1111/iwj.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
This study was conducted to determine whether Naoxintong capsules may enhance wound healing and reduce postoperative complications in individuals having craniotomies. A total of 120 patients at Tongji Hospital, Shanghai, participated in this clinical perspective study conducted from April 2022 to June 2023. Participants were divided into treatment group (n = 60), receiving standard care plus Naoxintong capsules and control group (n = 60), receiving standard care only. Primary outcomes included the rate of wound healing, while secondary outcomes encompassed postoperative complications and patient-reported outcomes on pain and quality of life. The treatment group exhibited significantly enhanced wound healing rate than the control at Day 7 (40.33 vs. 25.67%, p < 0.05), Day 14 (75.17 vs. 50.83%, p < 0.05) and Day 28 (94.83 vs. 79.50%, p < 0.05). Postoperative complications were markedly reduced in the treatment group, with lower rates of infection (p < 0.05), wound dehiscence (p < 0.05) and cerebrospinal fluid leakage (p < 0.05). Furthermore, patient-reported outcomes significantly favoured the treatment group, with reduced pain scores and improved quality of life at 4 weeks post-surgery(p < 0.05). Naoxintong capsules thus significantly enhanced the wound healing and reduced postoperative complications, contributing to improved patient-reported outcomes in post-craniotomy patients. These findings advocated for the integration of Naoxintong in postoperative care, highlighting the potential of traditional Chinese medicine in modern surgical recovery protocols. Further studies with larger cohorts are recommended to validate these findings and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Guojiang Zheng
- Department of NeurologyJiading District Central Hospital Affiliated Shaighai University of Medicine & Health SciencesShanghaiChina
| | - Ting Yu
- Department of NeurologyTongji Hospital of Tongji UniversityShanghaiChina
| | - Ayesha Humayun
- Department of Clinical StudiesPir Mehr Ali Shah Arid UniversityRawalpindiPakistan
| | - Hui Chen
- Department of NeurologyJiading District Central Hospital Affiliated Shaighai University of Medicine & Health SciencesShanghaiChina
| |
Collapse
|
487
|
Chen S, Li D, Wen Y, Peng G, Ye K, Huang Y, Long S, Li X. Polyelectrolyte Complex Hydrogels from Controlled Kneading and Annealing-Induced Tightly Wound and Highly Entangled Natural Polysaccharides. Adv Healthc Mater 2024; 13:e2302973. [PMID: 38011349 DOI: 10.1002/adhm.202302973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Hydrogels usually are fabricated by using monomers or preexisting polymers in precursor solutions. Here, a polyelectrolyte complex biohydrogel (Bio-PEC hydrogel) made from a precursor dough, by kneading, annealing, and crosslinking the dough of two oppositely charged polysaccharides, cationic chitosan quaternary ammonium salt (HACC) and anionic sodium hyaluronate (HA), photoinitiator (α-ketoglutaric acid), crosslinker glycidyl methacrylate (GMA), and water of very small quantity is reported. Controlled kneading and annealing homogenized the dough with respect to transforming randomly distributed, individual polymer chains into tightly wound double-stranded structures, which, upon UV irradiation, covalently sparsely crosslinked into a highly entangled network and subsequently, upon fully swollen in water, results in Bio-PEC hydrogel, HACC/HA, exhibiting near-perfect elasticity, high tensile strength, and high swelling resistance. Via the same kneading and annealing, tetracarboxyphenylporphyrin iron (Fe-TCPP) metal nanoclusters are incorporated into HACC/HA to obtain photocatalytic, antibacterial, and biocompatible Bio-PEC hydrogel composite, Fe-TCPP@HACC/HA. Using SD rat models, the efficacy of Fe-TCPP@HACC/HA in inhibiting Escherichia coli (E. coli) growth in vitro and the ability to promote wound healing and scar-free skin regeneration in vivo, or its high potential as a wound dressing material for biomedical applications are demonstrated.
Collapse
Affiliation(s)
- Shunlan Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, China
| | - Dapeng Li
- Bioengineering Department, College of Engineering, University of Massachusetts Dartmouth, North Dartmouth, Bristol County, MA, 02747-2300, USA
| | - Ying Wen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gege Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, China
| | - Kexin Ye
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, 430068, China
| | - Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, 430068, China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, 430068, China
- Hubei Longzhong Laboratory, Xiangyang, 441000, China
| |
Collapse
|
488
|
Wu Z, Liu C, Yin S, Ma J, Sun R, Cao G, Lu Y, Liu J, Su L, Song R, Wang Y. P75NTR regulates autophagy through the YAP-mTOR pathway to increase the proliferation of interfollicular epidermal cells and promote wound healing in diabetic mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167012. [PMID: 38176461 DOI: 10.1016/j.bbadis.2023.167012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Wound healing is delayed in diabetic patients. Increased autophagy and dysfunction of interfollicular epidermal (IFE) cells are closely associated with delayed healing of diabetic wounds. Autophagy plays an important role in all stages of wound healing, but its role in diabetic wound healing and the underlying molecular mechanisms are not clear. Here, we found that diabetic mice had delayed wound healing and increased autophagy in wounds compared with normal mice and that chloroquine, an inhibitor of autophagy, decreased the level of autophagy, improved the function of IFE cells, and accelerated wound healing in diabetic mice. Treatment of IFE cells with advanced glycosylation end products (AGEs) resulted in increased microtubule-associated protein chain (LC3) expression and decreased prostacyclin-62 (P62) expression, indicating increased autophagy in AGE-treated IFE cells. Moreover, P75NTR reduced autophagy in IFE cells in the presence of AGEs and significantly increased the proliferation of IFE cells. In addition, P75NTR participated in regulating autophagy in IFE cells and in wounds in diabetic mice through the YAP-mTOR signalling pathway, which increased the functional activity of the cells and the healing rate of wounds in diabetic mice. Thus, our study suggests that P75NTR protects IFE cells against AGEs by affecting autophagy and accelerating wound healing in diabetic mice, providing a basis for understanding the role of autophagy in diabetic wound healing.
Collapse
Affiliation(s)
- Zhenjie Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Siyuan Yin
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Jiaxu Ma
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Rui Sun
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoqi Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yongpan Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Linqi Su
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China
| | - Ru Song
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China.
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First, Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, PR China; Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
489
|
Jain N, Singh Y, Nouri A, Garg U, Pandey M. Assessment of healing capacity of glucose-responsive smart gels on the diabetic wound: A comprehensive review. J Drug Deliv Sci Technol 2024; 93:105403. [DOI: 10.1016/j.jddst.2024.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
490
|
Zhong L, Wang F. Comparative analysis of wound healing techniques in postoperative bladder cancer patients. Int Wound J 2024; 21:e14820. [PMID: 38425151 PMCID: PMC10904970 DOI: 10.1111/iwj.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
Bladder cancer is a highly prevalent malignancy that presents significant difficulties in the management of wounds following surgery. The present study investigated the critical necessity to optimize wound healing techniques in patients undergoing bladder cancer surgery by contrasting conventional approaches with advanced modalities in order to promote recovery and mitigate complications. The study assessed the efficacy of conventional and advanced wound healing methods in these patients, taking into account the complex interaction of patient-specific factors and surgical complexities. A cross-sectional analysis was performed on 120 patients who underwent bladder cancer surgery at the first affiliated hospital of Wenzhou Medical University. In addition to medical record evaluations and direct wound assessments, patient interviews were utilized to gather information regarding demographics, surgical specifics, wound healing methodologies and postoperative results. Survival analysis and logistic regression were utilized in statistical analysis, with potential confounding variables such as age, comorbidities and type of surgery being accounted for. Advanced wound healing techniques, such as negative pressure wound therapy, tissue-engineered products, bioactive dressings and platelet-rich plasma (PRP), exhibited distinct advantage in comparison with conventional suturing. The aforementioned techniques, especially PRP, resulted in expedited wound healing, decreased rates of complications (p < 0.05) and enhanced secondary outcomes, including curtailed hospital stays and decreased rates of readmissions. PRP therapy, in particular, demonstrated significant improvements with the faster mean time to wound healing of 9 ± 2 days and lower complication incidence of 2 (6.7%) (p < 0.05), indicating its superior efficacy. A subgroup analysis revealed that younger patients, males and those undergoing laparoscopic surgery exhibited superior outcomes (p < 0.05). The results were further supported by logistic regression and Cox proportional hazards models, which further indicated that sophisticated techniques, notably PRP therapy with a hazard ratio of 3.00 (2.00-4.50) and adjusted odds ratio of 0.20 (0.09-0.43), were effective in improving postoperative recovery. The research clarified the significant advantages that advanced wound healing techniques offered in postoperative care of patients diagnosed with bladder cancer. By customizing these methods to suit the unique requirements of individual patients and specific circumstances of surgical procedures, they can significantly enhance the recuperation process after surgery and set a new standard for patient care.
Collapse
Affiliation(s)
- Linlin Zhong
- Urology Nursing UnitUrology nursing department of the first affiliated hospital of Wenzhou Medical UniversityWenzhouChina
| | - Feng Wang
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
491
|
Sun M, Chen WM, Wu SY, Zhang J. The influence of advanced age on long-term postsurgical analgesic use in patients receiving neuraxial anaesthesia for elective surgery. Eur J Pain 2024; 28:408-420. [PMID: 37830408 DOI: 10.1002/ejp.2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE To determine the relationship between age and long-term postsurgical analgesic use in patients who underwent elective surgery with neuraxial anaesthesia. DESIGN Retrospective observational study using data from the National Health Insurance Research Database of Taiwan from 2015 to 2019. SETTING National Health Insurance Research Database of Taiwan. PATIENTS A total of 12,810 patients (6405 younger and 6405 older) matched using propensity score matching. INTERVENTIONS Older (≥65 years). MEASUREMENTS The use of long-term (3 or 6 months) postoperative analgesics, including opioids, as a surrogate marker of chronic postsurgical pain (CPSP) was analysed using logistic regression. MAIN RESULTS After 3 months of surgery, older adults had higher use of all analgesics (odds ratio [OR] = 1.15; 95% CI = 1.03-1.28) and opioids (OR = 1.18; 95% CI = 1.09-1.28) compared to younger patients. Similar results were observed after 6 months of surgery (all analgesic use: OR = 1.11; 95% CI = 1.03-1.20; opioid use: OR = 1.33; 95% CI = 1.07-1.81). CONCLUSION The findings from this study suggest that older adults are more likely to experience CPSP and have increased use of long-term analgesics, including opioids, after undergoing elective surgery with neuraxial anaesthesia. The study highlights the need for improved pain management strategies for older adults after surgery. SIGNIFICANCE Older age is an independent risk factor for long-term analgesic use after surgery under neuraxial anaesthesiaanesthesia, indicating an increased risk for chronic postsurgical pain.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Management, College of Management, Fo Guang University, Yilan, Taiwan
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
492
|
Wu SH, Rethi L, Pan WY, Nguyen HT, Chuang AEY. Emerging horizons and prospects of polysaccharide-constructed gels in the realm of wound healing. Colloids Surf B Biointerfaces 2024; 235:113759. [PMID: 38280240 DOI: 10.1016/j.colsurfb.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.
Collapse
Affiliation(s)
- Shen-Han Wu
- Taipei Medical University Hospital, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan; Ph.D Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
493
|
Káčerová S, Muchová M, Doudová H, Münster L, Hanulíková B, Valášková K, Kašpárková V, Kuřitka I, Humpolíček P, Víchová Z, Vašíček O, Vícha J. Chitosan/dialdehyde cellulose hydrogels with covalently anchored polypyrrole: Novel conductive, antibacterial, antioxidant, immunomodulatory, and anti-inflammatory materials. Carbohydr Polym 2024; 327:121640. [PMID: 38171669 DOI: 10.1016/j.carbpol.2023.121640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
In this work, conductive composite hydrogels with covalently attached polypyrrole (PPy) nanoparticles are prepared. Hydrogels are based on partially re-acetylated chitosan soluble at physiological pH without any artificial structural modifications or need for an acidic environment, which simplifies synthesis and purification. Low-toxic and sustainable dialdehyde cellulose (DAC) was used for crosslinking chitosan and covalent anchoring of PPy colloidal particles. The condensation reaction between DAC and PPy is reported for the first time and improves not only the anchoring of PPy particles but also control over the properties of the final composite. The soluble chitosan and PPy particles are shown to act in synergy, which improves the biological properties of the materials. Prepared composite hydrogels are non-cytotoxic, non-irritating, antibacterial, can capture reactive oxygen species often related to excessive inflammation, have conductivity similar to human tissues, enhance in vitro cell growth (migration assay), and have immunomodulatory effects related to the stimulation of neutrophils and macrophages. The covalent attachment of PPy also strengthens the hydrogel network. The aldol condensation as a method for PPy covalent anchoring thus presents an interesting possibility for the development of advanced biomaterials in the future.
Collapse
Affiliation(s)
- Simona Káčerová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Monika Muchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Hana Doudová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Barbora Hanulíková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Kristýna Valášková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Věra Kašpárková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Zdenka Víchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| | - Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, 612 00 Brno, Czech Republic.
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| |
Collapse
|
494
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
495
|
Lindeboom JJ, Labbé N, Strijbos RM, van den Elsen-Hutten M, van Huffelen W, Teunissen EM, Hol MKS, Bom SJH. Long-Term Results of the Linear Incision Technique With Tissue Reduction Versus Tissue Preservation for Inserting Bone-Anchored Hearing Implants: The Ongoing Optimization in Bone Implant Surgery. Otol Neurotol 2024; 45:285-294. [PMID: 38361296 DOI: 10.1097/mao.0000000000004101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To compare the long-term outcomes of the linear incision technique with tissue reduction (LIT-TR) and the linear incision technique with tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs). STUDY DESIGN Single-center retrospective cohort study. SETTING Large general teaching hospital. PATIENTS A total of 231 adult patients were included between August 2005 and October 2020, with a minimum follow-up time of 6 months. INTERVENTION The test group received a BAHI using the LIT-TP (N = 147). The control group underwent surgery using the LIT-TR (N = 84). MAIN OUTCOME MEASURES Soft tissue reactions, skin thickening, postoperative complications (e.g., wound dehiscence), and implant loss were compared between the test and control group. Furthermore, Cochlear Bone Anchored Solutions AB (Mölnlycke, Sweden) and Oticon Medical AB (Askim, Sweden) implants/abutments within the LIT-TP cohort were compared. Validated questionnaires were used to quantify patients' health-related quality of life (HRQoL). RESULTS Significantly more cases with wound dehiscence and adverse soft tissue reactions (Holgers ≥2) were observed in the LIT-TR cohort (p < 0.001). However, the LIT-TP cohort showed significantly more cases with skin thickening (requiring treatment) within the first 2 years after implantation. There were no differences in implant loss rates, overall soft tissue reactions (Holgers >1), and overall HRQoL between the two patient groups. Significant improvement in the patients' HRQoL after implementation of a BAHI was found in both techniques. The Ponto Wide implant/abutment showed less frequent skin thickening (requiring treatment) and fewer soft tissue reactions compared with the BIA400 implant/abutment. CONCLUSION This large-scale study demonstrates that the LIT-TP shows excellent long-term outcomes, including a low incidence of implant failure.
Collapse
Affiliation(s)
| | - Nilou Labbé
- Department of Otorhinolaryngology, Deventer Hospital
| | | | | | | | - Emma M Teunissen
- Department of Otorhinolaryngology, Donders Center for Neurosciences, Radboud University Medical Center, Nijmegen
| | | | | |
Collapse
|
496
|
Budharaju H, Chandrababu H, Zennifer A, Chellappan D, Sethuraman S, Sundaramurthi D. Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)-agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine. Int J Biol Macromol 2024; 260:129443. [PMID: 38228200 DOI: 10.1016/j.ijbiomac.2024.129443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
3D bioprinting has emerged as a viable tool to fabricate 3D tissue constructs with high precision using various bioinks which offer instantaneous gelation, shape fidelity, and cytocompatibility. Among various bioinks, cellulose is the most abundantly available natural polymer & widely used as bioink for 3D bioprinting applications. To mitigate the demanding crosslinking needs of cellulose, it is frequently chemically modified or blended with other polymers to develop stable hydrogels. In this study, we have developed a thermoresponsive, composite bioink using carboxymethyl cellulose (CMC) and agarose in different ratios (9:1, 8:2, 7:3, 6:4, and 5:5). Among the tested combinations, the 5:5 ratio showed better gel formation at 37 °C and were further characterized for physicochemical properties. Cytocompatibility was assessed by in vitro extract cytotoxicity assay (ISO 10993-5) using skin fibroblasts cells. CMC-agarose (5:5) bioink was successfully used to fabricate complex 3D structures through extrusion bioprinting and maintained over 80 % cell viability over seven days. Finally, in vivo studies using rat full-thickness wounds showed the potential of CMC-agarose bulk and bioprinted gels in promoting skin regeneration. These results indicate the cytocompatibility and suitability of CMC-agarose bioinks for tissue engineering and 3D bioprinting applications.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Harini Chandrababu
- Tissue Engineering & Additive Manufacturing (TEAM) Lab Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Davidraj Chellappan
- Central Animal Facility (CAF), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
497
|
Chien L, Yver CM, Shohat S, Friedman O. Predictors of Success of Endonasal Septal Perforation Repair: A 10-Year Experience. Facial Plast Surg Aesthet Med 2024; 26:117-123. [PMID: 37782906 DOI: 10.1089/fpsam.2022.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Background: There is no consensus on optimal repair technique for nasal septal perforations (NSPs). Objective: To measure success rate and evaluate predictors of success for NSP repair. Methods: Medical records of patients who underwent NSP repair from 2010 to 2020 were reviewed. Included patients had at least 60 days of postsurgical follow-up. Surgical technique involves an endonasal approach; subperichondrial dissection with local flap mobilization; and multilayer closure using cartilage interposition graft, fascia graft, and mucoperichondrial flaps. A chi-squared test or Fisher exact test was used for statistical analysis. Results: Eighty-one repairs were performed with a closure rate of 86%. The median patient age was 46 years (range 13-77); 34.6% of perforations were ≥2 cm. Conchal (77.8%), rib (7.4%), or septal (7.4%) cartilage was used as graft material. A complication rate of 8.6% was reported. Perforation size or graft material had no impact on successful closure rate. Of patients with failed repairs, 55% had perioperative complications or conditions associated with poor healing. Conclusion: An endonasal approach for NSP repair showed a high success rate across diverse presentations; however, NSP repair was significantly more likely to be successful in patients without perioperative complications or pre-existing conditions associated with poor wound healing.
Collapse
Affiliation(s)
- Lillian Chien
- Division of Facial Plastic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina M Yver
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shirly Shohat
- Department of Plastic Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Oren Friedman
- Division of Facial Plastic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
498
|
Anup A, Dieterich S, Oreffo ROC, Dailey HL, Lang A, Haffner-Luntzer M, Hixon KR. Embracing ethical research: Implementing the 3R principles into fracture healing research for sustainable scientific progress. J Orthop Res 2024; 42:568-577. [PMID: 38124294 DOI: 10.1002/jor.25741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
As scientific advancements continue to reshape the world, it becomes increasingly crucial to uphold ethical standards and minimize the potentially adverse impact of research activities. In this context, the implementation of the 3R principles-Replacement, Reduction, and Refinement-has emerged as a prominent framework for promoting ethical research practices in the use of animals. This article aims to explore recent advances in integrating the 3R principles into fracture healing research, highlighting their potential to enhance animal welfare, scientific validity, and societal trust. The review focuses on in vitro, in silico, ex vivo, and refined in vivo methods, which have the potential to replace, reduce, and refine animal experiments in musculoskeletal, bone, and fracture healing research. Here, we review material that was presented at the workshop "Implementing 3R Principles into Fracture Healing Research" at the 2023 Orthopedic Research Society (ORS) Annual Meeting in Dallas, Texas.
Collapse
Affiliation(s)
- Amritha Anup
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Sandra Dieterich
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hannah L Dailey
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Annemarie Lang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Katherine R Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
499
|
Josh F, Soekamto T, Windura C, Lumalessil D. The Combination of Stromal Vascular Fraction Cells and Platelet-Rich Plasma Increases Fibroblast Growth Factor 2 and Insulin-Like Growth Factor 1 in Full-Thickness Burns in Animal Model. ANNALS OF BURNS AND FIRE DISASTERS 2024; 37:35-44. [PMID: 38680831 PMCID: PMC11041884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/10/2023] [Indexed: 05/01/2024]
Abstract
The previous study on the injection of SVFs in combination with PRP showed positive effect on the healing of deep dermal burns. We now seek to understand the effect on full thickness burns, as assessed by changes in serum FGF2, IGF1, epithelialization, and fibroblast count. Forty-eight Wistar rats were randomly divided into four groups: (1) rats with full thickness burns given a local injection of combined SVFs and PRP; (2) rats with burns given topical Vaseline; (3) rats with burns given a local injection of placebo; and (4) rats without burns. Primary data were measured according to the time of euthanasia (at the 8th hour, 4th day, 7th day, 14th day or 21st day). One-way ANOVA test followed by post hoc test were used. Epithelialization in rats who received SVFs and PRP was superior on days 7, 14 and 21 when compared to the other groups. The fibroblast count in rats who received SVFs and PRP showed significant difference on days 7 (p=0.022). Significant differences in serum FGF2 were observed on days 4, 7, 14 and 21 (p=0.003, p=0.001, p=0.024, p=0.038, respectively). A significant difference was also observed in serum IGF1 levels on days 7, 14 and 21 (p=0.043, p=0.003, p=0.045, respectively), and the combination of SVFs and PRP showed superior results compared to other groups. Injection of combined SVFs and PRP increases FGF2, IGF1, fibroblast count, and epithelialization.
Collapse
Affiliation(s)
- F. Josh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - T.H. Soekamto
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - C.A. Windura
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - D.G. Lumalessil
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
500
|
Tejedor S, Wågberg M, Correia C, Åvall K, Hölttä M, Hultin L, Lerche M, Davies N, Bergenhem N, Snijder A, Marlow T, Dönnes P, Fritsche-Danielson R, Synnergren J, Jennbacken K, Hansson K. The Combination of Vascular Endothelial Growth Factor A (VEGF-A) and Fibroblast Growth Factor 1 (FGF1) Modified mRNA Improves Wound Healing in Diabetic Mice: An Ex Vivo and In Vivo Investigation. Cells 2024; 13:414. [PMID: 38474378 PMCID: PMC10930761 DOI: 10.3390/cells13050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.
Collapse
Affiliation(s)
- Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
| | - Maria Wågberg
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Cláudia Correia
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Karin Åvall
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Mikko Hölttä
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Leif Hultin
- Imaging and Data Analytics, Clinical and Pharmacological Safety Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden;
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nils Bergenhem
- Alliance Management, Business Development and Licensing, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Arjan Snijder
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Tom Marlow
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Pierre Dönnes
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- SciCross AB, 541 35 Skövde, Sweden
| | - Regina Fritsche-Danielson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Kenny Hansson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| |
Collapse
|